
Short course: Using the NEURON Simulation Environment © 10/97 MLH and NTC all rights reserved

The NEURON Simulation Environment

M.L. Hines1, 3 and N.T. Carnevale2, 3

Departments of 1Computer Science and 2Psychology

and 3Neuroengineering and Neuroscience Center

Yale University

michael.hines@yale.edu

ted.carnevale@yale.edu

an extended preprint of

Hines, M.L. and Carnevale, N.T.:

The NEURON Simulation Environment

Neural Computation 9:1179-1209, 1997.

2 The NEURON Simulation Environment

Short course: Using the NEURON Simulation Environment © 10/97 MLH and NTC all rights reserved

CONTENTS

1. INTRODUCTION ... 3
1.1 The problem domain..3
1.2 Experimental advances and quantitative modeling...3

2. OVERVIEW OF NEURON .. 4

3. MATHEMATICAL BASIS.. 4
3.1 The cable equation ...5
3.2 Spatial discretization in a biological context: sections and segments...6
3.3 Integration methods...8

3.3.1 The forward Euler method: simple, unstable, inaccurate ...8
3.3.2 Numerical stability..9
3.3.3 The backward Euler method: inaccurate but stable..10
3.3.4 Error ..11
3.3.5 Crank-Nicholson Method: stable and more accurate ..12
3.3.6 The integration methods used in NEURON..13
3.3.7 Efficiency ...13

4. THE NEURON SIMULATION ENVIRONMENT... 15
4.1 The hoc interpreter ..15
4.2 A specific example..15

4.2.1 First step: establish model topology ...16
4.2.2 Second step: assign anatomical and biophysical properties ..16
4.2.3 Third step: attach stimulating electrodes..17
4.2.4 Fourth step: control simulation time course ...17

4.3 Section variables ..17
4.4 Range variables ..18
4.5 Specifying geometry: stylized vs. 3-D ...19
4.6 Density mechanisms and point processes...20
4.7 Graphical interface ..22
4.8 Object-oriented syntax ..22

4.8.1 Neurons..22
4.8.2 Networks..23

5. SUMMARY... 24

REFERENCES .. 24

APPENDIX 1. LISTING OF hoc CODE FOR THE MODEL IN SECTION 4.2... 26

The NEURON Simulation Environment 3

Short course: Using the NEURON Simulation Environment © 10/97 MLH and NTC all rights reserved

1. INTRODUCTION

NEURON (Hines 1984; 1989; 1993; 1994)
provides a powerful and flexible environment for
implementing biologically realistic models of electrical
and chemical signaling in neurons and networks of
neurons. This article describes the concepts and
strategies that have guided the design and
implementation of this simulator, with emphasis on
those features that are particularly relevant to its most
efficient use.

1.1 The problem domain

Information processing in the brain results from the
spread and interaction of electrical and chemical
signals within and among neurons. This involves
nonlinear mechanisms that span a wide range of spatial
and temporal scales (Carnevale and Rosenthal 1992)
and are constrained to operate within the intricate
anatomy of neurons and their interconnections.
Consequently the equations that describe brain
mechanisms generally do not have analytical solutions,
and intuition is not a reliable guide to understanding the
working of the cells and circuits of the brain.
Furthermore, these nonlinearities and spatiotemporal
complexities are quite unlike those that are encountered
in most nonbiological systems, so the utility of many
quantitative and qualitative modeling tools that were
developed without taking these features into
consideration is severely limited.

NEURON is designed to address these problems
by enabling both the convenient creation of biologically
realistic quantitative models of brain mechanisms and
the efficient simulation of the operation of these
mechanisms. In this context the term “biological
realism” does not mean “infinitely detailed.” Instead it
means that the choice of which details to include in the
model and which to omit are at the discretion of the
investigator who constructs the model, and not forced
by the simulation program.

To the experimentalist NEURON offers a tool for
cross-validating data, estimating experimentally
inaccessible parameters, and deciding whether known
facts account for experimental observations. To the
theoretician it is a means for testing hypotheses and
determining the smallest subset of anatomical and
biophysical properties that is necessary and sufficient to
account for particular phenomena. To the student in a
laboratory course it provides a vehicle for illustrating
and exploring the operation of brain mechanisms in a

simplified form that is more robust than the typical
“wet lab” experiment. For experimentalist, theoretician,
and student alike, a powerful simulation tool such as
NEURON can be an indispensable aid to developing
the insight and intuition that are needed if one is to
discover the order hidden within the intricacy of
biological phenomena, the order that transcends the
complexity of accident and evolution.

1.2 Experimental advances and
quantitative modeling

Experimental advances drive and support
quantitative modeling. Over the past two decades the
field of neuroscience has seen striking developments in
experimental techniques that include
• high-quality electrical recording from neurons in

vitro and in vivo using patch clamp
• multiple impalements of visually identified cells
• simultaneous intracellular recording from paired

pre- and postsynaptic neurons
• simultaneous measurement of electrical and

chemical signals
• multisite electrical and optical recording
• quantitative analysis of anatomical and biophysical

properties from the same neuron
• photolesioning of cells
• photorelease of caged compounds for spatially

precise chemical stimulation
• new drugs such as channel blockers and receptor

agonists and antagonists
• genetic engineering of ion channels and receptors
• analysis of mRNA and biophysical properties from

the same neuron
• “knockout” mutations
These and other advances are responsible for
impressive progress in the definition of the molecular
biology and biophysics of receptors and channels, the
construction of libraries of identified neurons and
neuronal classes that have been characterized
anatomically, pharmacologically, and biophysically,
and the analysis of neuronal circuits involved in
perception, learning, and sensorimotor integration.

The result is a data avalanche that catalyzes the
formulation of new hypotheses of brain function, while
at the same time serving as the empirical basis for the
biologically realistic quantitative models that must be
used to test these hypotheses. Some examples from the
large list of topics that have been investigated through
the use of such models include

4 The NEURON Simulation Environment

Short course: Using the NEURON Simulation Environment © 10/97 MLH and NTC all rights reserved

• the cellular mechanisms that generate and regulate
chemical and electrical signals (Destexhe et al.
1996; Jaffe et al. 1994)

• drug effects on neuronal function (Lytton and
Sejnowski 1992)

• presynaptic (Lindgren and Moore 1989) and
postsynaptic (Destexhe and Sejnowski 1995;
Traynelis et al. 1993) mechanisms underlying
communication between neurons

• integration of synaptic inputs (Bernander et al.
1991; Cauller and Connors 1992)

• action potential initiation and conduction (Häusser
et al. 1995; Hines and Shrager 1991; Mainen et al.
1995)

• cellular mechanisms of learning (Brown et al.
1992; Tsai et al. 1994a)

• cellular oscillations (Destexhe et al. 1993a; Lytton
et al. 1996)

• thalamic networks (Destexhe et al. 1993b;
Destexhe et al. 1994)

• neural information encoding (Hsu et al. 1993;
Mainen and Sejnowski 1995; Softky 1994)

2. OVERVIEW OF NEURON
NEURON is intended to be a flexible framework

for handling problems in which membrane properties
are spatially inhomogeneous and where membrane
currents are complex. Since it was designed specifically
to simulate the equations that describe nerve cells,
NEURON has three important advantages over general
purpose simulation programs. First, the user is not
required to translate the problem into another domain,
but instead is able to deal directly with concepts that
are familiar at the neuroscience level. Second,
NEURON contains functions that are tailored
specifically for controlling the simulation and graphing
the results of real neurophysiological problems. Third,
its computational engine is particularly efficient
because of the use of special methods that take
advantage of the structure of nerve equations (Hines
1984; Mascagni 1989).

However, the general domain of nerve simulation
is still too large for any single program to deal
optimally with every problem. In practice, each
program has its origin in a focused attempt to solve a
restricted class of problems. Both speed of simulation
and the ability of the user to maintain conceptual
control degrade when any program is applied to
problems outside the class for which it is best suited.

NEURON is computationally most efficient for
problems that range from parts of single cells to small
numbers of cells in which cable properties play a
crucial role. In terms of conceptual control, it is best
suited to tree-shaped structures in which the membrane
channel parameters are approximated by piecewise
linear functions of position. Two classes of problems
for which it is particularly useful are those in which it is
important to calculate ionic concentrations, and those
where one needs to compute the extracellular potential
just next to the nerve membrane. It is especially
capable for investigating new kinds of membrane
channels since they are described in a high level
language (NMODL (Moore and Hines 1996)) which
allows the expression of models in terms of kinetic
schemes or sets of simultaneous differential and
algebraic equations. To maintain efficiency, user
defined mechanisms in NMODL are automatically
translated into C, compiled, and linked into the rest of
NEURON.

The flexibility of NEURON comes from a built-in
object oriented interpreter which is used to define the
morphology and membrane properties of neurons,
control the simulation, and establish the appearance of
a graphical interface. The default graphical interface is
suitable for exploratory simulations involving the
setting of parameters, control of voltage and current
stimuli, and graphing variables as a function of time
and position.

Simulation speed is excellent since membrane
voltage is computed by an implicit integration method
optimized for branched structures (Hines 1984). The
performance of NEURON degrades very slowly with
increased complexity of morphology and membrane
mechanisms, and it has been applied to very large
network models (104 cells with 6 compartments each,
total of 106 synapses in the net [T. Sejnowski, personal
communication]).

3. MATHEMATICAL BASIS

Strategies for numerical solution of the equations
that describe chemical and electrical signaling in
neurons have been discussed in many places. Elsewhere
we have briefly presented an intuitive rationale for the
most commonly used methods (Hines and Carnevale
1995). Here we start from this base and proceed to
address those aspects which are most pertinent to the
design and application of NEURON.

The NEURON Simulation Environment 5

Short course: Using the NEURON Simulation Environment © 10/97 MLH and NTC all rights reserved

3.1 The cable equation

The application of cable theory to the study of
electrical signaling in neurons has a long history, which
is briefly summarized elsewhere (Rall 1989). The basic
computational task is to numerically solve the cable
equation

∂
∂

∂
∂

V

t
I V t

V

x
+ =,b g

2

2
(1)

which describes the relationship between current and
voltage in a one-dimensional cable. The branched
architecture typical of most neurons is incorporated by
combining equations of this form with appropriate
boundary conditions.

i a

i a

i m

i a
i m

i a

i m

Figure 3.1. The net current entering a region must
equal zero.

Spatial discretization of this partial differential
equation is equivalent to reducing the spatially
distributed neuron to a set of connected compartments.
The earliest example of a multicompartmental approach
to the analysis of dendritic electrotonus was provided
by Rall (1964).

Spatial discretization produces a family of ordinary
differential equations of the form

c
dv

dt
i

v v

rj
j

ion
k j

jkk
j

+ =
−

∑ (2)

Equation 2 is a statement of Kirchhoff’s current law,
which asserts that net transmembrane current leaving
the jth compartment must equal the sum of axial
currents entering this compartment from all sources
(Fig. 3.1). The left hand side of this equation is the total
membrane current, which is the sum of capacitive and
ionic components. The capacitive component is

c dv dtj j , where cj is the membrane capacitance of the

compartment. The ionic component iion j
 includes all

currents through ionic channel conductances. The right
hand side of Eq. 2 is the sum of axial currents that enter
this compartment from its adjacent neighbors. Currents
injected through a microelectrode would be added to
the right hand side. The sign conventions for current
are: outward transmembrane current is positive; axial
current flow into a region is positive; positive injected
current drives vj in a positive direction.

Equation 2 involves two approximations. First,
axial current is specified in terms of the voltage drop
between the centers of adjacent compartments. The
second approximation is that spatially varying
membrane current is represented by its value at the
center of each compartment. This is much less drastic
than the often heard statement that a compartment is
assumed to be “isopotential.” It is far better to picture
the approximation in terms of voltage varying linearly
between the centers of adjacent compartments. Indeed,
the linear variation in voltage is implicit in the usual
description of a cable in terms of discrete electrical
equivalent circuits.

If the compartments are of equal size, it is easy to
use Taylor's series to show that both of these
approximations have errors proportional to the square
of compartment length. Thus replacing the second
partial derivative by its central difference
approximation introduces errors proportional to ∆x2,
and doubling the number of compartments reduces the
error by a factor of four.

It is often not convenient for the size of all
compartments to be equal. Unequal compartment size
might be expected to yield simulations that are only
first order accurate. However, comparison of
simulations in which unequal compartments are halved
or quartered in size generally reveals a second-order
reduction of error. A rough rule of thumb is that
simulation error is proportional to the square of the size
of the largest compartment.

The first of two special cases of Eq. 2 that we wish
to discuss allows us to recover the usual parabolic
differential form of the cable equation. Consider the
interior of an unbranched cable with constant diameter.
The axial current consists of two terms involving
compartments with the natural indices j–1 and j+1 , i.e.

c
dv

dt
i

v v

r

v v

rj
j

ion
j j

j j

j j

j j
j

+ =
−

+
−−

−

+

+

1

1

1

1, ,

6 The NEURON Simulation Environment

Short course: Using the NEURON Simulation Environment © 10/97 MLH and NTC all rights reserved

If the compartments have the same length ∆x and
diameter d, then the capacitance of a compartment is
Cm π d ∆x and the axial resistance is Ra ∆x / π (d/2)2. Cm

is called the specific capacitance of the membrane,
which is generally taken to be 1 µf / cm2. Ra is the axial
resistivity, which has different reported values for
different cell classes (e.g. 35.4 Ω cm for squid axon).
Eq. 2 then becomes

C
dv

dt
i

d

R

v v v

x
m

j
j

a

j j j+ =
− ++ −

4

21 1
2∆

where we have replaced the total ionic current iion j

with the current density i j . The right hand term, as

∆x → 0, is just ∂ ∂2 2V x at the location of the now
infinitesimal compartment j.

The second special case of Eq. 2 allows us to
recover the boundary condition. This is an important
exercise since naive discretizations at the ends of the
cable have destroyed the second order accuracy of
many simulations. Nerve boundary conditions are that
no axial current flows at the end of the cable, i.e. the
end is sealed. This is implicit in Eq. 2, where the right
hand side consists only of the single term

v v rj j j j− −−1 1d i , when compartment j lies at the end of

an unbranched cable.

3.2 Spatial discretization in a
biological context: sections
and segments

Every nerve simulation program solves for the
longitudinal spread of voltage and current by
approximating the cable equation as a series of
compartments connected by resistors (Fig. 3.4 and
Eq. 2). The sum of all the compartment areas is the
total membrane area of the whole nerve. Unfortunately,
it is usually not clear at the outset how many
compartments should be used. Both the accuracy of the
approximation and the computation time increase as the
number of compartments used to represent the cable
increases. When the cable is “short,” a single
compartment can be made to adequately represent the
entire cable. For long cables or highly branched
structures, it may be necessary to use a large number of
compartments.

This raises the question of how best to manage all
the parameters that exist within these compartments.

Consider membrane capacitance, which has a different
value in each compartment. Rather than specify the
capacitance of each compartment individually, it is
better to deal in terms of a single specific membrane
capacitance which is constant over the entire cell and
have the program compute the values of the individual
capacitances from the areas of the compartments. Other
parameters such as diameter or channel density may
vary widely over short distances, so the graininess of
their representation may have little to do with
numerically adequate compartmentalization.

Although NEURON is a compartmental modeling
program, the specification of biological properties
(neuron shape and physiology) has been separated from
the numerical issue of compartment size. What makes
this possible is the notion of a section, which is a
continuous length of unbranched cable. Although each
section is ultimately discretized into compartments,
values that can vary with position along the length of a
section are specified in terms of a continuous parameter
that ranges from 0 to 1 (normalized distance). In this
way, section properties are discussed without regard to
the number of segments used to represent it. This
makes it easy to trade off between accuracy and speed,
and enables convenient verification of the numerical
correctness of simulations.

Sections are connected together to form any kind
of branched tree structure. Fig. 3.2 illustrates how
sections are used to represent biologically significant
anatomical features. The top of this figure is a cartoon
of a neuron with a soma that gives rise to a branched
dendritic tree and an axon hillock connected to a
myelinated axon. Each biologically significant
component of this cell has its counterpart in one of the
sections of the NEURON model, as shown in the
bottom of Fig. 3.2: the cell body (Soma), axon hillock
(AH), myelinated internodes (Ii), nodes of Ranvier (Ni),
and dendrites (Di). Sections allow this kind of
functional/anatomical parcellation of the cell to remain
foremost in the mind of the person who constructs and
uses a NEURON model.

To accommodate requirements for numerical
accuracy, NEURON represents each section by one or
more segments of equal length (Figs. 3.3 and 3.4). The
number of segments is specified by the parameter
nseg, which can have a different value for each
section.

At the center of each segment is a node, the
location where the internal voltage of the segment is
defined. The transmembrane currents over the entire
surface area of a segment are associated with its node.

The NEURON Simulation Environment 7

Short course: Using the NEURON Simulation Environment © 10/97 MLH and NTC all rights reserved

The nodes of adjacent segments are connected by
resistors.

Figure 3.2. Top: cartoon of a neuron indicating the
approximate boundaries between biologically
significant structures. The left hand side of the cell
body (Soma) is attached to an axon hillock (AH)
that drives a myelinated axon (myelinated
internodes Ii alternating with nodes of Ranvier Ni).
From the right hand side of the cell body originates
a branched dendritic tree (Di). Bottom: how
sections would be employed in a NEURON model
to represent these structures.

It is crucial to realize that the location of the
second order correct voltage is not at the edge of a
segment but rather at its center, i.e. at its node. This is
the discretization method employed by NEURON. To
allow branching and injection of current at the precise
ends of a section while maintaining second order
correctness, extra voltage nodes that represent
compartments with 0 area are defined at the section
ends. It is possible to achieve second order accuracy
with sections whose end nodes have nonzero area
compartments. However, the areas of these terminal
compartments would have to be exactly half that of the
internal compartments, and extra complexity would be
imposed on administration of channel density at branch
points.

Based on the position of the nodes, NEURON
calculates the values of internal model parameters such
as the average diameter, axial resistance, and
compartment area that are assigned to each segment.
Figs. 3.3 and 3.4 show how an unbranched portion of a
neuron, called a neurite (Fig. 3.3A), is represented by a
section with one or more segments. Morphometric
analysis generates a series of diameter measurements
whose centers lie on the midline of the neurite (thin
axial line in Fig. 3.3B). These measurements and the

path lengths between their centers are the dimensions of
the section, which can be regarded as a chain of
truncated cones or frusta (Fig. 3.3C).

Figure 3.3. A: cartoon of an unbranched neurite
(thick lines) that is to be represented by a section in
a NEURON model. Computer-assisted morphome-
try generates a file that stores successive diameter
measurements (circles) centered at x, y, z coordi-
nates (crosses). B: each adjacent pair of diameter
measurements becomes the parallel faces of a trun-
cated cone or frustum. A thin centerline passes
through the central axis of the chain of solids. C:
the centerline has been straightened so the faces of
adjacent frusta are flush with each other. The scale
underneath the figure shows the distance along the
midline of the section in terms of the normalized
position parameter x. The vertical dashed line at
x = 0.5 divides the section into two halves of equal
length. D: Electrical equivalent circuit of the section
as represented by a single segment (nseg = 1). The
open rectangle includes all mechanisms for ionic
(non-capacitive) transmembrane currents.

Distance along the length of a section is discussed
in terms of the normalized position parameter x. That
is, one end of the section corresponds to x = 0 and the
other end to x = 1. In Fig. 3.3C these locations are
depicted as being on the left and right hand ends of the
section. The locations of the nodes and the boundaries
between segments are conveniently specified in terms
of this normalized position parameter. In general, a
section has nseg segments that are demarcated by
evenly spaced boundaries at intervals of 1 / nseg. The
nodes at the centers of these segments are located at

8 The NEURON Simulation Environment

Short course: Using the NEURON Simulation Environment © 10/97 MLH and NTC all rights reserved

x = (2 i – 1) / 2 nseg where i is an integer in the range
[1, nseg]. As we shall see later, x is also used in
specifying model parameters or retrieving state
variables that are a function of position along a section
(see 4.4 Range variables).

The special importance of x and nseg lies in the
fact that they free the user from having to keep track of
the correspondence between segment number and
position on the nerve. In early versions of NEURON,
all nerve properties were stored in vector variables
where the vector index was the segment number.
Changing the number of segments was an error prone
and laborious process that demanded a remapping of
the relationship between the user’s mental image of the
biologically important features of the model, on the one
hand, and the implementation of this model in a digital
computer, on the other. The use of x and nseg
insulates the user from the most inconvenient aspects of
such low-level details.

Figure 3.4. How the neurite of Fig. 3.3 would be
represented by a section with two segments
(nseg = 2). Now the electrical equivalent circuit
(bottom) has two nodes. The membrane properties
attached to the first and second nodes are based on
neurite dimensions and biophysical parameters over
the x intervals [0, 0.5] and [0.5, 1], respectively.
The three axial resistances are computed from the
cytoplasmic resistivity and neurite dimensions over
the x intervals [0, 0.25], [0.25, 0.75], and [0.75, 1].

When nseg = 1 the entire section is lumped into a
single compartment. This compartment has only one
node, which is located midway along its length, i.e. at
x = 0.5 (Fig. 3.3C and D). The integral of the surface

area over the entire length of the section (0 ≤ x ≤ 1) is
used to calculate the membrane properties associated
with this node. The values of the axial resistors are
determined by integrating the cytoplasmic resistivity
along the paths from the ends of the section to its

midpoint (dashed line in Fig. 3.3C). The left and right
hand axial resistances of Fig. 3.3D are evaluated over
the x intervals [0, 0.5] and [0.5, 1], respectively.

Fig. 3.4 shows what happens when nseg = 2.
Now NEURON breaks the section into two segments of
equal length that correspond to x intervals [0, 0.5] and
[0.5, 1]. The membrane properties over these intervals
are attached to the nodes at 0.25 and 0.75, respectively.
The three axial resistors Ri1, Ri2 and Ri3 are determined
by integrating the path resistance over the x intervals
[0, 0.25], [0.25, 0.75], and [0.75, 1].

3.3 Integration methods

Spatial discretization reduced the cable equation, a
partial differential equation with derivatives in space
and time, to a set of ordinary differential equations with
first order derivatives in time. Selection of a method for
numerical integration of these equations is guided by
concerns of stability, accuracy, and efficiency (Hines
and Carnevale 1995). To illustrate these important
concepts and explain the rationale for the integrators
used in NEURON, we turn first to the simplest
approach for solving such equations numerically:
explicit or forward Euler (which is NOT used in
NEURON).

3.3.1 The forward Euler method: simple,
unstable, inaccurate

Imagine a model of a neuron that has passive
membrane, i.e. membrane conductance is constant and
linear. The techniques that we use to understand and
control error are immediately generalizable to the
nonlinear case.

Suppose the model has only one compartment, so
there is no axial current and the right hand side of Eq. 2
is zero. This equation can then be written as

dV

dt
kV+ = 0 (3)

where the constant k is the inverse of the membrane
time constant. The analytic solution of Eq. 3 is

V t V e kt() ()= −0 (4)

Let us compare this to the results of our computer
methods.

The forward Euler method is based on a simple
approximation. We know the initial value of the

The NEURON Simulation Environment 9

Short course: Using the NEURON Simulation Environment © 10/97 MLH and NTC all rights reserved

dependent variable (V(0), given by the initial
conditions) and the initial slope of the solution (-kV(0),
given by Eq. 3). The approximation is to assume that
the slope is constant for a short period of time. Then we
can extrapolate from the value of V at time 0 to a new
value a brief interval into the future.

Figure 3.5. Left: comparison of analytic solution to
Eq. 3 (solid line) with results of forward Euler
method (filled squares) for V(0) = 1, k = 1, and ∆t =
0.5. Right: absolute error of forward Euler method.

This is illustrated in the left panel of Fig. 3.5,
where the initial condition is V(0) = 1, the rate
parameter is k = 1, and the time interval over which we
extrapolate is ∆t = 0.5. To simulate the behavior of
Eq. 3 we march forward by intervals of width ∆t,
assuming the current is constant within each interval.
The current that is used for a given interval is found
from the value of the voltage at the beginning of the
interval (filled squares). This current determines the
slope of the line segment that leads to the voltage at the
next time step. The dashed line shows the value of the
voltage after the first time step as a function of ∆t.
Corresponding values for the analytic solution (solid
line) are indicated by filled circles.

The right panel of Fig. 3.5 shows the absolute
difference between the analytic solution and the results
of the forward Euler method. The error increases for
the first few time steps, then decreases as the analytic
and simulation solutions approach the same steady state
(V = 0).

3.3.2 Numerical stability

What would happen if Eq. 3 were subjected to the
forward Euler method with a very large time step, e.g.
∆t = 3? The simulation would become numerically
unstable, with the first step extrapolating down to V =
-2, the second step going to V = –2 + 6 = 4, and each

successive step oscillating with geometrically
increasing magnitude.

Simulations of the two compartment model on the
left of Fig. 3.6 demonstrate an important aspect of
instability. Suppose the initial condition is V = 0 in one
compartment and V = 2 in the other. According to the
analytic solution, the potentials in the two
compartments rapidly converge toward each other (time
constant 1/41), and then slowly decay toward 0 (time
constant 1).

Figure 3.6. Left: The two compartments of this
model are connected by a small axial resistance, so
the membrane potentials are normally in quasi-
equilibrium and at the same time are decaying fairly
slowly. Right: The forward Euler method (dashed
lines) is numerically unstable whenever ∆t is greater
than twice the smallest time constant. The analytic
solution (thin lines) is the sum of two exponentials
with time constants 1 and 1/41. The solution step
size is 0.001 second for the first 0.2 second, after
which it is increased to 0.2 second.

If we use the forward Euler method with ∆t = 0.5,
we realize that there will be a great deal of trouble
during the time where the voltages are changing
rapidly. We might therefore think that all we need to do
is choose a ∆t that will carefully follow the time course
of the voltage changes, i.e. let ∆t be small when they
are changing rapidly, and larger when they are
changing slowly.

The results of this strategy are shown on the right
of Fig. 3.6. After 0.2 seconds with ∆t = 0.001, the two
voltages have nearly come into equilibrium. Then we
changed to ∆t = 0.2, which is small enough to follow
the slow decay closely. Unfortunately what happens is
that, no matter how small the difference between the
voltages (even if it consists only of roundoff error), the
difference grows geometrically at each time step. The
time step used in the forward Euler method must never
be more than twice the smallest time constant in the
system.

10 The NEURON Simulation Environment

Short course: Using the NEURON Simulation Environment © 10/97 MLH and NTC all rights reserved

Linear algebra clarifies the notion of “time
constant” and its relationship to stability. For a linear
system with N compartments, there are exactly N
spatial patterns of voltage over all compartments such
that only the amplitude of the pattern changes with
time, while the shape of the pattern is preserved. The
amplitude of each of these patterns, or eigenvectors, is

given by et iλ , where λi is called the eigenvalue of the
ith eigenvector. Each eigenvalue is the reciprocal of
one of the time constants of the solutions to the
differential equations that describe the system. The ith
pattern decays exponentially to 0 if the real part of λi is
negative; if the real part is positive, the amplitude
grows catastrophically. If λi has an imaginary
component, the pattern oscillates with frequency ωi =
Im(λi).

Our two compartment model has two such patterns.
In one, the voltages in the two compartments are
identical. This pattern decays with the time course e –t.
The other pattern, in which the voltages in the two
compartments are equal but have opposite sign, decays
with the much faster time course e –41t.

The key idea is that a problem involving N coupled
differential equations can always be transformed into a
set of N independent equations, each of which is solved
separately as in the single compartment of Eq. 3. When
the equations that describe such a system are solved
numerically, the time step ∆t must be small enough that
the solution of each equation is stable. This is the
reason why stability criteria that involve ∆t depend on
the smallest time constant.

If the ratio between the slowest and fastest time
constants is large, the system is said to be stiff.
Stiffness is a serious problem because a simulation may
have to run for a very long time in order to show
changes governed by the slow time constant, yet a small
∆t has to be used to follow changes due to the fast time
constant.

A driving force may alter the time constants that
describe a system, thereby changing its stability
properties. A current source (perfect current clamp)
does not affect stability because it does not change the
time constants. Any other signal source imposes a load
on the compartment to which it is attached, changing
the time constants and their corresponding
eigenvectors. The more closely it approximates a
voltage source (perfect voltage clamp), the greater this
effect will be.

3.3.3 The backward Euler method: inaccurate
but stable

The numerical stability problems of the forward
Euler method can be avoided if the equations are
evaluated at time t + ∆t, i.e.

V t t V t tf V t t t t+ = + + +∆ ∆ ∆ ∆b g b g b gc h, (5)

Equation 5 can be derived from Taylor’s series
truncated at the ∆t term but with t + ∆t in place of t.
Therefore this approach is called the implicit or
backward Euler method.

For our one-compartment example, the backward
Euler method gives

V t t
V t

k t
+ =

+
∆

∆
b g b g

1
(6)

Several iterations of Eq. 6 are shown in Fig. 3.7. Each
step moves to a new point (ti+i, V(ti+1)) such that the
slope there points back to the previous point (ti, V(ti)).
If ∆t is very large, the solution converges exponentially
toward the steady state instead of oscillating with
geometrically increasing amplitude.

Figure 3.7. Comparison of analytic solution to Eq. 3
with results from backward Euler method (Eq. 6)
for V(0) = 1, k = 1, and ∆t = 0.75. At the end of
each step the slope at the new value points back to
the beginning of the step. The dashed line shows the
voltage after the first time step as a function of ∆t.

Applying the implicit method to the two
compartment model demonstrates its attractive stability
properties (Fig. 3.8). Notice that a large ∆t gives a
reasonable qualitative understanding of the behavior,
even if it does not allow us to follow the initial rapid
voltage changes. Furthermore the step size can be
changed according to how quickly the states are
changing, yet the solution remains stable.

The NEURON Simulation Environment 11

Short course: Using the NEURON Simulation Environment © 10/97 MLH and NTC all rights reserved

Figure 3.8. Two compartments as in Fig. 3.6
simulated with backward Euler method. Left: ∆t =
0.2 second, much larger than the fast time constant.
Right: for the first 0.2 second, ∆t is small enough to
accurately follow the fast time constant. Thereafter,
∆t is increased to 0.2 second, yet the simulation
remains numerically stable.

The backward Euler method requires the solution
of a set of nonlinear simultaneous equations at each
step. To compensate for this extra work, the step size
needs to be as large as possible while preserving good
quantitative accuracy. The first order implicit method is
practical for initial exploratory simulations because
reasonable values of ∆t produce fast simulations that
are almost always qualitatively correct, and tightly
coupled compartments do not generate large error
oscillations but instead come quickly into equilibrium
because of its robust stability properties.

3.3.4 Error

The total or global error is a combination of errors
from two sources. The local error emerges from the
extrapolation process within a time step. For the
backward Euler method this is easily analyzed with
Taylor’s theorem truncated at the term proportional to
∆t.

V t t V t tV t t

t
V t

+ = + ′ +

− ′′

∆ ∆ ∆

∆

b g b g b g

b g
2

2
*

(7)

where t t t t≤ ≤ +* ∆

Both the forward and backward Euler methods
ignore second and higher order terms, so the error at
each step is proportional to ∆t

2. Integrating over a fixed
time interval T requires T/∆t steps, so the error that
accumulates in this interval is on the order of

∆ ∆t T t2 ⋅ , i.e. the net error is proportional to ∆t.
Therefore we can always decrease the local error as
much as we like by reducing ∆t.

The second contribution to the total error comes
from with the cumulative effect of past errors, which
have moved the computed solution away from the
trajectory of the analytic solution. Thus, if our
computer solution has a nonzero total error at time t1,
then even if we were to thereafter solve the equations
exactly using the state values at t1 as our initial
condition, the future solution will be inaccurate because
we are on a different trajectory.

The total error of the simulation is therefore not
easy to analyze. In the example of Fig. 3.5, all
trajectories end up at the same steady state so total
error tends to decrease, but not all systems behave in
this manner. Particularly treacherous are systems that
behave chaotically so that, once the computed solution
diverges even slightly from the proper trajectory, it
subsequently moves rapidly away from the original and
the time evolution becomes totally different.

The question is not so much how large the error of
a simulation is relative to the analytic solution, but
whether the simulation error leads us to trajectories that
are different from the set of trajectories defined by the
error in our parameters. There may be some benefit in
treating the model equations as sacred runes which
must be solved to an arbitrarily high precision, insofar
as removal of any source of error has value.
Nevertheless, judgment is required in order to
determine the meaning of a simulation run.

For example, consider the Hodgkin-Huxley
membrane action potentials elicited by two current
stimuli, one brief and strong and the other much
weaker. The left panel of Fig. 3.9 compares the results
of computing these action potentials by the backward
Euler method using time steps of 25 and 5 µs. As noted
above, shortening the time step decreases the
simulation error. The effect is most noticeable for
simulations involving the weaker stimulus: while the
voltage hovers near threshold, a small error due to our
time step grows into a large error in the time of
occurrence of the spike.

However the behavior near threshold is highly
sensitive to almost any parameter. This is demonstrated
in the right of Fig. 3.9, where the sodium channel
density is varied by only 1%. Clearly it is crucial to
know the sensitivity of our results to every parameter of
the model, and the time step is just one more parameter
which is added as a condition of being able to simulate
a model on the computer.

12 The NEURON Simulation Environment

Short course: Using the NEURON Simulation Environment © 10/97 MLH and NTC all rights reserved

Figure 3.9. Backward Euler method simulations of
Hodgkin Huxley membrane action potentials
elicited by a current stimulus of duration 0.3 ms and
amplitude 0.8 mA/cm2 or 0.22 mA/cm2. Left:
Sensitivity to integration time step. The solid and
dashed traces were computed with ∆t = 25 and 5 µs,
respectively. All action potentials were calculated
with peak sodium conductance (gNa) 0.12
siemens/cm2. Right: Sensitivity to gNa . All traces

were computed with ∆t = 5 µs. Peak sodium
conductance was 0.12 siemens/cm2 (solid lines) ±
1% (dashed lines). The three simulations that
involved the large stimulus are indistinguishable in
this plot.

Using extremely small ∆t might seem to be the best
way to reduce error. However, computers represent real
numbers as floating point numbers with a fixed number
of digits, so if you keep adding 10–20 to 1 you may
always get a value of 1, even after repeating the process
1020 times. Operations that involve the difference of
similar numbers, as when differences are substituted for
derivatives, are especially prone to such roundoff error.
Consequently there is a limit to the accuracy
improvement that can be achieved by decreasing ∆t.

Generally speaking it would be nice to be able to
use what might be called “physiological” values of ∆t,
i.e. time steps that give a good representation of the
state trajectories without having a numerical accuracy
that is many orders of magnitude better than the
accuracy of our physiological measurements.

3.3.5 Crank-Nicholson Method: stable and
more accurate

This motivates us to look into an integration
strategy that combines the backward and forward Euler
methods. The central difference or Crank-Nicholson
method [Crank and Nicholson 1947], which is
equivalent to advancing by one half step using
backward Euler and then advancing by one half step

using forward Euler, has global error proportional to
the square of the step size. Fig. 3.10 illustrates the idea.
The value at the end of each step is along a line
determined by the estimated slope at the midpoint of
the step.

Generally, for a given ∆t we can expect a large
accuracy increase with the Crank-Nicholson method. In
fact, the simulation using the 0.75 second time step in
Fig. 3.10 is much more accurate than the 0.5 second
time step simulation with the forward Euler method
(Fig. 3.5).

Figure 3.10. In the Crank-Nicholson method the
slope at the midpoint of the step is used to
determine the new value. The analytic and Crank-
Nicholson solutions are almost indistinguishable in
this figure. The dashed line shows the voltage after
the first time step as a function of ∆t.

A most convenient feature of the central difference
method is that the amount of computational work for
the extra accuracy beyond the backward Euler method
is trivial, since after computing V(t + ∆t/2) we just have

V t t V t
t

V t+ = +F
HG

I
KJ −∆ ∆b g b g2

2
(8)

so the extra accuracy does not cost extra computations
of the model functions.

One might well ask what effect the forward Euler
half step has on numerical stability. Fig. 3.11 shows the
solution for the two compartment model of Fig. 5
computed using this central difference method, in
which ∆t was much larger than the fast time constant.
The sequence of a backward Euler half step followed
by a forward Euler half step approximates an
exponential decay by

V t t V t

k t

k t
+ =

−

+
∆

∆

∆b g b g
1

2

1
2

(9)

The NEURON Simulation Environment 13

Short course: Using the NEURON Simulation Environment © 10/97 MLH and NTC all rights reserved

As ∆t gets very large, the step multiplier approaches –1
from above so the solution oscillates with decreasing
amplitude.

Figure 3.11. The Crank-Nicholson method can have
significant error oscillations when there is a large
amplitude component in the simulation that has a
time constant much smaller than ∆t. However, the
oscillation amplitude decreases at each step, so the
simulation is numerically stable.

Technically speaking the Crank-Nicholson method
is stable because the error oscillations do decay with
time. However, this example shows that it can produce
artifactual large amplitude oscillations if the time step
is too large. This can affect simulations of models that
involve voltage clamps or in which adjacent segments
are coupled by very small resistances.

3.3.6 The integration methods used in
NEURON

The preceding discussion shows why NEURON
offers the user a choice of two stable implicit
integration methods: backward Euler, and a variant of
Crank-Nicholson. Because of its robust numerical
stability properties, backward Euler produces good
qualitative results even with large time steps, and it
works even if some or all of the equations are strictly
algebraic relations among states. It can be used with
extremely large time steps to find the steady-state
solution for a linear (“passive”) system. Backward
Euler is therefore the default integrator used by
NEURON.

When the global parameter secondorder is set
to 2, a variant of the Crank-Nicholson method is used,
which has numerical error proportional to ∆t2 and is
therefore more accurate for small time steps.

In implicit integration methods, all current balance
equations must be solved simultaneously. The
backward Euler algorithm does not resort to iteration to

deal with nonlinearities, since its numerical error is
proportional to ∆t anyway. The special feature of the
Crank-Nicholson variant is its use of a staggered time
step algorithm to avoid iteration of nonlinear equations
(see 3.3.7 Efficiency below). This converts the current
balance part of the problem to one that requires only
the solution of simultaneous linear equations.

Although the Crank-Nicholson method is formally
stable, it is sometimes plagued by spurious large
amplitude oscillations (Fig. 3.11). This occurs when ∆t
is too large, as may occur in models that involve fast
voltage clamps or that have compartments which are
coupled by very small resistances. However, Crank-
Nicholson is safe in most situations, and it can be much
more efficient than backward Euler for a given
accuracy.

These two methods are almost identical in terms of
computational cost per time step (see 3.3.7 Efficiency
below). Since the current balance equations have the
structure of a tree (there are no current loops), direct
gaussian elimination is optimal for their solution (Hines
1984). This takes exactly the same number of computer
operations as would be required for an unbranched
cable with the same number of compartments.

For any particular problem, the best way to
determine which is the method of choice is to compare
both methods with several values of ∆t to see which
allows the largest ∆t consistent with the desired
accuracy. In performing such trials, one must remember
that the stability properties of a simulation depend on
the entire system that is being modeled. Because of
interactions between “biological” components and any
“nonbiological” elements, such as stimulators or
voltage-clamps, the time constants of the entire system
may be different from those of the biological
components alone. A current source (perfect current
clamp) does not affect stability because it does not
change the time constants. Any other signal source
imposes a load on the compartment to which it is
attached, changing the time constants and potentially
requiring use of a smaller time step to avoid numerical
oscillations in the Crank-Nicholson method. The more
closely a signal source approximates a voltage source
(perfect voltage clamp), the greater this effect will be.

3.3.7 Efficiency

Nonlinear equations generally need to be solved
iteratively to maintain second order correctness.
However, voltage dependent membrane properties,
which are typically formulated in analogy to Hodgkin-

14 The NEURON Simulation Environment

Short course: Using the NEURON Simulation Environment © 10/97 MLH and NTC all rights reserved

Huxley (HH) type channels, allow the cable equation to
be cast in a linear form, still second order correct, that
can be solved without iterations. A direct solution of
the voltage equations at each time step t → t + ∆t using
the linearized membrane current I(V,t) = G · (V – E) is
sufficient as long as the slope conductance G and the
effective reversal potential E are known to second order
at time t + 0.5 ∆t. HH type channels are easy to solve at
t + 0.5 ∆t since the conductance is a function of state
variables which can be computed using a separate time
step that is offset by 0.5 ∆t with respect to the voltage
equation time step. That is, to integrate a state from t
- 0.5 ∆t to t + 0.5 ∆t we only require a second order
correct value for the voltage dependent rates at the
midpoint time t.

Figure 3.12. The equations shown here are
computed using the Crank-Nicholson method. Top:
x(t + ∆t) and y(t + ∆t) are determined using their
values at time t. Bottom: staggered time steps yield
decoupled linear equations. y(t + ∆t/2) is
determined using x(t), after which x(t + ∆t) is
determined using y(t + ∆t/2).

Figure 3.12 contrasts this approach with the
common technique of replacing nonlinear coefficients
by their values at the beginning of a time step. For HH
equations in a single compartment, the staggered time
grid approach converts four simultaneous nonlinear
equations at each time step to four independent linear
equations that have the same order of accuracy at each

time step. Since the voltage dependent rates use the
voltage at the midpoint of the integration step,
integration of channel states can be done analytically in
just a single addition and multiplication operation and
two table lookup operations. While this efficient
scheme achieves second order accuracy, the tradeoff is
that the tables depend on the value of the time step and
must be recomputed whenever the time step changes.

Neuronal architecture can also be exploited to
increase computational efficiency. Since neurons
generally have a branched tree structure with no loops,
the number of arithmetic operations required to solve
the cable equation by Gaussian elimination is exactly
the same as for an unbranched cable with the same
number of compartments. That is, we need only O(N)
arithmetic operations for the equations that describe N
compartments connected in the form of a tree, even
though standard Gaussian elimination generally takes
O(N3) operations to solve N equations in N unknowns.

The tremendous efficiency increase results from
the fact that, in a tree, one can always find a leaf
compartment i that is connected to only one other
compartment j, so that

a V a V bii i ij j i+ = (10a)

a V a V

b

ji i jj j

j

+ +

=

terms from other compartments

(10b)

In other words, the equation for compartment i
(Eq. 10a) involves only the voltages in compartments i
and j, and the voltage in compartment i appears only in
the equations for compartments i and j (Eq. 10a and b).
Using Eq. 10a to eliminate the Vi term from Eq. 10b,
which requires O(1) (instead of N) operations, gives
Eq. 11 and leaves N–1 equations in N–1 unknowns.

′ +

= ′

a V

b

jj j

j

terms from other compartments

(11)

where ′ = −a a a a ajj jj ij ji iid i
and ′ = −b b b a aj j i ji iid i

This strategy can be applied until there is only one
equation in one unknown.

Assume that we know the solution to these N–1
equations, and in particular that we know Vj. Then we
can find Vi from Eq. 10a with O(1) step. Therefore the

The NEURON Simulation Environment 15

Short course: Using the NEURON Simulation Environment © 10/97 MLH and NTC all rights reserved

effort to solve these N equations is O(1) plus the effort
needed to solve N–1 equations. The number of
operations required is independent of the branching
structure, so a tree of N compartments uses exactly the
same number of arithmetic operations as a one-
dimensional cable of N compartments.

Efficient Gaussian elimination requires an ordering
that can be found by a simple algorithm: choose the
equation with the current minimum number of terms as
the equation to use in the elimination step. This
minimum degree ordering algorithm is commonly
employed in standard sparse matrix solver packages.
For example, NEURON’s “Matrix” class uses the
matrix library written by Stewart and Leyk (1994). This
and many other sparse matrix packages are freely
available at http://www.netlib.org.

4. THE NEURON SIMULATION

ENVIRONMENT

No matter how powerful and robust its
computational engine may be, the real utility of any
software tool depends largely on its ease of use.
Therefore a great deal of effort has been invested in the
design of the simulation environment provided by
NEURON. In this section we first briefly consider
general aspects of the high-level language used for
writing NEURON programs. Then we turn to an
example of a model of a nerve cell to introduce specific
aspects of the user environment, after which we cover
these features more thoroughly.

4.1 The hoc interpreter

NEURON incorporates a programming language
based on hoc, a floating point calculator with C-like
syntax described by Kernighan and Pike (1984). This
interpreter has been extended by the addition of object-
oriented syntax (not including polymorphism or
inheritance) that can be used to implement abstract data
types and data encapsulation. Other extensions include
functions that are specific to the domain of neural
simulations, and functions that implement a graphical
user interface (see below).

With hoc one can quickly write short programs
that meet most problem-specific needs. The interpreter
is used to execute simulations, customize the user
interface, optimize parameters, analyze experimental
data, calculate new variables such as impulse
propagation velocity, etc..

NEURON simulations are not subject to the
performance penalty often associated with interpreted
(as opposed to compiled) languages because
computationally intensive tasks are carried out by
highly efficient precompiled code. Some of these tasks
are related to integration of the cable equation and
others are involved in the emulation of biological
mechanisms that generate and regulate chemical and
electrical signals.

NEURON provides a built-in implementation of
the microemacs text editor. Since the choice of a
programming editor is highly personal, NEURON will
also accept hoc code in the form of straight ASCII
files created with any other editor.

4.2 A specific example

In the following example we show how NEURON
might be used to model the cell in the top of Fig. 4.1.
Comments in the hoc code are preceded by double
slashes (//), and code blocks are enclosed in curly
brackets ({}). Because the model is described in a
piecewise fashion and many of the code specimens
given below are meant to illustrate other features of
NEURON, for the sake of clarity a fully commented
and complete listing of the hoc code for this model is
contained in Appendix 1.

Figure 4.1. Top: cartoon of a neuron with a soma,
three dendrites, and an unmyelinated axon (not to
scale). The soma diameter is 50 µm. Each dendrite
is 200 µm long and tapers uniformly along its
length from 10 µm diameter at the soma to 3 µm at
its distal end. The unmyelinated cylindrical axon is
1000 µm long and has a diameter of 1 µm. An
electrode (not shown) is inserted into the soma for
intracellular injection of a stimulating current.
Bottom: topology of a NEURON model that
represents this cell.

16 The NEURON Simulation Environment

Short course: Using the NEURON Simulation Environment © 10/97 MLH and NTC all rights reserved

4.2.1 First step: establish model topology

One very important feature of NEURON is that it
allows the user to think about models in terms that are
familiar to the neurophysiologist, keeping numerical
issues (e.g. number of spatial segments) entirely
separate from the specification of morphology and
biophysical properties. As noted in a previous section
(3.2 Spatial discretization . . .), this separation is
achieved through the use of one-dimensional cable
“sections” as the basic building block from which
model cells are constructed. These sections can be
connected together to form any kind of branched cable
and endowed with properties which may vary with
position along their length.

The idealized neuron in Fig. 4.1 has several
anatomical features whose existence and spatial
relationships we want the model to include: a cell body
(soma), three dendrites, and an unmyelinated axon. The
following hoc code sets up the basic topology of the
model:

create soma, axon, dendrite[3]
connect axon(0), soma(0)
for i=0,2
 {connect dendrite[i](0), soma(1)}

The program starts by creating named sections that
correspond to the important anatomical features of the
cell. These sections are attached to each other using
connect statements. As noted previously, each
section has a normalized position parameter x which
ranges from 0 at one end to 1 at the other. Because the
axon and dendrites arise from opposite sides of the cell
body, they are connected to the 0 and 1 ends of the
soma section (see bottom of Fig. 4.1). A child section
can be attached to any location on the parent, but
attachment at locations other than 0 or 1 is generally
employed only in special cases such as spines on
dendrites.

4.2.2 Second step: assign anatomical and
biophysical properties

Next we set the anatomical and biophysical
properties of each section. Each section has its own
segmentation, length, and diameter parameters, so it is
necessary to indicate which section is being referenced.
There are several ways to declare which is the currently
accessed section, but here the most convenient is to
precede blocks of statements with the appropriate
section name.

soma {
 nseg = 1
 L = 50 // [µm] length
 diam = 50 // [µm] diameter
 insert hh // HH currents
 gnabar_hh = 0.5*0.120 // [S/cm 2]
}
axon {
 nseg = 20
 L = 1000
 diam = 1
 insert hh
}
for i=0,2 dendrite[i] {
 nseg = 5
 L = 200
 diam(0:1) = 10:3 // tapers
 insert pas // passive current
 e_pas = -65 // [mv] eq potential
 g_pas = 0.001 // [S/cm 2]
}

The fineness of the spatial grid is determined by
the compartmentalization parameter nseg (see
3.2 Spatial discretization . . .). Here the soma is
lumped into a single compartment (nseg = 1), while
the axon and each of the dendrites are broken into
several subcompartments (nseg = 20 and 5,
respectively).

In this example, we specify the geometry of each
section by assigning values directly to section length
and diameter. This creates a “stylized model.”
Alternatively, one can use the “3-D method,” in which
NEURON computes section length and diameter from a
list of (x, y, z, diam) measurements (see 4.5 Specifying
geometry: stylized vs. 3-D).

Since the axon is a cylinder, the corresponding
section has a fixed diameter along its entire length. The
spherical soma is represented by a cylinder with the
same surface area as the sphere. The dimensions and
electrical properties of the soma are such that its
membrane will be nearly isopotential, so the cylinder
approximation is not a significant source of error. If
chemical signals such as intracellular ion
concentrations were important in this model, it would
be necessary to approximate not only the surface area
but also the volume of the soma.

Unlike the axon, the dendrites become
progressively narrower with distance from the soma.
Furthermore, unlike the soma, they are too long to be
lumped into a single compartment with constant
diameter. The taper of the dendrites is accommodated
by assigning a sequence of decreasing diameters to
their segments. This is done through the use of “range
variables,” which are discussed below (4.4 Range
variables).

The NEURON Simulation Environment 17

Short course: Using the NEURON Simulation Environment © 10/97 MLH and NTC all rights reserved

In this model the soma and axon contain Hodgkin-
Huxley (HH) sodium, potassium, and leak channels
(Hodgkin and Huxley 1952), while the dendrites have
constant, linear (“passive”) ionic conductances. The
insert statement assigns the biophysical mechanisms
that govern electrical signals in each section. Particular
values are set for the density of sodium channels on the
soma (gnabar_hh) and for the ionic conductance and
equilibrium potential of the passive current in the
dendrites (g_pas and e_pas). More information
about membrane mechanisms is presented in a later
section (4.6 Density mechanisms and point
processes).

4.2.3 Third step: attach stimulating electrodes

This code emulates the use of an electrode to inject
a stimulating current into the soma by placing a current
pulse stimulus in the middle of the soma section. The
stimulus starts at t = 1 ms, lasts for 0.1 ms, and has an
amplitude of 60 nA.

objref stim
// put stim in middle of soma
soma stim = new Iclamp(0.5)
stim.del = 1 // [ms] delay
stim.dur = 0.1 // [ms] duration
stim.amp = 60 // [nA] amplitude

The stimulating electrode is an example of a point
process. Point processes are discussed in more detail
below (4.6 Density mechanisms and point processes).

4.2.4 Fourth step: control simulation time
course

At this point all model parameters have been
specified. All that remains is to define the simulation
parameters, which govern the time course of the
simulation, and write some code that executes the
simulation.

This is generally done in two procedures. The first
procedure initializes the membrane potential and the
states of the inserted mechanisms (channel states, ionic
concentrations, extracellular potential next to the
membrane). The second procedure repeatedly calls the
built-in single step integration function fadvance()
and saves, plots, or computes functions of the desired
output variables at each step. In this procedure it is
possible to change the values of model parameters
during a run.

The built-in function finitialize() initializes
time t to 0, membrane potential v to -65 mv
throughout the model, and the HH state variables m, n
and h to their steady state values at v = –65 mv.
Initialization can also be performed with a user-written
routine if there are special requirements that
finitialize() cannot accommodate, such as
nonuniform membrane potential.

dt = 0.05 // [ms] time step
tstop = 5 // [ms]

// initialize membrane potential,
// state variables, and time
finitialize(-65)

proc integrate() {
// show somatic Vm at t=0
print t, soma.v(0.5)
while (t < tstop) {

// advance solution by dt
fadvance()
// function calls to save
// or plot results
// would go here
// show time and soma Vm
print t, soma.v(0.5)
// statements that change
// model parameters
// would go here

}
}

Both the integration time step dt and the solution
time t are global variables. For this example dt =
50 µs. The while(){} statement repeatedly calls
fadvance(), which integrates the model equations
over the interval dt and increments t by dt on each
call. For this example, the time and somatic membrane
potential are displayed at each step. This loop exits
when t ≥ tstop.

The entire listing of the hoc code for the model is
printed in Appendix 1. When this program is first
processed by the NEURON interpreter, the model is set
up and initiated but the integrate() procedure is
not executed. When the user enters an integrate()
statement in the NEURON interpreter window, the
simulation advances for 5 ms using 50 µs time steps.

4.3 Section variables

Three parameters apply to the section as a whole:
cytoplasmic resistivity Ra (Ω cm), the section length L,
and the compartmentalization parameter nseg. The
first two are “ordinary” in the sense that they do not

18 The NEURON Simulation Environment

Short course: Using the NEURON Simulation Environment © 10/97 MLH and NTC all rights reserved

affect the structure of the equations that describe the
model. Note that the hoc code specifies values for L
but not for Ra. This is because each section in a model
is likely to have a different length, whereas the
cytoplasm (and therefore Ra) is usually assumed to be
uniform throughout the cell. The default value of Ra is
35.4 Ω cm, which is appropriate for invertebrate
neurons. Like L it can be assigned a new value in any
or all sections (e.g. ~200 Ω cm for mammalian
neurons).

The user can change the compartmentalization
parameter nseg without having to modify any of the
statements that set anatomical or biophysical properties.
However, if parameters vary with position in a section,
care must be taken to ensure that the model
incorporates the spatial detail inherent in the parameter
description.

4.4 Range variables

Like dendritic diameter in our example, most
cellular properties are functions of the position
parameter x. NEURON has special provisions for
dealing with these properties, which are called “range
variables.” Other examples of range variables include
the membrane potential v, and ionic conductance
parameters such as the maximum HH sodium
conductance gnabar_hh (siemens / cm2).

Range variables enable the user to separate
property specification from segment number. A range
variable is assigned a value in one of two ways. The
simplest and most common is as a constant. For
example, the statement axon.diam = 10 asserts
that the diameter of the axon is uniform over its entire
length.

Properties that change along the length of a section
are specified with the syntax
rangevar(xmin:xmax) = e1:e2. The four
italicized symbols are expressions with e1 and e2
being the values of the property at xmin and xmax,
respectively. The position expressions must meet the
constraint 0 ≤ xmin ≤ xmax ≤ 1. Linear interpolation
is used to assign the values of the property at the
segment centers that lie in the position range [xmin,
xmax]. In this manner a continuously varying property
can be approximated by a piecewise linear function. If
the range variable is diameter, neither e1 nor e2
should be 0, or the corresponding axial resistance will
be infinite.

In our model neuron, the simple dendritic taper is
specified by diam(0:1) = 10:3 and nseg = 5.

This results in five segments that have centers at x =
0.1, 0.3, 0.5, 0.7 and 0.9 and diameters of 9.3, 7.9, 6.5,
5.1 and 3.7, respectively.

To underscore the relationship between parameter
ranges, segment centers, and the values that are
assigned to range variables, it may be helpful to
consider a pair of examples. The second column of
Table 4.1 shows the values of x at which segment
centers would be located for nseg = 1, 2, 3 and 5. The
third column shows the corresponding diameters of
these segments for a dendrite with a diameter of 10 µm
over the first 60% of its length and 14 µm over the
remaining 40% of its length. The diameter that is
assigned to each segment depends entirely on whether
the segment center lies in the x interval that
corresponds to 10 µm or 14 µm.

nseg

segment
centers
x see Note 1 see Note 2

1 0.5 10 13

2
0.25
0.75

10
14

10.5
14

3
0.1667

0.5
0.8333

10
10
14

10
13
14

5

0.1
0.3
0.5
0.7
0.9

10
10
10
14
14

10
11
13
14
14

Note 1 diam(0:0.6)=10:10
diam(0.6:1)=14:14

Note 2 diam(0:0.2)=10:10
diam(0.6:1)=14:14
diam(0.2:0.6)=10:14

Table 4.1. Diameter as a range variable: effects of
nseg on segment diameters

The fourth column illustrates interpolation of
segment diameters. Here the dendrite starts with a
diameter of 10 µm over the first 20% of its length, has
a linear flare from 10 to 14 µm over the next 40%, and
ends with a diameter of 14 µm over the last 40% of its
length. The segments that have centers in the interval
[0.2, 0.6] are assigned diameters that are interpolated.

The value of a range variable at the center of a
segment can appear in any expression using the syntax
rangevar(x) in which 0 ≤ x ≤ 1. The value returned
is the value at the center of the segment containing x,
NOT the linear interpolation of the values stored at the

The NEURON Simulation Environment 19

Short course: Using the NEURON Simulation Environment © 10/97 MLH and NTC all rights reserved

centers of adjacent segments. If the parentheses are
omitted, the position defaults to a value of 0.5 (middle
of the section).

A special form of the for statement is available:
for (var) stmt. For each value of the normalized
position parameter x that defines the center of each
segment in the selected section (along with positions 0
and 1), this statement assigns var that value and
executes the stmt. This hoc code would print the
membrane potential as a function of physical position
(in µm) along the axon:

axon for (x) print x*L, v(x)

4.5 Specifying geometry: stylized vs.
3-D

As noted above (4.2.2 Second step . . .), there are
two ways to specify section geometry. Our example
uses the stylized method, which simply assigns values
to section length and diameter. This is most appropriate
when cable length and diameter are authoritative and 3-
D shape is irrelevant.

It is best to use the 3-D method if the model is
based on anatomical reconstruction data (quantitative
morphometry), or if 3-D visualization is paramount.
This approach keeps the anatomical data in a list of (x,
y, z, diam) “points.” The first point is associated with
the end of the section that is connected to the parent
(this is not necessarily the 0 end!) and the last point is
associated with the opposite end. There must be at least
two points per section, and they should be ordered in
terms of monotonically increasing arc length. This pt3d
list, which is the authoritative definition of the shape of
the section, automatically determines the length and
diameter of the section.

When the pt3d list is non-empty, the shape model
used for a section is a sequence of frusta. The pt3d
points define the locations and diameters of the ends of
these frusta. The effective area, diameter, and
resistance of each segment are computed from this
sequence of points by trapezoidal integration along the
segment length. This takes into account the extra area
introduced by diameter changes; even degenerate cones
of 0 length can be specified (i.e. two points with same
coordinates but different diameters), which add area but
not length to the section. No attempt is made to deal
with the effects of centroid curvature on surface area.
The number of 3-D points used to describe a shape has
nothing to do with nseg and does not affect simulation
speed.

When diameter varies along the length of a section,
the stylized and 3-D approaches to defining section
structure can lead to very different model
representations, even when the specifications might
seem to be identical. Imagine a cell whose diameter
varies with position x as shown in Fig. 4.2

Figure 4.2. A hypothetical cell whose structure is to
be approximated using the stylized and 3-D
approaches.

This program contrasts the results of using the
stylized and 3-D approaches to emulate the structure of
this cell. It creates sections stylized_model and
three_d_model, whose geometries are specified
using the stylized and 3-D methods, respectively. For
each segment of these two sections, it prints out the x
location of the segment center, the segment diameter
and surface area, and the axial resistance ri (in
megohms) between the segment center and the center
of the parent segment (i.e. the segment centered at the
next smaller x; see the Ri in Fig. 3.3).

/* diampt3d.hoc */

create stylized_model, three_d_model

// set nseg and L for both models
forall {
 nseg = 5
 L = 1
}

stylized_model {
 diam(0:0.3) = 0:3
 diam(0.3:0.7) = 3:3
 diam(0.7:1) = 3:0
}

three_d_model {
 pt3dadd(0,0,0,0)
 pt3dadd(0.3,0,0,3)
 pt3dadd(0.7,0,0,3)
 pt3dadd(1,0,0,0)
}

forall {
 print secname()
 for (x) print x,diam(x),area(x),ri(x)
}

The output of this program is presented in
Table 4.2. The stylized approach creates a section

20 The NEURON Simulation Environment

Short course: Using the NEURON Simulation Environment © 10/97 MLH and NTC all rights reserved

composed of a series of cylindrical segments whose
diameters are interpolated from the range variable
specification of diameter (left panel of Fig. 4.3). The
surface areas and axial resistances associated with these
cylinders are based entirely on their cylindrical
dimensions.

Figure 4.3. Left: The stylized representation of the
hypothetical cell shown in Fig. 4.2. Right: In the
3-D approach, the diameter, surface area, and axial
resistance of each segment are based on the
integrals of these quantities over the corresponding
interval in the original anatomy.

The 3-D approach, however, produces a model that
is quite different. The reported diameter of each
segment, diam(x), is the average diameter over the
corresponding length of the original anatomy, and the
segment area, area(x), is the integral of the surface
area. Therefore area(x) is not necessarily equal to
π diam(x) L / nseg. The axial resistances are
computed by integrating the resistance of the cytoplasm
along the path between the centers of adjacent
segments. Both ri(0) and ri(1) are effectively
infinite because the diameter of the volume elements
along the integration path tapers to 0 at both ends of the
3-D data set.

Close examination of Table 4.2 reveals two items
that require additional comment. The first item is that
ri(0) = 1030 for both models. This is because,
regardless of whether the stylized or the 3-D approach
is used, the left hand side of the section is a “sealed
end” or open circuit.

The second noteworthy item, which at first seems
unexpected, is that even though the diameter is
specified to be 0 at x = 0 and 1, the model generated by

the 3-D approach reports nonzero values for diam(0)
and diam(1). This reflects the fact that, except for
membrane potential v, accessing the value of a range
variable at x = 0 or 1 returns the value at the center of
the first and last segment, respectively (i.e. at x =
0.5/nseg and 1 – 0.5/nseg). The technical reason for
this behavior is that diameter is part of a morphology
mechanism, and mechanisms exist only in the interior
of a section. As noted in 4.4 Range variables,
range_variable(x) returns the value of the range
variable at the center of the segment that contains x.
The only range variable that exists at the 0 and 1
locations is v; other range variables are undefined at
these points (area() and ri() are functions, not
range variables). Point processes, which are discussed
next, are not accessed as functions of position and can
be placed anywhere in the interval 0 ≤ x ≤ 1.

4.6 Density mechanisms and point
processes

The insert statement assigns biophysical
mechanisms, which govern electrical and (if present)
chemical signals, to a section. Many sources of
electrical and chemical signals are distributed over the
membrane of the cell. These density mechanisms are
described in terms of current per unit area and
conductance per unit area; examples include voltage-
gated ion channels such as the HH currents.

However, density mechanisms are not the most
appropriate representation of all signal sources.
Synapses and electrodes are best described in terms of
localized absolute current in nanoamperes and
conductance in microsiemens. These are called point
processes.

An object syntax is used to manage the creation,
insertion, attributes, and destruction of point processes.
For example, a current clamp (electrode for injecting a
current) is created by declaring an object variable and

Stylized model 3-D model
x diam(x) area(x) ri(x) diam(x) area(x) ri(x)

0 1 0 1e+30 1 0 1e+30
0.1 1 0.628318 0.0450727 1 3.20381 4.50727e+14
0.3 3 1.88495 0.0500808 2.75 4.94723 0.0300485
0.5 3 1.88495 0.0100162 3 1.88495 0.0100162
0.7 3 1.88495 0.0100162 2.75 4.94723 0.0100162
0.9 1 0.628318 0.0500808 1 3.20381 0.0300485
1.0 1 0 0.0450727 1 0 4.50727e+14

Table 4.2. Diameter as a range variable:
differences between models created by stylized
and 3-D methods for specifying section geometry.

The NEURON Simulation Environment 21

Short course: Using the NEURON Simulation Environment © 10/97 MLH and NTC all rights reserved

assigning it a new instance of the IClamp object class
(see 4.2.3 Third step: attach stimulating electrodes).
When a point process is no longer referenced by any
object variable, the point process is removed from the
section and destroyed. In our example, redeclaring
stim with the statement objref stim would
destroy the pulse stimulus, since no other object
variable is referencing it.

The x position specified for a point process can
have any value in the range [0,1]. If x is specified to be
at 0 or 1, it will be located at the corresponding end of
the section. For specified locations 0 < x < 1, the actual
position used by NEURON will be the center of
whichever segment contains x. For example, in a
section with nseg = 5 the segment centers (internal
nodes) are located at x = 0.1, 0.3, 0.5, 0.7 and 0.9.
Point processes whose specified locations are 0.04 and
0.41 would be assigned by NEURON to the nodes at
0.1 and 0.5, respectively. The error introduced by this
“shift” can be avoided by explicitly placing point
processes at internal nodes, and restricting changes of
nseg to odd multiples. However, this may not be
possible in models that are based closely on real
anatomy, because actual synaptic locations are unlikely
to be situated precisely at the centers of segments. To
completely avoid nseg-dependent shifts of the x
locations of point processes, one can choose sections
with lengths such that the point processes are located at
the 0 or 1 ends of sections.

The location of a point process can be changed
with no effect on its other attributes. In our example the
statement dendrite[2] stim.loc(1) would
move the current stimulus to the distal end of the third
dendrite.

If a section’s nseg is changed, that section’s point
processes are relocated to the centers of the new
segments that contain the centers of the old segments to
which the point processes had been assigned. When a
segment is destroyed, as by re-creating the section, all
of its point processes lose their attributes, including x
location and which section they belong to.

Many user-defined density mechanisms and point
processes can be simultaneously present in each
compartment of a neuron. One important difference
between density mechanisms and point processes is that
any number of the same kind of point process can exist
at the same location.

User-defined density mechanisms and point
processes can be linked into NEURON using the model
description language NMODL. This lets the user focus
on specifying the equations for a channel or ionic
process without regard to its interactions with other

mechanisms. The NMODL translator then constructs
the appropriate C program which is compiled and
becomes available for use in NEURON. This program
properly and efficiently computes the total current of
each ionic species used, as well as the effect of that
current on ionic concentration, reversal potential, and
membrane potential. An extensive discussion of
NMODL is beyond the scope of this article, but its
major advantages can be listed succinctly.
1. Interface details to NEURON are handled

automatically — and there are a great many such
details.
• NEURON needs to know that model states are

range variables and which model parameters
can be assigned values and evaluated from the
interpreter.

• Point Processes need to be accessible via the
interpreter object syntax and density
mechanisms need to be added to a section
when the “insert” statement is executed.

• If two or more channels use the same ion at
the same place, the individual current
contributions need to be added together to
calculate a total ionic current.

2. Consistency of units is ensured.
3. Mechanisms described by kinetic schemes are

written with a syntax in which the reactions are
clearly apparent. The translator provides
tremendous leverage by generating a large block of
C code that calculates the analytic Jacobian and the
state fluxes.

4. There is often a great increase in clarity since
statements are at the model level instead of the C
programming level and are independent of the
numerical method. For example, sets of differential
and nonlinear simultaneous equations are written
using an expression syntax such as

x’ = f(x, y, t)
~ g(x, y) = h(x, y)

where the prime refers to the derivative with
respect to time (multiple primes such as x’’ refer
to higher derivatives) and the tilde introduces an
algebraic equation. The algebraic portion of such
systems of equations is solved by Newton’s
method, and a variety of methods are available for
solving the differential equations, such as Runge-
Kutta or backward Euler.

5. Function tables can be generated automatically for
efficient computation of complicated expressions.

22 The NEURON Simulation Environment

Short course: Using the NEURON Simulation Environment © 10/97 MLH and NTC all rights reserved

6. Default initialization behavior of a channel can be
specified.

4.7 Graphical interface

The user is not limited to operating within the
traditional “code-based command-mode environment.”
Among its many extensions to hoc, NEURON includes
functions for implementing a fully graphical, windowed
interface. Through this interface, and without having to
write any code at all, the user can effortlessly create
and arrange displays of menus, parameter value editors,
graphs of parameters and state variables, and views of
the model neuron. Anatomical views, called “space
plots,” can be explored, revealing what mechanisms
and point processes are present and where they are
located.

The purpose of NEURON’s graphical interface is
to promote a match between what the user thinks is
inside the computer, and what is actually there. These
visualization enhancements are a major aid to
maintaining conceptual control over the simulation
because they provide immediate answers to questions
about what is being represented in the computer.

The interface has no provision for constructing
neuronal topology, a conscious design choice based on
the strong likelihood that a graphical toolbox for
building neuronal topologies would find little use.
Small models with simple topology are so easily
created in hoc that a graphical topology editor is
unnecessary. More complex models are too
cumbersome to deal with using a graphical editor. It is
best to express the topological specifications of
complex stereotyped models through algorithms,
written in hoc, that generate the topology
automatically. Biologically realistic models often
involve hundreds or thousands of sections, whose
dimensions and interconnections are contained in large
data tables generated by hours of painstaking
quantitative morphometry. These tables are commonly
read by hoc procedures that in turn create and connect
the required sections without operator intervention.

The basic features of the graphical interface and
how to use it to monitor and control simulations are
discussed elsewhere (Moore and Hines 1996).
However, several sophisticated analyis and simulation
tools that have special utility for nerve simulation are
worthy of mention.
• The “Function Fitter” optimizes a parameterized

mathematical expression to minimize the least

squared difference between the expression and
data.

• The “Run Fitter” allows one to optimize several
parameters of a complete neuron model to
experimental data. This is most useful in the
context of voltage clamp data which is
contaminated by incomplete space clamp or
models that cannot be expressed in closed form,
such as kinetic schemes for channel conductance.

• The “Electrotonic Workbench” plots small signal
input and transfer impedance and voltage
attenuation as functions of space and frequency
(Carnevale et al. 1996). These plots include the
neuromorphic (Carnevale et al. 1995) and L vs. x
(O'Boyle et al. 1996) renderings of the electrotonic
transformation (Brown et al. 1992; Tsai et al.
1994b; Zador et al. 1995). By revealing the
effectiveness of signal transfer, the Workbench
quickly provides insight into the “functional
shape” of a neuron.

All interaction with these and other tools takes place in
the graphical interface and no interpreter programming
is needed to use them. However, they are constructed
entirely within the interpreter and can be modified
when special needs require.

4.8 Object-oriented syntax

4.8.1 Neurons

It is often convenient to deal with groups of
sections that are related. Therefore NEURON provides
a data class called a SectionList that can be used to
identify subsets of sections. Section lists fit nicely with
the “regular expression” method of selecting sections,
used in earlier implementations of NEURON, in that
1. the section list is easily constructed by using

regular expressions to add and delete sections
2. after the list is constructed it is available for reuse
3. it is much more efficient to loop over the sections

in a section list than to pick out the sections
accepted by a combination of regular expressions

This code

objref alldend
alldend = new SectionList()
forsec "dend" alldend.append()
forsec alldend print secname()

forms a list of all the sections whose names contain the
string “dend” and then iterates over the list, printing the
name of each section in it. For the example program

The NEURON Simulation Environment 23

Short course: Using the NEURON Simulation Environment © 10/97 MLH and NTC all rights reserved

presented in this report, this would generate the
following output in the NEURON interpreter window

dendrite[0]
dendrite[1]
dendrite[2]

although in this very simple example it would clearly
have been easy enough to loop over the array of
dendrites directly, e.g.

for i = 0,2 {
dendrite[i] print secname()

}

4.8.2 Networks

To help the user manage very large simulations,
the interpreter syntax has been extended to facilitate the
construction of hierarchical objects. This is illustrated
by the following code fragment, which specifies a
pattern for a simple stylized neuron consisting of three
dendrites connected to one end of a soma and an axon
connected to the other end.

begintemplate Cellx
 public soma, dendrite, axon
 create soma, dendrite[3], axon
 proc init() {
 for i=0,2 {
 connect dendrite[i](0), soma(0)
 }
 connect axon(0), soma(1)
 axon insert hh
 }
endtemplate Cellx

Whenever a new instance of this pattern is created, the
init() procedure automatically connects the soma,
dendrite, and axon sections together. A complete
pattern would also specify default membrane properties
as well as the number of segments for each section.

Names that can be referenced outside the pattern
are listed in the public statement. In this case, since
init is not in the list, the user could not re-initialize
by calling the init() procedure. Public names are
referenced through a dot notation.

The particular benefit of using templates (“classes”
in standard object oriented terminology) is the fact that
they can be employed to create any number of instances
of a pattern. For example,

objref cell[10][10]
for i=0,9 {

for j=0,9 cell[i][j]=new Cellx()
}

creates an array of 100 objects of type Cellx that can
be referenced individually via the object variable
cell. In this example,

cell[4][5].axon.gnabar_hh(0.5)

is the value of the maximum HH sodium conductance
in the middle of the axon of cell[4][5].

As this example implies, templates offer a natural
syntax for the creation of networks. However it is
entirely up to the user to logically organize the
templates in such a way that they appropriately reflect
the structure of the problem. Generally, any given
structural organization can be viewed as a hierarchy of
container classes, such as cells, microcircuits, layers, or
networks. The important issue is how much effort is
required for the concrete network representation to
support a range of logical views of the same abstract
network. A logical view that organizes the cells
differently may not be easy to compute if the network is
built as an elaborate hierarchy. This kind of pressure
tends to encourage relatively flat organizations that
make it easier to implement functions that search for
specific information. The bottom line is that network
simulation design remains an ad hoc process that
requires careful programming judgement.

One very important class of logical views that are
not generally organizable as a hierarchy are those of
synaptic organization. In connecting cells with
synapses, one is often driven to deal with general
graphs, which is to say, no structure at all.

In addition to the notions of classes and objects (a
synapse is an object with a pre- and a postsynaptic
logical connection) the interpreter offers one other
fundamental language feature that can be useful in
dealing with objects that are collections of other
objects. This is the notion of “iterators,” taken from the
Sather programming language (Murer et al. 1996). This
is a separation of the process of iteration from that of
“what is to be done for each item.” If a programmer
implements one or more iterators in a collection class,
the user of the class does not need to know how the
class indexes its items. Instead the class will return each
item in turn for execution in the context of the loop
body. This allows the user to write

for layer2.synapses(syn, type) {
 // Statements that manipulate the
 // object reference named "syn".
 // The iterator causes "syn" to refer,
 // in turn, to each synapse of a
 // certain type in the layer2 object.
}

24 The NEURON Simulation Environment

Short course: Using the NEURON Simulation Environment © 10/97 MLH and NTC all rights reserved

without being aware of the possibly complicated
process of picking out these synapses from the layer
(that is the responsibility of the author of the class of
which layer2 is an instance).

It is to be sadly emphasized that these kinds of
language features, though very useful, do not impose
any policy with regard to the design decisions users
must make in building their networks. Different
programmers express very different designs on the
same language base, with the consequence that it is
more often than not infeasible to reconcile slightly
different representations of even very similar concepts.

An example of a useful way to deal uniformly with
the issue of synaptic connectivity is the policy
implemented in NEURON by Lytton (1996). This
implementation uses the normal NMODL methodology
to define a synaptic conductance model and enclose it
within a framework that manages network connectivity.

5. SUMMARY

The recent striking expansion in the use of
simulation tools in the field of neuroscience has been
encouraged by the rapid growth of quantitative
observations that both stimulate and constrain the
formulation of new hypotheses of neuronal function,
and enabled by the availability of ever-increasing
computational power at low cost. These factors have
motivated the design and implementation of NEURON,
the goal of which is to provide a powerful and flexible
environment for simulations of individual neurons and
networks of neurons. NEURON has special features
that accommodate the complex geometry and
nonlinearities of biologically realistic models, without
interfering with its ability to handle more speculative
models that involve a high degree of abstraction.

As we note in this paper, one particularly
advantageous feature is that the user can specify the
physical properties of a cell without regard for the
strictly computational concern of how many
compartments are employed to represent each of the
cable sections. In a future publication we will examine
how the NMODL translator is used to define new
membrane channels and calculate ionic concentration
changes. Another will describe the Vector class. In
addition to providing very efficient implementations of
frequently needed operations on lists of numbers, the
vector class offers a great deal of programming
leverage, especially in the management of network
models.

NEURON source code, executables, and
documents are available at

http://neuron.duke.edu
and

http://www.neuron.yale.edu
and by ftp from

ftp.neuron.yale.edu.

ACKNOWLEDGMENTS

We wish to thank John Moore, Zach Mainen, Bill
Lytton, David Jaffe, and the many other users of
NEURON for their encouragement, helpful
suggestions, and other contributions. This work was
supported by NIH grant NS 11613 (“Computer
Methods for Physiological Problems”) to MLH and by
the Yale Neuroengineering and Neuroscience Center
(NNC).

REFERENCES

Bernander, O., Douglas, R.J., Martin, K.A.C., and Koch, C.
Synaptic background activity influences spatiotemporal
integration in single pyramidal cells. Proc. Nat. Acad. Sci.
88:11569-11573, 1991.

Brown, T.H., Zador, A.M., Mainen, Z.F., and Claiborne, B.J.
Hebbian computations in hippocampal dendrites and
spines. In: Single Neuron Computation, edited by T.
McKenna, J. Davis, and S.F. Zornetzer. San Diego:
Academic Press, 1992, p. 81-116.

Carnevale, N.T. and Rosenthal, S. Kinetics of diffusion in a
spherical cell: I. No solute buffering. J. Neurosci. Meth.
41:205-216, 1992.

Carnevale, N.T., Tsai, K.Y., Claiborne, B.J., and Brown,
T.H. The electrotonic transformation: a tool for relating
neuronal form to function. In: Advances in Neural
Information Processing Systems, vol. 7, edited by G.
Tesauro, D.S. Touretzky, and T.K. Leen. Cambridge, MA:
MIT Press, 1995, p. 69-76.

Carnevale, N.T., Tsai, K.Y., and Hines, M.L. The
Electrotonic Workbench. Society for Neuroscience
Abstracts 22:1741, 1996.

Cauller, L.J. and Connors, B.W. Functions of very distal
dendrites: experimental and computational studies of layer
I synapses on neocortical pyramidal cells. In: Single
Neuron Computation, edited by T. McKenna, J. Davis, and
S.F. Zornetzer. San Diego: Academic Press, 1992, p. 199-
229.

Destexhe, A., Babloyantz, A., and Sejnowski, T.J. Ionic
mechanisms for intrinsic slow oscillations in thalamic relay
neurons. Biophys. J. 65:1538-1552, 1993a.

Destexhe, A., Contreras, D., Sejnowski, T.J., and Steriade,
M. A model of spindle rhythmicity in the isolated thalamic
reticular nucleus. J. Neurophysiol. 72:803-818, 1994.

The NEURON Simulation Environment 25

Short course: Using the NEURON Simulation Environment © 10/97 MLH and NTC all rights reserved

Destexhe, A., Contreras, D., Steriade, M., Sejnowski, T.J.,
and Huguenard, J.R. In vivo, in vitro and computational
analysis of dendritic calcium currents in thalamic reticular
neurons. J. Neurosci. 16:169-185, 1996.

Destexhe, A., McCormick, D.A., and Sejnowski, T.J. A
model for 8-10 Hz spindling in interconnected thalamic
relay and reticularis neurons. Biophys. J. 65:2474-2478,
1993b.

Destexhe, A. and Sejnowski, T.J. G-protein activation
kinetics and spill-over of GABA may account for
differences between inhibitory responses in the
hippocampus and thalamus. Proc. Nat. Acad. Sci.
92:9515-9519, 1995.

Häusser, M., Stuart, G., Racca, C., and Sakmann, B. Axonal
initiation and active dendritic propagation of action
potentials in substantia nigra neurons. Neuron 15:637-
647, 1995.

Hines, M. Efficient computation of branched nerve
equations. Int. J. Bio-Med. Comput. 15:69-76, 1984.

Hines, M. A program for simulation of nerve equations with
branching geometries. Int. J. Bio-Med. Comput. 24:55-68,
1989.

Hines, M. NEURON—-a program for simulation of nerve
equations. In: Neural Systems: Analysis and Modeling,
edited by F. Eeckman. Norwell, MA: Kluwer, 1993, p.
127-136.

Hines, M. The NEURON simulation program. In: Neural
Network Simulation Environments, edited by J. Skrzypek.
Norwell, MA: Kluwer, 1994, p. 147-163.

Hines, M. and Carnevale, N.T. Computer modeling methods
for neurons. In: The Handbook of Brain Theory and
Neural Networks, edited by M.A. Arbib. Cambridge, MA:
MIT Press, 1995, p. 226-230.

Hines, M. and Shrager, P. A computational test of the
requirements for conduction in demyelinated axons. J.
Restor. Neurol. Neurosci. 3:81-93, 1991.

Hodgkin, A.L. and Huxley, A.F. A quantitative description
of membrane current and its application to conduction and
excitation in nerve. J. Physiol. 117:500-544, 1952.

Hsu, H., Huang, E., Yang, X.-C., Karschin, A., Labarca, C.,
Figl, A., Ho, B., Davidson, N., and Lester, H.A. Slow and
incomplete inactivations of voltage-gated channels
dominate encoding in synthetic neurons. Biophys. J.
65:1196-1206, 1993.

Jaffe, D.B., Ross, W.N., Lisman, J.E., Miyakawa, H., Lasser-
Ross, N., and Johnston, D. A model of dendritic Ca2+
accumulation in hippocampal pyramidal neurons based on
fluorescence imaging experiments. J. Neurophysiol.
71:1065-1077, 1994.

Kernighan, B.W. and Pike, R. Appendix 2: Hoc manual. In:
The UNIX Programming Environment. Englewood Cliffs,
NJ: Prentice-Hall, 1984, p. 329-333.

Lindgren, C.A. and Moore, J.W. Identification of ionic
currents at presynaptic nerve endings of the lizard. J.
Physiol. 414:210-222, 1989.

Lytton, W.W. Optimizing synaptic conductance calculation
for network simulations. Neural Computation 8:501-509,
1996.

Lytton, W.W., Destexhe, A., and Sejnowski, T.J. Control of
slow oscillations in the thalamocortical neuron: a computer
model. Neurosci. 70:673-684, 1996.

Lytton, W.W. and Sejnowski, T.J. Computer model of
ethosuximide's effect on a thalamic neuron. Ann. Neurol.
32:131-139, 1992.

Mainen, Z.F., Joerges, J., Huguenard, J., and Sejnowski, T.J.
A model of spike initiation in neocortical pyramidal
neurons. Neuron 15:1427-1439, 1995.

Mainen, Z.F. and Sejnowski, T.J. Reliability of spike timing
in neocortical neurons. Science 268:1503-1506, 1995.

Mascagni, M.V. Numerical methods for neuronal modeling.
In: Methods in Neuronal Modeling, edited by C. Koch and
I. Segev. Cambridge, MA: MIT Press, 1989, p. 439-484.

Moore, J.W. and Hines, M. Simulations with NEURON 3.1,
on-line documentation in html format, available at
http://neuron.duke.edu, 1996.

Murer, S., Omohundro, S.M., Stoutamire, D., and Szyerski,
C. Iteration abstraction in Sather. ACM Transactions on
Programming Languages and Systems 18:1-15, 1996.

O'Boyle, M.P., Carnevale, N.T., Claiborne, B.J., and Brown,
T.H. A new graphical approach for visualilzing the
relationship between anatomical and electrotonic structure.
In: Computational Neuroscience: Trends in Research
1995, edited by J.M. Bower. San Diego: Academic Press,
1996.

Rall, W. Theoretical significance of dendritic tree for input-
output relation. In: Neural Theory and Modeling, edited
by R.F. Reiss. Stanford: Stanford University Press, 1964,
p. 73-97.

Rall, W. Cable theory for dendritic neurons. In: Methods in
Neuronal Modeling, edited by C. Koch and I. Segev.
Cambridge, MA: MIT Press, 1989, p. 8-62.

Softky, W. Sub-millisecond coincidence detection in active
dendritic trees. Neurosci. 58:13-41, 1994.

Stewart, D. and Leyk, Z. Meschach: Matrix Computations
in C. Proceedings of the Centre for Mathematics and its
Applications. Vol. 32. Canberra, Australia: School of
Mathematical Sciences, Australian National University,
1994.

Traynelis, S.F., Silver, R.A., and Cull-Candy, S.G.
Estimated conductance of glutamate receptor channels
activated during epscs at the cerebellar mossy fiber-granule
cell synapse. Neuron 11:279-289, 1993.

Tsai, K.Y., Carnevale, N.T., and Brown, T.H. Hebbian
learning is jointly controlled by electrotonic and input
structure. Network 5:1-19, 1994a.

Tsai, K.Y., Carnevale, N.T., Claiborne, B.J., and Brown,
T.H. Efficient mapping from neuroanatomical to
electrotonic space. Network 5:21-46, 1994b.

Zador, A.M., Agmon-Snir, H., and Segev, I. The
morphoelectrotonic transform: a graphical approach to
dendritic function. J. Neurosci. 15:1669-1682, 1995.

26 The NEURON Simulation Environment

Short course: Using the NEURON Simulation Environment © 10/97 MLH and NTC all rights reserved

APPENDIX 1. LISTING OF hoc CODE FOR THE MODEL IN SECTION 4.2

// model topology
// declare sections
create soma, axon, dendrite[3]
// attach sections to each other
connect axon(0), soma(0) // 0 end of axon to 0 end of soma
for i=0,2 { // 0 end of dendrite to 1 end of soma

connect dendrite[i](0), soma(1)
}

// specify anatomical and biophysical properties
soma {

nseg = 1 // compartmentalization parameter
L = 50 // [µm] length
diam = 50 // [µm] diameter
insert hh // standard Hodgkin-Huxley currents
gnabar_hh = 0.5*0.120 // [S/cm^2]

// max gNa in soma will be half of axonal value
}
axon {

nseg = 20
L = 1000
diam = 5
insert hh

}
for i=0,2 dendrite[i] {

nseg = 5
L = 200
diam(0:1) = 10:3 // dendritic diameter tapers along its length
insert pas // standard passive current
e_pas = -65 // [mv] equilibrium potential for passive current
g_pas = 0.001 // [S/cm 2] conductance for passive current

}

// stimulating current
objref stim
soma stim = new IClamp(0.5) // put it in middle of soma
stim.del = 1 // [ms] delay
stim.dur = 0.1 // [ms] duration
stim.amp = 60 // [nA] amplitude

// simulation time course
// set initial conditions
dt = 0.05 // [ms] integration time step
tstop = 5 // [ms]
finitialize(-65) // init membrane potential, state variables, and time

// argument specifies how long to integrate
// does NOT reset t to 0
proc integrate() {

print t, soma.v(0.5) // show starting time
// and initial somatic membrane potential

while (t < tstop) {
fadvance() // advance solution by dt
// function calls to save or plot results would go here
print t, soma.v(0.5) // show present time

// and somatic membrane potential
// statements that change model parameters would go here

}
}

