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       Abstract— As simulations begin to scale to extreme processor 

counts trying to understand the mysteries of the universe, 

collaboration becomes an essential piece of  the scientists’ daily 

life as they work to run, analyze, and process their data from 

these simulations. Most of the teams that we collaborate with 

work identically to the way they did in the past, without using 

effective collaborative tools to share their knowledge with their 

peers. Collaboration is usually an afterthought, and is often 

handled in an awkward setting. We believe the best way to 

introduce collaboration into areas that are resistant by nature is 

to embed into low level and hidden system components so that 

scientists collaborate without consciously putting in extra efforts. 

Based on this hypothesis, this paper presents our work in 

creating a collaborative system, which allows a diverse set of 

scientists to work together efficiently. Two of the main aspects of 

our system are in our use of provenance to associate files and its 

associated metadata with the information that domain experts 

are interested in, and an easy-to-use high-performance I/O 

system which automatically annotates the output file(s) with a 

unified schema. To accomplish our goals, we leverage an existing 

I/O framework, ADIOS and an existing web interface, eSiMon, 

and add new techniques and mechanism to efficiently bring 

together computation and visualization. 
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I.  INTRODUCTION  

The workflow for scientists engaged in leadership-scale 
science has grown quite complicated as the size and complexity 
of data produced through experiments and simulations has 
increased many-fold over the last decade.  With the prominence 
of verification and validation at the boundaries of simulation, 
theoretical and experimental scientists have to work closely 
together. These researchers are collaborating on a collection of 
data resources coming from different simulations, experimental 
apparatuses, and theoretical models. Although computing and 
collaboration technologies have been incorporated by many of 
such teams to aid in their workflows, there is still need for the 
development of additional data management and data 
collaboration tools.  Visualization, analysis, verification, 
statistical testing, and data format conversion, let alone the 
“simple” tasks of data transport and storage, are all critical 
tools in today’s leadership scale science efforts.  The eSiMon 
[1] and ADIOS [2] platforms described below represent an 
approach to flexibly support these sorts of real-life 
collaborative workflows for scalable science. 

As new High End Computing (HEC) platforms continue to 
push the performance envelope, the complexity of the scientific 
processes they model and simulate also increases. Effectively 
utilizing these available computational resources involves more 
than just acquiring programming skills. Application scientists 
need to work with experimentalists to validate and verify their 
data and with computational scientists to use the 
supercomputers and to visualize the tsunami of data coming out 
of the simulations. 

In this paper we use the example of fusion scientists and 
describe a new method for better organized collaboration. We 
aim at facilitating the exchange between different types of 
scientists and minimizing learning curves as well as time spent 
outside of their interest. Our goal is to take researchers to the 
science as fast as possible. We describe our efforts to develop a 
framework that accommodates this type of collaborative 
workflows. By adopting a service-oriented approached, the 
collaboration systems discussed here are structured so that 
users can dig further into their field of expertise with limited 
but sufficient knowledge about related and collaborative fields. 

II. SYSTEM OVERVIEW AND RELATED WORK 

Our experience with application scientists has led us to the 
conclusion that most simulations do not happen independently. 
Simulations often require input parameters that represent valid 
initial physical conditions. To complete a successful run, a 
scientist needs to generate results comparable or relatable to 
experimental data. The process of correlating the simulation 
results to the physical model and experimental results is called 
Validation and Verification (V&V), which requires a large 
degree of collaboration between the simulation and the 
experimental scientists. Visualizing and analyzing the results is 
yet another subsequent endeavor that required intervention 
from experts in these fields. While one could envision a 
situation where these separate groups tackle different 
components of a problem and periodically converge back to 
exchange their findings, we believe the solution is an end-to-
end service-oriented-approach. The scientific workflow of 
tasks that lead to knowledge discovery has grown in 
complexity and size but instead of breaking it into pieces – 
risking the chance of introducing divergences – we want to 
keep the underlying structure of the work and develop tools 
that accommodate it.  Therefore, even though we now have 
teams of scientists solving growing challenges, we want to 
preserve the method that leads to valid results.  
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There are four main pieces to the architecture as illustrated 
in Figure 1. The common access point for collaborating 
scientists is the eSiMon portal which stores both 
comprehensive and diverse metadata information collected 
from the simulation and about its users. In other words this 
information includes details about the data as well as the users’ 
interaction with that data. The sources of the data, either 
experimental sensors or computational simulations, are two 
other major parts of the system. In the example of collaborative 
research in fusion sciences the experiments are tokomak 
reactors and the simulations (computer programs) run on 
leadership class supercomputers such as Jaguar at Oak Ridge 
National Laboratory. The final piece of the system consists of 
the analysis and visualization workflows that handle the post-
processing of the data. eSiMon serves as the glue that connects 
the disparate data sources as well as the scientific workflows. 
This significantly reduces the burden on scientists in dealing 
with the volume of data since eSiMon is designed to both know 
and understand the multiple pieces and how they interact. In 
other words the supporting backend to eSiMon is doing the 
heavy lifting (data lineage, user activity recording and tracking) 
while the users are presented directly with the scientific 
variables and phenomena. 

Bringing these four components together involves 
supporting background work that primarily addresses data 
movement and interpretation. We move the data from the 
compute nodes to staging nodes [3]; pre-process it to produce 
preliminary diagnostic images and text tiles to be visualized on 
eSiMon. eSiMon provides access to experimental data sources 
that can be used as input files or as measurements for V&V. 
For data to flow easily from raw data sources to preliminary 
results we need a common language: a unified data schema. 
Furthermore, we need continuous and consistent recording of 
data flow to accurately link different components together. 
Finally to facilitate use and reuse of the data, we not only 
record its origin but also users’ activity and interactions with 
the data. If we picture the data essentially moving from raw 
data to preliminary results, we begin to see eSiMon as a 
service-oriented one-stop-shop where users can access different 
stages of the process. Scientists can interact with the data and 
each other without knowledge of the intricacies encountered 
and surmounted in the back end. 

 

 

Figure 1.  Monitoring HPC data. 

There has been extensive research on synchronous and 
asynchronous collaborative writing and drawing software [4, 5, 
6, 7]. The impact of technology on communication between 
participants has also been explored [8, 9]. Collaboration on 

large display, touch-screens, white boards and tables [10, 11, 
12] has also generated a great deal of interest. Several studies 
want to improve the way people interact in group meetings 
where most participants are present. Concurrently, some 
research in synchronous collaborative visualization [13] that 
attempts to minimize the effects of time and space between 
remote collaborators. However, the adoption of such tools can 
be relatively low. Generally accepted theories suggest the 
adoption of collaborative tools strongly depends on the extent 
to which they match the widely varying types of collaboration. 
With social networking new tools are emerging such as 
myExperiment [14] that allow scientists to exchange workflow 
and experiments via the Web. Personalized “dashboards” have 
also become more popular in an attempt to address the issue of 
relevance and context for different users [15]. In this paper we 
identify and address a new and specific type of simulation at 
the intersection of theoretical and experimental sciences, 
visualization and analysis.  

High performance computing has changed the dynamic of 
the collaboration in certain scientific teams. There are only a 
few leadership computing facilities. Access to the resources at 
these facilities is given according specific metrics and 
guidelines to local and remote users. Using the supercomputers 
also requires a level of expertise in computational sciences. 
This means that even though physical proximity is key to 
successful collaboration it is very common for teams of 
simulation scientists to be scattered between experimental 
laboratories, computing facilities and universities. In addition 
while scientific visualization of distributed and parallel 
simulation is often associated with 3D objects, we have found 
that theoreticians work intensively with 1D and 2D diagnostic 
graphics when exploring their results and before getting into 
more in-depth visualization. The work described in this paper 
does not target “shoulder-to-shoulder” collaboration, nor is it 
addressing the issues of “live” collaboration between users 
from different physical locations. Instead, we are interested in 
the intersections between different fields of sciences and the 
issues associated with exchanging and handing over work from 
one team to another. The eSiMon does not require users need 
to be concurrently be connected. It differs from personalized 
dashboards since it does not present the same content 
contextualized for different clusters of users. Rather it 
emphasizes connections and transitions from one task to 
another in this end-to-end workflow of scientific tasks. It 
highlights the gates to different activities as well as the areas 
where communication is needed before diving further into 
these activities. How do we embed some of the transitioning 
knowledge into the tool so that diverse users effortlessly and 
efficiently find the way into their science and to related fields 
only when needed? This is where our key contribution lies. 

The underlying principle of our work is our SOA approach 
supported by our metadata-rich I/O, our uniform schema, our 
provenance tracking system and our staging method. This 
allows us to embed and record knowledge unbeknown to the 
users and use it to coordinate some mundane or unfamiliar 
tasks in the background.  eSiMon provides access to different 
services performed on the simulation or the experimental data. 
The particular choice, of which tools are used behind the scene, 
is not necessarily relevant to the user who wants to inspect the 
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results or perform certain mathematical transformation to the 
data. Our primary concerns are ease-of-use and performance. 
More specifically our goal is to seamlessly provide 
performance. 

III. MOTIVATION 

Although the techniques, tools and approaches we describe 
in this paper are broadly applicable to other advanced scientific 
collaboration environments, we draw particular inspiration 
from the details of our collaboration with scientists involved in 
theoretical, experimental, and computational fusion research.  
We briefly describe here some of the key lesson and exemplars 
we have learned from those interactions. 

A. Experimentation 

Extracting valid science from fusion simulations is an 
involved process starting with the running of the experiments. 
In our experience with fusion simulation codes, such as XGC 
[16] and GTC [17], simply preparing the correct inputs for a 
new simulation run requires considerable effort. The results of 
a successful run need to be comparable or relatable to 
experimental data. However, the experimental data obtained 
from the physical tokamak is dependent on the nature of the 
diagnostics used. For example, some experiments are designed 
to measure electron temperature, density pressure profiles and 
line-integrated density while others measure magnetic fields 
and fluxes. Due to these distinctions, running a simulation to 
produce comparable results requires in-depth knowledge of the 
particular plasma experiment. Selecting the experiment is also 
a difficult endeavor. As an example, simulation scientists from 
PPPL agree that the best, and practically the only, way to 
correctly select an experimental run (typically referred to as 
shot) from the MDSplus [18] database is by directly speaking 
with the experimentalist who ran it originally. Since there is 
very little logging when running the actual experiment, there is 
no easy way to query the list of experimental shots. For 
example a user may want to access all shots where the current 
went over a threshold value. The existing infrastructure does 
not allow such queries on experimental data. Therefore, the 
first task at hand for physicists is to speak directly to an 
experimentalist. This is a significant obstacle to effective 
collaboration even when the scientists are located at the same 
institution. With multi-institution, and multi-national, 
collaborations the complexity of these interaction is ratcheted 
up to a much greater degree. Moreover because there are no 
logs on such exchanges, this process is repeated for every 
single simulation and it is not difficult to imagine how much 
work is needlessly repeated each time due to the lack of 
activity tracking and recording. 

Once scientists have agreed on an experimental shot, the 
recorded raw data must be further processed and is not usually 
ready to use for input and comparison. For example, often this 
data consists of discrete measurements and does not contain the 
exact entities that the simulation physicists need. Physicists 
have to run an additional analysis code to smooth the raw data 
out and extract the interesting derived variables. It usually takes 
several such runs to select satisfying initial or equilibrium 
conditions needed as input to a fusion simulation. Even after 
the correct experiment is selected and refined, the correct 

moment in time has to be selected.  Since the experiment 
happens within seconds, pinpointing the best time to serve as 
input constitutes another level of tuning required in preparation 
for the simulation. While the scientists keep their own logs of 
their activities, these logs are often not shared with the broader 
community and due to the narrow focus of the scientists often 
result in the occlusion, and even outright loss, of significant 
insights. 

Thus the process of executing a fusion simulation involves 
detailed discussion between both the simulation scientists and 
the experimentalists. The actual decisions, as well as the 
material and knowledge that form the basis of these decisions, 
are not recorded. Moreover, the benefits are restricted to the 
scientists directly involved in the simulation and the 
experiment, despite the interaction being generally valuable for 
the community. In the end little seems to be done in order to 
make the preparation for the next run easier or quicker. 

B. Simulation 

During our experience with the fusion scientists of the CPES 

[19] project we have developed an I/O framework, a workflow 

system and a dashboard to help run, monitor and pre-process 

simulation results for fusion scientists. While physicists can 

write computer programs that describe their equations, they are 

usually not computational experts and are not always able to 

take full advantage of the state of the art computing resources 

available to them. Therefore they need to work closely with I/O 

and performance experts in order to produce valid results when 

using supercomputers. Our data management team has long 

pursued the goal of assisting HPC users in their quest to get 

scientific insight from simulations run on the supercomputers. 

This has been the driving force of our Framework for 

Integrated End-To-End Technologies for Applications which 

include three main elements: a fast adaptable I/O (ADIOS), a 

workflow management system and a collaborative portal 

(eSiMon). We have helped scientists achieve improved I/O 

performance. More specifically decisions about where the I/O 

is done and which resources are used are important to attain 

satisfactory I/O performance. Furthermore scheduling I/O has 

considerable impact on these numbers. Physicists are not 

particularly interested in these issues; they are only concerned 

with successfully running their simulation. They are aware of 

known issues: the cost of I/O for HPC application can be 

substantial and noise from I/O actions can inject undesirable 

delays into the runtimes of their codes. These inconveniences 

are tolerable up to point. However as applications scale, they 

can bring a simulation to a halt and at this point, physicists 

grow more concerned. Hence, the question that has motivated 

our work has always been, how do we help application 

scientists run simulations without having to become I/O experts 

and how do we facilitate the communication between these two 

types of experts? The main benefit of ADIOS is that it provides 

portable, metadata-rich output along with very fast scalable 

I/O. This allows us to provide sophisticated techniques that 

take full advantage of the current research and resources 

without burdening the users. Indeed, with minimum overall 

knowledge of I/O, physicists describe their variables and 
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choose an I/O method by simply annotating the ADIOS XML 

file. Ease-of-use is the key when trying to help pure scientists 

switch the way they currently work. Offering clear gain in 

performance is sometimes not enough when it involves too 

much work from unfamiliar users. 

C. Visualization 

After the experimental data selection and the completion of 
the simulation run, the next step is to assist our users with 
exploring the results. Managing and exploring the ever growing 
amount of data produced on the supercomputers data is a real 
challenge in itself and once again requires experts in the data 
management to assist application scientists. The data needs to 
be moved, reduced, transformed as much as possible before it 
can be visualized and analyzed. There is currently a gap 
between visualization experts and physicists. Visualization 
scientists require certain information and data structures in 
order to graph data; physicists are not always aware of what is 
needed for specific software to read and plot their data. The 
easier or more intuitive way for them to write data out in the 
code does not necessarily corresponds to the best reading 
performance for visualization. Also the fact that different 
scientists use different software further complicates the issue. 
Once again, without effective communication between these 
two types of scientists, physicists often end up writing their 
own personalized routines in whatever visualization tool is 
available to them for various and arbitrary reasons. This makes 
the process manual, sometimes cumbersome, not always easy 
to repeat for the physicists themselves and definitely not easy 
to share. Some scientists already use self-describing data 
formats, which helps in ensuring that data written by 
simulations can be correctly read by visualization tools. 
Visualization and analysis software tool developers provide 
“readers” for some of the common data formats, such as HDF5 
[20] and NetCDF [21]. Still these file formats do not impose a 
standard organization for the data of a particular scientific field. 
Therefore, different scientists may identify the same physical 
property with a different name, and may utilize a different way 
of organizing the data. This means that from one scientist to 
another, one must translate the data organization to interpret it 
appropriately. Thus the syntactic representation of the name 
obfuscates the semantic meaning of the data and requires extra 
steps towards collaboration.  

IV. IMPLEMENTATION 

Based on our experience with application scientists and 
their various interactions with other experts we have designed 
an integrated system.  

A. Lessons Learned 

The HPC community despite its growing size is still a 
relatively small community which limits our users’ studies. On 
the other hand given a few hundred users on the jaguar 
computer at ORNL, the fusion scientists we have worked with 
are a considerable sample of simulation scientists. Based on 
this experience we gather our lessons learned. A helpful 
collaborative tool between experimentalists and simulation 
scientists needs to allow simultaneous and easy-access to 
supercomputers and experimental data sources. Application 

scientists and experimentalists should be able to concurrently 
explore experiments and simulation shots. The system should 
store and deploy experimentalists’ and physicists’ custom 
routines on the data to select the correct input for the 
simulation. It should allow job submission using previously 
selected inputs. This should be an environment where 
simulation results can be easily compared to experimental 
values for verification and validation. We should integrate with 
software that promotes and encourages easy note taking and the 
ability to add comments during the collaboration process. This 
insures that the work involved is not lost for the future runs. 
Such information should be exposed to all collaborators and 
will be especially useful to new users when submitting their 
own simulations without starting from scratch. Data must be 
exchangeable and interpretable by different components of the 
system. 

The goal of our collaboration infrastructure is to make this 
process as transparent and intuitive as possible, regardless of 
where the experimental data is stored and where the simulation 
is run. While there are questions about sharing sensitive data, 
the focus of this paper is on the design and development of the 
collaboration infrastructure. Development and management of 
access and sharing policies will be addressed in our future 
work.   

Our approach is geared towards quick-and-easy 
collaborative online monitoring using data staging services. 
Key components of our system are: a unified schema, 
continuous and consistent provenance tracking system, and a 
data staging method as shown in Figure 2. eSiMon incorporates 
and gives access to these crucial pieces to a collaborative 
system. 

xml

eSiMon DB

Unified schema

User annotations Staging method

Provenance recording

 
Figure 2.  Key System Components.  

B. eSiMon 

eSiMon (electronic Simulation Monitoring) is our one-
point-access to every other component of this integrated 
solution. The key emphasis of this web interface is our 
persistent emphasis in presenting users with variable names and 
mathematical function names instead of file and directory 
names. We use the provenance information and metadata 
throughout the system to hide IT details from our users. 
eSiMon provides an “at-a-glance” look into the status and 
health of the simulation. Multiple collaborators on a team can 
log on to this web interface and share simulation results. It is 
our attempt to create a scientific social network for simulation 
scientists. Team members can log on to eSiMon from any 
device and browser to view simulation results as they get 
output from the simulation. Having hooks into different data 
sources and key components of the framework, eSiMon aims at 
being an environment where users with general knowledge in 
the field can access different types of input and output data 
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regardless of where the data is physically located. Similarly 
users can execute transformations on simulation data 
independently of what software and which resources are being 
used. The type of analysis on eSiMon is light-weight and meant 
to give initial insight into the wide range of results. It is the first 
simplified medium between scientists and the simulation. We 
expect that after using eSiMon users will know exactly where 
in the simulation they wish to do more-in-depth analysis using 
their favorite more sophisticated tool.  

C. Provenance 

Based on the complicated interactions between application 

scientists and experimentalists, an effective system must have a 

reliable data lineage component. We have developed a 

provenance tracking system [22] and have integrated it in our 

portal eSiMon to record data movement during the simulation. 

Data provenance tracks the origin and the history of the data, 

recording along the way its transformation and derivatives. In 

the past we have specifically focused on this type of 

information for linking pre-processed images to the original 

raw data files. This is useful when doing online analysis or 

downloading sets and subsets of data to a particular machine 

for further analysis. We now extend this concept to user 

activities tracking. By establishing a connection between 

eSiMon and an experimental data source and saving user 

activities, we record the process one user goes through to select 

an experimental shot  in the Provenance Store. This is not only 

useful for this user’s subsequent runs, but it is especially useful 

for a collaborator to come along and avoid repeating this work. 

Moreover, our system that encourages notes and comments so 

that as the number of run increases in the database we allow 

queries on past shots. Furthermore by establishing one common 

access point to experimental data and simulation data, the 

system provides an environment where users can setup their 

simulation inputs from experimental data, use them to run their 

simulations and then compare simulation results with other 

experimental data. Collaborators using the web portal can see 

each other’s previous runs and simply reuse or tweak the input 

parameters. Letting the system record all users’ activities 

avoids repeating the exchanges between experimentalists and 

physicists and skips over the less interesting part of setting up 

the simulation. This is a great time and effort saver compared 

to previous methods. 

D. Unified Schema and Staging Method 

Our solution to the mismatch in semantics between 
scientists, visualization tools and existing data formats is to 
develop a standardized schema for HPC data. There has been a 
lot of effort put into developing a standardized method to 
exchange data between HPC codes and tools using 
technologies such XDMF [23]. VizSchema [24] is another 
similar effort to standardize scientific data by linking common 
data formats to common software tools. We define our schema 
as a data model designed for a purpose; in this case mainly 
visualization and collaboration. Moreover since we embed this 
schema into state-of-the-art I/O system, we provide 
performance as an additional benefit. This system insures that 
data written by the simulation can be visualized independently 

of user expertise, personal preference or availability of 
software packages. This decision is more suitable for exchange 
and collaboration. Physicists do not have to become experts in 
a specific software package to do their visualization or analysis. 
As they work in teams, they do not have to impose the use of 
one single tool for all members since the data and its 
representation are self-described, and thus portable. This 
considerably optimizes their communication with I/O and 
visualization experts. 

It is not uncommon to use XML for data models. XML tags 
and attributes are a convenient way to organize data as long as 
it is simple enough for human users. Since XML is already an 
intrinsic part of ADIOS we allow users to annotate their data 
structure in the ADIOS XML files. These annotations include 
not only the type and description of data, but also the meshes it 
is associated with for automatic visualization. The goal here is 
to, with minimal added information – parts or attributes, allow 
our staging plotting tool or any other visualization software to 
interpret the data. Nevertheless, the schema will allow 
annotating the data in progressively greater detail, by the use of 
additional attributes. For example more metadata such as units 
and axis labels can be added to variables subsequently and will 
be interpreted by the staging method when producing images. 

Our standardized schema for the simulation output is 
comprehensible by popular visualization tools. Furthermore it 
enables us to create our own reader in ADIOS. ADIOS 
provides data staging method that utilize supplementary 
resources to provide additional functionality to the application. 
Data staging Services use asynchronous methods for data 
extraction from compute nodes. By moving the data from 
compute nodes to staging nodes prior to storage, data staging 
services can considerably reduce the impact of the I/O on the 
computations. Simultaneously, the available resources in the 
staging nodes can be used for additional capabilities as part of 
an I/O pipeline. With this staging method we are able to do pre-
processing of the data before it hits storage. Moving the data 
out of the compute nodes and producing diagnostic files and 
images on staging nodes during the simulation enables live 
monitoring of the health of the simulation. This plotting 
method reads the users’ description of meshes and variables 
using to the new schema and appropriately interpret their data 
for visualization. Selecting this method like any other ADIOS 
methods does not require users to change their code. By 
correctly annotating the XML file, they can choose available 
I/O methods and take advantage of powerful pre-processing 
services. When new I/O methods become available, or the 
visual presentation of a variable is to be changed, ADIOS users 
do not have to change their code, they simply alter their XML 
file. While the details of this method seem complex, they key is 
that users do not have to be I/O experts and understand the 
details of the method. Below is a sample of an ADIOS XML 
file describing a variable (pressure) on a 2D mesh (s3d_mesh). 
The underlined text highlights the user’s additions to a typical 
ADIOS XML file. 
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<var name="xd"  type="integer"/> 

<var name="yd"  type="integer"/> 

<var name="lx"  type="integer"/> 

<var name="ly"  type="integer"/> 

<var name="sg1" type="integer"/> 

<var name="sg2" type="integer"/> 

<global-bounds dimensions="xd,yd" 

offsets="sg1,sg2"> 

  <mesh name="s3d_mesh" type="structured" 

ndims="2" nspace="2" /> 

      <var name="x" type="double" 

dimensions="lx,ly "/> 

      <var name="y" type="double" 

dimensions="lx,ly "/> 

  </mesh>  

  <var name="pressure" type="double" 

dimensions="lx,ly" mesh="s3d_mesh"/> 

</global-bounds> 

Figure 3.  Sample of ADIOS XML File schema. 

The newly added tags and attributes are processed in 
ADIOS and the variable pressure automatically gets associated 
with the s3d_mesh in the binary file. The user no longer has to 
worry about the best way to write out data or changing their 
code for visualization tools. Listing the content of the file 
generated from the XML description above generates the 
following output. 

integer /xd             scalar = 512  

integer /yd             scalar = 1024  

integer /lx             scalar = 24  

integer /ly             scalar = 36 

integer /sg1            scalar = 3802 

integer /sg2            scalar = 3825   

double  /pressure {24, 36} = -1/1/0.06/0.73 

string  /s3d_mesh/type  attr = "structured" 

string  /s3d_mesh/time  attr = "no" 

integer /s3d_mesh/ndim  attr = 2  

integer /s3d_mesh/dim1  attr = 24 

integer /s3d_mesh/dim2  attr = 36  

string  /pressure/label attr = "pressure" 

string  /pressure/mesh  attr = "s3d_mesh" 

Figure 4.  Group schema. 

A well-defined schema allows reorganizing the data and 
shuffling variables around without having to write new readers. 
Automatically generating 1D and 2D diagnostic images allows 
physicists to directly dive into sections of the output that looks 
more interesting to them. Currently they manually run series of 
standard analysis routines, look at those results before focusing 
on a subset of the data. This is where exciting knowledge 
discovery really begins.  Simulation scientists in our experience 
have expressed that the work done to dig deeper into a 
particular result, or to produce a publication-ready figure is 
something that they do desire to do on their own. This part of 
the work varies with each simulation. This is where simulation 
scientists would rather spend their time and effort. The work 
done at this level will likely not be exactly repeated for 
subsequent simulations. The scripts used here may not be used 
again for a long time if ever. In other words the goal is to bring 
the simulation physicists to this point as efficiently and 
effortlessly as possible from the preparation of the 
experimental data, to the automatic generation of preliminary 

images and then leave them alone to work the way they want 
but providing linkage and access to all relevant data in one 
integrated environment. 

V. CONCLUSION 

The work described in this paper targets the need for 
effective exchange and collaboration between different types of 
HPC scientists. To address these needs in the HPC community 
we designed a uniform standardize schema along with a new 
staging method for run-time monitoring of the simulation while 
maintaining persistent records of data lineage. We leverage the 
existing I/O framework in ADIOS and the existing web 
interface in eSiMon and add new techniques and mechanisms 
to efficiently bring together computation and visualization. We 
treat operations on experimental or simulation data as services 
offered by eSiMon to teams of scientists. We provide a single 
access point for all members of diverse sub-areas of a broader 
field of science; we highlight intersections and areas where 
exchange and communication are needed; we hide superfluous 
information and finally we provide performance as a bonus 
benefit. We envision that in the future, physicists will not only 
have access to others’ data and routines but also be able to 
make new requests to collaborators. In the future we also plan 
to extend this abstraction to utilize resource external to the 
main machine such as smaller scale visualization clusters. The 
advantage of such an extension is the ability to have longer 
running computation, custom resources such as GPUs or local 
storage using fast SSDs. We remain motivated by ease-of-use 
and user friendliness when assisting users with the visualization 
of their data to improve and accelerate the process of gaining 
scientific insight into extreme scale data sets. 
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