Scripting NEURON with Python

Robert A. McDougal
Yale School of Medicine

11 November 2016

What is a script?

A script is a file with computer-readable instructions for performing a task.

In NEURON, scripts can: set-up a model, define and perform an experimental
protocol, record data, ...

Why write scripts for NEURON?

@ Automation ensures consistency and reduces manual effort.
o Facilitates comparing the suitability of different models.

o Facilitates repeated experiments on the same model with different parameters
(e.g. drug dosages).

Facilitates recollecting data after change in experimental protocol.

Provides a complete, reproducible version of the experimental protocol.

Introduction to Python

Displaying results
The print command is used to display non-graphical results.

It can display fixed text:
print ('Hello everyone.') Hello everyone.

or the results of a calculation:
print (56 * (3 + 2)) 25

| \

Storing results
Give values a name to be able to use them later.

a = max([1.2, 5.2, 1.7, 3.6])
print (a) 5.2

A\

In Python 2., print is a keyword and the parentheses are unnecessary. Using the parentheses allows your code to work with both Python 2.x and 3.x.

Don't repeat yourself

Lists and for loops

To do the same thing to several items, put the items in a list and use a for loop:
numbers = [1, 3, 5, 7, 9]
for number in numbers:
print (number * number) 19 25 49 81

Items can be accessed directly using the [| notation; e.g. n = number [2]

To check if an item is in a list, use in:

print (4 in [3, 1, 4, 1, 5, 9]) True
print (7 in [3, 1, 4, 1, 5, 9]) False

Dictionaries

| A\

If there is no natural order, specify your own keys using a dictionary.

data = {'soma': 42, 'dend': 14, 'axon': 'blue'}
print (datal['dend'l) 14

A\

Don't repeat yourself

Functions

If there is a particularly complicated calculation that is used once or a simple one
used at least twice, give it a name via def and refer to it by the name. Return the
result of the calculation with the return keyword.

def area_of_cylinder(diameter, length):
return 3.14 / 4 * diameter ** 2 * length

area_of_cylinder(2, 100)
area_of_cylinder (10, 10)

areal

area?2

Using libraries
Libraries (“modules” in Python) provide features scripts can use.
To load a module, use import:

import math
Use dot notation to access a function from the module:

print (math.cos(math.pi / 3)) 0.5
One can also load specific items from a module.

For NEURON, we often want:
from neuron import h, gui

Other modules

Python ships with a large number of modules, and you can install more (like
NEURON). Useful ones for neuroscience include: math (basic math functions),
numpy (advanced math), matplotlib (2D graphics), mayavi (3D graphics),
pandas (analysis and databasing), ...

Getting help

To get a list of functions, etc in a module (or class) use dir:

from neuron import h
print (dir(h))

Displays:

['APCount', 'AlphaSynapse', 'BBSaveState', 'CVode', 'DEG', 'Deck',
'E', 'Exp2Syn', 'ExpSyn', 'FARADAY', 'FInitializeHandler',
'File', 'GAMMA', 'GUIMath', 'Glyph', 'Graph', 'HBox', 'IClamp',
'Impedance', 'IntFirel', 'IntFire2', 'IntFire4', 'KSChan', ...]

To see help information for a specific function, use help:
help(math.cosh)

Python is widely used, and there are many online resources available, including:
@ docs.python.org — the official documentation
@ Stack Overflow — a general-purpose programming forum
@ the NEURON programmer’s reference — NEURON documentation
o the NEURON forum — for NEURON-related programming questions

Basic NEURON scripting

Creating and naming sections
A section in NEURON is an unbranched stretch of e.g. dendrite.

To create a section, use h.Section and assign it to a variable:
dendl = h.Section()

A section can have multiple references to it. If you set a = dendl, there is still
only one section. Use == to see if two variables refer to the same section:
print (a == dendl) True

To name a section, declare a name attribute:
dend2 = h.Section(name='apical')

To access the name, use .name():
print (dend2.name()) apical

Also available: a cell attribute for grouping sections by cell.

In recent versions of NEURON, named Sections will print with their name; e.g. it suffices to say print (dend2).

Connecting sections

To reconstruct a neuron'’s full branching structure, individual sections must be
connected using .connect:
dend?2.connect (dend1 (1))

Each section is oriented and has a 0- and a 1-end. In NEURON, traditionally the
0-end of a section is attached to the 1-end of a section closer to the soma. In the
example above, dend2's 0-end is attached to dendl's 1-end.

o dend2 1
? dend1 4 .

To print the topology of cells in the model, use h.topology (). The results will
be clearer if the sections were assigned names.
h.topology ()

If no position is specified, then the 0-end will be connected to the 1-end as in the example.

Example

Python script: Output:
from neuron import h

-1 soma(0-1)
define sections < proxApical(O—l)
soma = h.Section(name='soma') ¢ .
papic = h.Section(name='proxApical') [ap1c1(0—1)
apicl = h.Section(name='apicl'; ‘| apicQ(O—]_)
apic2 = h.Section(name='apic2' ¢ _
pb = h.Section(name='proxBasal') | pro;FBasal(O D
dbl = h.Section(name='distBasall') ‘| distBasall(0-1)
db2 = h.Section(name='distBasal2') < distBasal2(0-1)

connect them

papic.connect (soma)

pb.connect (soma(0)) MOFPhO'OgyZ
apicl.connect (papic)

apic2.connect (papic)

db1l.connect (pb) OZS‘/@ oL
& 2
db2.connect (pb) QU)/
\\ proxBasal soma proxApical "3
list topology 6\5\66% ey

h.topology ()

Length and diameter

Set a section’s length (in um) with .L and diameter (in pm) with .diam:
sec.L = 20

sec.diam = 2

Note: Diameter need not be constant; it can be set per segment.

To specify the (x, y, z; d) coordinates that a section passes through, use
h.pt3dadd.

Warning: the default diameter is based on a squid giant axon and is not
appropriate for modelling mammalian cells.

Viewing the morphology with h.PlotShape

from neuron import h, gui

main = h.Section()
dendl = h.Section()
dend2 = h.Section()

dend1.connect (main)
dend?2.connect (main)

main.diam = 10
dendl.diam 2
dend2.diam 2

ps = h.PlotShape()
use 1 instead of O to hide diams
ps.show(0)

Note: PlotShape can also be used to see the distribution of a parameter or
calculated variable. To save the image in plot shape ps use
ps.printfile('filename.eps')

Distributed mechanisms

Use .insert to insert a distributed mechanism into a section. e.g.
axon.insert('hh')

Point processes

To insert a point process, specify the segment when creating it, and save the
return value. e.g.
pp = h.IClamp(soma(0.5))

To find the segment containing a point process pp, use
seg = pp.get_segment ()

The section is then seg.sec and the normalized position is seg.x.
The point process is removed when no variables refer to it.
Use List to find out how many point processes of a given type have been defined:

all_iclamp = h.List('IClamp')
print ('Number of IClamps:')
print (all_iclamp.count())

Setting and reading parameters

In NEURON, each section has normalized coordinates from 0 to 1.

To read the value of a parameter defined by a range variable at a given normalized
position use: section(x).MECHANISM.VARNAME

e.g.
gkbar = apical(0.2).hh.gkbar
Setting variables works the same way:
apical(0.2) .hh.gkbar = 0.037

To specify how many evenly-sized pieces (segments) a section should be broken
into (each potentially with their own value for range variables), use
section.nseg:

apical.nseg = 11
To specify the temperature, use h.celsius:

h.celsius = 37

Setting and reading parameters

Often you will want to read or write values on all segments in a section. To do
this, use a for loop over the Section:

for segment in apical:
segment.hh.gkbar = 0.037

The above is equivalent to apical.gkbar hh = 0.037, however the first version
allows setting values nonuniformly.

A list comprehension can be used to create a Python list of all the values of a
given property in a segment:

apical_gkbars = [segment.hh.gkbar for segment in apicall

Note: looping over a Section only returns true Segments. If you want to include
the voltage-only nodes at 0 and 1, iterate over, e.g. apical.allseg() instead.

The HOC instruction for(x) includes the 0 and 1 voltage-only nodes when iterating and is equivalent to using section.allseg().

Running simulations

Basics

To initialize a simulation to -65 mV:
h.finitialize(-65)

To run a simulation until ¢ = 50 ms:
h.continuerun(50)

Additional h.continuerun calls will continue from the last time.

| A

Ways to improve accuracy

Reduce time steps via, e.g. h.dt = 0.01
Enable variable step (allows error control): h.CVode () .active (1)
Increase the discretization resolution: sec.nseg = 11

To increase nseg for all sections:
for sec in h.allsec(): sec.nseg = sec.nseg * 3

Recording data
To see how a variable changes over time, create a Vector to store the time course:
data = h.Vector()

and do a .record with the last part of the name prefixed by _ref_.

e.g. to record soma(0.3) .1ina, use
data.record(soma(0.3)._ref_ina)

@ Be sure to also record h. _ref_t to know the corresponding times.

@ .record must be called before h.finitialize().

If v is a Vector, then v.as_numpy () provides the equivalent numpy array; that is, changing one changes the other.

Example: Hodgkin-Huxley

from neuron import h, gui
from matplotlib import pyplot

morphology and dynamics
soma = h.Section()
soma.insert('hh')

current clamp

= h.IClamp(soma(0.5))
.delay = 2 # ms

.dur = 0.5 # ms

.amp = 50

HeoHe e e

recording

= h.Vector() a0
= h.Vector()

.record(h._ref_t) 69
.record(soma(0.5)._ref_v)

< o < o H

**

simulation
h.finitialize()
h.continuerun(49.5)
plotting
pyplot.plot(t, v)
pyplot.show()

A spike occurs whenever V,, crosses some threshold (e.g. 0 mV).
Python can easily find all spike times. Only changes from the previous example

are highlighted.

from neuron import h, gui
from matplotlib import pyplot
soma = h.Section()
soma.insert('hh')
current clamps
iclamps = []
for t in [2, 13, 27, 40]:
i = h.IClamp(soma(0.5))
i.delay = t # ms
i.dur = 0.5 # ms
i.amp = 50
iclamps.append (i)
recording
= h.Vector()
= h.Vector()
.record(h._ref_t)
.record(soma(0.5)._ref_v)
simulation
.finitialize()
.continuerun(49.5)
compute spike times
st = [t[j] for j in range(len(v) - 1)
if v[j] <= 0 and v[j + 1] > 0]
print ('spike times:')
print (st)
plotting
pyplot.plot(t, v)
pyplot.show()

PP #H S St

The console displays:

spike times:

[3.1750000000000114, 28.149999999998936,
41.6250000000009]

That is, the cell spiked at: 3.175
ms, 28.150 ms, and 41.625 ms.

Interspike intervals (ISls) are the delays between spikes; that is, they are the
differences between consecutive spike times.

To display ISls for the previous example, we add the lines:

isis = [next - last for next, last in zip(st([1:], st[:-11)]
print ('ISIs:'); print (isis)

The result:
[24.974999999998925, 13.475000000001966]

That is, the delays between spikes were 24.975 ms and 13.475 ms.

Storing data to CSV to share with other tools

The CSV format is widely supported by mathematics, statistics, and spreadsheet
programs and offers an easy way to pass data back-and-forth between them and
NEURON.

In Python, we can use the csv module to read and write csv files.

Adding the following code after the continuerun in the example will create a file
data.csv containing the course data.

import csv
with open('data.csv', 'wb') as f:
csv.writer(f) .writerows(zip(t, v))

Each row in the file corresponds to one time point. The first column contains t
values; the second contains v values. Additional columns can be stored by adding
them after the t, v.

For more complicated data storage needs, consider the pandas or h5py modules.
Unlike csv, these must be installed separately.

HOC was NEURON's original programming language. There are many valuable
HOC functions in ModelDB and elsewhere. Python scripts can easily use these
functions via a two step process:

Load the HOC library, here 1ibraryname.hoc:
h.load_file('libraryname.hoc')

Invoke the HOC function, here test by proceeding its name with an h. and

passing the appropriate arguments:

h.test (13, 172.2)

SES files created by saving the session are written in HOC and may be loaded the same as with any other HOC file.

HOC code: myneuron.hoc Python script:

// define a cell from neuron import h
create soma, apic, basal h.load_file('myneuron.hoc"')
soma { h.topology()

connect apic(0), 1
connect basal(0), O
L =20

diam = 20

}

Running the Python script shows:

|- soma (0-1)
“ apic(0-1)
“ basal(0-1)

Section-dependent functions

Some NEURON functions depend on the section; specify that with a sec=
argument.

Example: calculating path distance

For example, h.distance is used to calculate the path distance in um between
two points along the neuron. To set a reference point at the center (0.5) of the
soma, use:

h.distance(0, 0.5, sec=soma)
The distance from the reference point to the 1 end of apic is

h.distance(1, sec=apic)

Advanced topics

Version control: git

Why use version control?

@ Protects against losing working code: if something used to work but no
longer does, you can test previous versions to identify what change caused
the error.

@ Provides a record of script history: authorship, changes, ...

@ Promotes collaboration: provides tools to combine changes made
independently on different copies of the code.

Version control: git basics

Setup
git init
Declare files to be tracked
git add FILENAME
Commit a version (so can return to it later)
git commit -a
Return to the version of FILENAME from 2 commits ago

git checkout HEAD"2 FILENAME

Version control: git

View list of changes

git log

Remove a file from tracking

git rm FILENAME

Rename a tracked file

git mv OLDNAME NEWNAME

Version control: git and remote servers

git (and mercurial) is a distributed version control system, designed to allow you
to collaborate with others. You can use your own server or a public one like github
or bitbucket.

Download from a server
git clone http://URL.git
Get changes from server and merge with local changes
git pull
Sync local, committed changes to the server

git push

Version control: syncing data with code

One simple way to ensure you always know what version of the code generated
your data is to include the git hash in the filename. The following function can
help:
def git_hash(Q):

import subprocess

suffix = ''

if subprocess.check_output(['git', 'diff']):
suffix = '+'

return 'Ys%s' % (subprocess.check_output([
'git', 'log', '-1', '--pretty=format:%h']),
suffix)

Then, for example, save matplotlib graphics with:
pyplot.savefig('filename_' + git_hash() + '.pdf')

Making your own graphical interface

@ To ensure your GUI responds
to user input, be sure to:
from neuron import gui

o Place basic widgets (text,
suttons, checkbores,) in [

an h.xpanel. Close Hide

Hello class

from neuron import h, gui
Click me

.xpanel ('Example 1')
.xlabel('Hello class')
.xbutton('Click me')
.xpanel ()

SR == =

Button actions

To perform an action when a
button is pressed, write it as a
function, and then pass the
function to h.xbutton.

from neuron import h, gui

def say_hello(Q):
print 'hello!'

h.xpanel('Example 2')
h.xbutton('Click me',

say_hello)
h.xpanel()

Close Hide

Click me |

Pressing the button displays:

hello!

Pressing the button twice:

hello!
hello!

Number fields and classes

Place your GUI commands in a class to allow independent reuse.

from neuron import h, gui
class Demo: Close Hide

def __init__(self): Choose a number: 767 =
self.value = 7.18 m‘_' Ciose fice
h.xpanel('Demo"') Choose a number: 777
Press me

h.xvalue('Choose a number:',

(self, 'value')) PR "
h.xbutton('Press me' Clicking “Press me” on the left
. s

self.print_value) window and then on the right

h.xpanel) window displays:
def print_value(self):

print ('You chose:')

print (self.value)

You chose:

3.67
make two demos You chose:
d1l = Demo() 7.11

d2 = Demo()

Layout: HBox and VBox

Combine windows horizontally with HBox and vertically with VBox.

from neuron import h, gui

hbox = h.HBox()

hbox.intercept (1)

.xpanel ('Example 1')

.xlabel('Hello class')

.xbutton('Click me') Close Hide

.xpanel () T
.xpanel ('Example 3') 2y Ezlss Say hello
.xbutton('Say hello') Click me

.xpanel ()
.xpanel ()
hbox.intercept (0)
hbox.map ()

== g = - -

Note: HBox and VBox can contain: H/VBox, Deck, xpanel, Graph, ...

Layout: HBox and VBox

Complicated layouts can be constructed using nested VBox and HBox objects:

Close Hide

- About - Topology 4 Subsets ~ Geometry - Biophysics -~ Management D Continuous Create
all Al First, select,
[branch 1 Select
.~ Select One

Select Subtree
.~ Select Basename

then, act.

MNew SectionList

Selection->Seclist

Delete Seclist

Change Mame

Parameterized Domain Page

Hints I

For more information

For more background and a step-by-step guide to creating a network model, see
the NEURON + Python tutorial at:

http://neuron.yale.edu/neuron/static/docs/neuronpython /index.html

We are in the process of translating the NEURON help documentation from HOC
to Python. The partly translated documentation is available online at:

http://neurosimlab.org/ramcd/pyhelp/

	Why write scripts?
	What is a script
	Why write scripts for NEURON?

	Introduction to Python
	Python basics: printing and variables
	Python basics: lists, dictionaries, functions
	Modules
	Getting help

	Basic NEURON scripting
	Sections
	Morphology
	Ion channels
	Setting and reading parameters
	Simulation
	Recording data
	Example: Hodgkin-Huxley
	Analyzing simulation results
	Interacting with HOC
	Other notes

	Advanced topics
	Version Control
	GUI Development

	More information
	More information

