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Statistical Science 
1995, Vol. 10, No. 4, 354-363 

A Statistical Derivation of the 
Significant-Digit Law 
Theodore P. Hill 

Abstract. The history, empirical evidence and classical explanations of 
the significant-digit (or Benford's) law are reviewed, followed by a sum- 
mary of recent invariant-measure characterizations. Then a new statisti- 
cal derivation of the law in the form of a CLT-like theorem for significant 
digits is presented. If distributions are selected at random (in any "unbi- 
ased" way) and random samples are then taken from each of these dis- 
tributions, the significant digits of the combined sample will converge to 
the logarithmic (Benford) distribution. This helps explain and predict the 
appearance of the significant-digit phenomenon in many different empir- 
ical contexts and helps justify its recent application to computer design, 
mathematical modelling and detection of fraud in accounting data. 

Key words and phrases: First-digit law, Benford's law, significant-digit 
law, scale invariance, base invariance, random distributions, random 
probability measures, random k-samples, mantissa, logarithmic law, 
mantissa sigma algebra. 

THE SIGNIFICANT-DIGIT LAW 

The significant-digit law of statistical folklore is 
the empirical observation that in many naturally oc- 
curring tables of numerical data, the leading signif- 
icant digits are not uniformly distributed as might 
be expected, but instead follow a particular logarith- 
mic distribution. The first known written reference 
is an 1881 two-page article in the American Journal 
of Mathematics by the astronomer/mathematician 
Simon Newcomb, who stated: 

The law of probability of the occurrence 
of numbers is such that all mantissae of 
their logarithms are equally likely. 

[Recall that the mantissa (base 10) of a positive real 
number x is the unique number r in [1/10, 1) with 
x = r x lOn for some integer n; e.g., the mantissas 
of 814 and 0.0314 are both 0.314.] 

This law implies that a number has leading signif- 
icant digit 1 with probability log1o 2 0.301, lead- 
ing significant digit 2 with probability log10(3/2)- 
0.176 and so on monotonically down to probability 
0.046 for leading digit 9. The exact laws for the first 
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two significant digits (also given by Newcomb) are 

(1) Prob(first significant digit= d) 
=loglo(l1+d-), d =1,2,...,9, 

and 

Prob(second significant digit = d) 
9 

(2) = Eloglo(l (10k ?+d)-'), 
k=1 

d = 0, 1, 2, ... , 9. 

The general form of the law, 

(3) Prob(mantissa < t/10), 
=)=log1 t, t E [1, 10) 

even specifies the joint distribution of the signif- 
icant digits. Letting D1, D2, ... denote the (base 
10) significant-digit functions [e.g., D1(0.0314) = 3, 
D2(0.0314) = 1, D3(0.0314) = 4], the general law 
(3) takes the following form: 

General significant-digit law. For all pos- 
(4) itive integers k, all dl E {1, 2, ..., 9} and 

all dE {0, 1, ..., 9}, =2, ...,k, 

Prob(Dl = dl, ..., Dk = dk) 

= loglo [1 ( di X lok-i)] 

In particular, Prob(Dl = 3, D2 = 1, D3 = 4) = 
log10(l + (314)-1) 0.0014. 

354 
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A perhaps surprising corollary of the general law 
(4) is that (cf. Hill, 1995b) 

the significant digits are dependent 

and not independent as one might expect. 
From (2) it follows that the (unconditional) prob- 

ability that the second digit is 2 is 0.109, but by 
(4) the (conditional) probability that the second digit 
is 2,given that the first digit is 1, is _ 0. 115. This de- 
pendence among significant digits decreases rapidly 
as the distance between the digits increases, and it 
follows easily from the general law (4) that the dis- 
tribution of the nth significant digit approaches the 
uniform distribution on {0, 1, .. . , 9} exponentially 
fast as n -? oo. This article will concentrate on deci- 
mal (base-10) representations and significant digits; 
the corresponding analog of (3) for other bases b > 1 
is simply Prob (mantissa (base b) < t/b) = logb t for 
all t E [1, b).] 

EMPIRICAL EVIDENCE 

Of course, many tables of numerical data do 
not follow this logarithmic distribution-lists of 
telephone numbers in a given region typically be- 
gin with the same few digits-and even "neutral" 
data such as square-root tables of integers are 
not good fits. However, a surprisingly diverse col- 
lection of empirical data does seem to obey the 
significant-digit law. 

Newcomb (1881) noticed "how much faster the 
first pages [of logarithmic tables] wear out than 
the last ones," and after several short heuristics, 
concluded the equiprobable-mantissae law. Some 
57 years later the physicist Frank Benford redis- 
covered the law and supported it with over 20,000 
entries from 20 different tables including such di- 
verse data as areas of 335 rivers, specific heats of 
1389 chemical compounds, American League base- 
ball statistics and numbers gleaned from Reader's 
Digest articles and front pages of newspapers. Al- 
though Diaconis and Freedman (1979, page 363) 
offer convincing evidence that Benford manipulated 
round-off errors to obtain a better fit to the loga- 
rithmic law, even the unmanipulated data are a 
remarkably good fit. Newcomb's article having been 
overlooked, the law also became known as Benford's 
law. 

Since Benford's popularization of the law, an 
abundance of additional empirical evidence has 
appeared. In physics, for example, Knuth (1969) 
and Burke and Kincanon (1991) observed that of 
the most commonly used physical constants (e.g., 

the constants such as speed of light and force of 
gravity listed on the inside cover of an introduc- 
tory physics textbook), about 30% have leading 
significant digit 1. Becker (1982) observed that the 
decimal parts of failure (hazard) rates often have a 
logarithmic distribution, and Buck, Merchant and 
Perez (1993), in studying the values of the 477 ra- 
dioactive half-lives of unhindered a decays which 
have been accumulated throughout the present 
century and which vary over many orders of mag- 
nitude, found that the frequency of occurrence of 
the first digits of both measured and calculated val- 
ues of the half-lives is in "good agreement" with 
Benford's law. 

In scientific calculations the assumption of log- 
arithmically distributed mantissae "is widely used 
and well established" (Feldstein and Turner, 1986, 
page 241), and as early as a quarter-century ago, 
Hamming (1970, page 1609) called the appearance 
of the logarithmic distribution in floating-point 
numbers "well-known." Benford-like input is often 
a common assumption for extensive numerical cal- 
culations (Knuth, 1969), but Benford-like output 
is also observed even when the input has random 
(non-Benford) distributions. Adhikari and Sarkar 
(1968) observed experimentally "that when ran- 
dom numbers or their reciprocals are raised to 
higher and higher powers, they have log distribu- 
tion of most significant digit in the limit." Schatte 
(1988, page 443) reports that "In the course of 
a sufficiently long computation in floating-point 
arithmetic, the occurring mantissas have nearly 
logarithmic distribution." 

Extensive evidence of the significant-digit law 
has also surfaced in accounting data. Varian (1972) 
studied land usage in 777 tracts in the San Fran- 
cisco Bay area and concluded "As can be seen, 
both the input data and the forecasts are in fairly 
good accord with Benford's Law." Nigrini and Wood 
(1995) show that the 1990 census populations of 
the 3141 counties in the United States "follow 
Benford's Law very closely," and Nigrini (1996) cal- 
culated that the digital frequencies of income tax 
data reported to the Internal Revenue Service of 
interest received and interest paid is an extremely 
good fit to Benford. Ley (1995) found "that the se- 
ries of one-day returns on the Dow-Jones Industrial 
Average Index (DJIA) and the Standard and Poor's 
Index (S&P) reasonably agrees with Benford's law." 

All these statistics aside, the author also highly 
recommends that the justifiably skeptical reader 
perform a simple experiment, such as randomly 
selecting numerical data from front pages of sev- 
eral local newspapers, "or a Farmer's Almanack" as 
Knuth (1969) suggests. 
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CLASSICAL EXPLANATIONS 

Since the empirical significant-digit law (4) does 
not specify a well-defined statistical experiment or 
sample space, most attempts to prove the law have 
been purely mathematical (deterministic) in nature, 
attempting to show that the law "is a built-in char- 
acteristic of our number system," as Weaver (1963) 
called it. The idea was to prove first that the set 
of real numbers satisfies (4), and then suggest that 
this explains the empirical statistical evidence. 

A common starting point has been to try to estab- 
lish (4) for the positive integers NJ, beginning with 
the prototypical set {D1 = 1} = {1, 10, 11, 12, 13, 
14, .. ., 19, 100, 101, .. .}, the set of positive integers 
with leading significant digit 1. The source of diffi- 
culty and much of the fascination of the problem 
is that this set {D1 = 1} does not have a natural 
density among the integers, that is, 

1 
lim -{D1 = 1}fn{1,2,...,n} 
noo n 

does not exist, unlike the sets of even integers or 
primes which have natural densities 1/2 and 0, re- 
spectively. It is easy to see that the empirical density 
of {D1 = 1} oscillates repeatedly between 1/9 and 
5/9, and thus it is theoretically possible to assign 
any number in [1/9, 5/9] as the "probability" of this 
set. Flehinger (1966) used a reiterated-averaging 
technique to define a generalized density which as- 
signs the "correct" Benford value log1o 2 to {D1 = 
1}, Cohen (1976) showed that "any generalization 
of natural density which applies to the [significant 
digit sets] and which satisfies one additional con- 
dition must assign the value log1o 2 to [{D1 = 1}] 
and Jech (1992) found necessary and sufficient con- 
ditions for a finitely-additive set function to be the 
log function. None of these solutions, however, re- 
sulted in a true (countably additive) probability, the 
difficulty being exactly the same as that in the foun- 
dational problem of "picking an integer at random" 
(cf. de Finetti, 1972, pages 86 and 98-99), namely, 
if each singleton integer occurs with equal pr6babil- 
ity, then countable additivity implies that the whole 
space must have probability zero or infinity. 

These discrete-summability arguments have been 
extended via various integration schemes, Fourier 
analysis and Banach measures to continuous densi- 
ties on the positive reals, where {D1 = 1} is now the 
set of positive numbers with first significant digit 1, 
that is, 

00 

(5) {D, = 1} = U [1, 2) X lon. 
n=-oo 

One popular assumption in this context has been 
that of scale invariance, which corresponds to the 
intuitively attractive idea that any universal law 
should be independent of units (e.g., metric or En- 
glish). The problem here, however, as Knuth (1969) 
observed, is that there is no scale-invariant Borel 
probability measure on the positive reals since then 
the probability of the set (0, 1) would equal that of 
(0, s) for all s, which again would contradict count- 
able additivity. (Raimi, 1976, has a good review of 
many of these arguments.) Just as with the den- 
sity proofs for the integers, none of these methods 
yielded either a true probabilistic law or any statis- 
tical insights. 

Attempts to prove the law based on various 
urn schemes for picking significant digits at ran- 
dom have been equally unsuccessful in general, 
although in some restricted settings log-limit laws 
have been established. Adhikari and Sarkar (1968) 
proved that powers of a uniform (0, 1) random vari- 
able satisfy Benford's law in the limit, Cohen and 
Katz (1984) showed that a prime chosen at ran- 
dom with respect to the zeta distribution satisfies 
the logarithmic significant-digit law and Schatte 
(1988) established convergence to Benford's law 
for sums and products of certain nonlattice i.i.d. 
variables. 

THE NATURAL PROBABILITY SPACE 

The task of putting the significant-digit law into 
a proper countably additive probability framework 
is actually rather easy. Since the conclusion of the 
law (4) is simply a statement about the significant- 
digit functions (random variables) D1, D2, .. ., let 
the sample space be OR, the set of positive reals, 
and let the sigma algebra of events simply be the 
o-field generated by {D1, D2, .. .} [or equivalently, 
generated by the single function x ?-+ mantissa(x)]. 
It is easily seen that this o-algebra, which will be 
denoted .,X and will be called the (decimal) mantissa 
u-algebra, is a sub-u-field of the Borels and that in 
fact 

00 

Se! E S= U Bx 10' 
(6) n=-oo 

for some Borel B c [1, 10), 

which is just the obvious generalization of the rep- 
resentation (5) for {D1 = 1}. 
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The mantissa cr-algebra X#, although quite sim- 
ple, has several interesting properties: 

(i) every nonempty set in ./ is infinite 
with accumulation points at 0 and at 
+oo; 

(ii) /# is closed under scalar multiplica- 
tion (s > 0, S E // =X sS E X); 

(7) (iii) ,# is closed under integral roots 
(m E Ng,S E = Si/m E .,X), but not 
powers; 

(iv) X4 is self-similar in the sense that 
if S E X/, then lOmS = S for every 
integer m 

(where aS and Sa denote the sets {as: s E S} and 
{sa: s E S}, respectively). 

Property (i) implies that finite intervals such as 
[1, 2) are not in X4 (i.e., are not expressible in terms 
of the significant digits alone; e.g., significant dig- 
its alone cannot distinguish between the numbers 
2 and 20) and thus the countable-additivity contra- 
dictions associated with scale invariance disappear. 
Properties (i), (ii) and (iv) follow easily by (6), but 
(iii) warrants a closer inspection. The square root of 
a set in X4 may consist of two "parts," and similarly 
for higher roots. For example, if 

00 

S={D1=1}= U [1,2)xlOn, 
n=-oo 

then 
00 

S12 = U [10N d2)X1.On 
n=-oo 

U U [A/-0 A/--) X lon E h/ 

n=-oo 

but 
00 

S2 =U [19 4) X 102n V // 
n=-oo 

since it has gaps which are too large and thus can- 
not be written in terms of {D1, D2, ... .}. Just as 
property (ii) is the key to the hypothesis of scale 
invariance, property (iv) is the key to a hypothesis 
of base invariance, which will be described below. 

(Although the space R+ is emphasized above, the 
analogous mantissa cr-algebra on the positive inte- 
gers 1N is essentially the same and as such removes 
the countable-additivity density problem on N since 
nonempty finite sets are not in the domain of the 
probability function.) 

SCALE AND BASE INVARIANCE 

With the proper measurability structure now 
identified, a rigorous notion of scale invariance is 
easy to state. Recall (7) (ii) that X/# is closed under 
scalar multiplication. 

DEFINITION 1. A probability measure P on 
(R', .X#) is scale invariant if P(S) = P(sS) for 
all s > 0 and all S E X. 

In fact, scale invariance characterizes the general 
significant-digit law (4). 

THEOREM 1 (Hill, 1995a). A probability measure 
P on (R+, //) is scale invariant if and only if 

00 
P U [1, t) x lon 

(8) n=-oo 

= logl0 t for all t E [1, 10). 

One possible drawback to a hypothesis of scale in- 
variance in tables of "universal constants," however, 
is the special role played by the constant 1. For ex- 
ample, consider the two physical laws f = ma and 
e = mC2. Both laws involve universal constants, 
but the force equation constant 1 is not recorded 
in most tables, whereas the speed of light constant 
C is. If a "complete" list of universal physical con- 
stants also included the l's, it seems plausible that 
this special constant might occur with strictly pos- 
itive frequency. However, that would violate scale 
invariance, since then the constant 2 (and all other 
constants) would occur with this same positive prob- 
ability. 

Instead, suppose it is assumed that any reason- 
able universal significant-digit law should be base 
invariant, that is, should be equally valid when 
rewritten in terms of bases other than 10. In fact, 
all of the classical arguments supporting Benford's 
law carry over mutatis mutandis (Raimi, 1976, 
page 536) to other bases. As will be seen shortly, 
the hypothesis of base invariance characterizes 
mixtures of Benford's law and a Dirac probability 
measure on the special constant 1, which may occur 
with positive probability. 

To motivate the definition of base invariance, con- 
sider the set {D1 = 1} of positive numbers with 
leading significant digit 1 (base 10). This same set 
of numbers can also [cf. (5)] be written as 

00 

{D1= 1}= U [1, 2) x loon 
n=-oo 

00 

U U [10, 20) x 100, 
n=-oo 
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that is, {D1 = 1} is also the set of positive numbers 
whose leading significant digit (base 100) is in the 
set {1, 10, 11,...,19}. In general, every set of real 
numbers S (base 10) in ./ is exactly the same set 
as the set of real numbers S1'2 (base 100) in X. 
Thus if a probability is base invariant, the measure 
of any given set of real numbers (in the mantissa u- 
algebra .,X) should be the same for all bases and, in 
particular, for bases which are powers of the original 
base. This suggests the following natural definition 
[recall that ./ is also closed under integral roots, 
property (7)(iii)]. 

DEFINITION 2. A probability measure P on 
(R', X) is base invariant if P(S) = p(Sl/n) for all 
positive integers n and all S E X. 

Next, observe that the set of numbers 

Si= {D, =1, Di = 0 for all j > 1} 
= {..., 0.01, 0.1, 1, 10, 100,...} 

00 

U {1} e X lon E 
n=-oo 

has [by (6)] no nonempty .-measurable subsets, so 
the Dirac delta measure 81 of this set is well defined. 
[Here 61(S) = 1 if S D Si and = 0 otherwise, for all 
S E ./.] Letting PL denote the logarithmic probabil- 
ity distribution on (lR', X4) given in (8), a complete 
characterization for base-invariant significant-digit 
probability measures can now be given. 

THEOREM 2 (Hill, 1995a). A probability measure 
P on (O;i, //) is base invariant if and only if 

P = qPL + (-q)51 for some q e [0, 1]. 

From Theorems 1 and 2 it is easily see that 
scale invariance implies base invariance, but not 
conversely (e.g., 51 is clearly base but not scale 
invariant). 

The proof of Theorem 1 follows easily from the 
fact that scale invariance corresponds to invariance 
tinder irrational rotations x -* (x + s) (mod 1) on 
the circle, and the unique invariant probability mea- 
sure under this transformation is well known to be 
the uniform (Lebesgue) measure, which in turn cor- 
responds to the log mantissa distribution. Proof of 
Theorem 2 is slightly more complicated, since base 
invariance corresponds to invariance under multi- 
plication x -> nx (mod 1). The key tool used here 
(Hill, 1995a, Proposition 4.1) is that a Borel proba- 
bility Q on [0, 1) is invariant under the mappings 
nx (mod 1) for all n if and only if Q is a convex 
combination of uniform measure and point mass 

at 0. [A number of basic questions concerning in- 
variance under multiplication are still open, such 
as Furstenberg's 25-year-old conjecture that the uni- 
form distribution on [0, 1) is the only atomless prob- 
ability distribution invariant under both 2x(mod 1) 
and 3x(mod 1).] 

RANDOM SAMPLES FROM 
RANDOM DISTRIBUTIONS 

Theorems 1 and 2 may be clean mathematically, 
but they hardly help explain the appearance of 
Benford's law empirically. What do 1990 census 
populations of U.S. counties have in common with 
1880 users of logarithm tables, numerical data from 
front-page newspaper articles of the 1930s collected 
by Benford or universal physical constants exam- 
ined by Knuth in the 1960s? Why should these 
tables be logarithmic or, equivalently, scale or base 
invariant? Many tables are not of this form, includ- 
ing even Benford's individual tables (as he noted), 
but as Raimi (1969) pointed out, "what came clos- 
est of all, however, was the union of all his tables." 
Combine the molecular weight tables with base- 
ball statistics and areas of rivers, and then there 
is a good fit. Many of the previous explanations of 
Benford's law have hypothesized some universal 
table of constants, Raimi's (1985, page 217) "stock 
of tabular data in the world's libraries" or Knuth's 
(1969) "some imagined set of real numbers," and 
tried to prove why certain specific sets of real obser- 
vations were representative of either this mystical 
universal table or the set of all real numbers. 

What seems more natural is to think of data as 
coming from many different distributions, as was 
clearly the case in Benford's (1938) study in his "ef- 
fort to collect data from as many fields as possible 
and to include a wide variety of types" (page 552); 
"the range of subjects studied and tabulated was as 
wide as time and energy permitted" (page 554). 

Recall that a (real Borel) random probability mea- 
sure (r.p.m.) M is a random vector [on an underlying 
probability space (Q, , P)] taking values which are 
Borel probability measures on Rlt and which is regu- 
lar in the sense that for each Borel set B c R, M(B) 
is a random variable (cf. Kallenberg, 1983). 

DEFINITION 3. The expected distribution measure 
of a r.p.m. M1 is the probability measure EM (on the 
Borel subsets of DR) defined by 

(9) (EM)(B) = E(M(B)) for all Borel B c lR 

[where here and throughout, E(.) denotes expecta- 
tion with respect to P on the underlying probability 
space]. 
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For example, if MVl is a random probability which is 
U[O, 1] with probability 1/2 and otherwise is an ex- 
ponential distribution with mean 1, then EM is sim- 
ply the continuous distribution with density f (x) = 
(1 + e-x)/2 for O < x < 1 and = e-x/2 for x > 1. 

The next definition plays a central role in this sec- 
tion and formalizes the concept of the following nat- 
ural process which mimics Benford's data-collection 
procedure: pick a distribution at random and take a 
sample of size k from this distribution; then pick a 
second distribution at random and take a sample of 
size k from this second distribution and so forth. 

DEFINITION 4. For an r.p.m. MI and positive inte- 
ger k, a sequence of M-random k-samples is a se- 
quence of random variables X1, X2, . .. on (fQ, s, P) 
so that for some i.i.d. sequence Ml, M2, M3, ... of 
r.p.m.'s with the same distribution as MR and for each 
j = 1, 2, ... .. 

(10) given Mj = P, the random variables 
X(j-1)k+ ...1 Xjk are i.i.d. with d.f. P; 

and 

(11) X(j_1)k+, ... Xjk are independent of 
{Ai, X(i-l)k+l? ***, Xik} for all i : j. 

The following lemma shows the somewhat curious 
structure of such sequences. 

LEMMA 1. Let X1, X2, ... be a sequence of M- 
random k-samples for some k and some r.p.m. M. 
Then: 

(i) the {Xn} are a.s. identically distributed with 
distribution EM, but are not in general inde- 
pendent; 

(ii) given {M1, M2, * *}, the {Xn} are a.s. indepen- 
dent, but are not in general identically dis- 
tributed. 

PROOF. The first part of (ii) follows easily by (10) 
and (11); the second part follows since whenever 
mj [ MIj, Xik will not have the same distribution 
as Xjk. The first part of (i) follows by conditioning 
on MIj: 

P(Xj E B) = E[MIj(B)] 
= E[M(B)] for all Borel B c R8, 

where the last equality follows since MI1 has the 
same distribution as M. The second part of (i) fol- 
lows from the fact that i.i.d. samples from a distri- 
bution may give information about the distribution, 
as seen in the next example. LI 

In general, sequences of M-random k-samples are 
not independent, not exchangeable, not Markov, not 
martingale and not stationary sequences. 

EXAMPLE. Let MI be a random measure which is 
the Dirac probability measure 5(1) at 1 with prob- 
ability 1/2, and which is (8(1) + 8(2))/2 otherwise, 
and let k = 3. Then P(X2 = 2) = 1/4, but P(X2 = 
2 d X1 = 2) = 1/2, so X1, X2 are not independent. 
Since 

P((X1, X2, X3, X4) = (1, 1, 1, 2)) 

= 9/64 > 3/64 = P((X1, X2, X3, X4) 

=(2, 1, 1, 1)), 

the {X,} are not exchangeable; since 

P(X3 = 1 1 X1 = X2 = 1) 

= 9/10 > 5/6 = P(X3 = 1 1 X2 = 1), 

the {X } are not Markov; since 

E(X2 I X1 = 2) = 3/2, 

the {X,} are not a martingale; and since 

P((X1, X2, X3) = (1, 1, 1)) 
= 9/16 > 15/32 = P((X2, X3, X4) = (1, 1, 1)), 

the {X,, } are not stationary. 

The next lemma is simply the statement of the 
intuitively plausible fact that the empirical distri- 
bution of MI-random k-samples converges to the ex- 
pected distribution of MR; that this-is not completely 
trivial follows from the independence-identically 
distributed dichotomy stated in Lemma 1. If k = 1, 
it is just the Bernoulli case of the strong law of 
large numbers. 

LEMMA 2. Let M be a r.p.m., and let X1, X2 ... be 
a sequence of M-random k-samples for some k. Then 

lim#i < n:Xi E B} 
n 

= E[M(B)] a.s. for all Borel B c R8. 

PROOF. Fix B and j E NkJ, and let 

Yj = #{m, 1 < m < k: X(j1)k+m E B}. 

Clearly, 

#{i < n:mXi E B} =lim lj 

(12) n-*oo n n-*oo km 
(if the limit exists) 
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By (10), given MIj, Yj is binomially distributed 
with parameters k and E[Mj(B)], so by (9), 

(13) EYj = E(E(Yj I Mj)) 

= kE[M(B)] a.s. for all j, 

since MD has the same distribution as MR. 
By (11), the {Yj} are independent. Since they 

have [via (13)] identical means kE[M(B)] and are 
uniformly bounded [so EZ(Var(Yj)/j2) < oo], it fol- 
lows (cf. Loeve, 1977, page 250) that 

(14) lim j=i = kE[M(B)] a.s., 
mo m 

and the conclusion follows by (12) and (14). D2 

An even shorter proof can be based on the obser- 
vation that the variables Xi, Xk+i, X2k+i, ... are 
i.i.d. for all 1 < i < k, but the argument given 
above can be easily modified to show that the as- 
sumption that each MII is sampled exactly k times is 
not essential; if the jth r.p.m. is sampled K i times, 
where the {Kj } are independent uniformly bounded 
RN-valued random variables (which are also indepen- 
dent of the rest of the process), then the same con- 
clusion holds. 

A NEW STATISTICAL DERIVATION 

The stage is now set to give a new statistical 
limit law (Theorem 3 below) which is a central-limit- 
like theorem for significant digits. Roughly speak- 
ing, this law says that if probability distributions 
are selected at random and random samples are 
then taken from each of these distributions in any 
way so that the overall process is scale (or base) 
neutral, then the significant-digit frequencies of the 
combined sample will converge to the logarithmic 
distribution. This theorem helps explain and pre- 
dict the appearance of the logarithmic distribution 
in significant digits of tabulated data. 

DEFINITION 5. A sequence of random variables 
1, 2, ... has scale-neutral mantissa frequency if 

n l#{i<n:Xi E S}-#{ n: XiE sS}l - O a.s. 

for all s > 0 and all S E X, and has base-neutral 
mantissa frequency if 

n-1l#{i < n: Xi E S} 

-#{i <n: Xi E sl/m}Ij>O a.s. 

for all m E RNI and S E /. 

For example, if {Xnl, {Yn, and {ZnJ are the 
sequences of (constant) random variables defined by 

X _ =1, Yn 2 and Zn = 2n, then {Xn} has base- 
but not scale-neutral mantissa frequency, {YnI has 
neither and (by Theorem 1 above and Theorem 1 of 
Diaconis, 1977) {Zn} has both. 

Mathematical examples of scale-neutral and 
scale-biased processes are easy to construct, as will 
be described below. For a real-life example, pick 
a beverage-producing company in continental Eu- 
rope at random and look at the metric volumes of 
a sample of k of its products; then pick a second 
company and so forth. Since product volumes in 
this case are probably closely related to liters, this 
(random k-sample) process is most likely not scale 
neutral and conversion to another unit such as gal- 
lons would probably yield a radically different set of 
first-digit frequencies. On the other hand, if species 
of mammals in Europe are selected at random and 
their metric volumes sampled, it seems less likely 
that this second process is related to the choice of 
units. 

Similarly, base-neutral and base-biased processes 
are also easy to construct mathematically. The ques- 
tion of base-neutrality is most interesting when the 
units in question are universally agreed upon, such 
as the numbers of things. For real-life examples, 
picking cities at random and looking at the num- 
ber of fingers of k-samples of people from those 
cities is certainly heavily base-10 dependent (that 
is where base 10 originated), whereas picking cities 
at random and looking at the number of leaves of 
k-samples of trees from those cities is probably less 
base dependent. As will be seen in the next theo- 
rem, scale and base neutrality of random k-samples 
are essentially equivalent to scale and base unbi- 
asedness of the underlying r.p.m. MI. 

DEFINITION 6. An r.p.m. Mr is scale unbiased if 
its expected distribution EMA is scale invariant on 
(DR, X/) and is base unbiased if EM is base invari- 
ant on (DR+, X). [Recall that /# is a sub-u-algebra 
of the Borels, so every Borel probability on DR (such 
as EM) induces a unique probability on (DR, /#).] 

A crucial point here is that the definition of scale 
and base unbiased does not require that individual 
realizations of M be scale or base invariant; in fact 
it is often the case [see Benford's (1938) data and 
example below] that none of the realizations is scale 
invariant, but only that the sampling process on the 
average does not favor one scale over another. 

Now for the main new statistical result: here M(t) 
denotes the random variable M(Dt), where Dt = 

0n _o0[j, t) x lon is the set of positive numbers with 
mantissae in [1/10, t/10). [Thus in light of the rep- 
resentation (6), M(t) may be viewed as the random 
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cumulative distribution function for the mantissae 
of the r.p.m. M.] 

THEOREM 3 (Log-limit law for significant digits). 
Let M be an r.p.m. on (DR, X6'). The following are 
equivalent: 

(i) M is scale unbiased; 
(ii) M is base unbiased and EM is atomless; 
(iii) E[M(t)] = log10 t for all t E [1, 10); 
(iv) every M-random k-sample has scale-neutral 

mantissa frequency; 
(v) EM is atomless, and every M-random k- 

sample has base-neutral mantissa frequency; 
(vi) for every M-random k-sample Xl, X2, * * *, 

n-1 #{ i < n: mantissa(Xi ) E [1/10, t/10)} 
-> loglo t a.s. for all t e [1, 10). 

PROOF. (i) X (iii). Immediate by Definitions 1 and 
6 and Theorem 1. 

(ii) X (iii). It follows easily from (6) that the Borel 
probability EM is atomless if and only if it is atom- 
less on X#. That (ii) is equivalent to (iii) then follows 
easily by Definitions 2 and 6 and Theorem 2. 

(iii) X (iv). By Lemma 2, 
An:= n-ll#{i < n:Xi E S} 

E[M(S)] a.s., 
and 

Bn:= n-1l#{i < n: Xi E sS}I 

E[M(sS)] a.s., 
so IAn-Bn d- 0 a.s. if and only if EM(S) = EM(sS), 
which by Definition 1 and Theorem 1 is equivalent 
to (iii). 

(iii) X (v). Similar, using Lemma 2, Definition 2 
and Theorem 2. 

(iii) X (vi). Immediate by Lemma 2. D 

One of the points of Theorem 3 is that there are 
many (natural) sampling procedures which lead to 
the log distribution, helping explain how the differ- 
ent empirical evidence of Newcomb, Benford, Knuth 
and Nigrini all led to the same law. This may also 
help explain why sampling the numbers from news- 
paper front pages (Benford, 1938, page 556), or al- 
manacs or extensive accounting data often tends 
toward the log distribution, since in each of these 
cases various distributions are being sampled in a 
presumably unbiased way. Perhaps the first article 
in the newspaper has statistics about population 
growth, the second article about stock prices and 
the third about forest acreage. None of these indi- 
vidual distributions itself may be unbiased, but the 
mixture may well be. 

Justification of the hypothesis of scale or base un- 
biasedness is akin to justification of the hypothesis 
of independence (and identical distribution) in ap- 
plying the strong law of large numbers or central 
limit theorem to real-life processes: neither hypoth- 
esis can be proved, yet in many real-life sampling 
procedures, they appear to be reasonable assump- 
tions. Conversely, Theorem 3 suggests a straight- 
forward test for unbiasedness of data-simply test 
goodness-of-fit to the logarithmic distribution. 

Many standard constructions of r.p.m.'s are au- 
tomatically scale and base neutral, and thus satisfy 
the log-limit significant-digit law. Consider the prob- 
lem of generating a random variable X (or r.p.m.) on 
[1, 10). If the units chosen are desired to be just as 
likely stock per dollars as dollars per stock [or Ben- 
ford's (1938) "candles per watt" versus "watts per 
candle"], then the distribution generated should be 
reciprocal invariant, so for example its log10 should 
be symmetric about 1/2. So first set F(1) = 0 and 
F(10-) = 1; next pick F( 10) randomly [accord- 
ing to, say, uniform measure on (0, 1)] since 10 
is the reciprocal-invariant point t = 10/t; then pick 
F(101/4) and F(103/4), independently and uniformly 
on (0, F( 10)) and (F( 10), 1), respectively, and 
continue in this manner. This classical construc- 
tion of Dubins and Freedman (1967, Lemma 9.28) 
is known to generate an r.p.m. a.s. whose expected 
distribution EM is the logarithmic probability PL 
of (8), and hence by Theorem 3 is scale and base 
unbiased, even though with probability 1 every dis- 
tribution generated this way will be both scale and 
base biased. On the average, this r.p.m. is unbi- 
ased, so the log-limit significant-digit law will ap- 
ply to all M-random k-samples. [The construction 
described above using uniform measure is not cru- 
cial. Any base measure on (0, 1) symmetric about 
1/2 will have the same property (Dubins and Freed- 
man, 1967, Theorem 9.29).] 

Also, many significant-digit data sets other than 
random k-samples have scale- or base-neutral man- 
tissa frequency, in which case combining such data 
together with unbiased random k-samples (as did 
Benford, perhaps, in combining data from mathe- 
matical tables with that from newspaper statistics) 
will still result in convergence to the logarithmic 
distribution. For example, if certain data represents 
(deterministic) periodic sampling of a geometric pro- 
cess (e.g., Xn = 2n), then by Theorem 1 of Diaconis 
(1977), this deterministic process is a strong Ben- 
ford sequence, which implies that its limiting fre- 
quency (separately or averaged with unbiased ran- 
dom k-samples) will satisfy (4). 

An interesting open problem is to determine 
which common distributions (or mixtures thereof) 
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satisfy Benford's law, that is, are scale or base in- 
variant or which have mantissas with logarithmic 
distributions. For example, the standard Cauchy 
distribution is close to satisfying Benford's law (cf. 
Raimi, 1976) and the standard Gaussian is not, but 
perhaps certain natural mixtures of some common 
distributions are. 

Of course there are many r.p.m.'s and sampling 
processes which do not satisfy the log-limit law (and 
hence are necessarily both scale and base biased), 
such as the (a.s.) constant uniform distribution on 
[1, 10) or (for some reason not yet well understood 
by the author) the r.p.m. constructed via Dubins- 
Freedman with base probability uniform measure 
on the horizontal bisector of the rectangle, which 
has expected log distribution a renormalized arc- 
sin distribution (Dubins and Freedman, 1967, The- 
orem 9.21). 

APPLICATIONS 

The statistical log-limit significant-digit law The- 
orem 3 may help justify some of the recent applica- 
tions of Benford's law, several of which will now be 
described. 

In scientific calculating, if the distribution of in- 
put data into a central processing station is known, 
then this information can be used to design a com- 
puter which is optimal (in any of a number of ways) 
with respect to that distribution. Thus if the com- 
puter users are like the log-table users of Newcomb 
or the taxpayers of Nigrini's study, their data repre- 
sent an unbiased (as to units, base, reciprocity,...) 
random mixture of various distributions, in which 
case it will (by Theorem 3) necessarily follow Ben- 
ford's law. Once a specific input distribution has 
been identified, in this case the logarithmic distribu- 
tion, then that information can be exploited to im- 
prove computer design. Feldstein and Turner (1986) 
show that 

under the assumption of the logarith- 
mic distribution of numbers, floating- 
point addition and subtraction can result 
in overflow or underflow with alarming 
frequency... and lead to the suggestion 
of a long word format which will reduce 
the risks to acceptable levels. 

Schatte (1988) concludes that under assumption of 
logarithmic input, base b _ 23 is optimal with re- 
spect to minimizing storage space. Knuth (1969) af- 
ter having "established the logarithmic law for in- 
tegers by direct calculation," leaves as an exercise 
(page 228) determining the desirability of hexadec- 

imal versus binary with respect to different objec- 
tives. Barlow and Bareiss (1985) 

conclude that the logarithmic computer 
has smaller error confidence intervals 
for roundoff errors than a floating point 
computer with the same computer word 
size and approximately the same number 
range. 

A second modern application of Benford's law is 
to mathematical modelling, where goodness-of-fit 
against the logarithmic distribution has been sug- 
gested (cf. Varian, 1972) as a test of reasonableness 
of output of a proposed model, a sort of "Benford- 
in-Benford-out" criteria. In Nigrini and Wood's 
(1995) census tabulations, for example, the 1990 
census populations of the counties in the United 
States follow the significant-digit logarithmic law 
very closely, so it seems reasonable that mathemat- 
ical models for predicting future populations of the 
counties should also be a close fit to Benford. If not, 
perhaps a different model should be considered. 

As one final example, Nigrini has amassed a vast 
collection of U.S. tax and accounting data includ- 
ing 91,022 observations of IRS-reported interest in- 
come (Nigrini, 1996), and share volumes (at the 
rate of 200-350 million per day) on the New York 
Stock Exchange (Nigrini, 1995), and in most of these 
cases the logarithmic distribution is an excellent fit 
(perhaps exactly because each is an unbiased mix- 
ture of data from different distributions). He pos- 
tulates that Benford is often a reasonable distri- 
bution to expect for the significant digits of large 
accounting data sets and has proposed a goodness- 
of-fit test against Benford to detect fraud. In an arti- 
cle in the Wall Street Journal in July 1995 (Berton, 
1995) it was announced that the District Attorney's 
office in Brooklyn, New York, using Nigrini's Ben- 
ford goodness-of-fit tests, has detected and charged 
groups at seven New York companies with fraud. 
The Dutch IRS has expressed interest in using this 
Benford test to detect income tax fraud, and Nigrini 
has submitted proposals to the U.S. IRS. 
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