
Network: Computation in Neural Systems
2012, 1–19, Early Online

Creating, documenting and sharing network models

SHARON M. CROOK1,2, JAMES A. BEDNAR3, SANDRA BERGER2,

ROBERT CANNON4, ANDREW P. DAVISON5,

MIKAEL DJURFELDT6, JOCHEN EPPLER7, BIRGIT KRIENER8,

STEVE FURBER9, BRUCE GRAHAM10, HANS E. PLESSER8,

LARS SCHWABE11, LESLIE SMITH10, VOLKER STEUBER1,2,

& SACHA VAN ALBADA7

1School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ,
USA, 2School of Life Sciences, Arizona State University, Tempe, AZ, USA, 3School of

Informatics, University of Edinburgh, Edinburgh, UK, 4Textensor Limited, Edinburgh,

UK, 5Unité de Neuroscience, Information and Complexité, CNRS, Gif sur Yvette, France,
6PDC Center for High Performance Computing, Royal Institute of Technology, Stockholm,

Sweden, 7Institute of Neuroscience and Medicine, Forschungszentrum, Juelich, Germany,
8Department of Mathematical Sciences and Technology, Norwegian University of Life

Sciences, Ås, Norway, 9School of Computer Science, University of Manchester, Manchester,

UK, 10Department of Computing Science and Mathematics, University of Stirling,
Stirling, UK, 11Institute of Computer Science, University of Rostock, Rostock, Germany,

and 12School of Computer Science and Science and Technology Research Institute,

University of Hertfordshire, Hertfordshire, UK

(Received 22 June 2012; revised 15 August 2012; accepted 16 August 2012)

Abstract
As computational neuroscience matures, many simulation environments are available that are
useful for neuronal network modeling. However, methods for successfully documenting
models for publication and for exchanging models and model components among these
projects are still under development. Here we briefly review existing software and applications
for network model creation, documentation and exchange. Then we discuss a few of the
larger issues facing the field of computational neuroscience regarding network modeling and
suggest solutions to some of these problems, concentrating in particular on standardized
network model terminology, notation, and descriptions and explicit documentation of model
scaling. We hope this will enable and encourage computational neuroscientists to share their
models more systematically in the future.

Correspondence: Sharon M. Crook, Arizona State University, School of Mathematical and Statistical Sciences and

School of Life Sciences, Tempe, USA. E-mail: sharon.crook@asu.edu

ISSN 0954-898X print/ISSN 1361-6536 online/02/000001–19 ! 2012 Informa Healthcare Ltd.

DOI: 10.3109/0954898X.2012.722743

N
et

w
or

k 
D

ow
nl

oa
de

d 
fro

m
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 fo
r M

ilj
oe

 &
 B

io
vi

te
ns

ka
p 

on
 0

9/
24

/1
2

Fo
r p

er
so

na
l u

se
 o

nl
y.



Keywords: Network models, Spiking neurons, Model sharing

Introduction

While the availability of a diverse array of general purpose and more specialized
neuronal network simulators facilitates the development of models in neuroscience,
the specialized languages and model descriptions that they utilize generally are not
interoperable, limiting the reproducibility of results from simulation-based studies,
as well as model exchange and re-use. As models become increasingly more
complex and cross multiple scales, attempting to convert code to a different
simulator format becomes even more time consuming. Recent work comparing
numerical results across simulators (Gleeson et al. 2010; Henker et al. 2012) and
examining implementation issues that are inherent to network modeling (Crook
et al. 2012) point to the need for benchmarks for simulator testing and also reinforce
the need for simulator-independent descriptions for model publication and
exchange. The lack of standardized terminology, notation, and graphical represen-
tations for documenting networks also negatively impacts progress in our field
(Nordlie et al. 2009).

From the early days of computer design (von Neumann 1986), the computer
hardware community has addressed many of the same issues facing the network
modeling community. For example, how should a designed structure be described,
and how can one check that the architecture is what is intended? Because different
hardware simulator tools are used for the various modules of a design, hardware
designers must be able to interface tools easily. Thus, simulator interoperability is
critical. Originally hardware design was performed at the circuit level, where early
design tools aided the creation of full schematics and provided automatic
simulation. However, gradually, design became more abstract as hardware
became more complex. Toward the end of the 1980’s, the level of abstraction
made design at the circuit level impossible, and design tools began to use libraries of
pre-built functions. Diverse notations for these components were developed and the
rapidly moving target of the state-of-the-art circuit made standardization difficult.
However, these notations slowly became standardized, developing into a formal
notation for digital circuits composed of gates and boxes that are described in a
hierarchical manner. Attempts to develop functional languages for describing
hardware have not been widely adopted, although currently Bluespec’s (http://
bluespec.com) high-level language facilities are gaining interest.

Like the hardware community, the network modeling community needs an
extremely concise, high-level description of model architecture that can be mapped
onto a simulator. It is important that it be possible to implement different modules
of the architecture at different levels of abstraction. As model complexity grows and
development relies on high-level tools, validation is critical so that modelers are able
to trust that the model is the intended one and that it is implemented correctly. In
this article we briefly discuss some of the ways in which our community is slowly
building an infrastructure for efficiently creating, documenting and sharing network
models. Then we address a few of the larger issues facing the field of computational
neuroscience as we move forward, concentrating in particular on standardized
model descriptions and explicit documentation of model scaling.

2 S. M. Crook et al.

N
et

w
or

k 
D

ow
nl

oa
de

d 
fro

m
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 fo
r M

ilj
oe

 &
 B

io
vi

te
ns

ka
p 

on
 0

9/
24

/1
2

Fo
r p

er
so

na
l u

se
 o

nl
y.



Current resources

Simulation environments

The creation and simulation of network models is facilitated by a large number of
freely available software packages (Brette et al. 2007). For more than 20 years, the
NEURON (Hines 1989; Carnevale and Hines 1997) and GENESIS (Bower and
Beeman 1997) simulation environments have supported the modeling of networks
of conductance based neuronal models that include a large amount of biological
detail. These simulators have a large user base, and are both under active
development, with the original GENESIS simulation software now being super-
seded by the GENESIS-3/Neurospaces (Cornelis and De Schutter 2003; Cornelis
et al. 2012a, 2012b) and MOOSE (Ray and Bhalla 2008) initiatives. Other software
packages including NEST (Gewaltig and Diesmann 2007), Brian (Goodman and
Brette 2008), PCSIM (Pecevski et al. 2009), and Topographica (Bednar 2009) are
more appropriate for the simulation of large-scale networks of abstract neuronal
models such as integrate-and-fire (see review by Burkitt 2006), Izhikevich
(Izhikevich 2004) and firing-rate models (Wilson and Cowan 1972). The increasing
scale of such models is also driving the development of alternative computer
architectures and simulation paradigms such as the use of graphics processing units
(GPUs) (Nageswaran et al. 2009) and specialized chips (Furber and Temple 2007),
described in more detail below. Moreover, a number of simulators such as C!3D
(Zubler and Douglas 2009), NETMORPH (Koene et al. 2009) and NeuGen
(Eberhard et al. 2006) have been designed to specifically model the biological
development of neurons and neuronal networks.

While the existence of such a wide range of neural simulators is beneficial for the
field of computational neuroscience as it provides researchers with ample flexibility
and opportunities to choose a simulator that has been optimized for a specific
research question, it also complicates the exchange of computational models and
therefore collaboration between different laboratories. A complex neuronal network
model can take months or even years to develop, analyze, and document, and a full
understanding and further development of the simulator-specific scripts can be
challenging for users of the same simulator, let alone for someone who is not
familiar with the specific simulator that has been used. The desire for model
exchange among laboratories that use different simulation platforms and for
portability of models between different simulators has stimulated the development
of several interoperability frameworks. For example, many simulators such as
NEURON, GENESIS-3, MOOSE, C!3D, and others, now provide support for
the simulator-independent model description language NeuroML (Goddard et al.
2001; Crook et al. 2007; Gleeson et al. 2010). Other software packages allow the
simulator-independent development of computational models that can then be run
on a number of different simulation environments. For example, the PyNN software
package (Davison et al. 2009) provides a Python API for the creation of neural
network simulations for use with several different simulation platforms (Eppler et al.
2008). Similarly, the Multi-Simulation Coordinator (MUSIC; Djurfeldt et al. 2010)
supports the runtime interaction of multiple simulator tools in multi-level
simulations. The neuroConstruct software (Gleeson et al. 2007) facilitates the
development, visualization and analysis of biologically detailed neuronal networks in
three-dimensional space. These network models are stored in NeuroML format,

Documenting Network Models 3

N
et

w
or

k 
D

ow
nl

oa
de

d 
fro

m
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 fo
r M

ilj
oe

 &
 B

io
vi

te
ns

ka
p 

on
 0

9/
24

/1
2

Fo
r p

er
so

na
l u

se
 o

nl
y.



and neuroConstruct can automatically generate scripts for several simulators. More
details regarding some of these approaches are provided below.

Code sharing

There are several possible formal methods for sharing code such as on a publisher’s
website or in a public source-code repository. Although many journals offer the
possibility of making model code available as supplementary material attached to a
journal article, there are disadvantages to this option, including lack of standard-
ization in the code format or the associated metadata, difficulty in updating the code
archive if bugs are found, improvements are made or contact details are changed,
and quality control. Curated model repositories, where a curator verifies that the
code reproduces one or more figures from the published article, and which often
have standardized metadata making it easier to find models of a certain type, address
the issues of quality control and standardization (Lloyd et al. 2008). Some examples
are ModelDB (Peterson et al. 1996; Davison et al. 2002; Migliore et al. 2003; Hines
et al. 2004), the Visiome platform (Usui 2003), the BioModels database (Le Novère
et al. 2006), and the CellML Model Repository (http://models.cellml.org). The
model database most relevant to neuronal network models is ModelDB, a well-
established database of computational models of neurons, cellular mechanisms and
networks in a variety of different simulators and programming languages, which is
curated by the SenseLab initiative at Yale University. In addition, the use of
ModelDB is strongly supported by the Journal of Computational Neuroscience,
which recommends that all models described by articles in the journal should be
uploaded into this database.

A further step towards enabling collaborative model development has been taken
by the Open Source Brain (OSB; http://opensourcebrain.org) project initiated by
the Silver Laboratory at University College London, which currently involves 11
laboratories as well as partners outside academia in Europe and the United States.
The OSB initiative provides a public repository for detailed models of neurons and
networks that can be developed collaboratively in any simulator format. The aim is
to facilitate collaboration by storing the models in simulator-independent NeuroML
format, and to provide access to curated models that reflect the latest experimental
findings and that will evolve in parallel with the development of new simulation
technology and modeling paradigms.

Code sharing does not ensure reproducibility or model exchange

As detailed by Crook et al. (2012), sharing code may provide a means for replicating
results using the same code, but it does not ensure independent reproducibility of
model results, which requires a simulator-independent approach. In fact, it is
sometimes the case that a given result from a published paper cannot be re-created
with code that has been made available, although the use of curated model code
repositories is helping in this regard. Reasons for lack of reproducibility may involve
differences in the version of the simulator, the compiler, or of shared libraries that
are used by either the simulator or the code, differences in the computing platform,
or simply poor record keeping on the part of the researcher. For these reasons, in

4 S. M. Crook et al.

N
et

w
or

k 
D

ow
nl

oa
de

d 
fro

m
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 fo
r M

ilj
oe

 &
 B

io
vi

te
ns

ka
p 

on
 0

9/
24

/1
2

Fo
r p

er
so

na
l u

se
 o

nl
y.



cases where code is shared, the exact versions of all code, applications and libraries
should be documented. Ideally, models and their sub-components should be
exchanged easily for re-use across many different simulators. This is the motivation
behind approaches discussed in the next section.

Formal approaches for describing networks

To facilitate independent reproduction of neuronal network modeling studies, a
systematic approach is needed for reporting models. Generally in an article about a
network model, the authors are making statements about the behavior of a class of
network structures, not about the specific realization used in the article. For this
reason, from a scientific perspective, the description of the procedure for building the
network often is the minimal information that is needed. However, for published
results, the full connection matrix for the network should be saved where space
permits to allow for verification of results, for example in case of errors in the code for
generating the connectivity. A key challenge for describing network models is that
neuronal network models usually consist of thousands of model neurons so that
enumerating the model neurons and their connections provides a machine-readable
format, but does not address the need for human-readable approaches. This
requirement also distinguishes neuronal networks from much of systems biology,
where such problems have not been addressed so far. Here we discuss approaches for
both human-readable and machine-readable standardized formats that can provide
descriptions of network models that are independent of any particular simulator.

Tables and graphical descriptions

Nordlie et al. (2009) provide a checklist for model descriptions, requiring
information on the following aspects of a model: (i) model composition, (ii)
coordinate systems and topology, (iii) connectivity, (iv) neurons, synapses, and
channels, (v) model input, output, and free parameters, (vi) model validation, and
(vii) model implementation. They further propose a concise tabular format for
summarizing this information in publications. NeuroML tools can generate tables in
this format from a formal model description.

Another popular approach is to represent networks graphically in publications,
which is an important tool for providing a quick overview to the reader. Although
graphs are not sufficient for describing all aspects of a model, they are useful and
would be much more useful if a standard approach were adopted by the network
modeling community, similar to the use of the Systems Biology Graphical Notation,
or SBGN, by the systems biology community (Le Novère et al. 2009). Often,
graphical representations must be hierarchical to depict the details at different levels
of spatial scale, and the use of ad hoc notations with conflicting symbols from one
publication to the next makes it difficult to share these complex ideas. The issues
with the current use of graphical representations for network models in neurosci-
ence are articulated well by Nordlie and Plesser (2010), who also advocate a
connectivity matrix approach. This method of visualizing network connectivity can
be used at different levels for either full details or summary information, and is

Documenting Network Models 5

N
et

w
or

k 
D

ow
nl

oa
de

d 
fro

m
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 fo
r M

ilj
oe

 &
 B

io
vi

te
ns

ka
p 

on
 0

9/
24

/1
2

Fo
r p

er
so

na
l u

se
 o

nl
y.



currently available by using the ConnPlotter package (Nordlie and Plesser 2010)
with the NEST simulator. However, there are some aspects of networks that cannot
be provided in a connectivity matrix. In particular, some network descriptions
require procedural information about the order and manner of creating connec-
tions, as discussed in more detail below.

Description languages

Software and database developers in many fields, including neuroscience, have
enthusiastically adopted Extensible Markup Language (XML) technology (Bray
et al. 2008) as an ideal representation for complex structures such as models and
data. A major advantage of XML is that it provides a machine-readable format that
is independent of any particular programming language or software encoding, which
is ideal for a structured, declarative description that can provide a standard for an
entire community. Like HTML, XML is composed of text and tags that explicitly
describe the structure and the semantics of the content of the document; however,
the tags are defined by developers as a specific XML-based markup language that is
appropriate for a particular application.

A number of ongoing projects focus on the development of these self-documenting
markup languages that are extensible and can form the basis for specific implemen-
tations covering a wide range of modeling scales in neuroscience. The Systems
Biology Markup Language, SBML, (Hucka et al. 2003) and CellML (Hedley et al.
2000; Lloyd et al. 2004) are two popular languages for describing systems of
interacting biomolecules that comprise models often used in systems biology, and
both languages are relevant to network models since they can be used to describe
complex models of synaptic signaling processes. NeuroML (Goddard et al. 2001;
Crook et al. 2007; Gleeson et al. 2010) differs from these languages in that it is a
domain specific model description language, and neuroscience concepts such as
cells, ion channels and synaptic connections are an integral part of the language.
Recently, the International Neuroinformatics Coordinating Facility initiated the
development of a markup language for models of spiking neural networks composed
of abstract cell types (Network Interchange format for Neuroscience; http://
nineml.org), which is complementary to NeuroML. Additionally, the Simulation
Experiment Description Markup Language (SED-ML) (Köhn and Le Novère 2008)
is a language for encoding the details of simulation experiments, which follows the
requirements defined in the MIASE (Minimal Information About a Simulation
Experiment) guidelines (http: //biomodels.net/miase). Taken together, these markup
languages cover the majority of network models. The use of namespaces allows for
unambiguous mixing of several XML languages; thus, it is possible to use multiple
languages for describing different modules of a multiscale model. This is the
approach employed by NeuroML to include very detailed models of synaptic
processes using SBML for example.

Tools that support simulator interoperability

NeuroConstruct is an example of a successful software application that uses
declarative descriptions to its advantage (Gleeson et al. 2007). This software

6 S. M. Crook et al.

N
et

w
or

k 
D

ow
nl

oa
de

d 
fro

m
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 fo
r M

ilj
oe

 &
 B

io
vi

te
ns

ka
p 

on
 0

9/
24

/1
2

Fo
r p

er
so

na
l u

se
 o

nl
y.



facilitates the creation, visualization, and analysis of networks of multicompartment
neurons in 3D space, where a graphical user interface allows model generation and
modification without programming. Models within neuroConstruct are based on
the simulator-independent NeuroML standards, allowing automatic generation of
code for multiple simulators. This has facilitated the testing of neuroConstruct and
the verification of its simulator independence, through a process where published
models were re-implemented using neuroConstruct and run on multiple simulators
as described in Gleeson et al. (2010).

In a different approach, PyNN (Davison et al. 2009), provides a programmatic
simulator-independent format. In particular, it provides an API in the Python
programming language that supports computational studies using the software
simulators NEURON, NEST, PCSIM and Brian, as well as a number of
neuromorphic hardware systems (Brüderle et al. 2009; Galluppi et al. 2010). This
allows the code for a simulation to be written once and then run on different
simulator engines. Unlike declarative specifications, this description is immediately
executable without an intermediate translation step, which gives a more direct link
between description and results. The use of a programming language also provides
the full power of such a language, with loops, conditionals, subroutines and other
programming constructs. The great flexibility and extensibility this gives can be a
strong advantage, especially in an exploratory phase of model building. It may also
be a disadvantage if misused, leading to unnecessary complexity, bugs, and
difficulty understanding the essential components of the model, which are less
common with declarative specifications.

A third approach involves the standardization of interfaces through which
different software components communicate at runtime. This has been used to
good effect in MUSIC (Djurfeldt et al. 2010) and PLATONIC (Kannon et al.
2011) to allow different parts of a network model to be run on separate simulators. It
is also a key aspect of the design of MOOSE, which takes an object oriented
approach for the simulation engine and supports a wide range of pluggable
components which perform different parts of the calculation. The benefits here are
much the same as with plugin architectures for more mainstream applications such
as web browsers and word processors. These mainstream applications have
benefited from software design philosophies developed over many years (see
Gamma et al. (1994) for an overview). In computational neuroscience a first such
design philosophy for appropriate modularization of a simulator is described by the
GENESIS-3/Neurospaces CBI architecture (Cornelis et al. 2012b). The benefits of
such a modularization are that the plugin developer does not need to master the
entire system, but only the interfaces it must implement, and the same plugin may
be used in different contexts. As such, this approach has the potential to reduce the
overhead for developing new modules, which is particularly important in a loosely
coupled software community like ours. However, some of the pitfalls are also the
same as for browser plugins. Development schedules are rarely synchronized,
leading to considerable potential for version compatibility problems, and it is much
harder to achieve good performance and scalable behavior with a combination of
plugins working through a restricted interface than it is with a monolithic system
designed as a single entity. This last issue can be addressed by an alternative
approach to runtime interaction in which the simulation problem is separated by
processing tasks rather than by model components. Each of the different

Documenting Network Models 7

N
et

w
or

k 
D

ow
nl

oa
de

d 
fro

m
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 fo
r M

ilj
oe

 &
 B

io
vi

te
ns

ka
p 

on
 0

9/
24

/1
2

Fo
r p

er
so

na
l u

se
 o

nl
y.



computational tasks involved in running a simulation such as processing model
descriptions, operating on cell morphologies, discretizing meshes or solving
differential equations can form the basis of a specialized library. This practice is
already widespread for some parts of the problem, with independently developed
packages often used for XML processing or solving differential equations, but has
potential to be extended to finer scales with highly specialized libraries dedicated to
particular aspects of model processing and simulation.

Formal specification and verification of connection primitives

Desirably, connectivity on various levels should be describable in one common
framework and terminology, irrespective of what is to be connected, e.g. synaptic
contact points on dendritic tree structures, point neurons, or also whole populations
or areas. These descriptions should be clear and concise, but must not lack crucial
details.

For example, if connectivity in a network of N nodes is described as random, it
might appear clear that every possible connection between two nodes i, j2 1, . . . , N,
i 6¼ j is established in a Bernoulli-trial fashion with a certain probability p. This
network ensemble strictly corresponds to the class of Erdos-Rényi (ER) networks,
implying that no connection is established twice (no multapses) and no neuron is
synaptically connected to itself (no autapses), properties that modelers however
often allow for. Moreover, for ER random networks there might be nodes that are
not connected to any node at all, another feature that is often explicitly excluded.
Another assumption often made is that nodes have a pre-described distribution of
the number of connections per node, e.g. that all nodes receive exactly (Brunel
2000) or at least (Watts and Strogatz 1998) k connections, while for an ER network
both the number of incoming and outgoing connections are distributed binomially
(Albert and Barabási 2002).

Even though such connectivity details may appear minor, they can have
measurable impact on the dynamics of spiking neuron networks. Assume for a
moment that all spike trains are Poisson processes with intensity ! and that a neuron
receives k input spike trains, all with the same weight w. If all k input currents are
independent, the variance of the input current is proportional to w2k!, while if all
currents are sampled from the same neuron it rather corresponds to one spike train
of weight wk and the variance is thus instead proportional to w2k2!. Similar
differences due to multapses are induced in the input current covariances due to
common input. Thus minor details potentially alter the entire covariance structure
of the network activity and can lead to problems in reproducing results that relate to
second order properties if not properly documented.

If the aim is conciseness of description, even the simple balanced random network
of Brunel (2000) can become cumbersome. A possible, already lengthy yet
incomplete description could be: ‘‘every neuron receives k synapses from randomly
drawn subsets of ke excitatory neurons and ki¼ k# ke inhibitory neurons, such that
no connection is established more than once and no neuron connects to itself’’. A
more concise and formal description in tabular form was suggested in Nordlie et al.
(2009). When it comes to more complex network models with additional
biologically-motivated detail (e.g. Hill and Tononi 2005; Izhikevich and Edelman

8 S. M. Crook et al.

N
et

w
or

k 
D

ow
nl

oa
de

d 
fro

m
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 fo
r M

ilj
oe

 &
 B

io
vi

te
ns

ka
p 

on
 0

9/
24

/1
2

Fo
r p

er
so

na
l u

se
 o

nl
y.



2008; Phoka et al. 2012) the situation soon becomes worse, and the benefit of a
formalized tabular representation is evident (Nordlie et al. 2009).

A first step towards standardizing the description of connectivity is to agree on a
common terminology or ontology, such as the Computational Neuroscience
Ontology that is currently under development (http://purl.bioontology.org/ontology/
CNO) to unambiguously describe and annotate network models. Along these lines,
we suggest unambiguous definitions for the terminology and structure of connec-
tivity primitives, defined by community agreement. These can be high-level, relating
to network classes such as ‘‘ER random networks’’, ‘‘all-to-all’’ or ‘‘ring networks’’,
but also can be very low-level primitives, specifying connection patterns on the basis
of individual nodes and connections, such as ‘‘random convergent connect’’
(Nordlie et al. 2009). This approach allows for declarative, shorthand descriptions
of networks as a whole, if the network class is well-defined and the procedure of
network generation does not matter. It also allows for more refined procedural
descriptions in terms of connectivity building blocks, which is particularly important
when operations during network generation need to be performed in a certain order.
The approach is also useful when connectivity patterns are highly stereotypic and
only the parameters vary (as in the models of Hill and Tononi (2005) and Phoka
et al. (2012)). Such connectivity patterns can have different properties in that they
can be:

node-centric versus set-centric: For a node-centric approach, one might ask, ‘‘given
a node, what nodes is it connected to?’’. Random convergent connections are an
example (Nordlie et al. 2009). For a set-centric approach, in contrast, one asks
‘‘what characterizes a set of connections?’’. As an example, form a set by drawing N
connections with random sources and targets.

local versus global: In a local approach, individual connections are established
irrespective of the state of the rest of the network. Global requirements establish
connections in a way that depends on the state of other nodes or connections.

deterministic versus probabilistic: A deterministic pattern invariably will result in the
same connectivity with every instantiation, whereas a probabilistic connectivity
pattern specifies the statistics of connectivity across instantiations.

value-dependent versus attribute-dependent: An example of value-dependent con-
nectivity is distance-dependent connections. Attribute-dependent connections are
of the form ‘‘has property A’’ or ‘‘is of type B’’ for example.

Finally, boundary conditions should be specified, and if networks are embedded
in some type of metric space, also this metric and the node conditions should be
given. The idea of separating the intrinsic properties of nodes (e.g. cellular
properties) from extrinsic labels (e.g. positions) or relational properties (e.g. ‘‘being
next to’’) has been explored further by Ansorg and Schwabe (2010).

Finding naming conventions however often collides with the inertia of established
terminology, or simply the complexity of the network objects to be described. Thus
a formally minimal, i.e. mathematical, specification of connectivity would resolve
the problem of terminological ambiguities. This was recently put forward in the
form of the Connection Set Algebra (CSA; Djurfeldt 2012). This operator-based
approach automatically resolves the problem of expressing the procedural order of
certain network generation operations, since this is inherently expressed in the order
of operator composition. In CSA, a set of network connections is represented by an
object called a connection-set. This object can be subdivided into a mask, expressing

Documenting Network Models 9

N
et

w
or

k 
D

ow
nl

oa
de

d 
fro

m
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 fo
r M

ilj
oe

 &
 B

io
vi

te
ns

ka
p 

on
 0

9/
24

/1
2

Fo
r p

er
so

na
l u

se
 o

nl
y.



the existence of connections, and zero or more value sets, expressing parameters
associated with connections, such as a weight or delay. The CSA uses index sets to
refer to the nodes (synapses, neurons, etc.) to be connected. For example, when
connecting a source and target neuron population, source neurons are enumerated
using non-negative integers, which together form an index set I. Similarly, an index
set J enumerates the targets. The mask can then be regarded as a set of pairs i, j,
i2 I, j2 J, with one pair per existing connection. This is equivalent to a connection
matrix. A value set is a function of source and target indices I! J!R.

Connection-sets typically express a type of connectivity, such as ‘‘ER random’’ or
‘‘all-to- all’’ rather than a specific finite set of connections. This is possible because
connection-sets are allowed to be of infinite size rather than adapted to the sizes of
specific source and target populations. CSA is an algebra over connection-sets,
where operators are applied to elementary connection-sets to form the desired
connectivity. Given source and target populations of definite sizes, finite portions of
a connection type can be ‘‘cut out’’ using the CSA intersection operator. CSA
objects and operators can be efficiently implemented as iterators. A demonstration
of the CSA implementation in Python is available at the INCF software center
(http://software.incf.org/software/csa).

Since the aim of such precise network structure descriptions is reproducibility,
there is also a need to specify how to test whether a generated network actually
corresponds to the intended structure. This might be a straightforward task,
especially if the network is small and connectivity is simple and stereotypic. For
example, for a grid network, one might check if each node is connected to its k
nearest-neighbors or generate the adjacency matrix and determine whether it has the
typical, expected band structure. However, what if the connectivity is probabilistic
and each instantiation will be slightly different, or connectivity is dependent on
pairwise distances, but the number of potential target nodes in a given distance is
not homogeneous? The latter is the case when nodes are embedded on a grid with
open boundary conditions: a node in the center of the grid will have the same
number of potential targets in all directions, while a node sitting at the boundary of
the grid will have none beyond that boundary. So if the connection rule is to connect
to all nodes within a certain distance, the number of established connections per
node (the degree) depends on the location of the node. An additional complication
is that the number of nodes and connections is also often very large so that reading
out or storing the complete connectivity for testing purposes may not be practical.

For deterministic networks it is often sufficient to check connectivity for subsets
of neurons. For example, for the grid with open boundary conditions mentioned
above, one could check if nodes in the center, on the edges and in the corners have
the expected number of connections, given the spatial connection profile. For
probabilistic networks, measuring the distribution of the number of connections k
per node, the degree distribution P(k), can be a useful way to validate the network
structure. For the ER network, the expected degree distribution is a Binomial
distribution and a Kolmogorov-Smirnov (KS) test can be employed to quantify
significance. If connectivity is probabilistic and also dependent on pairwise distance,
the number of expected connections of a node at position r, P(k|r), is in general
given by the convolution of the spatial connection probability profile and the node
density distribution. If this is soluble, as in the case of uniform node density and a
Gaussian connectivity profile, the cumulative density function can be derived and

10 S. M. Crook et al.

N
et

w
or

k 
D

ow
nl

oa
de

d 
fro

m
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 fo
r M

ilj
oe

 &
 B

io
vi

te
ns

ka
p 

on
 0

9/
24

/1
2

Fo
r p

er
so

na
l u

se
 o

nl
y.



KS testing is again possible. For the topology library in NEST, a comprehensive test
suite for all offered standard connection routines is currently under development.

Implementation issues and solutions

All computational models of neuronal networks are necessarily downscaled
compared to the biological systems: this is a generic issue and applies to all
simulation work. The need for downscaling in this context arises due to the large
numbers of model elements (such as synapses, patches of membrane, model
neurons), and their interconnection also may be very complex. Downscaling
involves using a smaller number of model elements to represent a larger population
in the underlying system. Unfortunately, neuronal simulators rarely provide explicit
support for such downscaling, leading to ad hoc approaches for model scaling that
currently make it difficult to interpret, share, and connect models. Moreover,
publications very often fail to state explicitly what type of downscaling was used (and
whether it was the same throughout the simulation), precisely how the model relates
to the underlying system, and what limitations result from the downscaling.

Model scaling should be explicit

Here we primarily focus on neuron, synapse, and dendrite downscaling for clarity,
but similar arguments apply to other model elements. Two fundamentally different
approaches to downscaling may be distinguished: lumping and subsampling. For
lumping, multiple neurons or synapses are combined into larger units for
simulation, with properties averaged or summed as appropriate. For subsampling,
each model element retains a one-to-one relationship with an element in the
biological system, but is treated as a representative of a larger population not
explicitly modeled, with adjustments to parameters to compensate for the missing
elements. Two types of subsampling can be further distinguished, depending on the
spatial layout of the elements: either modeling a small patch at full density
(a clustered approach), or a larger patch at low density (a distributed approach). Of
course, combinations of approaches are also possible. Clearly, each of these types of
downscaling requires different adjustments to parameter values and has different
implications for the analysis and interpretation of results. For instance, lumped
models will tend to have longer effective time constants than subsampled ones (see
for example Borisyuk et al. (2002)), and time delays between neurons will be larger
in a distributed sample than in a clustered sample.

For simple firing-rate point neurons, downscaling by lumping or distributed
subsampling is reasonably well defined, with linear scaling that works well over a
large parameter range (Bednar et al. 2004). For example, each synaptic input to a
neuron in a distributed subsampled firing-rate network that simulates 10% of the
actual neurons in a region will have to be scaled up by a factor of 10 to represent the
contribution from the 90% of the neurons not being modeled. The Topographica
simulator provides explicit support for downscaling networks of firing-rate neurons,
requiring all parameter values to be expressed independently of the type and amount
of downscaling (Bednar 2008). With scale-independent parameters, the amount of

Documenting Network Models 11

N
et

w
or

k 
D

ow
nl

oa
de

d 
fro

m
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 fo
r M

ilj
oe

 &
 B

io
vi

te
ns

ka
p 

on
 0

9/
24

/1
2

Fo
r p

er
so

na
l u

se
 o

nl
y.



downscaling can then be varied easily for each run (e.g. to test that results are robust
to downscaling), and the specific scaling assumptions can be reported explicitly in
publications.

However, other simulators rarely provide any direct support for downscaling
neurons or synapses in networks, and the various ad hoc approaches in use can
dramatically affect model behavior. Some theoretical results are available that help
to systematically downscale numbers of synapses while preserving basic character-
istics of the network dynamics under certain conditions. In the asynchronous
irregular state, characteristic of large cortical networks, the summed current-based
synaptic input to each neuron is well approximated by a Gaussian noise. The mean
and variance of this noise determine the firing rate in networks of binary (van
Vreeswijk and Sompolinsky 1998) and integrate-and-fire model neurons (Brunel
2000). Maintaining the same firing rate is one particular choice for defining
equivalence between the full-size system and the downscaled version. This can be
achieved by an appropriate choice of synaptic weights, the ratio between excitatory
and inhibitory weights, and external input (van Vreeswijk and Sompolinsky 1998;
Brunel 2000; Burkitt 2006). These results remain useful even under sufficiently
mild deviations from the conditions under which they were derived. Modelers
should use such theoretical findings in order to increase the chance that downscaled
models are in fact comparable to their full-scale counterparts.

Scaling networks of compartmental model neurons connected through conduc-
tance-based synapses presents its own unique challenges. The central issue is
preserving the effects on the postsynaptic cell of hundreds or thousands of synapses
spread across highly branched dendrites. To produce a computationally tractable
network model, two compromises must be considered at the cellular level: (1) a
reduction in the number of afferent cells, and (2) a reduction in the complexity of
the modeled dendrites (by lumping).

A reduction in the number of afferent cells can be handled as a reduced number
of synapses on the target cell, with each synapse having a suitably increased peak
conductance (a lumping approach). With such scaling, the target cell will receive
stronger, more spatially localized inputs. This could distort the postsynaptic
response by enhancing nonlinear interactions between inputs and active membrane
currents and result in significant distortion of network dynamics (Djurfeldt et al.
2008). For example, dendritic calcium spikes could occur more frequently than
expected, due to a few, strong inputs driving the dendritic membrane to the spiking
threshold. An alternative is to preserve, as far as possible, the actual number of
synapses, but with groups of synapses being driven by the same presynaptic cell
(rather than separate cells, as in the real system). The disadvantage of this
subsampling approach is that the inputs, though of a realistic number, will have
unnatural temporal correlations. For intrinsic network inputs, one of these
approaches must be adopted, despite the limitations, if a full-scale network model
is infeasible. In order to properly interpret simulation results, different sized
networks should be simulated with whichever scaling scheme is adopted in order to
assess the likely effects, for example, changing the size of particular neuronal
populations while preserving the number of synapses on each target cell (Orban
et al. 2006). Extrinsic inputs can be handled with further alternatives. If a cell
receives a large number of inputs from outside the network being modeled, then
those inputs can be modeled by a reduced population of synapses that preserve the

12 S. M. Crook et al.

N
et

w
or

k 
D

ow
nl

oa
de

d 
fro

m
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 fo
r M

ilj
oe

 &
 B

io
vi

te
ns

ka
p 

on
 0

9/
24

/1
2

Fo
r p

er
so

na
l u

se
 o

nl
y.



synaptic strength expected in the full population, but receive inputs at a higher mean
frequency. This preserves the mean driving conductance across the population of
extrinsic inputs, and may still maintain appropriate target cell firing statistics due to
this input. This has been demonstrated for a 100-fold reduction in the number of
synapses on modeled Purkinje cell dendrites (De Schutter and Bower 1994; Steuber
et al. 2007). The fluctuating current arriving at the cell body due to spatially and
temporally distributed inputs to the dendrites may possibly be captured by a suitable
statistical model, allowing extrinsic inputs to be modeled as a simple current
injection into the cell body. Background input to neocortical pyramidal cells has
been fitted by a single-variable stochastic model similar to an Ornstein-Uhlenbeck
process (Destexhe et al. 2001).

Scaling compartmental models of single neurons is also a necessity when building
a large-scale biologically realistic network model, but remains something of an art
form when dealing with highly branched dendrites that have active, nonlinear
membrane properties. Such nonlinear properties may induce specific local
processing of synaptic inputs (see for example Poirazi et al. (2003)). This provides
constraints on the level of morphological detail that needs to be preserved in any
reduced compartmental model. Detailed single cell modeling may need to be
undertaken to try to understand how to preserve such local processing in a
simplified dendritic morphology. A two or three compartment model that captures
the distinction between input to the cell body and to the dendrites may, in fact, be
too simple in many cases.

Overall, due to the complex relationship between the downscaled system in these
simulations and the underlying biological system, it is critical for simulators to start
to provide explicit support for downscaling. In this way, changes in dynamical (and
other) properties caused by downscaling may be investigated. One possible ideal
(implemented in Topographica, but not yet in spiking simulators) would be to
specify all parameters and architecture in terms of the biological system being
modeled, and then separately specify the scale to be used in a particular simulation,
as well as whatever scaling (linear or nonlinear) is necessary to map between the
original and downscaled systems. Publications can then report both the unscaled
network, as an explicit statement of what assumptions are being made about the
underlying system; and the scaling equations, as an explicit statement of what
assumptions are being made about how the simulation relates to the real system.

Reproducibility of randomness in parallel architectures

For testing and validation of models, it is essential to be able to exactly replicate the
results of a simulation, even for simulations that use randomness during network
construction or during run-time. For simulators that use software pseudo-random
number generators (PRNG), this is straightforward for a single threaded process, as
the output of the PRNG is deterministic for a given initial condition (seed). The
more challenging situation is when the computation is parallelized, since in a naive
approach the random numbers used for a particular element will depend on which
thread or process that element is computed in.

Different parallel simulators take different approaches to this. NEURON allows
specifying a separate random number generator for each element of the network that
uses random numbers. NEST assigns each neuron to a so-called virtual process

Documenting Network Models 13

N
et

w
or

k 
D

ow
nl

oa
de

d 
fro

m
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 fo
r M

ilj
oe

 &
 B

io
vi

te
ns

ka
p 

on
 0

9/
24

/1
2

Fo
r p

er
so

na
l u

se
 o

nl
y.



(VP), which is a thread running on one of its MPI processes. Each VP has its own
random number generator, which means that results will be exactly the same as long
as the number of VPs is the same. This is independent of the exact distribution of
VPs onto processes (Plesser et al. 2007). The approach taken by PyNN is to
generate all random numbers on all nodes, and to throw away the numbers that are
not needed on a given node. Clearly, this approach only scales up to the point where
random number generation becomes the bottleneck, which is why PyNN allows this
feature to be turned off.

Given the diversity of approaches taken, and the difficulty of the problem, this is
an area where it would be helpful to identify best practices that could be
implemented in all simulators.

Hardware approaches to large-scale modeling

An alternative approach to dealing with scaling issues is to attempt to simulate
networks at the scale of the brain; however, the memory demands of such large
networks are prohibitive. The use of generators rather than specific positions for
connectivity, where data are stored efficiently and accessed as needed, allows for the
implementation of larger networks using traditional software approaches (Smith
1992). But recently, the desired increase to brain-scale neuronal network models
has driven the development of novel neuromorphic computer architectures. The use
of GPU implementations (see for example Nageswaran et al. (2009)) has resulted in
the development of specialized simulator environments as well, such as NeMo
(http://nemosim.sourceforge.net) and GeNN (http://sourceforge.net/projects/genn).
However, these large-scale GPU based simulations still require a great deal of
memory, limiting overall speed-up. The use of specialized chips with on-chip
communication networks for direct spike transfer can dramatically improve run-
time requirements. This innovative approach is the basis of the SpiNNaker (Spiking
Neural Network Architecture) machine, which is a multi-processor machine
designed specifically to run large-scale networks of point neuron models in
biological real time using millisecond integration steps (Furber and Temple 2007).
It has a bespoke communications infrastructure tuned to carry very large numbers of
small packets, where each packet conveys information about one ‘‘spike’’. As
neuron, synapse and plasticity models are implemented in software, there is
considerable flexibility in how these are used, and hybrid networks can be
accommodated. In principle neural network models can be mapped onto
SpiNNaker from any suitable high-level description language. An automated
design flow from PyNN has been established, which maps the network topology into
the SpiNNaker packet routing hardware and maps neuron populations onto one or
more processors, loading leaky integrate and fire or Izhikevich neuron models
(Izhikevich 2004) from a library as required, where some synaptic plasticity models,
such as spike-time-dependent plasticity, are available.

The SpiNNaker execution model employs asynchronous concurrency, so model
results are to a degree non-deterministic, although there is a millisecond
synchronous mode that supports deterministic operation provided that the neuron
input processes are linear (as it is impractical to control the order in which input
spike packets arrive within each millisecond). The non-determinism of the normal
operating mode makes direct comparison at the level of individual spike times with

14 S. M. Crook et al.

N
et

w
or

k 
D

ow
nl

oa
de

d 
fro

m
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 fo
r M

ilj
oe

 &
 B

io
vi

te
ns

ka
p 

on
 0

9/
24

/1
2

Fo
r p

er
so

na
l u

se
 o

nl
y.



the results from other platforms problematic, although higher-level network
properties normally will be comparable. The SpiNNaker machine also performs
all computations using fixed-point arithmetic, again making direct comparisons
difficult with most other platforms that use floating-point arithmetic. These
compromises allow for the execution of spiking neural networks of up to a billion
point neurons distributed across a million processors in biological real time, but lead
to questions about how network results should be interpreted and how they can be
compared across architectures. However, similar questions arise when comparing
results across supposedly deterministic simulation environments, as described by
Crook et al. (2012). These questions highlight the need for benchmarks that can be
run across simulators to ensure that macroscopic quantities are comparable, even
when exact results differ. These issues should be the subject of further discussion in
the community.

What can our community do to help?

Although recent efforts to create an infrastructure throughout the computational
neuroscience community for describing and sharing models are promising, much
more is needed to facilitate efficient collaboration and ensure reproducibility of
results in our field. While the distinction between describing a model and simulating
that model is now becoming more widely accepted in the community, the need for a
clear, mathematical description of the denotational and operational semantics of
models is not well understood. In the near future, there are several tasks that should
be explicitly embedded in simulator environments to aid with some of the issues
outlined here. In particular, simulator developers should ensure that models and
model components can be shared easily using multiple description standards such
as tables, graphs, connection matrices and simulator-independent description
languages, which would aid modelers in effectively documenting models for
publication and exchange. There are some initial steps in this direction as support
for both the CSA and the tabular formats advocated by Nordlie et al. (2009) are
being incorporated into multiple platforms, such as NEST, PyNN and NeuroML.
In addition, to promote reproducibility, simulators should provide more self-
documentation such as unit tracking, records of parameter values, version control
approaches, and explicit descriptions of model assumptions. As outlined above, a
more formalized approach to model scaling is needed to aid in interpreting results
and linking models across scales. The community should also continue to invest in
efforts to standardize terminology through the development of ontologies and
formal notation, and to standardize libraries and interfaces across tools, and a
sincere effort to create benchmarks for simulator testing is needed.

No description language, tool or single approach will be flexible enough to cover
all possible network models. This is the nature of scientific research—there will
always be new ideas and theories that extend the established body of neuron and
network models. However, the combination of approaches outlined here would have
a positive effect on our field by allowing for more efficient creation, documentation
and sharing of network models. As these tools and standards are incorporated into
simulation platforms and other applications, best practices for extending these
approaches to new modeling paradigms can be established. For example, if there is a

Documenting Network Models 15

N
et

w
or

k 
D

ow
nl

oa
de

d 
fro

m
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 fo
r M

ilj
oe

 &
 B

io
vi

te
ns

ka
p 

on
 0

9/
24

/1
2

Fo
r p

er
so

na
l u

se
 o

nl
y.



case where a CSA based standard falls short, new CSA operators can be defined.
Similarly, XML is the basis for current model description languages precisely
because it is extensible. However, it is essential that modelers contribute to
community efforts to develop standards for graphical formats, tables, markup
languages, mathematical notation, and other description tools to maximize the
impact of these approaches.

Acknowledgments

The workshop that resulted in this work was supported in part by the National
Institute of Mental Health under grant R01MH061905 to SMC and in part by the
Research Council of Norway under grant 178892/V30 eNeuro. Additional funding
was provided by the Institute of Adaptive and Neural Computation in the School of
Informatics at the University of Edinburgh and the Scottish Informatics and
Computer Science Alliance. We also thank the referees for useful feedback during
review.

Declaration of interest: The authors report no conflicts of interest. The authors
alone are responsible for the content and writing of this article.

References

Albert R, Barabási A-L. 2002. Statistical mechanics of complex networks. Reviews of Modern Physics
74:47–97.

Ansorg R, Schwabe L. 2010. Domain-specific modeling as a pragmatic approach to neuronal model

descriptions. Lecture Notes in Computer Science 6334:168–179.

Bednar JA. 2008. Understanding neural maps with Topographica. Brains, Minds, and Media
3:bmm1402.

Bednar JA. 2009. Topographica: Building and analyzing map-level simulations from Python, C/Cþþ,

MATLAB, NEST, or NEURON components. Frontiers in Neuroinformatics 3:8. doi: 10.3389/

neuro.11.008.2009.

Bednar JA, Kelkar A, Miikkulainen R. 2004. Scaling self-organizing maps to model large cortical
networks. Neuroinformatics 2:275–302.

Borisyuk A, Semple MN, Rinzel J. 2002. Adaptation and inhibition underlie responses to time-varying

inter aural phase cues in a model of inferior colliculus neurons. Journal of Neurophysiology

88:2134–2146.
Bower J, Beeman D. 1997. The book of GENESIS: Exploring realistic neural models with the general

neural simulation system. New York: Springer.

Bray T, Paoli J, Sperberg-McQueen CM, Maler E, Yergeau F. 2008. Extensible markup language

(XML) 1.0. [cited Jun 2012]. Available: http://www.w3.org/TR/REC-xml

Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, Bower JM, Diesmann M, Morrison A,
Goodman PH, Harris Jr FC, et al. 2007. Simulation of networks of spiking neurons: A review of tools

and strategies. Journal of Computational Neuroscience 23:349–398.

Brüderle D, Müller E, Davison A, Muller E, Schemmel J, Meier K. 2009. Establishing a novel modeling

tool: A Python-based interface for a neuromorphic hardware system. Frontiers in Neuroinformatics

3:17. doi:10.3389/neuro.11.017.2009.
Brunel N. 2000. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons.

Journal of Computational Neuroscience 8(3):183–208.

Burkitt AN. 2006. A review of the integrate-and-fire neuron model: I. homogeneous synaptic input.

Biological Cybernetics 95:1–19.

16 S. M. Crook et al.

N
et

w
or

k 
D

ow
nl

oa
de

d 
fro

m
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 fo
r M

ilj
oe

 &
 B

io
vi

te
ns

ka
p 

on
 0

9/
24

/1
2

Fo
r p

er
so

na
l u

se
 o

nl
y.



Carnevale NT, Hines ML. 2006. The NEURON book. Cambridge: Cambridge University Press.

Cornelis H, De Schutter E. 2003. Neurospaces: Separating modeling and simulation. Neurocomputing

52–54:1079–1084.
Cornelis H, Coop AD, Bower JM. 2012a. A federated design for a neurobiological simulation engine:

The CBI federated software architecture. PLoS ONE 7(1):e28956.

Cornelis H, Rodriguez AL, Coop AD, Bower JM. 2012b. Python as a federation tool for GENESIS 3.0.

PLoS ONE 7(1):e29018.

Crook S, Davison AP, Plesser HE. 2012. Learning from the past: Approaches for reproducibility in

computational neuroscience. In: Bower JM, editor. 20 years of computational neuroscience, springer

series in computational neuroscience. New York: Springer.
Crook S, Gleeson P, Howell F, Svitak J, Silver RA. 2007. MorphML: Level 1 of the

NeuroML standards for neuronal morphology data and model specification. Neuroinformatics

5:96–104.

Davison AP, Brüderle D, Eppler JM, Kremkow J, Muller E, Pecevski DA, Perrinet L, Yger P. 2009.

PyNN: A common interface for neuronal network simulators. Frontiers in Neuroinformatics 2:11.

doi:10.3389/neuro.11.011.2008.

Davison AP, Morse TM, Migliore M, Marenco L, Shepherd GM, Hines ML. 2002. ModelDB: A

resource for neuronal and network modeling. In: Kötter R, editor. Neuroscience databases: A practical

guide. Norwell, MA: Kluwer Academic Publishers. pp 99–122.

De Schutter E, Bower JM. 1994. An active membrane model of the cerebellar Purkinje cell: II.

Simulation of synaptic responses. Journal of Neurophysiology 71:401–419.
Destexhe A, Rudolph M, Fellous J-M, Sejnowski TJ. 2001. Fluctuating synaptic conductances re-create

in vivo-like activity in neocortical neurons. Neuroscience 107:13–24.

Djurfeldt M. 2012. The Connection-set Algebra—a novel formalism for the representation of

connectivity structure in neuronal network models. Neuroinformatics 10:287–304.

Djurfeldt M, Hjorth J, Eppler J, Dudani N, Helias M, Potjans T, Bhalla U, Diesmann M, Hellgren-

Kotaleski J, Ekeberg O. 2010. Run-time interoperability between neuronal network simulators based

on the music framework. Neuroinformatics 8:43–60.
Djurfeldt M, Ekeberg O, Lansner A. 2008. Large-scale modeling - a tool for conquering the complexity

of the brain. Frontiers in Neuroinformatics 2:1. doi: 10.3389/neuro.11.001.2008.
Eberhard JP, Wanner A, Wittum G. 2006. Neugen: A tool for the generation of realistic morphology of

cortical neurons and neural networks in 3D. Neurocomputing 70:327–342.

Eppler JM, Helias M, Muller E, Diesmann M, Gewaltig M-O. 2008. PyNEST: A convenient interface to

the NEST simulator. Frontiers in Neuroinformatics 2:12. doi: 10.3389/neuro.11.012.2008.

Furber S, Temple S. 2007. Neural systems engineering. Journal of the Royal Society Interface

4:193–206.

Galluppi F, Rast A, Davies S, Furber S. 2010. A general-purpose model translation system for a universal

neural chip. In: Wong K, Mendis B, Bouzerdoum A, editors. Neural information processing. Theory

and algorithms, volume 6443 of Lecture notes in computer science. Berlin/Heidelberg: Springer.

pp 58–65.

Gamma E, Helm R, Johnson R, Vlissides J. 1994. Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley Professional Computing Series, Boston: Addison-Wesley.
Gewaltig M-O, Diesmann M. 2007. NEST (NEural Simulation Tool). Scholarpedia 2(4):1430.

Gleeson P, Crook S, Cannon RC, Hines L, Billings GO, Farinella M, Morse TR, Davison AP, Ray S,

Bhalla US, et al. 2010. NeuroML: A language for describing data driven models of neurons and

networks with a high degree of biological detail. PLoS Computational Biology 6(6):e1000815.

doi:10.1371/journal.pcbi.1000815.

Gleeson P, Steuber V, Silver RA. 2007. NeuroConstruct: A tool for modeling networks in 3D space.

Neuron 54:219–235.

Goddard N, Hucka M, Howell F, Cornelis H, Shankar K, Beeman D. 2001. NeuroML: Model

description methods for collaborative modelling in neuroscience. Philosophical Transactions of the

Royal Society B 356:1209–1228.

Goodman D, Brette R. 2008. Brian: A simulator for spiking neural networks in Python. Frontiers in

Neuroinformatics 2:5. doi: 10.3389/neuro.11.005.2008.

Hedley WJ, Nelson MR, Nielsen PF, DP Bullivant, Hunter PJ. 2000. XML languages for describing

biological models. In Proceedings of the Physiological Society of New Zealand, volume 19.

Henker S, Partzsch J, Schüffny R. 2012. Accuracy evaluation of numerical methods used in state-of-the-

art simulators for spiking neural networks. Journal of Computational Neuroscience 32:309–326.

Documenting Network Models 17

N
et

w
or

k 
D

ow
nl

oa
de

d 
fro

m
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 fo
r M

ilj
oe

 &
 B

io
vi

te
ns

ka
p 

on
 0

9/
24

/1
2

Fo
r p

er
so

na
l u

se
 o

nl
y.



Hill S, Tononi G. 2005. Modeling sleep and wakefulness in the thalamocortical system. Journal of

Neurophysiology 93(3):1671–1698.
Hines M. 1989. A program for simulation of nerve equations with branching geometries. International

Journal of Bio-Medical Computing 24:55–68.
Hines ML, Carnevale NT. 1997. The NEURON simulation environment. Neural Computation

9(6):1179–1209.
Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM. 2004. ModelDB: A database to

support computational neuroscience. Journal of Computational Neuroscience 17(1):7–11.

Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP. 2003. The systems biology

markup language (SBML): A medium for representation and exchange of biochemical network

models. Bioinformatics 19:524–531.

Izhikevich EM. 2004. Which model to use for cortical spiking neurons? IEEE Transactions on Neural

Networks 15:1063–1070.

Izhikevich EM, Edelman GM. 2008. Large-scale model of mammalian thalamocortical systems.

Proceedings of the National Academy of Sciences 105(9):3593–3598.

Kannon T, Inagaki K, Kamiji NL, Makimura K, Usui S. 2011. PLATO: Data-oriented approach to

collaborative large-scale brain system modeling. Neural Networks 24:918–26.

Koene RA, Tijms B, van Hees P, Postma F, de Rikker S, Ramakers G, van Pelt J, van Ooyen A. 2009.

Netmorph: A framework for the stochastic generation of large scale neuronal networks with realistic

neuron morphologies. Neuroinformatics 7:195–210.

Köhn D, Le Novère N. 2008. SED-ML—an XML format for the implementation of the MIASE

guidelines. In: Heiner M, Uhrmacher A, editors. Computational Methods in Systems Biology, volume

5307 of Lecture Notes in Computer Science. Berlin/Heidelberg: Springer. pp 176–190.

Le Novère N, Bornstein B, Broicher A, Courtot M, Donizelli M, Dharuri H, Li L, Sauro H, Schilstra M,

Shapiro B, et al. 2006. BioModels database: A free, centralized database of curated, published,

quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Research 34(Database

issue) :D689–691.

Le Novére N, Hucka M, Moodie S, Mi H, Schreiber F, Sorokin A, Demir E, Wegner K, Aladjem MI,

Wimalaratne SM, et al. 2009. The systems biology graphical notation. Nature Biotechnology 8:

735–741.
Lloyd CM, Lawson JR, Hunter PJ, Nielsen PF. 2008. The CellML model repository. Bioinformatics

24(18):2122–2123.
Lloyd CM, Halstead MDB, Nielsen PF. 2004. CellML: Its future, present and past. Progress in

Biophysics and Molecular Biology 85:433–450.
Migliore M, Morse TM, Davison AP, Marenco L, Shepherd GM, Hines ML. 2003. ModelDB: Making

models publicly accessible to support computational neuroscience. Neuroinformatics 1(1):135–139.
Nageswaran JM, Dutt N, Krichmar JL, Nicolau A, Veidenbaum AV. 2009. A configurable simulation

environment for the efficient simulation of large-scale spiking neural networks on graphics processors.

Neural Networks 22:791–800.

Nordlie E, Gewaltig M-O, Plesser HE. 2009. Towards reproducible descriptions of neuronal network

models. PLoS Computational Biology 5(8):e1000456. doi:10.1371/journal.pcbi.1000456.

Nordlie E, Plesser HE. 2010. Visualizing neuronal network connectivity with connectivity pattern tables.

Frontiers in Neuroinformatics 3(39):1–15. doi: 10.3389/neuro.11.039.2009.

Orban G, Kiss T, Erdi P. 2006. Intrinsic and synaptic mechanisms determining the timing of neuron

population activity during hippocampal theta oscillations. Journal of Neurophysiology 96:2889–2904.

Pecevski D, Natschläger T, Schuch K. 2009. PCSIM: A parallel simulation environment for neural

circuits fully integrated with Python. Frontiers in Neuroinformatics 3:11. doi: 10.3389/

neuro.11.011.2009.

Petersonn BE, Healy MD, Nadkarni PM, Miller PL, Shepherd GM. 1996. ModelDB: An environment

for running and storing computational models and their results applied to neuroscience. Journal of the

American Medical Informatics Association 3:389–398.
Phoka E, Wildie M, Schultz SR, Barahona M. 2012. Sensory experience modifies spontaneous state

dynamics in a large-scale barrel cortical model. Journal of Computational Neuroscience. doi: 10.1007/

s10827-012-0388-6.

Plesser HE, Eppler JM, Morrison A, Diesmann M, Gewaltig M-O. 2007. Efficient parallel simulation of

large-scale neuronal networks on clusters of multiprocessor computers. In: Kermarrec A-M, Bougé L,

Priol T, editors. Euro-par 2007: Parallel processing, Lecture notes in computer science, Vol. 4641,

Berlin: Springer. pp. 672–681. doi:10.1007/978-3-540-74466-5_71.

18 S. M. Crook et al.

N
et

w
or

k 
D

ow
nl

oa
de

d 
fro

m
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 fo
r M

ilj
oe

 &
 B

io
vi

te
ns

ka
p 

on
 0

9/
24

/1
2

Fo
r p

er
so

na
l u

se
 o

nl
y.



Poirazi P, Brannon T, Mel BW. 2003. Pyramidal neuron as two-layer neural network. Neuron

37:989–999.

Ray S, Bhalla US. 2008. PyMOOSE: Interoperable scripting in Python for MOOSE. Frontiers in

Neuroinformatics. 2:6. doi: 10.3389/neuro.11.006.2008.
Smith LS. 1992. A framework for neural net specification. IEEE Transactions on Software Engineering

18:601–612.

Steuber S, Mittmann W, Hoebeek FE, Silver RA, De Zeeuw CI, Hausser M, De Schutter E. 2007.

Cerebellar LTD and pattern recognition by Purkinje cells. Neuron 54:121–136.
Usui S. 2003. Visiome: Neuroinformatics research in vision project. Neural Networks 16:1293–1300.

van Vreeswijk C, Sompolinsky H. 1998. Chaotic balanced state in a model of cortical circuits. Neural

Computation 10:1321–1371.
von Neumann J. 1986. Papers of John von Neumann on computers and computing theory. Cambridge,

MA: MIT Press.

Watts DJ, Strogatz SH. 1998. Collective dynamics of small-world networks. Nature 393:440–444.

Wilson HR, Cowan JD. 1972. Excitatory and inhibitory interactions in localized populations of model
neurons. Biophysical Journal 12:1–24.

Zubler F, Douglas R. 2009. A framework for modeling the growth and development of neurons and

networks. Frontiers in Computational Neuroscience 3:25. doi: 10.3389/neuro.10.025.2009.

Documenting Network Models 19

N
et

w
or

k 
D

ow
nl

oa
de

d 
fro

m
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 fo
r M

ilj
oe

 &
 B

io
vi

te
ns

ka
p 

on
 0

9/
24

/1
2

Fo
r p

er
so

na
l u

se
 o

nl
y.


