2017 Using NEURON to Model Cells and Networks

Schedule of Presentations

NTC Ted Carnevale
RAM Robert McDougal

Morning session

Time Speaker Title Page
9:00 AM NTC Welcome 3
9:05 NTC NEURON: a brief tour 5
NTC The basics 9
NTC Why the GUI? 19
NTC Construction and use of models 23
NTC Using the CellBuilder to make a stylized model 24
NTC Creating and using an interface 36
for running simulations
10:15 NTC The Linear Circuit Builder 47
10:30 Coffee Break
10:45 NTC Using NMODL to add new 55
biophysical mechanisms
11:15 NTC Numerical methods: accuracy, stability, speed 63
11:30 AM NTC Networks: spike-triggered synaptic transmission, 69
events, and artificial spiking cells
12:14:59 PM NTC At last: how to start and stop NEURON 79

12:15 PM Lunch

Afternoon session

1:15 PM RAM Numerical methods: adaptive integration 81

1:30 RAM NEURON with Python 87

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 1

Using NEURON to Model Cells and Networks 2017

2:00 RAM Parallelizing network simulations 113

3:15 Coffee Break

3:30 RAM ModelDB and other resources 129
for computational neuroscience

4:00 RAM Reaction-diffusion 149

4:45 Future directions

5:00 End of afternoon session

Online references and supplementary materials:
NEURON's home page https://www.neuron.yale.edu/neuron/ has links to:

- Download page https://www.neuron.yale.edu/neuron/download
Documentation page https://www.neuron.yale.edu/neuron/docs
Programmer's Reference
Python https://www.neuron.yale.edu/neuron/static/py_doc/index.html
hoc https://www.neuron.yale.edu/neuron/static/new_doc/index.html
NEURON Forum https://www.neuron.yale.edu/phpBB/

Publications https://neuron.yale.edu/neuron/publications which include
articles that used NEURON and articles about NEURON

Receipt and Survey last two pages

We value your opinions and suggestions for improving this course. Please take a moment to
fill out and hand in the survey.

Page 2 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Satellite Symposium, Society for Neuroscience

UsiIng NEURON 10 MODEL
CELLS AND NETWORKS

Washington, DC
Friday, November 10, 2017

Ted Carnevale
Robert McDougal

Supported by NINDS

NEURON http://neuron.yale.edu/

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

Using NEURON to Model Cells and Networks 2017

Page 4 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017

Using NEURON to Model Cells and Networks

NEURON: a brief tour

A tool for empirically-based models of neurons
and neural circuits

Open source project directed by Michael Hines

Active development and user support

Documentation, tutorials, and forum at
https://www.neuron.yale.edu/

Courses

SFN meetings

Summer course at UCSD and elsewhere
Other courses

The NEURON user community

Used by experimentalists, theoreticians, and educators
for neuroscience research and teaching

As of October 2017
* more than 1930 publications
* more than 1800 subscribers to mailing list and forum
http://www.neuron.yale.edu/phpBB/
* source code for almost 600 published models at
ModelDB https://modeldb.yale.edu/

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

Page 5

Using NEURON to Model Cells and Networks 2017

Specifying and using models with NEURON

Model specifications written in hoc and/or Python
and/or

created with GUI tools (work via hoc)
CellBuilder, Channel Builder,
Network Builder, Linear Circuit Builder

Add new functionality with NMODL (compiled)
ion channels, synaptic mechanisms
signal sources
accumulation, diffusion, transport, reactions
described by ODEs, kinetic schemes,
algebraic equations
events, state machines, artificial spiking cells

Add reactive diffusion (uses Python)

Not model specification, but necessary

Instrumentation
stimulators, current or voltage clamps
plotting and recording variables

Simulation control
default and custom initializations
integration methods
fixed time step
adaptive integration
event system useful for implementing
"experimental protocols"

User interface

Page 6 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Other features

Parallel simulation
multithreaded execution
embarrassingly parallel problems
distributed models

Optimization tools

Model analysis
Impedance tools
ModelView

Import3D for detailed morphometric data

Where to learn more

The NEURON Book

NEURON's home page neuron.yale.edu
Documentation
hints and tutorials
FAQ list
key papers about NEURON
Programmer's Reference
Courses

The NEURON Forum neuron.yale.edu/phpBB

Getting started
Hot tips

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

Using NEURON to Model Cells and Networks 2017

Page 8 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

The What and the Why
of Neural Modeling

The moment-to-moment processing of information
in the nervous system involves the propagation
and interaction of electrical and chemical signals
that are distributed in space and time.

Empirically-based modeling is needed to test
hypotheses about the mechanisms that govern
these signals and how nervous system function
emerges from the operation of these mechanisms.

Topics

1. How to create and use models of neurons
and networks of neurons

* How to specify anatomical and biophysical
properties

* How to control, display, and analyze models
and simulation results

2. How NEURON works

3. How to add user-defined biophysical
mechanisms

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

Using NEURON to Model Cells and Networks

From Physical System
to Computational Model

Physical Conceptual Computational
System Model Model

Conceptual model
a simplified representation of the physical system

Computational model
an accurate representation of the conceptual model

From Physical System
to Computational Model

Physical Conceptual Computational
model model
dendrite

create soma, dendrite

soma connect dendrite(®), soma(1)
Cal ball hoc
pyramidal and code
cell stick

2017

Page 10 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Hierarchies of Complexity
Structure

Single compartment O

Stylized >o—<

Anatomically detailed

Network E% |

Hierarchies of Complexity
Mechanism

Passive and Active currents
HH-style
kinetic scheme

Synaptic transmission
continuous
spike-triggered

Gap junctions

Extracellular fields, Linear circuits
Diffusion, buffers, transport & exchange
Artificial spiking cells ("integrate & fire")

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

Page 11

Using NEURON to Model Cells and Networks 2017

Fundamental Concepts in NEURON

What Driving What is
Signals moves force conserved
Electrical charge voltage charge
carriers gradient
Chemical solute concentration mass
gradient

Conservation of Charge

ion Zla

Page 12 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

The Model Equations

dvj _ Vi TV,
Cjﬁ-l_lionj_zk: .

ik
V. membrane potential in compartment |

net transmembrane ionic current in compartment j

cj membrane capacitance of compartment j
rjk axial resistance between the centers of
compartment j
and

adjacent compartment k

Separating Anatomy and Biophysics
from Purely Numerical Issues

section
a continuous length of unbranched cable

Anatomical data from A.l. Gulyas

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

Using NEURON to Model Cells and Networks

Mathematical description of a section

What we want:

dvj Z v, —V

c— t+i. =
on.

What a new section gives us:

j

dv. vV, — V.
¢ =y k]
to% Tk
i.e. membrane capacitance and axial resistance,
but no ionic current.

How can we put ion channels in the membrane?

Adding mechanisms to sections

Density mechanisms
distributed channels
ion accumulation

Point processes
electrodes, synapses

Described by
differential equations
kinetic schemes
algebraic equations

Constructed with
NMODL
Channel Builder

2017

Page 14 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017

hoc

create soma, dend

connect dend(0®), soma(1)

soma {
L =50 // [um] length
diam = 50 // [um] diameter

Using NEURON to Model Cells and Networks

Python
from neuron import h

soma
dend

h.Section()
h.Section()

dend.connect(soma(1))

soma.L = 50 # [um] length
soma.diam = 50

nseg = 1 soma.nseg = 1
insert hh // HH mechanism soma.insert('hh')
}
dend {
L = 200 dend.L = 200
diam = 2 dend.diam = 2
nseg = 3 dend.nseg = 3
insert pas // passive channels dend.insert('pas')
e_pas = -65 dend.e_pas = -65
}
Range Variables
Name Meaning Units
diam diameter [um]
cm specific membrane [uf/cm?]
capacitance
g_pas specific conductance [siemens/cm?]
of the pas mechanism
v membrane potential [mV]

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

Page 15

Using NEURON to Model Cells and Networks

range
normalized position along the length of a section
O<range <1
any variable name can be used for range, e.g. x

physical
distance physical
0 v length
[]
normalized
distance

0 v 1

nseg
the number of points in a section section where
membrane current and potential are computed

nseg=1 ¢ ® (]
nseg=2 ¢ ° | ° ¢
nseg=3 & _ e 1 e T e ¢

Example: axon.nseg = 3

To test spatial resolution
for sec in h.allsec():
sec.nseg = sec.nseg*3
and repeat the simulation

hoc: forall nseg = nseg*3

2017

Page 16 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

Syntax:

access value of rangevar

Using NEURON to Model Cells and Networks

at location that corresponds to range
sectionname(range).rangevar

Examples:

dend(0.5).v # v at middle of dend
hoc: dend.v(0.5)

print physical distance and v
at every segment center in dend

for seg in dend:

print seg.x, seg.x*dend.L, dend(seg.Xx).v

Category Variable
Time t
Distance diam, L
Voltage \Y%
Current
specific i
absolute
Capacitance
specific cm
absolute
Conductance
specific g
absolute

Cytoplasmic resistivity Ra
Resistance SEClamp.rs
Concentration cai, nao, etc.

Units
[ms]
[um]
[mV]

[mA/cm?] (density)
[nA] (point process)

[uf/cm?]
[nf] (point process)

[S/cm?] (density)
[US] (point process)
[Q cm]

[106 Q]

[mM]

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

Page 17

Using NEURON to Model Cells and Networks 2017

Page 18 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Why the GUI?

Improves productivity regardless of programming (in)experience
by making it easier to

» develop, debug, and maintain models

* understand models developed by others

* visualize and understand simulation results

» use exploratory simulations to study model behavior
* optimize model parameters

* quickly create prototype models that can be mined for
reusable code

Save time and avoid creating bugs--write less code!
Result: get more done faster and with less effort.

Using the GUI with Python

"I don't need to hear this. | won't use the GUI because | use
Python, and the GUI doesn't work with Python."--Anonymous

Not so. The GUI works with Python, as long as the sections
were created by hoc.

Example: pyrtest.py

from neuron import h,gui
h.load_file('Pyr.hoc') # defines Pyr class

exported from CellBuilder

pyr = h.Pyr() # create instance of Pyr class
h.load_file('pyrtestrig.ses') # user interface
built with NEURON's GUI tools

>>> python -i pyrtest.py

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 19

Using NEURON to Model Cells and Networks

Page 20

NEURON Main Menu

Iconify

Ao Buid_Tools Graph _Vector Window _Hep |

=] RunControl [Graph[0] Crosshairx-1:11 y -92 | Graph[1] x -342.057 : 1008.35 y -
Close Hitle [Close Hitle | Close Hide]
Init += -A5 ;] 40
Pur[0].somav{0.5)
Init & Run
Sty
p a0 | 1 | |
Continue til + H ;i 4 8 8 10
Continue for + 1 ;i
-40
Single Step
t(ms) §10
Tstop i =zl -0
dt 0.025 ;] | PointProcessMana = apdx
Paints plofted/ms |4—E | Close Hide Close Hide
Scn update invi|] [005 | 2] ||| Setectreiareracess | Init & Fun |
Real Tine 51 EEED Seconds par step (s) [[507 |
et IClamp[]

at: Pyr[0].soma(0 5)

GUI tools

Many do things that would be very difficult, if not impossible,
to accomplish with user-written code.

Import3d, Linear Circuit Builder, Multiple Run Fitter (optimizer),

Impedance tools for analyzing electrical signaling in cells.
Some export code that can be reused with hoc and Python.

CellBuilder, Channel Builder, Linear Circuit Builder,

Network Builder, Import3d, Model View (exports NeuroML)
Many can be saved directly to files for use by user-written hoc
or Python script (example: pyrtest.py's custom interface)

Graphs, RunControl, any of the "Builders," Variable Step Control

See GUI tool tutorials on the Documentation page
https://neuron.yale.edu/neuron/docs

2017

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

The most powerful approach:
combine code and the GUI

The GUI
» always works
» can only do what it was designed to do

Coding is best for classical programming tasks, e.g.
 dealing with collections of things

» specifying custom initializations

* constructing complex simulation protocols

« filling gaps that aren't covered by the GUI

For maximum productivity, combine user-written code
and the GUI to exploit the strengths of both.

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

Page 21

Using NEURON to Model Cells and Networks 2017

Page 22 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

Using NEURON to Model Cells and Networks

Construction and Use of Models

Construction of cell models
Specify topology: create and connect sections
Specify geometry: stylized (L & diam)
or 3D (x,y,z,diam)
Specify biophysics: insert density mechanisms,
attach "biological" point processes (synapses)

Construction of network models

Define cell classes
Create cells (instances of cell classes)

Connect cells

Example: using the GUI to build
and exercise a stylized model

1. How to use the CellBuilder to create and
manage a model cell.

2. How to use NEURON's graphical tools
to make an interface for running
simulations.

Page 23

Using NEURON to Model Cells and Networks

Step 0: Conceptualize the task

Shape

stick figure / detailed
Channel distribution

uniform / nonuniform

whole cell / region / individual neurite
Creation

single cell / use in a network

Step 1: using the CellBuilder
to make a stylized model

ap[1]
ap

bas

soma

axon ap[2]
Section L diam Biophysics
soma 20 um 20 um hh
ap[0] 400 2 reduced hh *
ap[1] 300 1 reduced hh *
ap[2] 500 1 reduced hh *
bas 200 3 pas §
axon 800 1 hh

* - gnabar_hh and gkbar_hh reduced to 10%, el_hh = - 64 mV
§-e_pas=-65mV
Throughout the cell Ra = 160 Q cm, cm = 1 puf / cm?

2017

Page 24 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Launch NEURON with its
library of graphical tools

UNIX/Linux nrngui

Ry

MSWin or OS X %
nFrgui

Bring up a CellBuilder

Il NEURON M =101 x|

lzonify

|Fi|e Edit BuilleooIs Graph “ector Windowl

single compartment

Cell Builder [
Netwiork Cell
Metwior k. Builder
Linear Circuit

Channel Builder

NEURON Main Menu / Build / Cell Builder

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 25

Using NEURON to Model Cells and Networks

Page 26

CellBuild[0]
Close

The CellBuilder

4 About ., Topology ., Subsets ., Geometry ., Bi ics D C

Create

Topelogy refers to section names, connections, and 2d orientation

without regard to section length or diameter.

Short sections are represented in that tool as circles, longer ones as lines.
Subsets allows one to define named section subsets as functional

groups for the purpose of specifying membrane properties.
Geometry refers to specification of L and diam (microns}), and nseg

for each section (or subset) in the topolegy of the cell.
Biophysics is used to insert membrane density mechanisms and specify their parameters.
Manage ment specifies how to actually bring the cell into existence for simulation.

The default is to first build the entire cell and expert it to the top level

Or else specify it as a cell type for use in networks,

It also allows you te import the existing top level cell into this builder

for modification.

If "Continuous Create' is checked, the spec is continuously instantiated

atthe top level as itis changed.

Use buttons from left to right.

Close

Topology

g [3]

Hide

wr About £ 3 Topology -, Subsets - Geometry - Biophysics - Management D Cortinuous Create

Click and drag to
Make Section
+ Copy Subtree
+ Recornect Subtres

Reposition
v
=gk w Move Label

Click to

+ Insert Section
+ Delete Section
w Delete Subtres
4 Change Name

Hirit= I

CB starts with a "soma" section.
We want to create new sections.

2017

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017

Using NEURON to Model Cells and Networks

Specifying the "Basename"

Basename: Edend

WOC -]

Section name prefix:

|dend Iy

‘Accepti" H Cancel |

IVOC

Section name prefix:

fap

‘Accept{" ‘ Cancel |

Making a new section

Place cursor near end O
of existing section K

Click to start new section s,

Drag to desired length s,

Release mouse button ép—=—,

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

Page 27

Using NEURON to Model Cells and Networks 2017

Save your work as you make progress!

NEURON Main Menu / File / save session

Subsets

1=k

w About - Topology # sSubsets e Geometry o, Biophysics . Management Cortinuous Create

wr Select Subtree
+ Select Basename

then, act.

Group sections that have shared properties.
We want to make an "apicals" subset.

Page 28 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Making a new subset

~ SelectOne

Click "Select Subtree" H Select Subtree

“*Select Basename

ap[1]

Click root of apical tree . . .

soma
axon ap[2]

.. . then "New SectionList" H New SectionList|

Making a new subset continued

IvOC

New SectionList name

|a|| %

‘Accept"‘ H Cancel |

IVOC <]

Mew SectionList name

| apicals

‘Accept{" H Cancel |

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 29

Using NEURON to Model Cells and Networks

Subsets finished

T il
foose e

« About < Topology # Subsets o Geometry < Biophysics < Managemert Cortinuous Create

~ Select One
+ Salect Subtras

ws Select Bazename
then, act.

Note "apicals".
Time to save a new session file.

Geometry

1=k

w About .- Topology -, Subsets * Geometry ., Biophysics - Management Cortinuous Create

i’s.:acify Strategy | Distinet walues ower subsst

Il;iam

Constart value over subset
L

ap[1]
bas -

soma w0
axan aplz]
Spatial Grid

nseg
Ll drmmbds
e

"Specify Strategy" is ON.
A good strategy is a concise strategy.

2017

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Geometry strategy
=loixi

Each section has a different L and diam.
Compartmentalize according to A1g0 Hz (d_lambda rule).

Implementing geometry strategy

I CellBuild[0] =]

et
_rem [
e |]

When strategy is complete, turn "Specify Strategy" OFF
and start assigning values to parameters.

d_lambda = 0.1 at 100 Hz usually gives good spatial accuracy.

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 31

Using NEURON to Model Cells and Networks 2017

Implementing geometry continued

< About < Topology «, Subsets # Geometry - Biophysios < Management Cortinuous Craste

F
o
Set L and diam for all sections.
Time to save to a session file!

x all: L, dizm, d_|ambda

Biophysics

< About o Topology « Subsets s Geometry 4 Biophysics « Managemert Cortinuous Create

E'Speclry Strategy

=10l =|

torsec =l { fispecity

R=
cm
pas
extracellular
hh
4
bas = =p[1]
on =p[2

"Specify Strategy” is ON.
Base the plan on shared properties.

Page 32 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Biophysics strategy
[ry——

all: manage ... | | & B3

apicals cm
Ra and cm are homogeneous o
ap[1] extracellular
aple] hh
bas
Fxon
||?Specily Strategy axon [fepecify
all: manage .. | & Fa
. spicals: manag cm
apicals, soma and axon have hh | g mmes
ap[] extracellular
=pl2] hh
bas
e
|?Spec|ly Strategy bas [i=pacify
all: manage.. | A Ra
apicals: manag cm
bas has pas
:g["] extracel lular

bas: manage
FHOon: manage

Implementing biophysics strategy

|D Specify Strategy | forsec all { ¥ specify Ra
all Y Ra [ohm-cm) I I |80*2 g
Ra

cm

Double Ra

=l & ||| gnabar_bh (Sicm2)
% Ra
cm gkbar_hh [Sfom2)
H M apicals
Fix apicals hh params |55m™ | ¥ a s
bhh al_hh [m)
hh

||j Spacify Strategy | bas [insert pas
all & g_pas[Sfcmz]Ij [a001 ;]
% Ra

(=31 e_pas [mY) -B6
. . apicals
Shifte_pasinbas |<m
—_ sama
hh
bas
% pas
axan
hh

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 33

Using NEURON to Model Cells and Networks 2017

Save another session file!!

Management

Option 1: save as a Cell Type
for use in a network

4 Management D Continuous Create

Q\Cell Type . Export ., Import ‘ ins |

This is necessary only if the cell is used in a netwerk

This creates a file that declares a cell type
with the current specification
Such a cell class is usable in networks and

<can be employed by the network builder tool.

Classhame

Cell

~, Select Qutput
soma.v(1)

Save hoc code infile

Page 34 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Management continued

Option 2: save as hoc file

4 Management D Continuous Create

~ Cell Type f\Expon + Import ‘ fints |

Ezxpeortto file {or top level with "Ceontinuous')
i.e. does not encapsulate the cell in an object.

Kind of informatien exported

Topology (Destroys all existing top level sections)
Subsets

Geometry
Membrane

Exportto file

Management continued

Option 3: export to interpreter

Toggle Continuous Create ON and OFF

&Continuous Create

@Continuous Create

&Continuous Create

or just leave it ON all the time.

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

Page 35

Using NEURON to Model Cells and Networks 2017

Step 2: creating and using an interface
for running simulations

bas ap[1]
ap

soma
axon ap[2]

We want to
* attach a stimulating electrode
* evoke an action potential
* show time course of Vm at soma
* show Vm along a path from one end of the cell
to the other
We need
* a"Run" button
» graphs to plot results
* a stimulator

Get a "Run" button

= NEURON M =10/ x|

leomify

File Edit Build ToolslGraph “ectar Windowl

RunCorntral |,

RunButton l’\§
“ariableStep Control
Foirt Processes
Distributed Mechanisms
Fitting

Irnpedance

Model iew

Mowie Run

Miscellzneous

NEURON Main Menu / Tools / RunControl

Page 36 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017

Init sets time to 0,

Vm to displayed value, and

conductances to steady—state\
Init & Run does an Init,

then starts a simulation —————__

Stop interrupts the simulation —_—
Continue til runs until displayed time —__

Continue for runs for displayed____
interval

Single step advances by /
1/(Points plotted/ms) /

t numeric field shows model time /

Tstop specifies when simulation ends

dt is integration time step;
must be integer fraction of
1/(Points plotted/ms)

Using NEURON to Model Cells and Networks

RunControl panel
-l xq

Close Hide

Init [re] ol | -5 ;I

Init & Rum

Stop

Continue til [ms]"'lj |5 ;I

Corntinue for [ms) "'Ij I 1 ;I

Single Step
t[m=] u]

Tstop [ms) |5 E
dt [m=] 0.028

Foirts plottedfms IAD ;]
Scrn update invl (=] ID.Dﬁ ;I

Real Time (=] ID

Points plotted/ms is plotting interval

We need to plot Vm(t) at soma

[NEURON Main

=101 x|

leomify

Grapher

|Fi|e Edit EBuild Tools GraEhl\-‘ec‘tor Windowl

Violtage axis

Current axis
State axis
Shape plot
“ector mowie

Fhase Flane

NEURON Main Menu / Graph / Voltage axis

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 37

Using NEURON to Model Cells and Networks 2017

Graph window

il Graph » 0.5: 5.5 y 92:52 -0 =
Close Hide
40 —
vi.5)
a | | | | |
1 2 3 4 5

-40 —

80 —

v(.5) is Vm at middle of default section
(soma in this example)

We need to plot Vm along a path

_imix]

leomify

|Fi|e Edit EBuild Tools GraEhl\-‘ec‘tor Windowl

Yoltage axis
Current axis
State axis
Shape plot
“ector mowi

Fhase Flane

Grapher

NEURON Main Menu / Graph / Shape plot

Page 38 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Bringing up a space plot

=

Close Hide

A

Use this "shape plot" to create a "space plot".
Click on its "menu box" . . .

Bringing up a space plot continued

il Shape i =]]
| ===l
=1o)

View . .. Hide |

Fis Type
Monra Tast
Change Text
Delete

“# Section

30 Rotate
Redraw Shape
Shape Style

Plot What?
Wariable scale
Time Plat
Space Plot
Shape Plot

... and scroll down to "Space Plot".

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 39

Using NEURON to Model Cells and Networks 2017

Bringing up a space plot continued

Click just left of the shape
Hold button down while dragging
from left . ..

...toright. ..

... then release button.

3199

Thispopsupa...

Space plot

I Graph x -972:1092 y -92:52 — O]
Close Hide I

40—

W

900 -300 300 S00

-0 —

80 —

A plot of Vm vs. distance along a path.
Better save a session file.

Page 40 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

We need a stimulator

[NEURON Mai -0l x|
leomify
| File Edit Build | Tool= | Graph “Wector ‘Window I
RunCorntrol
RunButton

wariable Step Control

Foirt Processes
Distributed Mechanisms
Fitting

Impedance

fodel Wiew

Mowie Run

Manzgers oot tanag:
Wigwers | Poirt Group
Electrode

Miscellaneous

NEURON Main Menu / Tools / Point Processes
/ Managers / Point Manager

PointProcessManager window

[PointProcessManagi -0l x|

Close Hide

SelectPointProcess I

Show I

Mone

at: soma(0.5)

o

To make this an IClamp . . .

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 41

Using NEURON to Model Cells and Networks

Creating an IClamp

[l PointPros

=10l

Close

SelectPoint Process

none

Hide

ExpSyn
ExpZSyn
SEClamp
VClamp
OClamp
AF Count
Nt Sti m
IrtFire1
IntFirez
Irt Fired

(L=ETi
AlphaSyiapse

PoirtProcess Mark

—

... click on SelectPointProcess
and scroll down to IClamp.

IClamp parameter panel

Il PointProcessManag; =131 x|

Close Hids
SelectPointFrosess | I
Shieves I
T
=t soma(0.5]

1013 mp]

del (s] [o H

dur (] [a 3

amp [nA] IU }%]
ima) Mo

Next: set parameter values.

2017

Page 42 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017

Using NEURON to Model Cells and Networks

Entering values into numeric fields

Direct entry

Note yellow highlight on button

Spinner

IESTENC: | —C

Red check means value has been
changed from default

Mathematical expression

Our user interface

i Graph » -972: 1092
Clos Hide

kel

e o 80 =

Time to save to a new session file!

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

Page 43

Using NEURON to Model Cells and Networks 2017

It works!

NEURON Main Menu / Tools / Movie Run

Page 44 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Space plot "movies" continued

i x

Cloze Hide

Imit & Run

Seconds per step (=] IIZI.D1 ;I

Movie Run / Init & Run

What if channel density in the apical tree varies
systematically with position, e.g. distance from
the soma?

See "Specifying parameterized variation of
biophysical properties" in the CellBuilder tutorial
at https://neuron.yale.edu/neuron/docs

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 45

Using NEURON to Model Cells and Networks 2017

Page 46 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

The Linear Circuit Builder

For building models that have linear circuit elements
and may also involve neurons

Circuit elements include ground, current & voltage
source, R, C, op amp

Potential applications include
e effects and compensation of electrode R & C
* two-electrode voltage clamp
e ohmic and nonlinear gap junctions

1. Bring up a Linear Circuit Builder
i EURON -(01

lzanify

File Edit Tools Graph “Yector ‘Windows

single compart rment
Cell Builder
MetWork Cell
Met\Waork Builder

Linear Circuit

Channel Builde

NEURON Main Menu / Build / Linear Circuit

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 47

Using NEURON to Model Cells and Networks

Page 48

The Linear Circuit Builder

i LinearCircuit[0] =] oS
Close Hide
Wire # Arrange
+ Label
Y reSiStor v Parameters
w Sirmulate

-+ capacitor
— voltage source

= current source
<+ ground

}operational amplifier
+ .
intracellular node

=L intra- and extracellular nodes

Keep Connected
Hirt=

Arrange: spawn components

Click on palette and drag onto canvas

il LinearCircuit[0]

Cloze

R

T

¥
S
s

[l LinearCircuit[0]

Close

—e
-
—+ Rt

L (SO
b
=

bs

2017

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Arrange: connect components

Click and drag to R cz
(WAL
overlap red circles Sabis

Black square is v k%

"solder joint"

Pull apart to break connection

Label: move labels

Arrangs
Label
e Parameters
1 cz W Simulate

Click and drag jﬁv—{ T o
to new location

v+ Parameters

R1 cz a3 Simulate
Vi * Move
k* ii Chanle

Arrange
Label

=

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 49

Using NEURON to Model Cells and Networks

Page 50

Label: change labels 1

B ol

Arrange
x Label
s Parameters

R1 cz 1 Simulate

e Mowe
Click on a label . e%i T - cranas
CIE -o(x|

.tochangeitsname |l
=N =

Label: change labels 2

I (0 x]

Arrange
Label
+ Parameters

v Simulate
Click on a node . M q x o

M;lgl_l

.tolabelavoltage |

=T

2017

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017

Parameters: non-source elements

EE -0 x|

- Arrange
Label

C z Parameters
R W Simulate

i o
+ Parameter=s
E
Sourdis fit]

A Turn off consistency checking
FParasitic aFbattery mOhm

Frirt Matriz Info
Hirt=

Click on
"Parameters"

i values for Lineak 101 =l
Close Hide I

R (Mohirm) [+ ;I
CinF) | i|1 ;I

Parameters: signal sources

=10l x|

Hide

Source f(t) / B i

W Arrange
Label

x Parameatars
a2 Simulate

Farameters

[soucery] |

K Farasitic aFbattery mohm

Prirt t=triz Info

Hirts

Turn off consistency checking

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

Using NEURON to Model Cells and Networks

Page 51

Using NEURON to Model Cells and Networks 2017

Parameters: sighal sources continued

[F{t) for B of Linea 10l =l
Close Hide I

Externzl Stim Pattern

durd (ms) 1 A
ampd [mh] ID_E
dur (ms) 1 Y
ampd [(mv] | 1 &

durZ [m=) I 1e+03 ;I
amp2 [mh] IIZI ;I

twec is Wector[3618]
amp is Yector [3E15]
amp is Yector [3E15]

Configured

Simulate: creating a graph
E—— ol

e Arrange
+ Label

Parameters
R & # Simuizte

Wi o
+ Farameters
E
Source fit]
Initial Conditions

States

NeW G raph Mews Graph

Narme map

Hirt= |

N

Page 52 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Simulate: specifying what to plot
_ioi

| Close Hide

05—

05—

PlotWhat? / variable_label

Simulate: simulation results
_Ioj x|

Close Hide

Flothvhat? I
D—

1

Wi [
Yo (]
s —

0E [—

04—

0z r—

u}
u] 1 2 2 4 El

After minor cosmetic changes

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 53

Using NEURON to Model Cells and Networks

Page 54

Patch clamp with electrode R and C

Fe1l
We

Rez
. m

lclamp Ci :;! -
somal0.s

| LincirGraph(1] for LinearCircuit[0] |3

| LincirGraph(0] for LinearCircuit[0] ||

Close

Hide

PlotWhat?

Close Hide

PlotWhat? I

1 0
Iclamp (n&) Vi (mv)

ner oo | Ve|)
06 _1g%a 101 1ozf 103 4 105
nar -0
02 .

r | | |

100 101 102 103 104 105 -0

NEURON demo: dynamic clamp

LinearCircuit[0] l?|

Hide

- . Label
: j&w\&& «~ Parameters
F’WV‘! R # Simulate

N -
; 9’ Ic | Parameters
‘ﬁmh(%) Seurce ()
Y Wy Initial Conditions
4 Re1 7l
T g Bz |2 States
sormal0.5)

~ Arrange

2017

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

NMODL

NEURON Model Description Language
Add new membrane mechanisms to NEUF

Density mechanisms Point Processe
e Distributed Channels e Electrodes
e lon accumulation e Synapses

Described by

¢ Differential equations
¢ Kinetic schemes
e Algebraic equations

Benefits

e Specification only —— independent of solution met
e Efficient —— translated into C.

e Compact

o One NMODL statement —> many C statement
o Interface code automatically generated.

e Consistent ion current/concentration interactions.

e Consistent Units

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 55

Using NEURON to Model Cells and Networks 2017

Page 56

NMODL general block structure

What the model looks like from outside

NEURON {
SUFFIX kchan
USEION k READ ek WRITE ik
RANGE gbar, ...

}
What names are manipulated by this model

UNITS { (mV) = (millivolt) ... }

PARAMETER { gbar =.036 (mho/cm2) <0, 1€9>... }
STATE{n ...}

ASSIGNED { ik (mA/cm2) ... }

Initial default values for states

INITIAL {
rates(v)
n = ninf
1

Calculate currents (if any) as function of v, t, state

(and specify how states are to be integrated)
BREAKPOINT {
SOLVE deriv METHOD cnexp
ik = gbar * n*4 * (v — ek)
}

State equations

DERIVATIVE deriv {
rates(v)
n’ = (ninf — n)/ntau

Functions and procedures

PROCEDURE rates(v(mV)) {

}

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

UNIX MSWIN
nrnivmodl e

nrngui mknmdll Choose directory [cortaining mod files)for creating nrnmech.dil

""" A Recert diru#on'e
Wi o |

NEURON Main Menu

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

Page 57

Using NEURON to Model Cells and Networks

Density mechanism

NEURON {
SUFFIX leak
NONSPECIFIC_CURRENT i
RANGE i, e, g

}

PARAMETER {
g =.001 (mho/cm2) <0, 1e9>
e = —65 (millivolt)

}

ASSIGNED {
i (milliamp/cm?2)
v (millivolt)

BREAKPOINT {
i=g*(v-e)

Density mechanism
NMODL

NEURON {
SUFFIX leak

NONSPECIFIC_CURRENT i

RANGE i, e, g
}

SingleComg.

e

soma
pas
hh
leak

2017

Point Process

NEURON {
POINT_PROCESS Shunt
NONSPECIFIC_CURRENT i
RANGE i, e, r

}

PARAMETER {
r =1 (gigaohm) <1e-9,1e9>
e = 0 (millivolt)

ASSIGNED {
i (hanoamp)
v (millivolt)

BREAKPOINT {
i = (.001)*(v — e)/r

Point Process

NEURON {
POINT_PROCESS Shunt
NONSPECIFIC_CURRENT i
RANGE i, e, r

}

PointProcessManager

SelectPointProcess |

Show |

Shunt[0]
at:soma(0.5)

Interpreter

soma {
insert leak
g_leak =.0001
}

print soma.i leak(.5)

objref s
soma s = new Shunt(.5)
sr=2

Page 58 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017

lon Channel

NEURON {
USEION k READ ek WRITE ik

}

BREAKPOINT {
SOLVE states METHOD cnexp
ik = gbar*n*n*n*n*(v — ek)

}

DERIVATIVE states {
rate(v*1(/mV))
n’ = (inf — n)/tau

Using NEURON to Model Cells and Networks

lon Accumulation

NEURON {
USEION k READ ik WRITE ko

}
BREAKPOINT {
SOLVE state METHOD cnexp

}

DERIVATIVE state {
ko’ = ik/thspace/F*(1e8)
+ k*(kbath — ko)

(mM) (mV) (mA/cm2)
20 — 40 — 3~
v(.5) soma.ik(0.5)
15
o I I J 2
6 8 10
(ms)
10
-40 | 1
5
soma.ko(0.5)
- soma.ek(0.5)
0 | | | | J g0 0 1 1 | L J
0 2 4 6 8 10 0 2 a 6 F 10
Vesicle

kAchase

ACDh ()

ica

STATE{

Internal Free Calcium

0 0 o o

Saturable Calcium Buffer

Vesicle Ach Achase Ach2ase X Buffer[N] CaBuffer[N] Ca[N]

KINETIC calcium_evoked_release {
: release

~ Vesicle + 3Ca[0] <—> Ach (Agen, Arev)
~ Ach + Achase <-> Ach2ase (Aase2, 0) : idiom for enzyme reaction
~ Ach2ase <—> X + Achase (Aase2, 0) : requires two reactions
: Buffering
FROMi=0TO N-1{
~ Cali] + Buffer[i] <—> CaBuffer[i] (kCaBuffer, kmCaBuffer)

: Diffusion
FROMi=1TO N-1{
~ Ca[i-1] <—> Cali] (Dca*ali-1], Dca*bli])

: inward flux
~Ca[0] << (ica)
}

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

Page 59

Using NEURON to Model Cells and Networks 2017

UNITS Checking

NEURON { POINT_PROCESS Shunt ... }
PARAMETER {

e = 0 (millivolt)

r =1 (gigaohm) <1le-9,1e9>

ASSIGNED {
i (nanoamp)
v (millivolt)

}
BREAKPOINT {
i=(v-er

Units are incorrect in the "i = ..." current assignment

BREAKPOINT {
i=(-e)r

The output from
modlunit shunt
IS:
Checking units of shunt.mod
The previous primary expression with units: 1-12 coul/sec
is missing a conversion factor and should read:
(0.002)*()

at line 14 in file shunt.mod
i=(v-e)r<>

To fix the problem replace the line with:
i = (.001)%(v — e)/r

What conversion factor will make the following consistent?

nai’ = ina /| FARADAY * (c/radius)
(uM/ms) (mA/cm2) [/ (coulomb/mole) [(um)

Page 60 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 61

Using NEURON to Model Cells and Networks 2017

Page 62 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Compartmental Modeling

Not much mathematics required.

Good judgment essential!

Section
Node
o o (] (]
Segment
v(0) v(1.5/nseq) v(1)
Membrane
v(0) v(1)
Membrane
vext(0) vext(1)
Extracellular
barrier
T T T T

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 63

Using NEURON to Model Cells and Networks

NI

[EEN
N
w

Forward Euler

1.00

0.80

0.60 -

040 -

0.20

0.00

y(t+dt) - y(t)

y' =f(y)

= ()

y(t+ dt) = y(t) + dt *f(y(1))

2017

Page 64 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017

Using NEURON to Model Cells and Networks

1/20

. dgt Forward
.072 Euler

0 | |
0 0.2 0.4 0.6 0.8 \l \ i|

Backward Euler

1.00

y' =f(y)
080 YED YO = yqerany)
\
0.60 \\ y(t + dt) = y(t) + dt *f(y(t + dt))
040 |
020
0.00 w ‘ ‘

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 65

Using NEURON to Model Cells and Networks 2017

N Backward Euler
i' i :
dt=.2 i i
) T TS
v

0.5

0 0.2 0.4 0.6 0.8

IRy

15 dt

0.5
0 \ \ \ \ |
0 0.2 0.4 0.6 0.8 1
1.00 Crank—Nicholson
] - f
g0 | y' =f(y)
w = fy(t+dt2))
0.60 | y(t + dt) = y(t) + dt *f(y(t+dt/2))
040 +
0.20 +
0.00

Page 66 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Cvode.atol(1le-3)

2 0.2 0.4 0.6 0.8 1

15 Cvode.atol(1le-1)

40 — CN dt=.001 ms
CN dt=.025 ms
CVode atol = 1e-2
mV
0 | | | |

4 ths

Implicit dt=.025 ms

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

Page 67

Using NEURON to Model Cells and Networks 2017

Page 68 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Networks:
spike-triggered synaptic transmission,
events, and artificial spiking cells

1. Define the types of cells
2. Create each cell in the network
3. Connect the cells

Communication between cells

Gap junctions

Synaptic transmission
graded
spike-triggered

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 69

Using NEURON to Model Cells and Networks 2017

Spike-triggered synaptic transmission

Physical system: O /
Presynaptic neuron with axon
that projects to synapse on target cell

Conceptual model:
Spike in presynaptic terminal
triggers transmitter release;
presynaptic details unimportant

Postsynaptic effect described by
DE or kinetic scheme that is perturbed by
occurrence of a presynaptic spike

Spike-triggered transmission:
computational implementation

Basic idea
Complete
representation
of propagation Spike Synaptic g Postsynaptic
from spike init. detector latency S/ region
zone through
axon to terminal

More efficient: "virtual spike propagation”

Delay
Spike ; conduction :
L Spike Postsynaptic
initiation latency gsg :
Zone detector . region
synaptic
latency

Page 70 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

The NetCon class

hoc usage

netcon = new NetCon(source, target)
presection netcon = new NetCon(&v(x), \
target, threshold, delay, weight)
Defaults

threshold = 10
delay = 1 // must be >= 0
weight = 0

NMODL specification of synaptic mechanism
NET_RECEIVE(weight(microsiemens)) {

}

Efficient divergence

Multiple NetCons with a common source
share a single threshold detector

Spike - i
SPIE Spike Postsynaptic
initiation Delay 0 gsg :
Zzone detector region 0
Postsynaptic
Delay T gsg region 1

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 71

Using NEURON to Model Cells and Networks 2017

Efficient convergence

Path 0
O/ O
Path 1
Multiple NetCons can share

a single target (many inputs,

but only one equation)
Spike Spike Postsynaptic
?O'tr'g'gn dgtectoro Delay 0 regiony P
Spike Spi
L vl pike
?o'tr'g'? n detector 1 Delay 1

Example: g with fast rise
and exponential decay

NEURON {
POINT_PROCESS ExpSyn
RANGE tau, e, i
NONSPECIFIC_CURRENT i

}

declarations
INITIAL { g = 0 }

BREAKPOINT {
SOLVE state METHOD cnexp
i=g9"(v-e)

DERIVATIVE state { g' = -g/tau }
NET_RECEIVE(w (uS)) { g =g + w }

Page 72 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

g with fast rise and exponential decay
continued

g_~» N |¢$L“Q$$;
\ MNM

BREAKPOINT {
SOLVE state METHOD cnexp
i=g9g*(v-e)

DERIVATIVE state { g' = -g/tau }
NET_RECEIVE(w (uS)) { g =g + w }

Example: use-dependent synaptic plasticity

GSyn[0].g

0.003 —
us

Lot
MR

0 20 40 60 80 100

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 73

Using NEURON to Model Cells and Networks 2017

Use-dependent synaptic plasticity continued

BREAKPOINT {
SOLVE state METHOD cnexp oo

GSyn[0].g

g=B-A

i=g*(v-e) 0002
}
DERIVATIVE state { 0.001

A' = -A/taul

B' = -B/tau2 ol NN 3
} 20 60 %0 100

NET_RECEIVE(weight (uS), w, G1, G2, t® (ms)) {
INITIAL {w=0 G1=0 G2=0 tO=t}
G1 Gl*exp(-(t-t0)/Gtaul)
G2 G2*exp(-(t-tO0)/Gtau2)

G1 + Ginc*Gfactor
G2 + Ginc*Gfactor
t

weight*(1 + G2 - G1)

g+ w

A + w*factor

B + w*factor

@
o
i nn

Artificial spiking cells
"Integrate and fire" cells

Prerequisite: all state variables must be
analytically computable from a new initial condition

Orders of magnitude faster than numerical integration

Event-driven simulation run time is
proportional to # of received events
independent of # of cells, # of connections,

and problem time

Hybrid networks

Page 74 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Example: leaky integrate and fire model

S1 Ll | |
S2 | L1 1 1 | | |

1

0.8 |-

0.6 —

04

0.2 =

0 1 1 1 1]
0 20 40 60 80 100

Leaky integrate and fire model continued

NEURON {
ARTIFICIAL_CELL IntFire
RANGE tau, m

}

. declarations .
INITIAL { m = O to =t }
NET_RECEIVE (w) {

m = m*exp(-(t-t0)/tau)

to = t

m=m+ w

if (m > 1) {
net_event(t)
m=20

}

}

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 75

Using NEURON to Model Cells and Networks 2017

1

IntFire1(0] 08
. tau (ms) 10 gl 06
|ntF| re 1 |rercmsjmr— s IntFire1(0]M

04 \
m 0
0.2
I D~ |]

‘

IntFire2(o] e IntFire2(0].1
taus (ms) | 2 [20 | 08~ —
taum (ms) [10 ‘il 05k / \
IntFire2 b [[05 & , S
04
e P
IntFire2[0].M
m o oz[/
1 I 1 I]

0

0 20 40 60 80 100

IntFire4[0]

taue (ms) 5 g 05
taufl (ms){_{ [10

=1
taui2 (ms) | _{ [20 _il
- aum (ms) [5 \il
IntFired4 =5

in

03

01

-0.1

IntFireS“],I

-0.3 i
In(Flrc4[1].M/

/

i2

o[o] lo] [o

m -05

Defining the types of cells

Artificial spiking cells
ARTIFICIAL_CELL with a NET_RECEIVE block
that calls net_event

NetStim, IntFirel, IntFire2, IntFire4

Biophysical model cells
"Real" model cells
Sections and density mechanisms

Synapses are POINT_PROCESSes
that affect membrane current
and have a NET_RECEIVE block,
e.g. ExpSyn, Exp2Syn

Page 76 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Defining types of biophysical model cells

Encapsulate in a class

begintemplate Cell
public soma, E, I
create soma
objref E, I
proc init() {
soma {
insert hh
E new ExpSyn(0.5)
I new Exp2Syn(0.5)
I.e = -80
}

}
endtemplate Cell

o I

objref bag_of_cells
bag_of_cells = new List()
for 1 = 1,1000 bag_of_cells.append(new Cell())

Connecting cells

Which setup strategy is more efficient?

Iterate over sources

for each cell {
connect this cell to its targets
}

or iterate over targets?

for each cell {
connect sources to this cell
}

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 77

Using NEURON to Model Cells and Networks 2017

Connecting cells

For a net distributed over multiple CPUs,
it is most efficient to iterate over targets first.

for each cell {
connect sources to this cell

}

Page 78 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Launch NEURON

via the GUI

 double click on nrngui icon

 double click on hoc file

« drag and drop hoc file onto nrngui icon

via the command line in a terminal
(MS Win: double click on bash shell icon)
e nrngui # loads NEURON's GUI library
e Nnrniv # omits GUI library
« nrngui bah.hoc # executes bah.hoc
« nrngui -python foo.py # executes foo.py

Start Python,
use NEURON as a module

python foo.py

where f00.py contains
from neuron import h
get NEURON's GUI with
from neuron import h,gui
h.load_file('bah.hoc')

* may need PYTHONPATH

* prevent autoexit with -i switch, e.g.
python -1 foo.py

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 79

Using NEURON to Model Cells and Networks 2017

Exit NEURON

Command:
hoc interpreter (oc> prompt) quit()
Python interpreter (>>> prompt) exit()

Keyboard shortcut:
"D (ctrl-D) works for both hoc and Python

Page 80 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Numerical Methods: Adaptive Integration

Robert A. McDougal
Yale School of Medicine

11 November 2016

Enabling adaptive integration

X NEURON Main Menu — m| X

h.cvode_active(1)

h.cvode_active is defined in stdrun.hoc which is loaded automatically whenever the gui is imported.

This is a composite image, not a screenshot to allow combining the window decoration and vector-based window contents.

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 81

Using NEURON to Model Cells and Networks 2017

Options: per state variable tolerance, integration methods

& VariableTimeStep x

I

Use variable dt
0.001 E|

X Numerical Methad Selection - O x

current model type: <*ODE*> DAE
ODE model allows any method
DAE model allows implicit fixed step or daspk
X Absolute Tolerance Scale Factors - O * Implicit Fixed Step
C-N Fixed Step
Cvode
Daspk
Local step
DAE and daspk require sparse solver, cvode requires tree solver

Mx=b tree solver
Mx=b sparse solver

2nd order threshold (for variable step)

This is a composite image, not a screenshot to allow combining the window decoration and vector-based window contents.

Mainen & Sejnowski 1996, Figure 1D, fixed step: 9.49s

& Graph[0] x-100: 1100

X VariableTimeStep

Code for this model is available at: http://modeldb.yale.edu/2488
Timings ran with NEURON 7.5 (cbd6261ecbad) on a 3.4 GHz i7-4770 with 24 GB RAM via the Windows Subsystem for Linux in Windows 10.

This is a composite image, not a screenshot to allow combining the window decoration and vector-based window contents.

Page 82 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Mainen & Sejnowski 1996, Figure 1D, variable step: 1.4s

X - O X | X sha - O X - m| X
Close Hide Close Hide | Close Hide
mit)<l [70 (2l
Init & Run
Stop
Continue til (ms)d—'lj IS—E
Continue for (ms) «|| | [1 E
Single Step
t(ms) [[1000
Tstop (ms D [1000 2l
N VarizbleTimester || dt(ms) [4.1633 2l

Close Hide Points plotted/ms | _{ [40 2l
[Use variable dt Scrn update invl (s)'j |0.05 E
Absolute Tolerance|_{ [0.001 2l ||ReaiTime B I

Atol Scale Tool| Details

Code for this model is available at: http://modeldb.yale.edu/2488
Timings ran with NEURON 7.5 (cbd6261ecbad) on a 3.4 GHz i7-4770 with 24 GB RAM via the Windows Subsystem for Linux in Windows 10.

This is a composite image, not a screenshot. Due to pdf rendering problems, the original checkmarks have been replaced.

A closer look at change, time steps, and order

40 3376 steps aor
| | \'\ | |
Membrane & %s 667 660 671\ 678 675
Potential 2 o J
ol
1 1
- 0 | | '.m I f_[\ 0 | | | |
T- 9 200 400 60 800 | 1000 T B¢ 69 671 673 675
imestep T
'E,Q 1 -1
. o
Size g L o
3 83—
5 5
4 a-
Order of K lL I | L
il Il .
[
Integration Method ~ § 2 —2]
1 1
0 | | | | | 0 | | | | |
0 200 400 600 800 1000 665 667 669 671 673 675

Results shown are for variable step method for Mainen & Sejnowski 1996, Figure 1D.

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 83

Using NEURON to Model Cells and Networks 2017

Page 84

Suppose we inject a current pulse to trigger an
action potential that we record at a fixed rate. We
then use this time series for a voltage clamp
experiment on an identical cell.

What are the dynamics of the current that must
be injected through the voltage clamp?

Fixed step (same timestep)

Graph NewViewx -0.5:5.5 y -92 : 52

40—
/\ v(.5,

|

2

}

0 | | | |
1 4 5
L \

80
Graph Crosshairx-0.6:5.5 y-1.2:1.2

e SEClamp[0].i

05

0.5

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017

Variable step

Graph NewView x -0.5:5.5 y -92: 52

40

40

-80

v{.5)

Using NEURON to Model Cells and Networks

Graph NewView x 0.74:1.46 y-74 : -

B0
V(.5)
40 —
150 [~

60—

70

na 1 10 44

Graph Crosshairx-0.5:5.6 y-1.2:1.2

0.5

0.5

SEClampi0).i

Graph Crosshairx0.74 :1.46 y-0.6:
po SEClamplp)
.3
]
D8 1 [12
.3
.5

Variable step with linear interpolation

Graph[0] x-0.5:5.5 y-92:52

407

v{.5}

5

Graph[0] x 0.74:1.46 y-74 :-26

30

v(.5}
“o—
50 [~
60 [~
70
ne 1 10 1.4

Graph{2] NewView x-0.5:56.5 y-1.2:1.2

0.5

05~

SEClamp[0].i

B — | | |
—~
1

2 3 4 5

Graph[2] NewView x 0.74 :1.46 y-0.6

p-5 SEClamp[O}i
L[]

p1 ‘ I I
h.P8 1 12 14
D.gk

D5

vvec.play(h.SEClamp [0] .

The last argument of 1 indicates that the the values at intermediate time points should be estimated by linear interpolation.

_ref_ampl, tvec, 1)

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

Page 85

Using NEURON to Model Cells and Networks 2017

Page 86 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Scripting NEURON

Robert A. McDougal
Yale School of Medicine

10 November 2017

What is a script?

A script is a file with computer-readable instructions for performing a task.

In NEURON, scripts can: set-up a model, define and perform an experimental
protocol, record data, ...

Why write scripts for NEURON?
@ Automation ensures consistency and reduces manual effort.
o Facilitates comparing the suitability of different models.

o Facilitates repeated experiments on the same model with different parameters
(e.g. drug dosages).

Facilitates recollecting data after change in experimental protocol.

Provides a complete, reproducible version of the experimental protocol.

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 87

Using NEURON to Model Cells and Networks

Documentation

Page 88

2017

[NEURON | for empirically-bas x Fobert

C 1 @ neuronyale.edu/neuron/ aQ

[for empirically-based simulations of neurons and networks of neurons

%

NEURON news | Download | Courses | Publications | About | Login
Documentation Forum | Resources | ModelDB

Welcome to the community of NEURON users and developers!

This is the home page of the NEURON simulation environment, which is used Search

in classrooms and laboratories around the world for building and using [Coogie™ custem § EEEED

computational models of neurons and networks of neurons. Here you will

find installers and source code, documentation, tutorials, announcements of

courses and conferences, and discussion forums about NEURON in particular st

" i y i Navigation

and computational neuroscience in general. Users who have special interests

and expertise are invited to participate in the NEURON project, e.g. by + Blogs

helping to organize future meetings of the NEURON Users’ Group, or by = Recent posts

participating in collaborative development of documentation, tutorials, and

software. We also welcome suggestions for ways to make NEURON a more

useful tool for research and teaching. Recent blog posts

By NEURON at 08/19/2009 - 21:30 | Read more = Thresilpcoming
courses!
= NEURON at the CNS
2017 meetin,
3] 8
neuron.yale.edu
[) Graph — NEURON 7.5 docurn x Robert
< ' {y & Secure | https://www.neuron.yale.edu/neurcn/static/py_doc/visualization/graph.htm| @

NEURON 7.5 documentation » Switch to HOC | previous | next | modules | modules | index

Previous topic
Glyph

Next topic
Grapher

This Page

Show Source
Questions?

Ask the NEURON Forum.
Quick search
L 1

Enter search terms or a module,
class or function name.

Graph
addexpr + addobject + addvar - align - begin - beginline - brush + color - crosshair_action + erase - erase_all +
exec_menu - family - fastflush - fixed - flush + getline - gif - glyph « label - line - line_info + mark +
menu_action - menu_remove - menu_tool - plot - printfile - relative - save_name - simgraph - size - unmap -
vector - vfixed - view - view_count - view_info - view_size - xaxis - xexpr - yaxis

Graph
class Graph
Syntax:
g = h.Graph()
g = h.Graph(0)
Description:

An instance of the Graph class manages a window on which x-y plots can be drawn by calling
various member functions. The first form immediately maps the window to the screen. With a 0
argument the window is not mapped but can be sized and placed with the view() function.

Example:
The most basic interpreter prototype for producing a plot follows:
from neuron import h, gui
import matl

Create the graph

g = h.Graph()

specify coordinate system for the canvas drawing area
numbers are: xmin, xmax, ymin, ymax respectively

g.size(0, 10, -1, 1)

the next g.line command will move the drawing pen to the

Use the “Switch to HOC" link in the upper-right corner of every page if you need documentation for HOC, NEURON's original programming language.
HOC may be used in combination with Python: use h.load-file to load a HOC library; the functions and classes are then available with an h. prefix.

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Introduction to Python

Displaying results
The print command is used to display non-graphical results.

It can display fixed text:
print ('Hello everyone.') Hello everyone.

or the results of a calculation:
print (5 * (3 + 2)) 25

i

Storing results

Give values a name to be able to use them later.

a = max([1.2, 5.2, 1.7, 3.6])
print (a) 5.2

In Python 2.x, print is a keyword and the parentheses are unnecessary. Using the parentheses allows your code to work with both Python 2.x and 3.x.

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 89

Using NEURON to Model Cells and Networks 2017

Don't repeat yourself

Lists and for loops
To do the same thing to several items, put the items in a list and use a for loop:

numbers = [1, 3, 5, 7, 9]
for number in numbers:
print (number * number) 19 25 49 81

Items can be accessed directly using the [| notation; e.g. n = number [2]

To check if an item is in a list, use in:

print (4 in [3, 1, 4, 1, 5, 91) True
print (7 in [3, 1, 4, 1, 5, 9]) False

o

Dictionaries

If there is no natural order, specify your own keys using a dictionary.
data = {'soma': 42, 'dend': 14, 'axon': 'blue'}
print (datal['dend']) 14

Don't repeat yourself

Functions

If there is a particularly complicated calculation that is used once or a simple one
used at least twice, give it a name via def and refer to it by the name. Return the
result of the calculation with the return keyword.

def area_of_cylinder(diameter, length):
return 3.14 / 4 * diameter ** 2 * length

areal = area_of_cylinder(2, 100)
area2 = area_of_cylinder (10, 10)

Page 90 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017

Using NEURON to Model Cells and Networks

Using libraries

Libraries (“modules” in Python) provide features scripts can use.
To load a module, use import:
import math

Use dot notation to access a function from the module:
print (math.cos(math.pi / 3)) 0.5

One can also load specific items from a module.
For NEURON, we often want:

from neuron import h, gui

Other modules

Python ships with a large number of modules, and you can install more (like
NEURON). Useful ones for neuroscience include: math (basic math functions),
numpy (advanced math), matplotlib (2D graphics), mayavi (3D graphics),
pandas (analysis and databasing), ...

Getting help

To get a list of functions, etc in a module (or class) use dir:

from neuron import h
print (dir(h))

Displays:

['APCount', 'AlphaSynapse', 'BBSaveState', 'CVode', 'DEG', 'Deck',
'E', 'Exp2Syn', 'ExpSyn', 'FARADAY', 'FInitializeHandler',
'File', 'GAMMA', 'GUIMath', 'Glyph', 'Graph', 'HBox', 'IClamp',
'Impedance', 'IntFirel', 'IntFire2', 'IntFire4', 'KSChan', ...]

To see help information for a specific function, use help:
help(math.cosh)

Python is widely used, and there are many online resources available, including:
@ docs.python.org — the official documentation
@ Stack Overflow — a general-purpose programming forum
@ the NEURON programmer’s reference — NEURON documentation
e the NEURON forum — for NEURON-related programming questions

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 91

Using NEURON to Model Cells and Networks 2017

Basic NEURON scripting

Creating and naming sections

A section in NEURON is an unbranched stretch of e.g. dendrite.

To create a section, use h.Section and assign it to a variable:
apical = h.Section(name='apical')

A section can have multiple references to it. If you set a = apical, there is still
only one section. Use == to see if two variables refer to the same section:
print (a == apical) True

To access the name, use .name():
print (apical.name()) apical

Also available: a cell attribute for grouping sections by cell.

In recent versions of NEURON, named Sections will print with their name; e.g. it suffices to say print (apical).

Page 92 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017

Using NEURON to Model Cells and Networks

Making NEURON GUI compatible sections

The NEURON GUI cannot read the names of sections created in Python, which
imposes certain limitations to the mouse-based interface.

One work-around is to use the following function which creates a section in HOC
and returns a Python Section object:

def Section(name):
h('create ' + name)
return getattr(h, name)

To make multi-cell simulations fully manipulatable through the GUI, define each
cell inside of a HOC Template and wrap that with a Python class.

Controlling the GUI from the Python prompt has no such limitations. All graphical functions may be accessed through the command line.

Connecting sections

To reconstruct a neuron’s full branching structure, individual sections must be
connected using .connect:
dend2.connect (dend1 (1))

Each section is oriented and has a 0- and a 1-end. In NEURON, traditionally the
0-end of a section is attached to the 1-end of a section closer to the soma. In the
example above, dend2's 0-end is attached to dend1’'s 1-end.

0 dend2
’ dend1 .

To print the topology of cells in the model, use h.topology(). The results will
be clearer if the sections were assigned names.
h.topology()

If no position is specified, then the 0-end will be connected to the 1-end as in the example.

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

Page 93

Using NEURON to Model Cells and Networks

Page 94

Python script: Output:

from neuron import h

[-1 soma (0-1)

define sections ¢ :
roxApical(0-1

soma = h.Section(name='soma') ! . p _p ()
papic = h.Section(name='proxApical') I aP1C1(0‘1)
apicl = h.Section(name='apicl') i apic2(0—1)
apic2 = h.Section(name='apic2') ¢ _
pb = h.Section(name='proxBasal') | proy.cBasal(O 1
dbl = h.Section(name='distBasall') ‘| distBasall(0-1)
db2 = h.Section(name='distBasal2') 9 distBasal2(0-1)

connect them

papic.connect (soma)

pb.connect (soma(0)) Morphology:

apicl.connect (papic)

apic2.connect (papic)

db1.connect (pb) s, L
db2. connect (pb) 8'383/2 y

a%,a\’\proxBasaI soma proxApical

. o7,
list topology et 7

h.topology()

Length, diameter, and position

Set a section’s length (in um) with .L and diameter (in um) with .diam:
sec.L = 20

sec.diam = 2

Note: Diameter need not be constant; it can be set per segment.

To specify the (x, y, z; d) coordinates that a section passes through, use e.g.
h.pt3dadd(x, y, z, d, sec=section). The section sec has sec.n3d() 3D
points; their ith x-coordinate is sec.x3d(i). The methods .y3d, .z3d, and
.diam3d work similarly.

Warning: the default diameter is based on a squid giant axon and is not
appropriate for modeling mammalian cells. Likewise, the temperature
(h.celsius) is by default 6.3 degrees (appropriate for squid, but not for
mammals).

2017

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Tip: Define a cell inside a class

Consider the code

class Pyramidal:
def __init__(self):
self.soma = h.Section(name='soma', cell=self)

The __init__ method is run whenever a new Pyramidal cell is created, e.g. via
pyrl = Pyramidal()

The soma can be accessed using dot notation:
print(pyrl.soma.L)

By defining a cell in a class, once we’re happy with it, we can create
multiple copies of the cell in a single line of code.

pyr2 = Pyramidal()
or even

pyrs = [Pyramidal() for i in range(1000)]

Viewing the morphology with h.PlotShape

from neuron import h, gui

class Cell:
def __init__(self):
main = h.Section(name='main', cell=self)
dendl = h.Section(name='dendl', cell=self) —
dend2 = h.Section(name='dend2', cell=self) Close Hide
dendl.connect (main)
dend?2. connect (main)

main.diam = 10
dendl.diam = 2
dend2.diam = 2

Important: store the sections
self.main = main; self.dendl = dendl
self.dend2 = dend2

my_cell = Cell()
ps = h.PlotShape()

use 1 instead of O to hide diams
ps.show(0)

Note: PlotShape can also be used to see the distribution of a parameter or
variable. To save the PlotShape ps use ps.printfile('filename.eps').

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 95

Using NEURON to Model Cells and Networks

Viewing voltage, sodium, etc

Suppose we make the voltage ('v')
nonuniform, which we can do via:

my_cell.main.v = 50
my_cell.dendl.v = 0
my_cell.dend2.v = -65

We can create a PlotShape that

color-codes the sections by voltage:

ps = h.PlotShape()
ps.variable('v')
ps.scale(-80, 80)
ps.exec_menu('Shape Plot')

ps.show(0)
After increasing the spatial resolution:

for sec in h.allsec(): sec.nseg = 101 ?;; he —
We can plot the voltage as a function of g
distance from main(0) to dend2(1): -
rvp = h.RangeVarPlot('v') . - -
rvp.begin(0, sec=my_cell.main) o

rvp.end(1, sec=my_cell.main)
g = h.Graph()

g.addobject (rvp) -1
g.exec_menu('View = plot')

Sodium concentration could be plotted with 'nai' instead of 'v', etc.

Page 96

Aside: Jupyter

Z basic-jupyter2 x

“t @ localt / -work-files/jupytertest/basic-jupyter2.ipynb
=Ju pyter basic-jupyter2 Last Checkpoint: 9 minutes ago (unsaved changes)
File Edit View Insert Cell Kemel Widgets Help
B+ |3 @ B| 4+ % M B C | Code ¢/ & Celfoolbar & & @
Jupyter notebooks

allow mixing code with richly formatted documentation and output.
The code can be easily edited and rerun.

In [1): for i in range(5):
print('{} ** 2 = {}'.format(i, i**2))

0 %* 2 =0
14+ 2 =]
2 %% 2 =4
32 ed

In (2): from IPython.display import display, HTML
def squares(nums):
result = '<table><tr><th>n</th><th>n²</th></tr>'
for n in nums:
result += '<tr><td>{}</td><td>{}</td></tr>'.format(n, n**2)
result += '</table>’
display (HTML(result))

In (3]: squares([1l, 4, 6, 42])

n?

n
1
4 |18
6

42 (1764

In ()t

Robert
W
a

Python [default] ©

2017

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Aside: Jupyter

= pyneurontoolbox-demo x Robert
O localhost:8888/notebooks/Dropbox/active-work-files jupytertest/pyneurontoolb... Q ¥

~ Jupyter d [

B+ > @an [+¢|nmc| com ¢ = comote @ 0@

magic method that makes
-««———— matplotlib graphs interactive

-««—— PyNeuronToolbox is Alex Williams' set of
utility functions for working with NEURON
models in Python.

(Additional options can be passed to colorize segments which
B can be used to encode information about e.g. membrane
potential.)

< interactive graph (rotate, zoom, save, etc)

Cannot run new commands until interactive
mode is turned off (blue button) at which
point the graph becomes static.

alels[+0lm 20243, y-0203, - 08T https://github.com/ahwillia/PyNeuron-Toolbox

3)¢ [<apl_toolkits.mplotid.artdd.LinedD at Ox106c40£90>,

Loading morphology from an swc file

To create pyr, a Pyramidal cell with morphology from the file c91662. swc:

from neuron import h, gui
h.load_file('import3d.hoc')

class Pyramidal:

def __init__(self):
self.load_morphology ()
do discretization, ion channels, etc

def load_morphology(self):
cell = h.Import3d_SWC_read()
cell.input('c91662.swc')
i3d = h.Import3d_GUI(cell, 0)
i3d.instantiate(self)

pyr = Pyramidal()

pyr has lists of Sections: pyr.apic, .axon, .soma, and .all. Each Section has
the appropriate .name () and .cell().

Only do this in code after you've already examined the cell with the Import3D GUI tool and fixed any issues in the SWC file.

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 97

Using NEURON to Model Cells and Networks 2017

Working with multiple cells

Suppose Pyramidal is defined as before and we create several copies:

mypyrs = [Pyramidal(i) for i in range(10)]

We then view these in a shape plot:

Where are the other 9 cells?

Working with multiple cells

To can create a method to reposition a cell and call it from __init__:

class Pyramidal: def __init__(self, gid, x, y, 2):
def _shift(self, x, y, 2z): self._gid = gid

soma = self.somal0] self.load_morphology ()

n = soma.n3d() self._shift(x, y, z)

xs = [soma.x3d(i) for i in range(n)]

ys = [soma.y3d(i) for i in range(n)] def load_morphology(self):

zs = [soma.z3d(i) for i in range(n)] cell = h.Import3d_SWC_read()

ds = [soma.diam3d(i) for i in range(n)] cell.input(’c91662.swc’)

for i, (a, b, ¢, d) in enumerate(zip(xs, ys, zs, ds)): i3d = h.Import3d_GUI(cell, 0)
h.pt3dchange(i, a + x, b +y, ¢ + z, d, sec=soma) i3d.instantiate(self)

Now if we create ten, while specifying offsets,
mypyrs = [Pyramidal(i, i * 100, 0, 0) for i in range(10)]

The PlotShape will show all the cells separately:

Page 98 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Does position matter?

Sometimes.

Position matters with:
@ Connections based on proximity of axon to dendrite.
@ Connections based on cell-to-cell proximity.
@ Extracellular diffusion.

@ Communicating about your model to other humans.

Distributed mechanisms

Use .insert to insert a distributed mechanism into a section. e.g.
axon.insert('hh')

| \

Point processes

To insert a point process, specify the segment when creating it, and save the
return value. e.g.
pp = h.IClamp(soma(0.5))

To find the segment containing a point process pp, use
seg = pp.get_segment ()

The section is then seg.sec and the normalized position is seg.x.
The point process is removed when no variables refer to it.
Use List to find out how many point processes of a given type have been defined:

all_iclamp = h.List('IClamp')
print ('Number of IClamps:')
print (all_iclamp.count())

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 99

Using NEURON to Model Cells and Networks 2017

Setting and reading parameters

In NEURON, each section has normalized coordinates from 0 to 1.
To read the value of a parameter defined by a range variable at a given normalized
position use: section(x).MECHANISM.VARNAME

e.g.
gkbar = apical(0.2).hh.gkbar

Setting variables works the same way:
apical(0.2).hh.gkbar = 0.037

To specify how many evenly-sized pieces (segments) a section should be broken
into (each potentially with their own value for range variables), use
section.nseg:

apical.nseg = 11
To specify the temperature, use h.celsius:

h.celsius = 37

Setting and reading parameters

Often you will want to read or write values on all segments in a section. To do
this, use a for loop over the Section:

for segment in apical:
segment .hh.gkbar = 0.037

The above is equivalent to apical.gkbar hh = 0.037, however the first version
allows setting values nonuniformly.

A list comprehension can be used to create a Python list of all the values of a
given property in a segment:

apical_gkbars = [segment.hh.gkbar for segment in apicall

Note: looping over a Section only returns true Segments. If you want to include
the voltage-only nodes at 0 and 1, iterate over, e.g. apical.allseg() instead.

HOC's for (x,0) and for (x) are equivalent to looping over a section and looping over allseg, respectively.

Page 100 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Running simulations

Basics

To initialize a simulation to -65 mV:
h.finitialize(-65)

To run a simulation until t = 50 ms:
h.continuerun(50)

Additional h.continuerun calls will continue from the last time.

| A

Ways to improve accuracy

Reduce time steps via, e.g. h.dt = 0.01
Enable variable step (allows error control): h.CVode () .active(True)
Increase the discretization resolution: sec.nseg = 11

To increase nseg for all sections:
for sec in h.allsec(): sec.nseg *= 3

| A

Recording data

To see how a variable changes over time, create a Vector to store the time course:
data = h.Vector()

and do a .record with the last part of the name prefixed by _ref .

e.g. to record soma(0.3) .ina, use
data.record(soma(0.3)._ref_ina)

| \

Tips

@ Be sure to also record h._ref_t to know the corresponding times.

@ .record must be called before h.finitialize().

If v is a Vector, then v.as_numpy() provides the equivalent numpy array; that is, changing one changes the other.

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 101

Using NEURON to Model Cells and Networks

Example: Hodgkin-Huxley

Page 102

from neuron import h, gui
from matplotlib import pyplot

morphology and dynamics
soma = h.Section(name='soma')
soma.insert('hh')

current clamp

= h.IClamp(soma(0.5))
.delay = 2 # ms

.dur = 0.5 # ms

.amp = 50

e e e 3

recording

= h.Vector()

= h.Vector()
.record(h._ref_t)
.record(soma(0.5)._ref_v)

< o & o

simulation
h.finitialize(-65)
h.continuerun(49.5)

plotting
pyplot.plot(t, v)
pyplot.show()

from neuron import h, gui
from matplotlib import pyplot
soma = h.Section(name='soma')
soma.insert('hh')
current clamps
iclamps = []
for t in [2, 13, 27, 40]:
i = h.IClamp(soma(0.5))
i.delay = t # ms
i.dur = 0.5 # ms
i.amp = 50
iclamps.append (i)
recording
h.Vector()
h.Vector()
.record(h._ref_t)
.record(soma(0.5)._ref_v)
simulation
.finitialize(-65)
.continuerun(49.5)
compute spike times
= [t[j] for j in range(len(v) - 1)
if v[j]l <= 0 and v[j + 1] > 0]
print ('spike times:')
print (st)
plotting
pyplot.plot(t, v)
pyplot.show()

OB HIS S H
]

12}
ot

A spike occurs whenever V/,, crosses some threshold (e.g. 0 mV).
Python can easily find all spike times. Only changes from the previous example
are highlighted.

The console displays:

spike times:
[3.1750000000000114, 28.149999999998936,
41.6250000000009]

That is, the cell spiked at: 3.175
ms, 28.150 ms, and 41.625 ms.

2017

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017

Using NEURON to Model Cells and Networks

Interspike intervals (ISls) are the delays between spikes; that is, they are the
differences between consecutive spike times.

To display ISIs for the previous example, we add the lines:

isis = [next - last for next, last in zip(st[1:]1, st[:-1])]
print ('ISIs:'); print (isis)
The result:

[24.974999999998925, 13.475000000001966]

That is, the delays between spikes were 24.975 ms and 13.475 ms.

Networks of neurons

Suppose we have the simple neuron model:

from neuron import h, gui

class Cell:
def __init__(self):

self.soma = h.Section(name='soma', cell=self)
self.soma.insert('hh')

and two cells:

neuronl Cell)
neuron2 = Cell()

one of which is stimulated by a current clamp:

ic = h.IClamp(neuroni.soma(0.5))
ic.amp = 50

ic.delay = 2 # ms

ic.dur = 0.5 # ms

A synapse from that cell to the other may cause the second cell to fire when the
first cell is stimulated. In NEURON, the post-synaptic side of the synapse is a
point process; presynaptic threshold detection is done with an h.NetCon.

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 103

Using NEURON to Model Cells and Networks 2017

Networks of neurons

Setup the post-synaptic side:

postsyn = h.ExpSyn(neuron2.soma(0.5))
postsyn.e = 0 # reversal potential

Setup the presynaptic side, transmission delay, and synaptic weight:

syn = h.NetCon(neuronl.soma(0.5)._ref_v, postsyn, sec=neuronl.soma)
syn.delay = 1
syn.weight[0] = 5

Then we can setup recording, run, and plot as usual:

t, vl, v2 = h.Vector(), h.Vector(), h.Vector()
t.record(h._ref_t)
vl.record(neuronl.soma(0.5)._ref_v)
v2.record(neuron2.soma(0.5)._ref_v)

h.finitialize(-65) 0
h.continuerun(10)

from matplotlib import pyplot

pyplot.plot(t, vi, t, v2) -0
pyplot.x1im((0, 10)) 40
pyplot.show() —60)

h.ExpSyn is one of several general synapse types distributed with NEURON; additional ones may be specified in NMODL or downloaded from
ModelDB.

The use of h.NetCon must be modified slightly to support parallel simulation; this is discussed in a different presentation.

Storing data to CSV to share with other tools

The CSV format is widely supported by mathematics, statistics, and spreadsheet

programs and offers an easy way to pass data back-and-forth between them and
NEURON.

In Python, we can use the csv module to read and write csv files.

Adding the following code after the continuerun in the example will create a file
data.csv containing the course data.

import csv
with open('data.csv', 'wb') as f:
csv.writer(f) .writerows(zip(t, v))

Each row in the file corresponds to one time point. The first column contains t
values; the second contains v values. Additional columns can be stored by adding
them after the t, v.

For more complicated data storage needs, consider the pandas or h5py modules.
Unlike csv, these must be installed separately.

Page 104 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Version control

Version control: git

Why use version control?

@ Protects against losing working code: if something used to work but no
longer does, you can test previous versions to identify what change caused
the error.

o Provides a record of script history: authorship, changes, ...

@ Promotes collaboration: provides tools to combine changes made
independently on different copies of the code.

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

Page 105

Using NEURON to Model Cells and Networks

Version control: git basics

Setup
git init
Declare files to be tracked
git add FILENAME
Commit a version (so can return to it later)
git commit -a
Return to the version of FILENAME from 2 commits ago

git checkout HEAD™2 FILENAME

Version control: git

Page 106

View list of changes
git log
Remove a file from tracking

git rm FILENAME

Rename a tracked file

git mv OLDNAME NEWNAME

2017

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Version control: git and remote servers

git (and mercurial) is a distributed version control system, designed to allow you
to collaborate with others. You can use your own server or a public one like github
or bitbucket.

Download from a server
git clone http://URL.git
Get changes from server and merge with local changes
git pull
Sync local, committed changes to the server

git push

Version control: syncing data with code

One simple way to ensure you always know what version of the code generated
your data is to include the git hash in the filename. The following function can
help:
def git_hash():

import subprocess

suffix = "'

if subprocess.check_output(['git', 'diff']):
suffix = '+'

return '%s%s' % (subprocess.check_output ([
'git', 'log', '-1', '--pretty=format:%h']),
suffix)

Then, for example, save matplotlib graphics with:
pyplot.savefig('filename ' + git hash() + '.pdf')

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 107

Using NEURON to Model Cells and Networks 2017

GUI development

Making your own graphical interface

@ To ensure your GUI responds
to user input, be sure to:
from neuron import gui

@ Place basic widgets (text,
buttons, checkboxes, ...) in

an h.xpanel. SaTrey }:ﬁﬂ@

Hella class

from neuron import h, gui

.xpanel ('Example 1')
.xlabel('Hello class')
.xbutton('Click me')
.xpanel ()

== = g =

Page 108 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Button actions
function, and then pass the TRy

function to h.xbutton. —
from neuron import h, gui Eﬂﬂéﬁﬁm]

def say_hello():
print 'hello!'

To perform an action when a
button is pressed, write it as a

Pressing the button displays:

hello!
h.xpanel('Example 2')

h.xbutton('Click me',
say_hello)

h.xpanel () hello!
hello!

Number fields and classes

Place your GUI commands in a class to allow independent reuse.

Pressing the button twice:

from neuron import h, gui =

class Demo: Close Hide
def __init__(self): Choose a number: | 367 =
self.value = 7.18 Press me | loe hllls

o FAN
h. xpanel ('Demo"’) Choose a number:
Press me

h.xvalue('Choose a number:',
(self, 'value'))
h.xbutton('Press me',

Clicking “Press me” on the left

self.print_value) window and then on the right
h.xpanel) window displays:
def print_value(self):
print ('You chose:') .
print (self.value) You chose:
3.67

make two demos You chose:
d1l = Demo() 7.11
d2 = Demo()

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 109

Using NEURON to Model Cells and Networks 2017

Layout: HBox and VBox

Combine windows horizontally with HBox and vertically with VBox.

from neuron import h, gui

hbox = h.HBox()
hbox.intercept (1)

hbox.intercept (0)
hbox.map ()

h.xpanel ('Example 1')

h.xlabel('Hello class')

h.xbutton('Click me')
h.xpanel ()

h.xpanel ('Example 3') Hello class Say hello
h.xbutton('Say hello') Click me

h.xpanel ()

h.xpanel ()

Note: HBox and VBox can contain: H/VBox, Deck, xpanel, Graph, ...

Layout: HBox and VBox

Complicated layouts can be constructed using nested VBox and HBox objects:

Page 110

Close

Hide

. Abouwt - Topology 4 Subsets . Geometry < Biophysics -~ Management D Continuous Create

all Al First, select,

[branchi Select

- select One
+ Select Subtree
.~ Select Basename

then, act.

MNew SectionList!

Selection->Seclist
Delete Seclist

Change MName

Parameterized Domain Pagel

‘ Hints I I

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

For more information

For more background and a step-by-step guide to creating a network model, see
the NEURON + Python tutorial at:

http://neuron.yale.edu/neuron/static/docs/neuronpython /index.html

The NEURON Python programmer’s reference is available at:

http://neuron.yale.edu/neuron/static/py_doc/index.html

Ask questions on the NEURON forum:

http://neuron.yale.edu/phpbb

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 111

Using NEURON to Model Cells and Networks 2017

Page 112 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Building, Running, and Visualizing

Parallel NEURON Models

Robert A. McDougal
Yale School of Medicine

10 November 2017

Why use parallel computation?

Three reasons:
@ Get the results for a simulation in less real time.

@ Run a larger simulation in the same amount of time.

@ Run models needing more memory than is available on one machine.

What are the downsides?

Parallel models introduce:

| A

@ Greater programming complexity.
@ New kinds of bugs.

You have to decide if the time spent parallelizing your model can be recovered.

Other considerations

| \

The 16384 core EPFL IBM BlueGene/P can theoretically do as many calculations
in 1 hour at 850 MHz as a 3 GHz desktop computer can do in 6 months.

Building a parallelizable model typically requires little extra effort from building a
serial model; converting a serial model to a parallel model is often more difficult.

v

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 113

Using NEURON to Model Cells and Networks 2017

Three main classes of parallel problems

Parameter sweeps

Running the same (typically fast) simulation 1000s of times with different
parameters is an example of an embarrassingly parallel problem. NEURON
supports this natively with bulletin boards; Calin-Jageman and Katz (2006)
developed a screen saver solution.

Distributing networks across processors
Cells can communicate by
@ logical spike events with significant axonal, synaptic delay.

@ postsynaptic conductance depending continuously on presynaptic voltage.

@ gap junctions.

Distributing single cells across processors

The multisplit method distributes portions of the tree cable equation across
different machines.

A parallel model can fall in 1, 2, or 3 of these classes.

Some parallel philosophy

@ A network of neurons is composed of many individual neurons of potentially
many cell types. As much as possible, design and debug each cell type
separately before building the network.

@ A simulation should give the same results regardless of the number of
processors used to run it.

@ When possible, parameterize your network so you can run a small test first.

o

Page 114 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Synaptic connections with one processor

PreCell PostCell

PostSyn
$@&p§‘:'

nc = h.NetCon(PreSyn, PostSyn, sec=presyn_section)
nc.delay = 1

Delay is measured in ms.
We can also set: nc.weight and nc.threshold[].

PreSyn is a pointer, e.g. soma(0.5) ._ref_v; PostSyn is a point process e.g. an instance of h.ExpSyn.

If cells in different processes, a different approach is needed

PreCell PostCell

PostSyn

g CPU 2 CPU 4

The ParallelContext object facilitates building parallel models.

pc = h.ParallelContext ()

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 115

Using NEURON to Model Cells and Networks 2017

Every spike source must have a GID.

Processor 1 Processor 2

Processor 3 Processor 4

Note: to ensure the model produces identical results regardless of the number of
processors, also use GIDs to selecting random streams (e.g. Random123).

Building synapses

PreCell PostCell

PostSyn

Page 116 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Configuring the presynaptic connection site

PreCell

Create cell only where the gid exists: Associate gid with spike source:
if pc.gid_exists(7): nc = h.NetCon(PreSyn, None, sec=presec)
PreCell = Cell() pc.cell(7, nc)

PreSyn here is a pointer, e.g. PreCell.soma(0.5)._ref_v

Configuring the postsynaptic connection site

PostCell

PostSyn

&<
.

Create NetCon on node where target exists:

nc = pc.gid connect(7, PostSyn)

PostSyn here is a Point Process, e.g. an ExpSyn.

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 117

Using NEURON to Model Cells and Networks 2017

Spike exchange method

PreCell PostCell

PostSyn

Spike exchange method

PreCell PostCell

PostSyn

gid 7
t 2.875

Page 118 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017

Using NEURON to Model Cells and Networks

Spike exchange method

PreCell PostCell

PostSyn

n 1 n 1
gid 7 ~|gid 7
t 2.87s| MPLAllgather 51 5 g75
gid —— Ofgid ——
t — ¢ " t —
Y . 0
1 | | 1 8

Spike exchange method

PreCell PostCell

PostSyn

n 1 n 1
gid 7 ~|gid 7
t 2.875 2Lt 2.875
gid —— Olgid ——
t — t
t,v: n; n 0
1 | — | 1 8

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

Page 119

Using NEURON to Model Cells and Networks 2017

Exploit transmission delays: using pc.set _maxstep

Run using the idiom:

pc.set_maxstep(10)
h.stdinit ()
pc.psolve(tstop)

NEURON will pick an event exchange interval equal to the smaller of all the
NetCon delays and of the argument to pc.set_maxstep. In general, larger
intervals are better because they reduce communication overhead.

spikes here are delivered here
min delay

exchange exchange

pc.set_maxstep must be called on each node; it uses MPI_Allreduce to
determine the minimum delay.

Simple load-balancing strategy: round-robin.

Processor 1 Processor 2

Processor 3 Processor 4

Page 120 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Simple load-balancing strategy: round-robin.

CPU 3 CPU 4

CPUO

pc.id 0 pc.id 3 pc.id 4
pc.nhost 5 (L1 pc.nhost 5 pc.nhost 5
ncell 14 ncell 14 ncell 14
gid gid gid
0 3 4
5 8 9
10 13

An efficient way to distribute, especially if all cells similar:
for gid in range(int(pc.id()), ncell, int(pc.nhost())):
pc.set_gid2node(gid, pc.id())

(Note: the body is executed at most [ncell/nhost]| times, not ncell.)

Advanced load-balancing: balance work not number of cells

Strategy:
@ Distribute cells round-robin to all processors, instantiate them.

@ Compute an estimate of the computational complexity:

def complexity(self):
h.load_file('loadbal.hoc')

1b = h.LoadBalance()
return 1b.cell_complexity(sec=self.all[0])

@ Destroy the cells, send the gid-complexity data to node 0.

@ (On node 0): distribute gids such that the next gid goes to the node with the
least amount of complexity.

@ Send the gids to the nodes; instantiate the cells.

For a more accurate (but computationally more intensive) estimate of complexity, use Ib.ExperimentalMechComplex and Ib.read_complex.

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 121

Using NEURON to Model Cells and Networks

Page 122

Performance:

ool number
g

MPI scaling

500 g
400
300

200

100

Santhakumar et al. (2005)
_ A) extended (160,000 cells) Bush et al (1999) model
o e on the EPFL IBM BlueGene
2 Beowlf o451
- O CINECA IBM Linux cluster 160x10°
8 EPFL IBM Blue Gene
A < 140x10°
]
120x10°
-
K g 100x10°
PR iU 2 £
0 50 100 150 200 250 1 2 4 B 16 32 64 128 256 512 3 w0
time (ms) number of processors. e
@ 60x10°
Davison et al., (2003) ©
P 40x10°
20x10°
B) time (ms)
100
(i
L 400 800 1200 1600 1 2 4 8 16 32 64 128 256 512 50
number of processors
Bush etal, (1999) Bs
T
g
o
£
E 10
© 10000 cells
A 20000 cells
5 = 40000 cells
+ 80000 cells
N v 160000 cells
i :
R mrorty e P TP Oy . 50 125 250 500 1000 2000 4000

time (ms)

Performance:

Alligather

+oep>

MPI_ISend -

number of processors

number of processors

Spike exchange strategies

Two Phase, Two Subinterval

DCMF_Multicast — Two Phase, Two Subinterval
Record-Replay — One Subinterval
Computation Time (includes queue)

Strong Scaling
2M Cells zr
1k Conn/cell

Artificial Spiking Net
Blue Gene/P
Argonne National Lab

1/4M Cells
10k Conn/cell

4 4
2 2
1 1
05 J 05 J
8 16 32 64 1\f8 8 16 32 64 128
K processors K processors
Weak Scaling
30 — 30 —
o o
@ A',.A——A——A_A @
&)
o o
E2 | E2 |
5 1k Conn/cell 5 10k Conn/cell
14 14
10 — 10 —
2M cells 32M cells 1/4M cells 4M cells
o 1 1 1] 0 1 1 1 1

8 16 32 64 128
K processors

8 16 32 64 128
K processors

2017

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Performance Tip

Tip: For network models, use a fixed step solver and not a variable step solver.

Tip: Store synaptic events; recreate single cells as needed

initial conditions
+ =3 neuron dynamics
synaptic events

v - » Tirscesnex plal
N <2 v ? st JUSe]
e |
L L Rk &l]

3 » 0N L
E— B G O T
2ate YIAY

Uit

Use NetCon.record method to store spike times. Save them as e.g. JSON. Play
them back into a single cell simulation using VecStim.

VecStim is defined in vecevent.mod which is available at https://github.com/nrnhines/nrn/blob/master/share/examples/nrniv/netcon /vecevent.mod

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 123

Using NEURON to Model Cells and Networks 2017

Multisplit

Improve load balancing with multisplit

200 —

16 Pieces
150 [...
4 CPU scom °
100 —
00®

50 @@
0 M
0 4 8 12 16

400 — I n | |

#comp
| I
[
300 —
Time (s) 200 |-
CPU Computation Exchange ™
0 13.82 0.56 Runtime(s)
1 13.35 1.03 16 pieces, 1 cpu so
holecell, 1
2 13.47 0.90 wholecel, T cpu 562 L
16 pieces, 4 cpu 14.4 o 1 A 3 "
3 13.56 0.82 CPU

Multisplit algorithm described in Hines et al 2008. DOI: 10.1007/s10827-008-0087-5

Page 124 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Using multisplit (MP1)
For process-based multisplit (with MPI), use pc.multisplit to declare split

nodes:

pc.multisplit(x, subtreeid, sec=sec)

After all split nodes are declared, every process must execute:

pc.multisplit()

If created, destroy any parts of the cell that do not belong on the processor.

Rules:
@ Each subtree can have at most two split nodes.

@ Does not support variable step, linear mechanisms, extracellular, or
reaction-diffusion.

@ h.distance cannot compute path distances that cross a split node.

Tip: For load balancing, it is sometimes convenient to split cells into more pieces
than processes.

For an example, see the file multisplit_distrib.py at http://modeldb.yale.edu/151681

Gap Junctions

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 125

Using NEURON to Model Cells and Networks 2017

Continuous voltage exchange

gl.vgap

HalfGap.mod
NEURON { ASSIGNED {

POINT PROCESS HalfGap v (millivolt)

ELECTRODE CURRENT i vgap (millivolt)

RANGE r, 1, vgap i (nanoamp)
} }
PARAMETER { r = 1le9 (megohm) } CURRENT { i = (vgap - v) / r }

pc.source var to declare source sgid

pc.source_var(sl(x1l)._ref_ v, 1)
Sl(Xl).V <> Sglld

S%id <> S2(x2).v

pc.source_var(s2(x2)._ref_v, 2)

Page 126 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

pc.target var to declare target connection

pc.source_var(sl(x1)._ref_v, 1)

id
S1(x1).v <> % Nfrget_var(gl_ref_vgap, 1)

g2.vgap

gl.vgap
pc.target_var(gl._ref_vgap, 2) ngid <> S2(x2).v

pc.source_var(s2(x2)._ref_v, 2)

Performance: Traub model

Pittsburgh Supercomputing Center 30 U‘l Hm;;é" P 1 b AR LR U I i
i 280 ‘H,i'
Bigben Cray XT3 210 l_\‘/

2068 2.4 GHz Opteron Processors 140 li‘\..‘{.“.ﬁ ‘ l“\'” |”m u“u

1024 — " g

0 100 150 200

Traub et. al. (2005) J. Neurophysiol 93: 2194

A single column thalamocortical network model
exhibiting gamma oscillations, sleep spindles and
epileptogenic bursts.

256
@® Runtime
64 ~~ lIdealruntime a-
= Spike exchange time
® \I Mean, max, min Computation time ~-e

16 |-
-|- Mean, max, min variable transfer time

3560 cells 14 types
4+~ 3500 gap junctions
5,596,810 equations
73,465 spikes
1,122,520 connections
-

19,844,187 delivered

| | | | | J
25 50 100 200 400 800

#CPU]

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 127

Using NEURON to Model Cells and Networks

Performance: Traub model with multisplit

1024

256

64

16

Page 128

80

60

3000 4000 5000

Complexity
| e Runtime 4058 pieces
o Computation time 26.1
\ 18.7
— Whole cell balance \\(1) 132
Multisplit, No Gap Junctions ’
— m Multisplit, With Gap Junctions
L | | | | | |
32 128 512 2048
CPUs

2017

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Don't reinvent the brain

Using ModelDB and other archives for your research

Robert A. McDougal
Yale School of Medicine

11 November 2016

What is ModelDB?

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 129

Using NEURON to Model Cells and Networks 2017

from neuron import h, rxd
import neuron.rxd.node as node
from matplotlib import pyplot
import time

S ol = [16 ModolDB I e

u) :
L‘i’“ Amyloid beta (IA block) effects on a model CA1 pyramidal cell (Morse et al. 2C h.1load_file("stdrun.hoc')
Register Download zp e Auto-launch e SRR

Find models by Help downloading and running models
ol name

Model Information Model File Citations Model Views @ Simulation Platform = 3D print

Accession:87284

n
dend. connect (soma)

“The model simulations pr in CA1 pyramidal to by amyloid beta block
dend.L = 50
channel, IA. See paper for details. f
dend.diam
Reference:

dend_nsey
1. Morse TM, Camevale NT, Mutalik PG, Miglore M, Shepherd GM (2010) Abnormal excitabilty of oblique dendites implicated in early Alzheir L

computational study Front. Neural Circuits 4:16 [Pubec] def print_fodes():
Model Information (Click on link to find ofher models with that property) print ', '.join(str(v) for v in node._states)
Model Type: Neuron or other slectrically excitable cell
print 'defining rxd’
region = rxd.Region(h.allsec(), nrn,
ca = rxd.Species(region, name='ca’,
reaction = rxd.Rate(ca, -ca * (1 -

Brain Region(s)/Organism:

Call Type(s): Hippocampus CA1 pyramidal cell initial

Channel(s): | Nat; I L high threshold; | N; | T low threshold; | A; 1K; | b

Gap Junctions: print 'initializing'
. o h.finitialize()
Realistc Network

Gene(s):

root: soma Morse et al. 2010

caion XY xz vz
#cacum

Morse TM, Camevale NT, Mutalik PG, Migliore M, Shepherd GM (2010) Abnormal
excitabilty of oblique dendrites implicated in early Alzheimer's: a computational study Front

" Neural Circuis 416 uotied
* cagk (cagk.mod)

References and models cited by this paper References and models that it this paper
* cal (cal2.mod) this pap S pap
#can (can2.mod) amyloid peptides accumulation on CA1 pyramidal

*cat (cat.mod)

ds (distemod)
¥hd (h.mod)
“kad (kadist.mod)

gkabar

*kap (kaprox.mod)
*kdr (kdrcat.mod)
¥na3 (na3n.mod)

kad.gkabar

200 400 00 800

200 0 200 400 6w
o 00 oo e Distance from root

N
o 0313714

In action pofental propagaton n CAT pyramidal i

dendrtes. cuma
e

+Roles ofA) and morphology in AP prop. in CA1
2007

Front Comput Neurosci §:52 el Puses)

+ CA1 pyramidal neurons: effects of Alzheimer

[Model]

" Ra, ines ML Shepherd G
vies P, Flood D, (2015) ModelView or ModelDB: online presentaton of
70 s

clors that may underle these.
changs. Prog Neurobiol 55:595.609 Puies)

apic and

Pusied
computational
Moden

tructural analysis of
els (McDougal et al. 2015)

modeldb.yale.edu

J Comput Neurosci
DOI 10.1007/s10827-016-0623-7

Twenty years of ModelDB and beyond: building essential
modeling tools for the future of neuroscience

Robert A. McDougal' - Thomas M. Morse' - Ted Carnevale' - Luis Marenco ' «
Rixin Wang** - Michele Migliore'* « Perry L. Miller>** - Gordon M. Shepherd" -
Michael L. Hines'

Received: 9 June 2016 /Revised: 17 August 2016 / Accepted: 30 August 2016
© Springer Science+Business Media New York 2016

groups (Allen Brain Institute, EU Human Brain Project, etc.)
are emerging that collect data across multiple scales and inte-
grate that data into many complex models, presenting new

Abstract Neuron modeling may be said to have originated
with the Hodgkin and Huxley action potential model in 1952
and Rall’s models of integrative activity of dendrites in 1964.

Page 130 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

What is in ModelDB?

Models for:
° 178 Ce” types i Hlppommpu CA1 pyramidal cell
. Detmled Neuronal Models
@ 16+ species I L high threshold ==

. Ac‘uon otentlals < “f“"'u.,,,,w
@ 48 ion channels, pumps, etc

@ 139 topics (Alzheimer's, STDP, etc) \\\\\m‘\ I M g
))) \\\\\0\\\ A k \(+ P
@ 25+ mammalian brain regions NE URON
XPF
1134 published models from 76 VI Pythop 4 o\d
: p 1 PO’aSslum I oW mycs\\o\
simulators Tesnporal Pates Kool a t\ "\ TR i
T COICRPNATT ARGy Dend
@ 544 NEURON models Simplified) Models \)at'ledﬁt‘\sm“'\cs
. =" W
@ 318 “realistic” networks 101(115&; 1KC i
netjcg

@ 45 connectionist networks

Numbers are as of October 24, 2016

Why use ModelDB?

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 131

Page 132

Using NEURON to Model Cells and Networks

On reproducibility

“Non-reproducible single occurrences are of no significance to science.”

— Karl Popper in The logic of scientific discovery, 1959.

What is needed for a model to be reproducible?

Model

@ an approximation of the system of interest
e.g. a model organism or a complete statement of the properties of the
model in mathematical or computable form

Experimental protocol

@ what was done with the model to produce the data

Science builds upon previous work; in order to do that, the previous work needs to
be reproducible.

Models are complicated

100+
50 to 99 5%
6.7%

>100 K

P
|

Files per Model File Size

@ 38.5% of ModelDB models have over 20 files; 24.2% of files are over 5K.
@ It is often hard to fully describe this complexity in a paper.

@ Any bugs, typos, errors, or omissions might completely change the dynamics.

Distributions from ModelDB, Fall 2013. A model was counted as having 0 files if it was not hosted on ModelDB.

2017

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Model sharing helps, but only reuse what you understand

The easiest way to replicate someone else’s results — a first step toward building
on them — is to get their model code from a repository such as ModelDB.
But beware:

@ They may be solving a different problem than you (with respect to species,
temperature, age, etc).

@ Their code may have bugs.

To reduce the risk of problems:
@ Read the associated paper.
@ Compare the model and results to other similar models.
e Examine the model with ModelView and/or psection.
@ Test ion channels individually.

@ Collaborate with an experimentalist.

Reproducibility in Computational Neuroscience
Models and Simulations

Robert A. McDougal, Anna S. Bulanova, William W. Lytton

Abstract—Objective: Like all scientific research, computational build novel theoretical frameworks. A century ago, work by
neuroscience research must be reproducible. Big data science, Lapicque led to the development of integrate-and-fire models
including simulation research, cannot depend exclusively on [4]. A half century later, Hodgkin and Huxley provided a

j 1 articl th thod t ide the shari d
Jt::;:;?ar:;c;c ::qsisred zorn:-eepr(:)ducoibill)ilgrw ¢ the sharing an@ 4etailed multiscale biophysical model of the squid axon [2],

e Simulators (NEURON, MCell, XPPAUT, NEST, etc)

e Multi-simulator interoperability (NeuroML, SWC, PyNN, NeuroConstruct,
etc)

@ Shared resources (Neuroscience Gateway, Simulation Platform)
@ Sharing resources (ModelDB, OpenSourceBrain, NeuroMorpho.Org, etc)
@ More: NSDF, NeuroLex, NIF, MIASE, licensing, etc

McDougal et al (2016) IEEE TBME 63(10):2021-2035; doi:10.1109/ TBME.2016.2539602

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 133

Using NEURON to Model Cells and Networks 2017

Neurobiological context

Morphology Metadata NeuronDB

@ NeuroMorpho ore @ cell types, channels,
i e s receptors, genes,

transmitters, model

topics, publication

Electrophysiology M0d9| Entry

20

_ Metadata associated with
ModelDB is a place to see what CA1 Pyramidal Cell Models (n = 71)

has been modeled in a cell type.
1 L high th(eS‘“O\d

I Potassium

IT lmxtl&csho
Not only can you get code, but

by comparing models, you can

see what mechanisms are ‘M
considered critical by the

community.

Page 134 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017

Using NEURON to Model Cells and Networks

How to use ModelDB

Finding models

hin Q

hinf

hinf-h

hines

hinton.hoc

hint

Authors

Hines ML

Hines M

Cell Type
Entorhinal cortex stellate cell
Region
Entorhinal cortex

Transmitter
Norephinephrine
Ephinephrine
Dynorphin
Receptor
Dynorphin
Concept
Tutorial/Teaching

t -
View all
>

Olfactory Mitral Cell (Shen et al 1999)

Arteriolar networks: Spread of potential (Crane et al 2001)
Olfactory Mitral cell: AP initiation modes (Chen et al 2002)
Local variable time step method (Lytton, Hines 2005)
Olfactory bulb mitral cell: synchronization by gap junctions
(Migliore et al 2005)

Discrete event simulation in the NEURON environment (H
and Carnevale 2004)

Spatial gridding and temporal accuracy in NEURON (Hines and

Carnevale 2001)

Search box on the top-left of every page.
Do full text or attribute searches.

Word completions (based on ModelDB entries not English) and attribute results updated as you type.
Advanced search and browsing are also available.

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

ines

Page 135

Using NEURON to Model Cells and Networks 2017

ShowModel features

(@)

i

ModelDB])

Amyloid beta (IA block) effects on a model CA1 pyramidal cell (Morse et al. 2010)

- (3) vt
, i e e e o
== el S B A el o) X -
o= e _ 1)
(2)- |
= R (12)
. (13)

Other rsources.

o [E

(1) Search models. (2) Browse models. (3) Link to download the entire model code.

(4) Auto-launch a NEURON simulation (requires browser configuration). (5) View model files.
(6) Find models and papers cited by this model’s paper, or that cite this model. (7) ModelView:
visualize model structure. (8) Simulation platform (5 minutes of remote desktop access to
experiment with the model). (9) 3D printable versions of cells from the model (in 3DModelDB).
(10) Description of model. (11) Paper(s) describing or using model. (12) Searchable metadata.
(13) Links to NeuronDB (channel distributions etc within cell types).

ShowModel features

Amyloid beta (IA block) effects on a model CA1 pyramidal cell (Morse et al. 2010)

Download zip file Auto-launch

Help downloading and running models

Model Information Model File Citations Model Views @ Simulation Platform ~ 3D Print
Download the displayed file (1 4)
o/ This is the readme for a model used in the paper
O CA1_abeta Morse TM, Carnevale NT, Mutalik PG, Migliore M, Shepherd GM (2016
O translate Abnormal excitability of oblique dendrites implicated in early
Alzheimer's: a computational study Front. Neural Circuits 4:16
& readme html v

@ cacumm.mod
& cagk.mod *
B cal2.mod *
Bcan2.mod *
B cat.mod *

@ distrmod *

™ h.mod

B ipulse2.mod *
B kadist. mod

[kaprox.mod
B kdrcal.mod
@ na3n.mod

@ naxn.mod *

(15)

The model code was contributed by Tom Morse. It was created (see
paper for details) from earlier models (especially Migliore et

al. 20e5 and calcium channels from Hemond et al. 2e@8) with
modifications and additions by Tom Morse and Ted Carnevale with
interaction with the other authors. It requires the NEURON simulator
to be installed (available at http://www.neuron.yale.edu). (1 6)
To recreate figures from the paper, start the simulator by

auto-launching from ModelDB *OR*

Under unix systems:

In the expanded archive's folder compile the mod files using the
command "nrnivmodl"

run the simulation with the command "nrngui mosinit.hoc”

Under Windows systems:

Compile the mod files using the "mknrndll" program.
A double click on the simulation file

mosinit.hoc

(14) Download the currently selected file. (15) Directory browser, showing model files.
(16) View pane for the currently selected file.

Page 136 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

|dentifying existing reuse

Amyloid beta (IA block) effects on a model CA1 pyramidal cell (Morse et al. 2010)

Download zip file Auto-launch
Help downloading and running models

Model Information Model File Citations Model Views # Simulation Platform ~ 3D Print

Download the displayed file

Other models using cagk.mod:

o/ This is the rea ‘A model of unitary responses from A/C and PP synapses in CA3 pyramidal cells (Baker et al. 2010) B
B CA1 pyramidal neuron: effects of R213Q and R312W Kv7.2 mutations (Miceli et al. 2013)
O CA1_abeta Morse T CA3 pyramidal neuron (Safiulina et al. 2010)
O translate Abnory ita CA3 pyramidal neuron: firing properties (Hemond et al. 2008)

o

eime: Neuronal dendrite calcium wave model (Neymotin et al, 2015)

b readme.html 1
D cacumm.mod The model code was contributed by Tom Morse. It was created (see

b cagk.mod * paper for details) from earlier models (especially Migliore et
al. 2005 and ca . i
@ cal2.mod * modifications aj Other models using naxn.mod:

. interaction wit] CA1 pyramidal neuron: effects of R213Q and R312W Kv7.2 mutations (Miceli et al. 2013)
b can2.mod to be installed| CA1 pyramidal neuron: functional significance of axonal Kv7 channels (Shah et al. 2008)
@ cat.mod * CA1 pyramidal neuron: rebound spiking (Ascoli et al.2010)
& distr.mod * To recreate figd CA1 pyramidal neuron: schizophrenic behavior (Migliore et al. 2011)

e auto-launching CA1 pyramidal neuron: signal propagation in oblique dendrites (Migliore et al 2005)
B h.mod Under unix syst CA1 pyramidal neurons: binding properties and the magical number 7 (Migliore et al. 2008)

* ----] CA1 pyramidal neurons: effect of external electric field from power lines (Cavarretta et al. 2014)
B pulse2.mo In the expanded| CA1 pyramidal neurons: effects of Alzheimer (Culmone and Migliore 2012)
D kadist.mod commandgains

CA1 pyramidal neurons: effects of Kv7 (M-) channels on synaptic integration (Shah et al. 2011)
D kaprox.mod CA1 pyramidal neurons: effects of a Kv7.2 mutation (Miceli et al. 2009)

- . Ca1 pyramidal neuron: reduction model (Marasco et al. 2012)
b kdrcal.mod Under Windows sY Effect of the initial synaptic state on the probability to induce LTP and LTD (Migliore et al. 2015)
@ na3n.mod Compile the mod| Effects of electric fields on cognitive functions (Migliore et al 2016)

i Neuronal morpholo oes digital ... (Parekh & Ascoli 2013,
& naxn.mod * A double click phology g g ()

run t at:

mosinit.hoc Spine head calcium in a CA1 pyramidal cell model (Graham et al. 2014)
b zcaquant.mod will open the T
b aBeta.hoc Under MAC 0S X:

Asterisks in the file browser indicate that the file is reused in other models; click
the asterisk to see a list of the other models.

|CGenealogy: ion channel metadata

General data
Model Information Model File Citations Model Views # Simulation Platform * 3D Print

e ICG id: 2464

Download the displayed file

e ModelDB id: 87284
- [o Reference: Morse TM, Carnevale NT, Mutalik PG, Migliore M,
: Calcium activated K channel H i ili i i
oCAL sbea S e > s i 2 Shepherd GM (2010): Abnormal Excitability of Oblique Dendrites
Otranslate s Implicated in Early Alzheimer's: A Computational Study.
b readme il {mtor) = (iter)
© cacumm.mod Metadata classes
Dcagkmod * s ¢
b gal2.mod * (V) = (millivolt) .
—— (mA) = (millianp) e Animal Model: rat
Deanzmod * () = (millinolar) " .
betmed) e Brain Area: hippocampus, CA1
Ddistrmod * NEURON { e Classes: KCa
ehmod e e e e lon Type: K
Bipulse2.mod * USEION I READ ok WITE ik e Neuron Region: unspecified
D kadistmod Gloacoint, tas o Neuron Type: pyramidal cell
wkaprox.mod e Runtime Q: Q4 (slow)
D kdreal.mod TS Subt) " ified
FARADAY = (faraday) (kilocoulombs) e Su e: not specifiet
B nadn.mod R x 8.313424 (Joule/dege) yp P
Dnaxn.mod * 1 .
1 zeaquantmod PARAMETER { Metadata generic
celsius (degC)
DaBetahoc M " .
paieian o™ gty woton prssnisy o Age: 7-14 weeks old.
add_ca.hoc cai) . i ;i ifi
15bAP. peak vecs.hoo W e Comments: Falclum activated k channel, modified from
1c91662.s65 moczydlowski and latorre (1983). From hemond et al. (2008),
1C91662_Link.txt 503 (o) model no. 101629, with no changes (identical mod file). Animal
D ond_reporthoc - e) model taken from chen (2005) which is used to constrain model.
1 control_boxes.hoc bbar = .48 (/ns) Channel kinetics from previous study on hippocampal pyramidal
w distribute_currents.hoc N st=l @ neuron (hemond et al 2008)
nfiglipg ! .
ASSTGNED :
ufig2jpg D seny e Runtime: 76.722

When viewing most mod files describing an ion channel, an ICGenealogy button
appears. Clicking this button loads the corresponding page of the ICGenealogy
database which shows curated information about the channel model (how it was
derived, information about the underlying data, etc) and response curves.

Podlaski, Seeholzer, Vogels

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 137

Using NEURON to Model Cells and Networks

ModelView

Amyloid beta (IA block) effects on a model CA1 pyramidal cell (Morse et al. 2010)

Download zip file Auto-launch
Help downloading and running models

Model Information Model File Citations @ Simulation Platform ~ 3D Print

Accession:87284

The model simulations provide evidence oblique dendrites in CA1 pyramidal neurons are susceptible to hyper-excitability by amyloid beta block of the transient K+
channel, IA. See paper for details.

Reference:

1. Morse TM, Carnevale NT, Mutalik PG, Migliore M, Shepherd GM (2010) Abnormal excitability of oblique dendrites implicated in early Alzheimer's: a
computational study Front. Neural Circuits 4:16 [PubMed]

Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal cell;
Channel(s): | Na,t; I L high threshold; | N; | T low threshold; | A; | K; I h;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Active Dendrites; Detailed Neuronal Models; Pathophysiology; Aging/Alzheimer's;
Implementer(s): Carnevale, Ted [Ted.Carnevale at Yale.edu]; Morse, Tom [Tom.Morse at Yale.edu];

Search NeuronDB for information about: Hippocampus CA1 pyramidal cell; | Na,t; | L high threshold; | N; | T low threshold; | A; | K; | h;

Morse et al. 2010 -2 root: soma -2

194 sections; 974 segments ' X-Y X-Z Y-Z

#1 cell with morphology

"0 artificial cells

"0 NetCon objects

"0 LinearMechanism objects

®Temperature: 35°C
¥ Density Mechanisms

¥1 point processes (0 can
receive events) of 1 base
classes

#7 files shared with other
ModelDB models

¥ References 200 0O 200 400 600

Page 138

McDougal et al, Neuroinformatics 2015

2017

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017

b Morse et al. 2010

E'Density Mechanisms
18 mechanisms in use
Ra
cm
pas
na_ion
k_ion
ca_ion
cacum (cacumm.mod)
READs: ica
WRITES: cai,
Nonspecific Current
Present in 193 sections
“cagk (cagk.mod)
READs: cai, ek
WRITEs: ik
Present in 193 sections

Possibly temperature
dependent

¥ cal (cal2.mod)

Morse et al. 2010 - |

0.35
0.30
0.25
©
£0.20
©
X
©0.15

e}
Lo.10

apic[38](0.681818)
(6362, -6.100, -64.31)
gkabar = 0.246790

200 400 600 800

a Morse et al. 2010 = | root: soma =]
“ o UL valuss Ut sy
=18 inserted mechanisms XY Xz Y-z
Ra
cm
¥pas
®na_ion
'k _jon
ca_ion
#cacum (cacumm.mod)
#reagk (cagk.mod) e [5010.833333)
¥cal (cal2.mod) (520.5, -28.46,
“can (an2ma)
¥ cat (cat.mod) present:
ds (distr.mod) 200 0 200 400 CR,:
#hd (h.mod) pas
¥kad (kadist.mod) ;:a;éf]"
#kap (kaprox.mod) ca_ion
®kdr (kdrcal.mod) Eg;‘;‘“
#na3 (na3n.mod) cal
¥ nax (naxn.mod) = E::‘
ds
hd
kad
kap
kdr
na3
McDougal et al, Neuroinformatics 2015
Morse et al. 2010 - root: soma -
“can (can2.mod) XY Xz Y-Z
gcanbar
Zcat (cat.mod)
gcatbar
ds (distr.mod)
“hd (h.mod)
ghdbar
vhalfl
“kad (kadist.mod)
gkabar
“kap (kaprox.mod)
gkabar
“kdr (kdrcal.mod) 0 0.313714
gkdrbar
“na3 (na3n.mod)
sh
gbar
ar

nax (naxn.mod)

McDougal et al, Neuroinformatics 2015

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

Distance from root

Using NEURON to Model Cells and Networks

Page 139

Using NEURON to Model Cells and Networks

Morse et al. 2010

=7 files shared with other
ModelDB models
“cagk.mod
A model of unitary

responses from A/C

and PP synapses in
idal

CA3 pyramidal cells
(Baker et al. 2010)
CA1 pyramidal

neuron: effects of

R213Q and R312W
Kv7.2 mutations

(Miceli et al. 2013)
CA3 pyramidal neuron
(Safiulina et al. 2010)

CA3 pyramidal
neuron: firing
properties (Hemond et
al. 2008)

¥ distr.mod

¥ cal2.mod

¥ can2.mod

¥ cat.mod
"ipulse2.mod
® naxn.mod

McDougal et al, Neuroinformatics 2015

2017

Morse et al. 2010 - |

(Hemond et al. 2008)
¥ distr.mod
¥ cal2.mod
¥ can2.mod
¥ cat.mod
ipulse2.mod
¥ naxn.mod
“References

Paper in Front. Neural
Circuits

ModelDB Entry
“Run Protocol

= Compiling
cd CA1_abeta
nrnivmod|

“'Launching NEURON
nrngui -python

'ErRunning
from neuron import h
h.load_file("mosinit.hoc")
h.figland2()

What described where?
Beware: comments, if statements.

Static

Analysis of
Source Code

Metadata
from
ModelDB

Simulator?
Papers?
Species?
Channels?
Context?

Page 140

ModelView

Simulator
Introspection

Ask the simulator what it did.
What morphology?
What mechanisms?

Provides structured data from
unstructured code.

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

How do people use ModelDB?

@ Find a model described in a paper, download it, and experiment to
understand the model’s predictions.

@ Find a model described in a paper. Use ModelView to understand the
model’s structure.

@ Locate models and modeling papers on a given topic.
@ Locate model components (e.g. L-type calcium channel) for potential reuse.

@ Search for simulator keywords (e.g. FlnitializeHandler) to find examples of
how to use them.

You can help by sharing your model code on ModelDB after publication.

Sharing your models

Q

ModelDB |ESinToste
MEIEDEHEP ModelDB provides an accessible location for storing and efficiently retrieving computational
Useraccount i T iy i -

ECLURACEEN || occience models. ModelDS is tightly coupled wi . Models can be coded in any

s language for any environment. Model code can be viewed before downloading and browsers can be
Registe: set to auto-launch the models. For further information, see model sharing In genaral and ModzIDB In particular.
Find models by

Browse or search through over 1000 models using the navigation on the left bar or in the menu button on a mobile device. To

e search papers Instead of models, go here: this may be Used to identify models whose paper cites of Is cited by a given paper.

First author

Tweets o gsensoiavprose

Region(circuits;

SenseLab (S Project
New in #ModelDB: A Layer V CCS type pyramidal cell,
inhibitory synapse current conduction (Kubota Y et al.
2015)

modeldb.yale.edu/183424

Find models for
Celltype

SenseLab @Sensel abProiect 5

Embed View on Twitte

o WG

@SenssLabProject How to cite ModelDB ModelDB Credits

Copyrght 2018 Shepherd Lab. Yele Universty.

Neut slar junctions
Axons

Other resources
ModelDB related
esources

els in mercurial

McDougal, Dalal, Shepherd in preparation

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 141

Using NEURON to Model Cells and Networks

Sharing your models

search
Advanced search

ModeIDB Help
User account

Login

Register

Find models by

Model name

First author

Each author
Region(circuits)

Find models for

Cell type

Current

Receptor

Gene

Transmitters

Topic

Simulators

Methods

Find models of

Realistic Networks
Neurons

Electrical synapses (gap
junctions)

Chemical synapses

Ion channels
Neuromuscular junctions
Axons
Other resources
ModelDB related resources

Computational neuroscience

-
OLEE ModelDB

Submit New Model

Required information:

Your full name:

[Email

Your email address:

Zip file of model code: | Choose File | No file chosen

Read-Write access code (15 character max): X
Us

a password to only access this model

PubMed ID(s) or citation(s) associated with the model:
Only required for publicy shared models
Gitation(s) can be in any bibliographic format 4

You may with just the above information, but to make your model more discoverable, please fill out as much of the next section as you can. Hofe

Your model will remain private until you request the ModelDB administrator make it public.

Let us find ModelDB keywords for yol

Click the button to automatically find, approve, and populate model entry keywords based on your paper abstract.

Additional information: wore information wi help your model more discoverable:

McDougal, Dalal, Shepherd in preparation

Sharing your models

Automatic keyword identifier

Please paste your paper abstract here.

The integrative properties of cortical pyramidal dendrites are essential to the neural
basis of cognitive function, but the impact of amyloid beta protein (abeta) on these
properties in early Alzheimer's is poorly understood. In animal models,
electrophysiological studies of proximal dendrites have shown that abeta induces
hyperexcitability by blocking A-ype K+ currents (I(A), distupting signal Integration.
The present study uses a computational approach to analyze the hyperexcitabilty
induced in distal dendrites beyond the experimental recording sites. The results show
that back-propagating action potentials in the dendrites induce hyperexcitability and
excessive calcium concentrations not only in the main apical trunk of pyramidal cel
dendrites, but also in their oblique dendrites. Evidence s provided that these thin
branches are particulariy sensitive to local reductions in I(A). The results suggest the
hypothesis that the oblique branches may be most vuinerable to disruptions of I(A) by
early exposure to and point the way to further experimental analysis of these
actions as factors in the neural basis of the early decline of cognifive function in
Aizheimer's.

Cancel [T

Page 142

McDougal, Dalal, Shepherd in preparation; abstract from Morse et al, 2010.

2017

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Sharing your models

Automatic keyword identifier: results

Deselect keywords that do not describe the model, then press the button to accept the
rest.

@ Neuron or other electrically excitable cell

¥ Dendritic Action Potentials

1 Potassium

¥ Action Potentials

¥ Calcium dynamics

“iA

@ Active Dendrites

9 Aging/Aizheimer's

Accept selected keywords

McDougal, Dalal, Shepherd in preparation

Sharing your models

e .. 25
Advanced search [T senseLab | ModellDB | {[SmTooe]
B

Other Neuron [

Model Neurotransmitters [[y |
Other Neurotransmitter ‘7‘
Model Receptors l:l
Other Receptor [

Model Currents. x| Potassium
xIA

Other Current T

Other Gene T

Model Type x Neuron or other electrically excitable cell|
v

Other Model Type I |

Model Concept x Dendritic Action Potentials
X Action Potentials

X Calcium dynamics

X Active Dendrites

X Aging/Aizheimer's
¥
Other Concept [|

©Other Simulator ‘ ‘

McDougal, Dalal, Shepherd in preparation

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 143

Using NEURON to Model Cells and Networks 2017

Other resources

NeuroMorpho.Org

@ NeurovMorpho.Or‘g} @

Version 6.1 - Released: 05/13/2015 - Content: 31982 neurons

Include Signature
Get above files zipped |

L Details about selected neuron
NeuroMorpho. ID : NMO_01837 .

i Tools p Miscellaneous p Import 3D

@ NeuroMorpho.Org is home to 50,356 reconstructed neurons from 212 cell
types and 37 Species as of october 24, 2016.

@ Warning: not every morphology was reconstructed with the intent of being in
a simulation. Before using: rotate to check for z-axis errors, check to make
sure the diameters are not all equal.

@ Use the Import 3D tool to import morphologies into NEURON. For details,
see: neuron.yale.edu/neuron/docs/import3d

Page 144 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Channelpedia (Channelpedia.epfl.ch)

@ Home to information
about ion channels.

@ Many channels have
one or more
associated models

, : (e.g. different

species or cell types);

e = all are downloadable

as MOD files.

@ Shows gating
variable and channel
response to voltage
clamp for each
model.

Campus Plaine, C. P. 231, B-1050 Brussels, Belgium. [more!

jnml BIOMDOOOO0O00073_LEMS.xml —-neuron

Biomodels model (SBML) —» LEMS model —» MOD file

jnml -sbml-import BIOMDO000000073.xml 1000 5

@ Biomodels is a systems biology model repository.

@ Models are in SBML but can be converted to MOD files via e.g. jNeuroML
(github.com/NeuroML /jNeuroML). Test converted models before using in a
larger model. Edits will likely be necessary to get them to interoperate with
other mechanisms.

@ A native SBML importer for NEURON's rxd module is under development.

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 145

Using NEURON to Model Cells and Networks 2017

Open Source Brain (OpenSourceBrain.org)

B enerate NEURON (o0 gy 210 . _
€l Generate Genesis Dutput | Ganerate | Whalisation | Bpart
| resions cellGraus

opensourceBRAIN (D File |Project settings Tools. Hel
 Genrats psitons uetwor fff— L

Purkinje Cell pe schutter and Bowe

Pyn

o List Previous Simulations
Data Set Manager
G
Orvon| @ 0SB0 Esplorer~ Wk Otrriools = odelcomponeris

ML of the Purkings
M. (1994). Based on Amd Rol
o NEURON,

Description » T

cellTypesinprojects |

ChanneluL fls need to be updated to post v1.7.3 format (though

they stil work s with swieting XSt mappings for NEURON &

Eness)

purk2 Somaonly Somaonly_all Somaonly_ca
Somanly_CaP Somaonly_CaT Somaonly KA Somaonly_kdr|

cetlGroups: [samplecelicroup o

Group AllchanscML

Con Bothsimulators Allchans
AllchansBothsims Bigcell Bigcell-RecordAlisegs

Simulation Configurations:

Project File Version: euroCanstiuct v1.5.3

An initial implementation in NeuroML of the Purkinje Cell model from De Schutter, E. and Last modified: 1222340, Thursday August 27, 2015

Bower, J. M. (1994). Based on Arnd Roth el al's conversion of the original GENESIS code to

@ Open Source Brain promotes collaborative model development via github.

@ Models are typically in NeuroML or neuroConstruct format; neuroConstruct
(neuroConstruct.org) converts both formats to NEURON.

@ The conversion process places different ion channels in different MOD files,
which allows extracting model components.

NeuroElectro (NeuroElectro.org)

%‘E YlewrsoElectro/\ NeuroElectro Publications

About Neuron Types Electrophysiology Properties Articles FAQs Data/AP| Contribute

resting membrane potential
Common definition: Membrane potential at the onset of whole-cell recording
Electrophysiological values of resting membrane potential across neuron types from literature:

Standardization criteria:
» Values unchanged from those reported. Refer to individual articles for specific definitions and calculation methodologies.

Legend: .

« Blue dots = text-mined values human curated; Orange dots = text-mined values not human curated View data in table form
Interactiviy:

= Mouse over neuron report data points and click to view corresponding publication @ Report miscurated data

« Click on neuron name axis labes (e.g. Dentate gyrus granule cell) to view corresponding neuron page

« Zoom in on a section of plot by dragging cursor. Zoom out by double clicking on plot.

Value: -57.79 (mV)

35 Neuron CAL pyramidal cell
-40 Differential corticosteroid modulation of inhibitory synaptic currents
45
50 -
-60
65

Title:
e in the dorsal and ventral hippocampus. oo

.
of Authors: Maggio N; Segal M
Iy . Journal: J. Neurosci., 2009 3
. o8
°8 oo o 8
L] 0
° L

0§ e La

oo *Beg o Yoo 8 00
o DECHRRAN=id
N .

.

.

s ses

75
-80
-85 .
90
95

-100
105

@ NeuroElectro archives experimentally measured electrophysiology values for different cell
types; it shows the spread and allows comparing values across different cell types.

@ Read the paper associated with a value to understand: species, experimental conditions,
etc.

Page 146 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

SenselLab (senselab.med.yale.edu)

]

j Mg ‘

NeuronDB

Userpublic

| oveniew | pataiseatch | plus Connecivity | plus Classical | modeis. |

Hippocampus CA1 pyramidal cell

e
Neuron Type: principal

Organism: Vertebrates
ElectroPhysiology: NeuroElectro.org
Pharmacology: IUPHAR
Reconstructions: NeuroMorpho.Org
Genes Allen Brain Atlas - Links

it

aba LNat
— LT low threshold

i - Genes: Human Brain Transcriptome
y NeuroLex:
Microcircuit: Hij campal Microcircuit
q \ A Connectivity: Live connectivity specified by colored boxes. Dark yellow: distant connectivity. Light yellow: auto connectivity
s o _
- ’ . Input Receptors Intrinsic Currents Output Transmitte
Distal apical dendrite CAI oriens alveu Axon terminal. Gaba
(U]

AMPA A

NMDA N
Perforant pathway entorhinal pyramidal neuron terminals () Glutamate | | high threshold

BiModelDB i

mstiae
o]
-
el

= Middle apical dendrite CAI oriens alveu: Axon terminal. ILNat
g CAl oriens alveus i Axon terminal LT low threshold
H CA3 pyramidal cell Axon terminal. Glutamate NMDA | | Potassium

@ Senselab is a suite of 10 interconnected databases (listed at left).
@ ModelDB and NeuronDB (at right) are the most useful for modeling.

@ NeuronDB shows what channels are present and the inputs and outputs by
cell region (e.g. distal apical dendrite vs proximal apical dendrite).

Stay up to date

Many groups announce new developments on Twitter, including:
@ Senselab (including ModelDB): @SenselLabProject
@ Open Source Brain: @OSBTeam
@ NeuroMorpho.Org: ©@NeuroMorphoOrg
@ |CGenealogy Project: @ICGenealogy
@ Int. Neuroinformatics Coordinating Facility (INCF): @INCForg

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 147

Using NEURON to Model Cells and Networks 2017

Page 148 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Modeling neuronal
reaction-diffusion

Robert A McDougal
7 June 2017

Neurons generate action potentials by moving ions across their membrane.

soma(0.5).v

—/_/k soma(0.5).ik

{Model from Safiulina et al 2010; ModelDB 126814). Soma(o . 5) -1na

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 149

Using NEURON to Model Cells and Networks 2017

A neuron is not a transistor

https: wikimedia. i/File: transistor.png
Neuron from Pyapali et al 1998 via http: _info.jsp?neuron_name=n123

\

Dendrites ° Microtubule Synapse
Neurofibrils
Neurotransmitter

Synaptic vesicles

Synapse (Axoaxonich_

. S—
Synaptic cleft s
Axonal terminal

Receptor
-

Rough ER
(Nissl body)

Polyribosomes Node of Ranvier

Ribosomes
patic)

Golgi apparatus

Myelin Sheath

(Schwann cell)

Nucleus
Nucleolus (Niucleus

Membrane N (Schwann cell)

Microtubule %= E
2

ondrion \ . "/
Vv

Smooth ER

I Synapse £ ‘
(Axodendritic]

X Microfilament
Microtubule
Axon

‘ Dendrites

ittos:TPen.wikivedia.ore/wiki/Neuron#/meuia/File:Comolete neuron cell diagram en.sve

~U
~N

Page 150 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Neurons have state

(example: protein oscillations in the SCN)

htp: wikimedia iki i ic_Nucleus.jpg

-

Firing rate (Hz)

-
o

N & O ®O

https://en.wikipedia.org/wiki iasmatic_nucleust ile:SCN_mam.jpg

Neurons have state
(example: HAGPA in PFC)

L L L L - [103nA
s S SN NI NS SHJ,EJ,JiHOmV

N S N N . [
H\HT\JWW Lo

20s
Winograd et al 2008

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 151

Using NEURON to Model Cells and Networks

Neurons have state

(example: intracellular calcium)

c

Prespike

. BAPTA (5 mM) + ACPD (100 uM)

Prespike Postspike
I

[1] L

N\ e

"Commanﬂ

- 129
g
- 104
E s
T
5 6
2
£ 44 -
& 2
<
el 0
ACPD ACPD +
d BAPTA
Postspike Prespike Postspike
s
]
- 200 A i
& ;
E 150 E
1
© 1004 il
= i
£ 504 1
o |
<:P<<‘g

Sidiropoulou et al 2009

Neurons have state

(example: synaptic pathways)

2 gEp— O
[Glutamate|——" [WGIR|
Gl e s =
[NVDAR] lcax
Bepolarization <, [Voce —

1k S8 - RS — R — ER— AR}
g/ N
g1 - BRAR

\

[Raei|

£ i coy
Adenylyl gL_ — PR
cyclase 3 {

MR 2t G, [FoEs
or = ()
MR & &

repte |~ [REEREEY| ~ [AMPAR phosphoryation]

N:}m;‘;/, bloche':ﬂ‘ > [Gene transcription|
networ ;

activity | Protein synthesis |

3

Nature Reviews | Neuroscience

Jeanette Hellgren Kotaleski & Kim T. Blackwell 2010.

Page 152

Extracellular
Space

QM Go,-GTP -_‘w |lr FlF__ Dag |lrl |'(
A) O i

Gy

Gprotein-GOP, R @
.
eea,

GDE,

.
@ GTP

1 Cytosol
’ @ ’
SERCA l:‘) oxc 10 1,
i} . 'IP,E gated Cai* ,l
(o) channels ER

o
° o.. e o o

Minchul Kang and Hans G Othmer 2007.

‘o @ i . PKC*

2017

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

How do we model this?

“Reaction—diffusion systems are mathematical models which
explain how the concentration of one or more substances
distributed in space changes under the influence of two
processes: local chemical reactions in which the substances are
transformed into each other, and diffusion which causes the
substances to spread out over a surface in space.”

httos://en.wikioedi: i/1 % ion svstem

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 153

Using NEURON to Model Cells and Networks

Mass-Action kinetics

The model

* A reaction’s product is formed at a rate proportional to

the concentration of the reactants.

2017

Example Conservation of mass.
* Consider the reaction o
k Matter is neither created
Na + Cl = NacCl nor destroyed by
reactions.
* Then:
In our equations, this
[Na]’ = —k[Na][C]] means:
[Cl]" = —k[Na][CI]
[NaCl]’ = k[Na][CI] [Na] + [NaCl] = constant
[CI] + [NaCl] = constant
Example

Using the law of mass-action, we can write a system
of equations describing the formation of calcium
chloride:

Ca+2Cl 2 CaCl,

[Ca]’ = —kg[Ca][Cl]? + kp[CaCl,]
[CI]’ = —2k; [Cal[CI]? + ky [CaCl,]
[CaCl,]" = 2ks[Ca][Cl]? — kp[CaCl,]

Page 154 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017

Using NEURON to Model Cells and Networks

Enzyme kinetics

It is generally not the case that a substrate transforms directly into a product:

S->P

Instead, an enzyme is often involved:

E+S 2 ES —S E+P

Concentration

https: ikimedia iki is_Menten_S_P_E_ES.svg

Michaelis-Menten

If we can assume either:

* the substrate (S) and the complex (ES) are in instantaneous
equilibrium, or

* the concentration of the complex (ES) does not change on the
time-scale of product formation

Then the rate of the enzymatic reaction reduces to:

Vmax [S]
Ky + [S]

Kj, is called the Michaelis constant. It is the
concentration at which the reaction proceeds at half its
maximum rate.

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 155

Using NEURON to Model Cells and Networks 2017

Michaelis-Menten vs Mass-Action

_ S—P
Mass-Action

Michaelis-Menten
15 Both curves on the left have the

same rate of reaction when the
substrate concentration is low, but
the Michaelis-Menten rate levels
off (due to limited enzyme
availability) as concentrations
increase.

Reaction rate

0.5

0.0 0.2 0.4 0.6 0.8 1.0 X

Concentration of substrate Y= X105

Hill equation: cooperative binding

Vinax [ST" If n > 1, positive cooperativity.
[ka]™+[S]™ If n < 1, negative cooperativity.
1.0 : ; — —_—n =
=7
0.8 =1
n=0.5
0.6
[s]"
1"+ [S]?
0.4
0.2 |
0.0 - L L L L
0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0
[S1

Page 156 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Neurons have spatial extent

Effects of non-point-ness:

* lon and protein
concentrations vary with
space.

* Cellular mechanisms (ER,
ion channels, etc) vary
with space.

Concentrations at different

* Transport
* Diffusion

Cajal 1909 as reproduced in Rall 1962.

Fick’s First Law
and the diffusion equation

Fick’s First Law:
* Diffusive flux is proportional to the concentration
gradient.

J=—-DVg
* Here D is called the diffusion coefficient.

Fick’s Second Law (the diffusion equation):

d
a—(f=\7-(D\7<p)=D|72g0

where the last equality only holds if D is constant.

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

locations affect each other:

Page 157

Using NEURON to Model Cells and Networks 2017

Practical limits of pure diffusion

The expected time E[t] for a molecule with diffusion
constant D to diffuse a distance x is:

So in particular, if
D =1 pm?2/ms and
x =100 um,

Then
E[t] = 22 = 5000 ms.

Diffusion with regenerative dynamics
can quickly spread signals

Adapted from Neymotin et al 2015

Fitzpatrick et al 2009.

Page 158 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Where does diffusion occur?

* Cytosol
* But not full cross section because of organelles

* Organelles (e.g. ER)

* Extracellular space
* Tortuosity
* Anisotropy
* Volume fraction

Calcium in spines

A typical dendritic spine head may
have a volume of 0.5 pm3.

A typical cytosolic calcium
concentration is 100 nM.

At these levels, how many molecules
of calcium are in a dendritic spine
head? What is the percentage
change in concentration if one
molecule leaves the spine head?

htto://dx.doi.ore/10.6084/m9 fieshare.1266444

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 159

Using NEURON to Model Cells and Networks

Reaction-diffusion
in NEURON

Why use NEURON's rxd module?

Reduces typing

@ In 2 lines: declare a domain, then declare a molecule, allowing it to
diffuse and respond to flux from ion channels.
all = rxd.Region(h.allsec(), nrn_region="i")
ca = rxd.Species(all, name='ca', d=1, charge=2)

@ Reduces the risk for errors from typos or misunderstandings.

Allows arbitrary domains

NEURON traditionally only identified concentrations just inside and just
outside the plasma membrane. The rxd module allows you to declare
your own regions of interest (e.g. ER, mitochondria, etc).

2017

Page 160 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

rxd module overview

@ Where do the dynamics occur?
e Cytosol
e Endoplasmic Reticulum
° Mitochondria Interface design principle
e Extracellular Space ’ S—
Reaction-diffusion model

@ Who are the actors? e
specification is independent of:

e lons

o Proteins @ Deterministic vs stochastic.
@ What are the reactions? e 1D or 3D.)
o Buffering

e Degradation
e Phosphorylation

Declare a region: rxd.Region

geometry:

Basic Usage

rxd.inside

cyt = rxd.Region(seclist)

seclist may be any iterable of sections; e.g. a SectionList or a Python list.

Identify with a standard region

rxd.membrane

cyt = rxd.Region(seclist, nrn_region="i")

nrn_region may be i or o, corresponding to the locations of e.g. nai vs nao.

@
O
o

rxd.FractionalVolume(
volume_fraction=f;,
surface_fraction=f,)

Specify the cross-sectional shape

cyt = rxd.Region(seclist, geometry=rxd.Shell(0.5, 1))

The default geometry is rxd.inside.
The geometry and nrn_region arguments may both be specified.

rxd.Shell(ry/R, ry/R)

Adapted from:
McDougal et al 2013.

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 161

Using NEURON to Model Cells and Networks 2017

rxd.Region tips

Specify nrn_region if concentrations interact with NMODL

If NMODL mechanisms (ion channels, point processes, etc) depend on or affect
the concentration of a species living in a given region, that region must declare a
nrn_region (typically 'i').

To declare a region that exists on all sections
r = rxd.Region(h.allsec())

Use list comprehensions to select sections

r = rxd.Region([sec for sec in h.allsec() if 'apical' in sec.name()])

Declare ions & proteins: rxd.Species

Basic usage

protein = rxd.Species(region, d=16)

d is the diffusion constant in um?2/ms. region is an rxd.Region or an iterable of rxd.Region objects.

Initial conditions

protein = rxd.Species(region, initial=value)

value is in mM. It may be a constant or a function of the node.

Connecting with HOC

ca = rxd.Species(region, name='ca', charge=2)

If the nrn_region of region is "i", the concentrations of this species will be stored in cai, and its concentrations will be affected by ica.

Page 162 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Specifying dynamics: rxd.Reaction

Mass-action kinetics

ca + buffer %) cabuffer
buffering = rxd.Reaction(ca + buffer, cabuffer, kf, kb)

kf is the forward reaction rate, kb is the backward reaction rate. kb may be omitted if the reaction is unidirectional.
In a mass-action reaction, the reaction rate is proportional to the product of the concentrations of the reactants.

Repeated reactants

2H+ O %» H20
water_reaction = rxd.Reaction(2 * H + O, H20, kf, kb)

Arbitrary reaction formula, e.g. Hill dynamics

at+b—c
hill_reaction = rxd.Reaction(a + b, c,a "~ 2/ (a " 2 + k " 2), mass_action=False)

Hill dynamics are often used to model cooperative reactions.

rxd.Rate and
rxd.MultiCompartmentReaction

rxd.Rate

Use rxd.Rate to specify an explicit contribution to the rate of change of some
concentration or state variable.

ip3degradation = rxd.Rate(ip3, -k * ip3)

rxd.MultiCompartmentReaction
Use rxd.MultiCompartmentReaction when the dynamics span multiple regions;
e.g. a pump or channel.

ip3r = rxd.MultiCompartmentReaction(caler], calcyt], kf, kb,
membrane=cyt_er_membrane)

The rate of these dynamics is proportional to the membrane area.

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 163

Using NEURON to Model Cells and Networks

Manipulating nodes

Getting a list of nodes

@ nodelist = protein.nodes

Filtering a list of nodes

@ nodelist2 = nodelist(region)
@ nodelist2 = nodelist(0.5)
@ nodelist2 = nodelist(section)(region)(0.5)

Other operations

@ nodelist.concentration = value

@ values = nodelist.concentration

@ surface_areas = nodelist.surface_area
@ volumes = nodelist.volume

@ node = nodelist[0]

Example: Calcium buffering

Use the GUI to create a graph and
run the simulation.

Variable 1o gragh
Enfer Syeris name:

[sma.candi| 05 1
[o

i

from neuren impert h, rxd, gui

h('create soma')

soma_region = rxd.Region([h.somal, nrn_region='i') ig:qifﬂ“.“

soma.cabufi(0.5)

ca = rxd.Species(soma_region, initial=1, L
name='ca', charge=2)

buf = rxd.Species(soma_region, initial=1, D& =
name='buf')

cabuf = rxd.Species(soma_region, initial=0D,

name='cabuf ')

(e

n2r-
tuffering = rxd.Reaction(2 * ca + buf, cabuf, 1, 0.1)

2017

Page 164 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017

Using NEURON to Model Cells and Networks

Concentration pointers

To get a pointer to a concentration, use node. ref concentration:

Recording traces

v = h.Vector()
v.record(ca.nodes[0]._ref_concentration)

Plotting

g = h.Graph()
g.addvar('caler][dend](0.5)", ca.nodes(er)(dend)(0.5)[0].-ref_concentration)
h.graphList[0].append(g)

Tips

To find out what properties and methods are available, use dir; e.g.

dir(ca.nodes)

NEURON’s variable step solver has a default absolute tolerance of 0.001.
Since NEURON measures concentration in mM and some cell biology
concentrations (e.g. calcium) are in uM, this tolerance may be too high.

Compensate by using an atolscale in the constructor*®, e.g.

ca = h.Species(cyt, atolscale=le-6)

* atolscale is only supported in the development version; on older versions of NEURON, change the scale globally, e.g. h.Cvode().atol(1e-8)

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

Page 165

Using NEURON to Model Cells and Networks 2017

GUI-based specification

Reaction-diffusion dynamics can also be specified using the GUI. This option
appears only when rxd is supported in your install (Python and scipy must be
available).

NEURON Main Menu

GUI-based specification

Reglons ~ Species w Reactions jorphology ~ Instantiat

Electrophysiology region: il (@utside [Heither

Select Geometry:

Inside
Hembrane

Fractional Volume

Shell

Constant 20 Areaslength
Constant. 20 Vol/Length

Fractional Yolune is used to represent regions that are internixed
in a nontrivial vay,

It is likely that in nost cases the volune fraction and the
neighbor fraction uill both represent the cross-sectional area

fraction, and so therefore should be equal. The surface fraction
i= the fraction of the surface area that belongs to this region.

For exanple, if this is used to represent the ER, then the

surface Fraction should be zero.

Page 166 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

GUl-based specification

Constant, 21 Area/Length
Constant 30 Yol/length

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 167

Using NEURON to Model Cells and Networks 2017

GUI-based specification

Page 168 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

GUI-based specification

NEURON Main Menu

Graph Wector UWindow

Close: Hide

-~ Regions « Species « Reactions + Marphology # Instantiate

You may want. ta save your work (File =3 Save Session) before
instantiating. as there is currently no way to make changes
after the Rxll model has been instantiated,

When you are ready, click: 'fhs_témgtejl

Extracellular diffusion”

New region type:

ecs = rxd.Extracellular(xlo, ylo, zlo, xhi, yhi, zhi,
dx=dx, tortuosity=1, volume fraction=1)

Setting/getting extracellular concentrations:

calecs] .states3d[5:15, 5:15, :] =1

pyplot.imshow (calecs].states3d[:, :, 0],
interpolation='nearest', vmin=0, vmax=1,
extent=calecs].extent('xy'), origin='lower')

e We use a finite-volume method, the Douglas-Gunn
== Zeueho(Geienminy)eo Alternating Direction Implicit algorithm is
=== unconditionally stable.

ided into an x-, y- and z-

W Each time-step is d
2 " y direction and requires solving diagonally dominant
’ tridiagonal systems of equations. This is solved
with the Thomas algorithm, so the runtime
scales linearly with the number of voxels.

| [A We currently support zero-flux Neumann boundary
L conditions which conserves the total concentration.

* Extracellular diffusion support is currently only available in the development version.

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 169

Using NEURON to Model Cells and Networks 2017

3D Simulations

Specifying 3D Simulations

Just add one line of code?:
rxd.set_solve_type(dimension=3)
all = rxd.Region(h.allsec())
ca = rxd.Species(all, d=1)
ca.initial = lambda node: 1 if node.x3d < 50 else 0

| A

Plotting

Get the concentration values expressed on a regular 3D grid via
nodelist.value_to_grid()

values = ca.nodes.value_to_grid()
Pass the result to a 3d volume plotter, such as Mayavi's VolumeSlicer:

graph = VolumeSlicer(data=ca.nodes.value_to_grid())
graph.configure_traits()

2rxd.set_solve_type can optionally take a list of sections as its first argument; in that
case only the specified sections will be simulated in three dimensions.

Page 170 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017

Using NEURON to Model Cells and Networks

Example: wave curvature

from neuron import h, gui, rxd
import volume_slicer

secl, sec2 = h.Section(), h.Section()
.pt3dadd(2, 0, 0, 2, sec=secl)
.pt3dadd(9.9, 0, 0, 2, sec=secl)
.pt3dadd(10, 0, 0, 2, sec=secl)
.pt3dadd(10, 0, 0, 10, sec=sec2)
.pt3dadd(18, 0, 0, 10, sec=sec2)

[= == =2

def do_init(node):
return 1 if node.x3d < 8 else 0

all3d = rxd.Region(h.allsec(), dimension=3)
ca = rxd.Species(all3d, initial=do_init, d=0.05)
r = rxd.Rate(ca, -ca * (1 - ca) * (0.1 - ca))

def plot_it():
graph = volume_slicer.VolumeSlicer(
data=ca.nodes.value_to_grid(),
vmin=0, vmax=1)
graph.configure_traits()

h.finitialize()

for t in [30, 60]:
h.continuerun(t)
plot_it()

ANS A
e fast —

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 171

Using NEURON to Model Cells and Networks

Under development

* Enhancements to extracellular diffusion.

* Stochastic reaction-diffusion.

SBML support.
» Better reaction-diffusion performance.

e Parallel reaction-diffusion.

Contact us if you would like to alpha test any of these features.

For more information

Journal Articles on Reaction-Diffusion in NEURON

e McDougal, R. A., Hines, M. L., Lytton, W. W. (2013). Reaction-diffusion in
the NEURON simulator. Frontiers in Neuroinformatics, 7.

@ McDougal, R. A., Hines, M. L., Lytton, W. W. (2013). Water-tight
membranes from neuronal morphology files. Journal of Neuroscience
Methods, 220(2), 167-178.

v

Online Resources

o NEURON Forum
@ Programmer’s Reference
@ NEURON Reaction-Diffusion Tutorials

A\

2017

Page 172 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 173

Using NEURON to Model Cells and Networks 2017

Received:
From:

For:

By:

For deposit in:

Page 174

Receipt

$170

Using the NEURON Simulation Environment
Held Nov. 10, 2017 in Washinton, DC
https://www.neuron.yale.edu/neuron/static/courses/dc2017/dc2017.html

N.T. Carnevale

Director, Using the NEURON Simulation Environment
203-494-7381

ted.carnevale@yale.edu

Yale University account "NNC--Fees"

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

2017 Using NEURON to Model Cells and Networks

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved Page 175

Using NEURON to Model Cells and Networks 2017

Survey

We'd appreciate your frank opinions and suggestions to help us refine this course and design
future offerings on related subjects.

Please score these @ according to this scale
Overall impression no opinion
Relevance to my research - poor, not helpful
Didactic presentations - fair 2
Written handouts - good 3
Slides - excellent, very helpful 4
Computer projection -

Classroom -

Food -

Best feature
Weakest feature

Additional topics that should be covered, topics that should receive more or less coverage, or
other suggestions for improvement.

Circle one
Y N Iwould recommend this course to others who are interested in neural modeling.

Y N | have developed my own modeling software using a high-level language
(FORTRAN, C/C++, Python etc.).

Y N | have created my own models using modeling software.
Which software?

My primary area of research interest is

To help us better meet the needs of NEURON users, please circle all platforms that you plan
to use for modeling.

Hardware Mac PC Other
OS MacOS X Win7|8]9]|10 UNIX | Linux | OS X | BSD

If Linux, which distribution?

Page 176 Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

