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SUMMARY AND CONCLUSIONS 

I. Detailed compartmental computer simulations of single mi- 
tral and granule cells of the vertebrate olfactory bulb were con- 
structed using previously published geometric data. Electrophysio- 
logical properties were determined by comparing model output to 
previously published experimental data, mainly current-clamp re- 
cordings. 

2. The passive electrical properties of each model were ex- 
plored by comparing model output with intracellular potential 
data from hyperpolarizing current injection experiments. The re- 
sults suggest that membrane resistivity in both cells is nonuni- 
form, with somatas having a substantially lower resistivity than 
the dendrites. 

3. The active properties of these cells were explored by incorpo- 
rating active ion channels into modeled compartments. On the 
basis of evidence from the literature, the mitral cell model in- 
cluded six channel types: fast sodium, fast delayed rectifier 
( Kfast), slow delayed rectifier ( K), transient outward potassium 
current ( K A), voltage- and calcium-dependent potassium current 
( KCa), and L-type calcium current. The granule cell model in- 
cluded four channel types: rat brain sodium, K, KA, and the non- 
inactivating muscarinic potassium current (KM). Modeled chan- 
nels were based on the Hodgkin-Huxley formalism. 

4. Representative kinetics for each of the channel classes above 
were obtained from the literature. The experimentally unknown 
spatial distributions of each included channel were obtained by 
systematic parameter searches. These were conducted in two 
ways: large-scale simulation series, in which each parameter was 
varied in turn, and an adaptation of a multidimensional conjugate 
gradient method. In each case, the simulated results were com- 
pared with experimental data using a curve-matching function 
evaluating mean squared differences of several aspects of the simu- 
lated and experimental voltage waveforms. 

5. Systematic parameter variations revealed a single distinct 
region of parameter space in which the mitral cell model best fit 
the data. This region of parameter space was also very robust to 
parameter variations. Specifically, optimum performance was ob- 
tained when calcium and slow K channels were concentrated in 
the glomeruli, with a lower density in the soma and proximal 
secondary dendrites. The distribution of sodium and fast potas- 
sium channels, on the other hand, was highest at the soma and 
axon, with a much lighter distribution throughout the secondary 
dendrites. The KA and KCa channels were also concentrated near 
the soma. 

6. The parameter search of the granule cell model was much 
less restrained by experimental data. Several parameter regimes 
were found that gave a good match to the data. In the simplest of 
these, sodium and K channels were present at high density both at 
the soma and in the peripheral dendrites, whereas the KA and KM 
channels were present only in the soma. 

7. Further manipulation of the mitral cell model suggests that 
the predicted channel distributions can be verified physiologically. 
I f  the channel distributions suggested by the model are correct, 
voltage clamping the soma to potentials near the spiking threshold 

should result in the generation of independent local dendritic ac- 
tion potentials reflecting the effective decoupling of the active 
membranes of the different dendrites. The model predicts that the 
glomerular tuft, the soma, and the secondary dendrites of each 
mitral cell have distinct local electrical properties resulting largely 
from the localized distribution of ion channels. They may also be 
functionally distinct. 

8. Our extensive search of model parameters suggests that neu- 
rons operate in regions of parameter space that are most robust to 
changes in parameter values. In particular, changes in channel 
densities by as much as an order of magnitude may have relatively 
little effect on the behavior of the neuronal model. 

INTRODUCTION 

This paper describes an effort to model each of the two 
major neuronal cell classes found in the vertebrate olfactory 
bulb (Mori 1987). We first describe models of the mitral 
cell and the related tufted and displaced mitral cells. These 
cells provide the only bulbar output to higher centers, in- 
cluding piriform cortex ( Haberly and Price 1977 ). We then 
present models of three classes of granule cells, which are 
the largest population of cells in the bulb and are involved 
in the centrifugal feedback from piriform cortex and other 
higher areas to the bulb (Mori 1987). This work extends 
our network modeling efforts in the olfactory cortex (Wil- 
son and Bower 1992) to the neurons composing the brain 
structure that provides the primary afferent input to piri- 
form cortex. 

The pioneering modeling studies on the olfactory bulb 
(Rall 1970; Rall and Shepherd 1968; Rall et al. 1966) intro- 
duced multicompartmental models of the mitral and gran- 
ule cells. These consisted of 5- 10 compartments and in- 
volved reduced ( FitzHugh 196 1) active properties. These 
single-cell and network models were consistent with many 
of the experimental details available at the time, and demon- 
strated the power of simulation techniques as a means for 
understanding physiological observations. The accumula- 
tion of much more detailed experimental data on these cell 
types and the availability of vastly greater computational 
resources makes it possible to now model the cells in consid- 
erably more detail. As with the original modeling studies, 
the development of single cell models is a necessary prelude 
to a detailed model of the bulb as a whole. 

As is the case with most modern efforts to model single 
neurons (De Schutter and Bower 199 1; Segev et al. 1990; 
Woolf et al. 199 1 a), the approach taken here involved first 
constructing an anatomically correct compartmental repre- 
sentation of each neuron of interest and then studying the 
passive properties of the model. Active channels were sub- 
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sequently incorporated into the passive model on the basis 
of evidence from the literature for the presence of particular 
channel types. Parameters such as channel densities and 
kinetics were then varied to replicate previously published 
physiological response properties. 

As is also the case for most detailed single-cell models, 
values for many of the parameters of interest, especially ion 
channel densities and channel kinetics, are not available 
directly from conventional experimental data such as intra- 
cellular somatic recordings (Koch and Bower 1992). Tradi- 
tionally, models have either relied on additional data (cal- 
cium imaging, dendritic recordings) or have involved esti- 
mates of channel properties that lack quantitative 
precision. It has usually been an open question as to 
whether the particular parameter values selected are the 
only viable parameters or just one of several possible solu- 
tions. This issue becomes more serious as models become 
more realistically detailed and the number of parameters 
increases. 

In this paper, we have employed a systematic and semiau- 
tomated method to explore possible parameters for models 
of the two major types of olfactory bulb neurons and their 
subclasses. These extensive searches of parameter space 
were performed on a parallel supercomputer, the Touch- 
stone Delta at Caltech. In the case of the experimentally 
well-studied mitral cell, we have discovered a single region 
of parameter space in which the similarity of model output 
and experimental data is preserved for a fairly large range of 
most parameter values. In fact, some parameters allow up 
to an order of magnitude of leeway around the optimal 
value. The robust behavior of this cell model suggests that 
real neurons may seek to operate in regions of parameter 
space that are tolerant of small or even sizable changes in 
their physical characteristics (e.g., channel densities). This 
may have important implications for the robustness of the 
nervous system to small differences during development, to 
damage, and to the many environmental changes that are 
known to affect the detailed properties of ion channels. 

In the case of the less well-studied granule cell, several 
equivalent regions of parameter space have been found. 
These results demonstrate the importance of experimental 
data as constraints on model parameters, as well as the util- 
ity of careful studies of parameter space as a guide to future 
experimental work. 

METHODS 

The models described here are all in the class of single neuron 
models in which neuronal structure is represented as a series of 
electrically linked compartments (Cooley and Dodge 1966; Rall 
1964). 

In general, the same modeling approach was taken to construct 
and parameterize each of the models discussed in this paper. In 
each case, the first step was to establish the overall compartmental 
structure of the model on the basis of previously published quanti- 
tative descriptions of cellular anatomy. Once an anatomically ac- 
curate model was constructed, the passive electrical properties of 
the cells were established. Finally, active properties were explored 
by adding ionic conductances to the different compartments. 

As described in the introduction, the principal effort in model- 

ing these cells involved finding parameter values that produce 
model behavior consistent with experimental results. In some 
cases, good estimates of parameters can be obtained from the litera- 
ture, e.g., cellular anatomy or the presence of certain channel 
types. In other cases (channel distributions or kinetics), informa- 
tion is either difficult to obtain or not available. For channel ki- 
netics, we used parameters determined for other neuronal types, 
as described below. Values for channel densities were estimated on 
the basis of parameter searches that compared model output to 
physiological records, which are relatively easy to obtain experi- 
mentally. 

Our models utilize parameters from many different sources and 
species. This is necessitated by the lack of complete data from any 
one species. In particular, the cell geometry is based largely on 
mammalian data and is scaled to correspond to the size of nomi- 
nal rabbit neurons. The electrophysiological data are largely (but 
not exclusively) from turtle, because that preparation has proven 
most amenable to detailed single-cell analysis of the sort required. 
As we shall discuss for specific instances, in most cases we do have 
comparable data from turtle, rabbit, and other species. This pro- 
vides bounds on the expected variability in properties, and in most 
cases demonstrates a high level of consistency between species. 
The judicious use of data from several sources is common in mod- 
eling studies where experimental data on the system under study 
are inadequate (e.g., combining channel density information: Bel- 
luzi and Sacchi 199 1; channel kinetics: Yamada et al. 1989). For 
many well-defined neuronal classes, a single canonical model is 
expected to provide a good representation for a particular neuron 
type over a fairly wide range of species and brain regions (Shep- 
herd 1992 ) . 

Source ofknown parameters . 

ANATOMIC ORGANIZATION. The morphological data used to 
obtain the basic structure of each cell type was taken primarily 
from rabbit ( Mori et al. 1983), but also from mouse (Greer 1987) 
and rat (Price and Powell 197Oa,b). These studies reveal that the 
morphology of the cells in the olfactory bulb is remarkably consis- 
tent among vertebrates ( Mori 1987) the main difference being 
one of scale. The specific model for each cell type was constructed 
by averaging published values for soma size, length of interbranch 
segments, diameter of branches, branching probabilities, and den- 
sity and size of any spines. 

PASSIVE PROPERTIES. Once the anatomic organization of a par- 
ticular model was established, basic parameters governing the pas- 
sive electrical properties of each cell type were added to the model. 
Membrane capacitance (&,) and axoplasmic resistivity (R,) have 
fairly consistent values in the literature (Jack et al. 1983). For the 
models described here, the R, was set at 50 Qcm (granule cell) and 
200 Qcm ( mitral cell). C;n was taken to be 1 .O pF/cm2. Mem- 
brane resistivity (R,) is more difficult to measure experimentally 
(Jack et al. 1983; Rail 1959), and therefore was determined in the 
current models by matching intracellular current-clamp data us- 
ing hyperpolarizing pulses (Jahr and Nicoll 1982; Mori et al. 
198 la). Values used for R, were made uniform throughout the 
dendritic structure but lower at the soma. This modification was 
intended to take into account the leak due to damage caused by 
the somatic recording electrode ( Pongracz et al. 199 1; Segev et al. 
1990). When comparing published time courses and input resis- 
tances to simulated data, charging curves were fitted with a two- 
exponential curve using the Levenberg-Marquardt (nonlinear 
least-squares) method ( Press et al. 1988 ). 

ACTIVE CHANNEL PROPERTIES. The identities of the channels 
included in each model were inferred from the published effects of 
specific channel blockers on the electrical properties of each cell. 
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Good data on this subject exists for the mitral cell, but less data is 
available for the granule cell. Accordingly, fewer channel types 
were assumed to exist for the latter case (see below). 

Determining appropriate channel kinetics is a somewhat more 
complex process in that detailed descriptions of channel kinetics 
are not available for these specific cell types. The starting points 
for channel kinetic parameters were therefore derived from the 
values for similar channels in other cell types. In this study, initial 
channel kinetics were obtained from a wide variety of sources and 
then implemented in Hodgkin-Huxley (Hodgkin and Huxley 
1952) form as discussed below in detail for each cell type. 

In principle, the parameter search approach could also be ap- 
plied to the channel kinetics. This was not done in this study for 
the following reasons. First, each channel requires the specifica- 
tion of as many as 18 kinetic parameters: 4 for each of the forward 
and backward rate functions in each of the two gates, plus a power 
term for each gate. (see APPENDIX c: CHANNEL PARAMETERS). 
This would be difficult to handle with the present parameter 
search methods (APPENDIX B). Second, neuronal properties tend 
to be very sensitive to variations in channel kinetics, unlike their 
more robust behavior with channel densities. Finally, an uncon- 
strained automatic search could potentially distort channel proper- 
ties beyond the range normally expected for their channel class. 
Given the availability of well-described channels of the desired 
classes from other systems, we chose to base our channel kinetics 
more directly on data from the literature. 

Unknown parameter estimation 

In general, the properties of each cell depend, in varying de- 
grees, on a vast number of parameters, many of which are not 
known in detail or at all for the cells modeled here. In active cell 
models, the number of such free parameters is enormous. For 
example, information on channel distributions and densities is 
not yet readily available for each channel type, but is critical to 
model behavior. Accordingly, possible values for the spatial distri- 
bution of channels must be explored by matching model output to 
existing physiological data. Simplifying assumptions must be 
made to reduce the number of degrees of freedom in a complex 
neuronal model (Rall 1990) to a tractable range in a systematic 
manner. 

We have adopted the following basic approach to defining the 
parameter space of our models: first, we establish as many model 
parameters as we can in an unambiguous manner. This includes 
the morphology, passive properties, and a minimal set ofX chan- 
nel types that would be consistent with the data. These parameters 
are then held fixed. Second, we subdivide the model into Ydistinct 
regions within which the channel distributions are assumed to be 
uniform. For each of these regions, we assign the entire set of 
channel types. This establishes our basic parameter space of X x Y 
dimensions. Finally, when the parameter search indicates that cer- 
tain channel classes may not play a significant role in a given 
region, those channels are eliminated from that region of the 
model. 

We have found that the process just described can readily be 
automated if two conditions can be met. First, there must be a 
means of evaluating the “goodness” of a particular set of parame- 
ters. Second, there must be a mechanism for systematically sam- 
pling parameter space. The approach used here to accomplish 
these two objectives is described in more detail in APPENDIX A and 
APPENDIX B. 

Mitral cell parameters and variations 

ANATOMIC ORGANIZATION. Three classes of mitral cell models 
were constructed: mitral, displaced mitral, and tufted cells. Very 

good statistical information is available on the morphology of 
these cells (Mori et al. 1983; Price and Powell 1970a,b). 
MATCHED PHYSIOLOGICAL DATA. Electrophysiological data 
from current-clamp experiments in the turtle mitral cell (Mori et 
al. 198 la, 1982) were the main source of physiological data used 
in this study. Turtle mitral cells frequently have more than one 
primary dendrite ( Mori 1987 ), but are otherwise similar in geome- 
try to their mammalian counterparts. Whole-cell current-clamp 
recordings from mammalian mitral cells have been made (Bufler 
et al. 1992, Nickel1 et al. 1992) in the slice, and have qualitatively 
similar appearance to the turtle recordings. However, the very 
large mitral cell dendritic arborization is invariably damaged in 
slice preparations, which makes the data hard to interpret. Spike 
thresholds appear to be in the same range as for the turtle data, but 
the resting potential for the whole-cell recordings is approximately 
-80 mV (Bufler et al. 1992) which is 15 mV lower. Whole-cell 
current-clamp recordings from mitral cells in primary cultures of 
mammalian olfactory bulb (Trombley and Shepherd 1992) also 
show very similar voltage waveforms to the turtle recordings. 

Further evidence for the similarity in electrophysiological prop- 
erties of mitral cells in turtle and mammals is available from intra- 
cellular recordings under a variety of stimulus conditions. Fast 
prepotentials that can be isolated by hyperpolarization are evident 
in responses to olfactory nerve stimulation in rabbit (Mori and 
Takagi 1975) and turtle (Jahr and Nicoll 1982; Mori et al. 1982). 
Similar fast prepotentials have been reported in rats (Wellis et al. 
1989) in the absence of hyperpolarization. In all cases, these pre- 
potentials are interpreted as originating from apical dendritic 
spikes. Close correspondence between turtle (Jahr and Nicoll 
1982; Mori et al. 198 1 a) and rabbit ( Mori and Takagi 1975, 1978) 
is also seen in experiments where the lateral olfactory tract is stimu- 
lated and intracellular recordings made from the mitral cell soma. 
In each case, a distinctive sequence of M, A, and B spikes is ob- 
served, which is interpreted as the successive activation of the 
myelinated axon (M), the axon hillock (A), and the somadendritic 
membrane (B). On the basis of these observations, a strong case 
can be made for similarity in mitral cell active properties across 
vertebrates, and specifically between rabbits and turtles, which 
provide much of our morphological and electrophysiological data, 
respectively. 

CHANNEL TYPES. A large amount of data is available on the 
types of channels found in mitral cells. Blockage of fast spikes by 
tetrodotoxin (TTX) (Jahr and Nicoll 1982; Mori et al. 198 la, 
reproduced in Fig. 4A below) shows the presence of sodium chan- 
nels (Na). Blockage of the remaining spikes using cobalt ions 
(Jahr and Nicoll 1982; Mori et al. 198 la) reveals a calcium 
current [modeled as an L-type calcium current ( LCa)]. The situa- 
tion with potassium currents is, as is frequently the case, less dis- 
tinct. The rapid repolarization after the action potential (Fig. 4A) 
makes it clear that a fast delayed rectifier (Kfast) is present. In 
addition, the somewhat less rapid hyperpolarization (Fig. 4A) 
after the calcium spike in the presence of TTX and tetraethylam- 
monium (TEA) suggests a remaining slower, delayed rectifier 
current (K). The slow rate of charging of the membrane ( Fig. 4A ) 
when current is being injected suggests that an anomalous rectifier 
current (KA) is active. Both calcium- and sodium-dependent K 
channels have been shown to exist in the mitral cell (Egan et al. 
1992; Jahr and Nicoll 1982 ) . The presence of cation-dependent K 
currents can also be deduced from the increase in interspike inter- 
val after the first spike induced with current injection (Mori et al. 
198 la, Fig. 4, A and D). We have chosen to model the calcium-de- 
pendent K channel ( KCa) because the whole-cell experiments do 
not reveal sodium-dependent currents except at very high concen- 
trations of sodium ( Egan et al. 1992 ). Accordingly, four classes of 
K channels were modeled: Kfast, slow K, KA, and KCa. Under 



MITRAL AND GRANULE CELL SIMULATIONS 1951 

the experimental conditions of channel block ( 10 mM TTX, 5 
mM TEA, see Mori et al. 198 la), Kfast channels are likely to be 
completely blocked, slow K channels partially blocked, and the 
KA and KCa channels not much affected (Connor and Stevens 
1971). 

CHANNEL KINETICS. The following final set of channels were 
used in the mitral cell model: I) fast Na (slightly modified from 
Traub 1982); 2) Kfast, 3) K (both modified from Adams et al. 
1980 and Aldrich et al. 1979); 4) KA (Yamada et al. 1989); 5) 
LCa ( modified from De Schutter 199 1 and Hirano and Hagiwara 
1989); and 6) KCa (modified from Traub 1982). The calcium 
dependence of this last channel was modeled by establishing a 
single pool of intracellular calcium, which decays after calcium 
channel activation to a baseline of 10 nM with a single time con- 
stant of 10 ms. Accordingly, calcium influx is assumed to be due 
only to the action of the LCa current, and lateral diffusion of 
calcium is not modeled. 

Most of the selection of appropriate channels and kinetics was 
done on a single-compartment model by varying the channel pa- 
rameters under conditions of current clamp using the “Neurokit” 
tool in the GENESIS script libraries (Wilson et al. 1989). This 
more readily allowed the comparison of modeled voltage traces 
with experimental data. Channels tuned in this manner were then 
incorporated into the full mitral cell model for further evaluation. 

SPATIAL DISTRIBUTION OF CHANNELS. Channel density distri- 
butions have not been directly measured in mitral cells, but numer- 
ous experiments (e.g., Jahr and Nicoll 1982: Mori and Takagi 
1975; Mori et al. 1982) suggest the presence of active channels 
distributed over various parts of the mitral cell dendritic arbor. In 
the absence of direct data on channel densities, a very conservative 
approach was taken to estimating these parameters. Six regions of 
the cell were considered as having distinct channel densities: the 
soma, primary dendrite, glomerular tuft, proximal secondary den- 
drites, distal secondary dendrites, and axon (see Fig. 3 below). 
Within each region, a uniform distribution was assumed. 

The availability of current-clamp records in the presence of ap- 
plied blockers (Jahr and Nicoll 1982; Mori et al. 198 la) is very 
valuable for constraining the parameter search process. Under 
blockage of Na channels by TTX and Kfast by TEA, we can con- 
duct a parameter search with these channels missing from each of 
the six regions of the mitral cell, resulting in a far more tractable 24 
parameters. Having fixed more than half of the model parameters 
using this initial parameter search, finding channel densities for 
the unblocked model involved a much smaller parameter space. 
Further refinement was possible for special cases where additional 
information was available. For example, the experimentally dem- 
onstrated propagation of antidromic spikes into the mitral cell 
soma ( Mori et al. 198 la, 1982) requires a higher channel density 
in the axon initial segments than in the rest of the axon. 

OTHERCLASSESOFMITRALCELLS. In general, displaced mitral 
and tufted cells are believed to have similar properties and func- 
tions to the more extensively studied mitral cells (Mori 1987). It 
has therefore been assumed that the channel kinetics and density 
parameters obtained for the mitral cells apply directly to the differ- 
ent geometries (Mori et al. 1983) of these other cell types. It has 
also been reported that a small percentage of mitral cells in mam- 
malian olfactory bulb have two primary dendrites (Mori et al. 
1983). As mentioned previously, multiple primary dendrites are 
quite common in turtle and amphibian mitral cells (Mori et al. 
198 1 a), which are the source of much of the physiological data 
used in these simulations. Accordingly, channel properties and 
distributions from the basic mitral cell model were also tested in 
additional models with the geometries appropriate to the tufted, 
displaced mitral, and turtle mitral cells. 

Granule cell parameters and variations 

ANATOMIC STRUCTURE. Three types of previously described 
granule cells were also modeled: type I, type II, and type III. Mor- 
phological data is available from several species: rabbit (Mori and 
Kishi 1982; Mori et al. 1983) rat ( Price and Powell 1970a), and 
mouse (Greer 1987, Woolf et al. 199 la,b). The convoluted mor- 
phology that the above studies reveal in granule cell dendrites was 
taken into account by increasing the equivalent membrane area 
by a factor of 2.0. Granule cell spines were simulated by assigning 
each model the same number and spatial distribution of spines as 
reported in the literature ( Mori et al. 1983 ). All spines consisted of 
identical neck and head compartments (Shepherd and Brayton 
1987), with no attempt being made to include the considerable 
anatomic variability in spine morphology that has previously been 
reported (Woolf et al. 199 1 a,b). 

MATCHED PHYSIOLOGICAL DATA. The difficulty of obtaining 
stable intracellular recordings in the granule cell has limited the 
amount of data available for assessing the detailed electrical prop- 
erties of the granule cell (Jahr and Nicoll 1982; Mori and Kishi 
1982; Wellis and Scott 1990). For the same reason, there is also a 
lack of information on the effects of channel blockers during 
current injection. Accordingly, a limited set of channels was used 
for simulating granule cell spikes (see below). An additional com- 
plication in the data for hyperpolarizing current injections used in 
the “passive” granule cell model was a large (2-fold) discrepancy 
in the time courses for charging and repolarization of the cell. This 
issue is dealt with in the DISCUSSION. Recordings from current 
injection experiments in rat (Wellis and Scott 1990) and turtle 
(Jahr and Nicoll 1982) show substantial similarity in spike wave- 
forms, suggesting that it is reasonable to combine morphological 
and electrophysiological data from these different sources. 

CHANNEL TYPES. Granule cell spikes were assumed to be due to 
Na and potassium channels on the basis of the Hodgkin-Huxley 
formalism. On the basis of the previously reported increasing in- 
terval between spikes during the depolarizing current pulse (Jahr 
and Nicoll 1982) an additional noninactivating muscarinic K 
channel (KM) was incorporated into the model. The kinetics and 
spatial distributions of these channels were varied to obtain 
matches to the experimental data that do exist for depolarizing 
current clamp (Jahr and Nicoll 1982). 

CHANNEL KINETICS. The library of channels assembled in GEN- 
ESIS was used to select channels that satisfied the slower kinetics 
seen in the granule cell data. The following final set of channels 
was used in the granule cell models: rat brain Na (Na,,,) 
(Stuhmer et al. 1987), modified K (Adams et al. 1980; Aldrich et 
al. 1979)) and the bullfrog sympathetic ganglion neuron KM and 
KA channels (Yamada et al. 1989). 

SPATIAL DISTRIBUTION OF CHANNELS. A similar analysis was 
applied to the granule cell channel distribution as with mitral cells. 
In this case, only four channels were considered. The regions of 
the granule cell considered as electrically distinct were: soma, 
trunk, peripheral processes, and the descending (deep) dendrites 
(see Fig. 6 below). Additional simulations also considered the 
possibility of ion channels in the spines. Simulations were per- 
formed while varying channel densities over each of these regions. 
The parameter searches revealed several distinct channel distribu- 
tions that adequately matched experimental data. 

OTHER CLASSESOFGRANULE~ELLS. Threetypesofpreviously 
described granule cells were modeled: type I, type II, and type III 
(Greer 1987; Mori et al. 1983). As with the mitral cell types, it was 
assumed for simplicity that the basic channel properties and distri- 
butions in each granule cell type are the same and that the only 
variation in classes was morphological. The channel distribution 
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Circuit diagram for compartmental model. Following the clas- 
sical description of an active compartment ( Rall 1959) it is represented as 
a membrane resistance (R,) in parallel with a membrane capacitance 
(C’& and an axial resistance (R,) that combines the cytoplasmic and 
extracellular axial resistance. The channel conductances are represented as 
variable conductances (G 1, G2 and so on) in parallel with thek,. Each of 
the transmembrane conductances (R,, G 1, G2, etc.), is in series with the 
appropriate potential. These potentials are derived from the reversal po- 
tentials for the ions passing through the conductance, and are kept fixed in 
these models. 

from the simplest (least number of channels/compartments) type 
I model was applied to the type II and type III cells. 

Computational issues 

SIMULATION ENVIRONMENT. All simulations were performed 
on the GENESIS simulator developed at Caltech (Wilson et al. 
1989). Interactive simulations and parameter variations were per- 
formed using a special single-cell simulation tool within GENESIS 
called Neurokit. As described in APPENDIX B, exhaustive parame- 
ter searches were performed in batch mode under the control of 
GENESIS script language programs. The library of ion channels 
that has been constructed within GENESIS on the basis of data in 
the literature was used extensively during these simulations. Initial 
simulations were performed on a variety of UNIX workstations, 
whereas extensive parameter variations have employed the Intel 
Touchstone Delta parallel supercomputer at Caltech. 

NUMERICAL TECHNIQUES. Implicit (Backward Euler, Crank 
Nicolson) as well as explicit (forward exponential Euler) integra- 
tion methods were used to evaluate the systems of coupled differ- 
ential equations that arise from the compartmental modeling 
scheme (Fig. 1). In both cases, the time step was empirically cho- 
sen so that the change in interspike interval with a halved time step 
was <OS%. Typical time steps used were 50 ps using the implicit 
method and 5 ps for the explicit method. In the case of granule 
cells, however, the presence of numerous spines renders the sys- 
tem of equations numerically very stiff, and time steps of 20 ns 
were required for accuracy when using the explicit method. 

The Hines numbering scheme (Hines 1984) was used to reduce 
the number of operations for solution using the implicit method 
and Gaussian elimination, to the order of the number of compart- 
ments; Hodgkin-Huxley equations were evaluated in the implicit 
method on a staggered time grid (Hines 1984; Mascagni 1989) to 
obtain second-order accuracy, except for the calcium-dependent 
potassium channels. The more complex form of these channels 
(Traub 1982; see APPENDIX c) necessitated the use of the explicit 
method in their evaluation. This combination of integration 
methods did not lead to serious difficulties, because the relevant 
time constants were an order of magnitude slower than the time 
step. 

Simulations performed using the implicit and explicit methods 
were checked against each other to verify consistency. The accu- 
racy of these solutions was further confirmed by simulation of a 
constant-current injection to obtain the input resistance of the cell 
from the asymptotic potential. The input resistance was then di- 

rectly calculated using Ohm’s Law and the circuit equivalent of 
the cell and found to be identical with the previous estimate. Addi- 
tional comparisons were made with values for input resistance 
calculated using full cable theory (Jack et al. 1983; Rall 1959; Rall 
and Rinzel 1973). These differ slightly because of the compart- 
mental approximations, with the difference depending on the size 
of the compartments. In a 286-compartmental model of the mitral 
cell, where all compartments are smaller than 0.02 length con- 
stants, the difference is < 1%. 

The Hodgkin-Huxley equations were implemented usinga tabu- 
lated lookup scheme, with a large number of sample points (every 
50 pV) to retain numerical accuracy (Hines 1984; Mascagni 
1989). The use of tables permits one to directly utilize experimen- 
tal curves for voltage dependencies without resorting to curve-fit- 
ting. Additionally, it is computationally much more efficient than 
calculating exponentials. In cases where the curves were directly 
taken from published data, the limited number of experimental 
data points were interpolated using Bezier splines (Enns 1986) to 
obtain sufficient sample points for the table. 

The correctness and accuracy of the GENESIS simulator as a 
whole has been evaluated using the Rallpack set of benchmarks 
(Bhalla et al. 1992). Briefly, the accuracy benchmarks calculate 
the normalized root-mean-squared difference between the simu- 
lated and the correct voltage waveform for a particular model. The 
Rallpack axon model incorporates Hodgkin-Huxley-type chan- 
nels in a 1 ,OOO-compartment cyclindrical membrane and is appro- 
priate for testing simulator performance for active models of the 
kind discussed in this study. At the time steps used in these simula- 
tions, the error for the axon model in the Rallpacks is 1.3%. 

Parameter availability I 

All model parameters are available from the authors or by ftp 
from Babel, the GENESIS users’ group. Scripts for running these 
simulations within the GENESIS environment are also available 
from the same source. Inquiries should be addressed to 
babel.cns.caltech.edu. 

RESULTS 

In the course of this study, a great number of parameter 
variations were explored while comparing model output to 
physiological data. In the following sections, the resulting 
final state of each neuronal model will be presented. In each 
case, the final parameters were determined on the basis of 
two criteria: first, the ability of the resulting model to repli- 
cate physiological data as evaluated by the curve-matching 
function. Second, the robustness of the model as deter- 
mined by varying parameters in the vicinity of the final 
solution and observing how well the simulations continued 
to match experiment. In terms of the curve-matching func- 
tion, this translates to smoothness of the function in the 
region of the best match ( Fig. 2). 

Although it is very likely the case that some other more 
complicated combination of channels, channel kinetics, 
and/or channel distributions could meet the same criteria, 
we will describe the simplest combination of parameters 
that our models suggest satisfy the data. After the descrip- 
tion of the final models, we then describe a number of ma- 
nipulations performed on them to explore their behavior in 
various physiological and experimental contexts. 
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FIG. 2. Parameter space for selected parameters of the mitral cell model. A : 2-dimensional plot ofa plane section through 
parameter space. Shading and vertical axis; match value, which is 0 for a perfect match. Xand Y axes (labeled K2-soma and 
Na-soma): scale factors for the densities of the fast potassium (Kfast) current in the soma, and the sodium (Na) current in 
the soma, respectively. Each grid division is a factor of 2 l/J ( - I .26) larger than the previous one. The range ofthe axes is from 
2 -‘% to 2 ‘?I. Asterisk: location of the final model in parameter space (corresponding to a scale factor of 1 for all parameters). 
The indicated lines 1 and 2 correspond to traces 1 and 2 in B. B: variation of the match value when the density of a single 
channel is varied away from that of the final model. 1 to 6 are channels in the soma: Kfast, Na, Ca, slower delayed rectifier 
current(K), anomalous rectifier current (KA), and calcium-dependent K current (KCa). 7: sodium in proximal secondary 
dendrites. 8: calcium in the glomerular tuft. All match values in A and B were calculated using the same set of weighting 
factors for the waveform-matching function (APPENDIX A). Different weighting factors produce qualitatively very similar 
curves. Complete sets of parameter match values can be obtained from the authors. 

Mitral cells 

PASSIVE PROPERTIES. Hyperpolarizing current injections 
into the mitral cell produce charging curves with two time 
constants (Mori et al. I98 1 a; Rall 1969) and provide an 
estimate for the cell’s input resistance and electrotonic 
length. The model replicates these results when somatic R, 
is lower than for the rest of the cell. As has been previously 
reported, (e.g., motoneurons: Segev et al. 1990; hippocam- 
pal granule cells: Yuen and Durand 199 1 ), such a “step 
model” for R, is consistent with the existing experimental 
data. The model is tuned to replicate the 60-M8 input resis- 
tance reported for turtle mitral cells (Mori et al. 198 1 a) 
impaled by an intracellular electrode. This input resistance 
is higher than that obtained in intracellular recordings from 
other systems (e.g., cat spinal motoneurons: Rall 1977; hip- 
pocampal pyramidal cells: Schwartzkroin 1978 ) . However, 
this upward revision is consistent with a trend toward 
higher estimates of R, based on patch-electrode recordings 
(Staley et al. 1992). When one removes this “leak conduc- 
tance” from the model and sets the somatic resistivity equal 

to that for the rest of the cell, the model predicts an input 
resistance of 120 MQ. This figure is comparable to those 
obtained using whole-cell patch-electrode recordings in sal- 
amander mitral cells (D. P. Wellis, personal communica- 
tion) and in the rat olfactory bulb slice preparation (Nickel1 
et al. 1992). The passive parameters for the final models for 
the mitral cell and its subclasses were: axial resistivity = 2.0 
Om = 200 Ocm; membrane resistivity = 10.0 Wm* = 
100,000 Ocm2; C,,, = 0.01 F/m2 = 1.0 pF/cm2. Electrode 
damage was modeled as a leak conductance of 120 MQ. 
CHANNEL DISTRIBUTIONS. The final mitral cell model has 
718 channels; on average, 2.5 channels per compartment 
(Fig. 3). 

Fast Na and K. These two channels are differentially dis- 
tributed, with the highest density occurring in the soma and 
axon initial segments (see Table 1). Previous modeling 
studies involving mitral cells (Rall 1970; Rall and Shepherd 
1968) have incorporated corresponding spiking mecha- 
nisms in the axon and soma. High channel densities in 
these regions are in agreement with the classical description 
of a neuron and are required to replicate the sequence of M, 
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FIG. 3. Regions for mitral cell parameter variations. The cell was sub- 
divided into 6 regions, A-F. A, soma; B, axon, C, primary dendrite; D, 
glomerular tuft; E, proximal secondary dendrites; F, distal secondary den- 
drites. As described in the text, these regions were the basis for parameter 
variations. Within each region all channel densities are uniform, except for 
the axon. In the axon, the channel densities near the soma were greater, but 
the densities were always varied by a uniform scaling factor when doing 
parameter variations. The final values for channel densities are given in 
Table I. 

A, and B spikes during antidromic activation of the mitral 
cell. This spike sequence is interpreted as the successive 
activation of the myelinated axon, the axon initial segment, 
and the somadendritic membrane (Jahr and Nicoll 1982; 
Mori and Takagi 1975, 1978; Mori et al. 198 la). As dis- 
cussed in previous studies on olfactory bulb models (Rall 
1970; Rall and Shepherd 1968)) there is an impedance mis- 
match between the thin axon and the much larger soma 
that may lead to failure of antidromic spike propagation. 
Our study explicitly models the axon initial segment as a 
succession of short compartments with diameter increasing 
to match that of the soma, and with large Na- and K-chan- 
nel densities. This leads to a satisfactory replication of exper- 
imental data relating to various phases of antidromic 
spikes. With respect to the dendrites, neither of these chan- 
nels were included in the primary dendrites and glomerular 

TABLE 1. Mitral ccl1 channel distributions 

Region Na Kfast LCa K IL4 KCa 

Soma 1,532 1,956 40 28 58.7 142 
Axon* 4,681 1,541 20 15.5 51.5 88.7 
Primary dendrite 13.4 12.3 22 17.4 0 0 
Glomerular tuft 0 0 95 28 0 0 
Proximal secondary dendrite 330 226 4 8.5 0 0 
Distal secondary dendrite 122 128 0 0 0 0 

Channel densities are expressed as Siemens per square meter for the 
maximum conductance value g in the rate equation for the channel. Na, 
sodium channels; Kfast, fast delayed rectifier current; LCa, L-type calcium 
current; K, slower delayed rectifier current; KA, anomalous rectifier 
current: KCa, calcium-dependent K channel. *Channel densities on the 
axon varied between compartments; the values for the most proximal are 
given. 
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FIG. 4. Experimental and simulated data for mitral cell. A: current- 
clamp recordings from mitral cell in the presence of 10e5 M tetrodotoxin 
(TTX ) and 5 X 1 Oe3 M tetraethylammonium (TEA ), injection current = 
0.62 nA (reproduced with permission from Mori et al. 198 la) B: simu- 
lated results under same conditions as A. The larger amplitude of the simu- 
lated spikes may be due to high-frequency cutoff in the recording appara- 
tus. The model also uses a fixed calcium reversal potential of +70 mV that 
fails to take into account the lowered Nernst potential during the spike. C: 
simulated results when model is without calcium in soma and vicinity. D: 
current-clamp recordings from mitral cell with injection current of 0.5 nA. 
(Reproduced with permission from Mori et al. 198 la.) E: simulated re- 
sults under same conditions as D. The same factors as in B may affect spike 
height and width. I? simulated results without modeled electrode damage. 
Current injection = 0.4 nA to compensate for increased input resistance of 
cell as compared with E. 

tufts, but the best match to the observed spike waveforms 
required the inclusion of both at a lower but significant 
density in the secondary dendrites. Again, this is consistent 
with the earlier studies (Rall 1970; Rall and Shepherd 
1968) where it was found that active dendritic compart- 
ments supported the rapid depolarization of the dendrites 
following antidromic spike invasion. 

KA and KCa. The KA and KCa channels are present 
only in the soma and axon initial segments in our model. 
The simulations accurately reproduced experimental data 
for current injection in the presence of TEA and TTX with 
this simple arrangement ( Fig. 4A ). 

Ca and slow K. The Ca and slow K channels are present 
everywhere except in the distal secondary dendrites. They 
are most concentrated in the glomerular tuft, at a lower 
density in the primary dendrite and soma, and still lower in 
the proximal secondary dendrites. This broad distribution 
gives a good approximation to experimental data ( Fig. 4A) 
and also emerges from two additional considerations. First, 
it is known from experimental studies (Jahr and Nicoll 
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FIG. 5. Different classes of modeled mitral cell. All models have as- 
sumed electrode leak at soma of 120 MQ. Lc/i column: cell geometries. 
Scale bars are 1 mm on each axis. Right column: somatic recordings in 
response to current injection. ‘4: mitral cell, OS-nA current injection. B: 
displaced mitral cell, 0.4-nA current injection. CY: tufted cell, 0.35-nA 
current injection. n: turtle mitral cell with 2 primary dendrites, 0.75-nA 
current injection. 

1982; Mori and Takagi 1975; Mori et al. 1982; Wellis et al. 
1989) that fast prepotentials occur when the olfactory nerve 
is stimulated. This pathway synapses onto the glomerular 
region, which would therefore be a good candidate for the 
site of the prepotentials. Second, concentrating calcium 
channels in the glomerular tuft alone is inconsistent with 
the large, sharp calcium spikes seen under current clamp in 
the presence of TEA and TTX (Fig. 4, A and C). 

Figure 4 compares experimental and simulated voltage 
traces obtained with this channel distribution. It can be 
seen that there is a good overall match between simulated 
and experimental results. 
APPLYING CELL PARAMETERS TO OTHER CLASSES OF MITRAL 
CELLS. The passive properties and channel distributions 
obtained for the mitral cell model above were adapted to 
the other types of mitral/tufted cells studied. This process 
involves subdividing the cell into compartments according 
to their geometry, as was done for the mitral cell, and then 
placing similar channel densities in regions of the cells 
corresponding to the already calculated mitral cell model. 

All four mitral cells produce similar sharp spikes with 
afterhyperpolarizations (Fig. 5) and show similar patterns 
of propagation of spikes into the secondary dendrites (see 

Fig. 11 below). This result, however, is highly dependent on 
the assumption of similar distributions of ion channels. 
One apparent difference between the cells is the latency to 
the first spike after current injection. This is due to the 
differences in passive properties of the cells (particularly 
input resistance and equalizing time courses), which is 
strongly dependent on cell geometry. The modeled data 
generally match the experimental data in this regard. 

There is notable similarity in spike waveform (Fig. 5), 
passive properties ( Table 2 ), and the details of spike propa- 
gation into dendrites (Fig. 1 1, turtle data is very similar) 
between the mitral cell and the “turtle” mitral cell. Overall, 
the simulations reflect experimental findings, suggesting a 
close correspondence between rabbit and turtle mitral cell 
properties. 

Gran de cells 

PASSIVE PROPERTIES. There is very limited information 
available for direct estimation of granule cell passive proper- 
ties (Jahr and Nicoll 1982). Previously published data do, 
however, indicate a two-fold difference in time course be- 
tween hyperpolarizing and repolarizing phases of a current 
pulse ( Fig. 8A ) . 

In the passive granule cell model, we have chosen to repli- 
cate the voltage trace of only the repolarizing phase because 
this is less likely to be contaminated by ion currents. Only 
one distinct time constant could be extracted from the avail- 
able data. We have fitted this data using a similar assump- 
tion, as for the mitral cell, that there is a constant R, and an 
additional leak conductance in the soma due to the elec- 
trode. The values obtained for these parameters were 12 
Qm2 = 120,000 Q cm2 and 200 MQ, respectively. The other 
passive properties were axial resistivity = 0.5 0rn = 50 flcrn 
and Cm = 0.0 1 F/m2 = 1 .O pF/cm2. 
CHANNEL DISTRIBUTIONS. The parameter searches for the 
granule cells came up with three distinct sets of parameters 
(Figs. 7 and 8) that provide a good match to experiment. It 
seems likely that there are many possible channel distribu- 
tions that may fit the limited amount of available data. We 
describe the simplest set of parameters we found, in which 
the model has the smallest number of channels per com- 
partment (Table 3). 

The number of Hodgkin-Huxley type channels in the 
final model of the type I granule cell is 162. These are distrib- 
uted among 944 compartments. None of the channels are 

TABLE 2. Mitru I wll model propcrt ies 

Cell n nC‘ 70, ms 71, ms L Rinput 3 M 12 

Mitral 286 718 59 6.2 1.1 60.9 
Displaced mitral 220 520 51 5.4 1.1 73.0 
Tufted 133 331 36 3.6 1.0 84.6 
Turtle 386 930 70 7.0 1.0 53.7 

n, number of compartments; nC, number of channels; 70, first (charging) 
time constant of cell: 71, second (equalizing) time constant of cell; L, 
length of cell in length constants: Rinput, input resistance of cell, including 
electrode leak. 
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FIG. 6. Regions for granule cell parameter variations. The cell was sub- 
divided into 4 regions, A-D. A, soma: B, deep dendrites; C, trunk; D, 
peripheral dendrites. As described in the text, these regions were the basis 
for parameter variations. Within each region, all channel densities are 
uniform. The values for channel densities are given in Table 3. 

on the dendritic spines (Fig. 6) in this model. The effects of 
including channels on the spines (Fig. 8 E) is dealt with in 
the DISCUSSION. 

N(&ul und K chunnds. These are distributed at high den- 
sity in the soma and also in the peripheral dendrites. They 
are present at lower density in the trunk. 

KM channels. This channel type is modeled in the soma 
alone. Their presence in the soma is clearly indicated (Ya- 
mada et al. 1989) by the increasing interspike interval (Fig. 
6A ) under conditions of depolarizing current clamp. How- 
ever, the relatively slow time course and the small electro- 
tonic size of the cell as a whole combine to make it difficult 
to exclude the possibility that KM channels are also distrib- 
uted throughout the dendritic arbor. In both cases, the simu- 
lations generate similar results (Fig. 7, n and C; Fig. 8, B 
and D). It is also possible to replicate the increases in inter- 
spike interval using a combination of calcium channels, a 

TABLE 3. Grunule cell chunnel distrihzltions.fr)r model I 

Region NGCi” K KM 

Soma 1,61 1 1,313 1,334 88 
Deep dendrites 0 0 0 0 
Trunk 0 71 0 0 
Peripheral dendrites 1,355 243 0 0 

soma deep trunk peripheral 

FIG. 7. Channel distributions for 3 granule cell models. These all pro- 
duced very close matches to experimental data ( Fig. 8). Each of the distri- 
butions was obtained as the result of an automated parameter search start- 
ing from a different initial set of parameters. A: model I. This model was 
selected for further analyses because it had the smallest number of chan- 
nels. B: model 2. This model is unlikely to be correct because of the very 
high channel densities involved: however, it gives a remarkably good 
match. The higher channel densities are reflected in the amplitudes and 
sharpness of the spikes (see Fig. 8c’). C’: model 3. This had a more even 
distribution of rat brain Na channels (Na,,) and K channels than the 
other models over the entire dendritic tree. It gives a good match to experi- 
mental data but is computationally expensive. 

calcium concentration pool, and calcium-dependent K 
channels (Yamada et al. 1989). In the absence of further 
data on channel types and properties for these cells, we have 
adopted the alternative requiring fewer channel types. 

KA channels. These are also modeled in the soma. Their 
presence is indicated by the long slow depolarizing phase of 
the spike waveform under current clamp (Yamada et al. 
1989; Fig. 8). 

APPLYING CELL PARAMETERS TO OTHER CLASSES OF GRANULE 

CELLS. We generalized the model for the type I granule cell 
to the other classes of granule cells, types II and III. We 
assumed that the differences between the classes were 
purely in the morphology of the cells, and that the channels 
were distributed in the same way as in type I cells. As with 
the mitral cells, the different geometries of the three granule 
cell classes led to different compartmental decompositions 
for the cell models. 

Morphologically, different types of granule cells differ 
principally in the distribution of spines. Type I and II cells 
have spines mainly in the peripheral dendrites of the exter- 
nal plexiform layer, whereas type III granule cells also have 
spines on the deeper portions of the trunk (Greer 1987). 
We find that similar channel distributions produce similar 
spike waveforms for each of the different granule cell geom- 
etries (Fig. 9). The differences in geometry and, thus, pas- 
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FIG. 8. Experimental and simulated data for granule cell. A: experi- 
mental data for current-clamp series. ( Reproduced with permission from 
Jahr and Nicoll, 1982.) B: simulated data for model 1 of the granule cell, 
channel distribution as described in Table 3. Frequency limitations of re- 
cording apparatus may explain part of difference in spike heights. C: simu- 
lated data for model 2 of the granule cell. D: simulated results for modeled 
current-clamp series for model 3 of the granule cell. E: simulated results 
for model 1 with active channels modeled on spines rather than dendrites. 
This waveform is very similar to the waveform in B. F: simulated results 
without electrode leak. All injection currents in F have been halved to 
compensate for the increased input resistance of the cell. 
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sive properties of the cells are reflected in the timing of the 
spikes ( Table 4 ) . 

DISCUSSION 

In these modeling experiments, we have demonstrated 
that the spike waveforms generated by single-neuron mod- 
els are strongly dependent on channel distributions. Fur- 
thermore, the generation of physiologically realistic results 
requires a particular distribution of channels that may be 
uniquely determined if sufficient experimental information 
is available. We have presented a systematic approach to 
exploring the enormous range of possible parameters that 
must be specified in any detailed neural simulation study. 

The pioneering modeling studies on the olfactory bulb 
(Rall 1970; Rall and Shepherd 1968) showed that the de- 
tails of the distribution of voltage-dependent channels have 
a profound effect both on the behavior of individual neu- 
rons and also on the predicted physiological properties of 
the bulb as a whole. More recent simulations of granule 
cells and spines (Shepherd and Brayton 1987; Shepherd et 
al. 1989; Woolf et al. 199 1 a) have highlighted the role that 
the details of single-cell morphology and channel distribu- 
tion may play in information processing. In this context, it 
is clear that a more complete picture of the active properties 
of bulbar neurons is a prerequisite to a better understanding 
of the functioning of the olfactory bulb. The current model- 
ing effort has explored the overall behavior of bulbar neu- 
rons using a full complement of active channels under a 
number of different experimental conditions. The results 

I / 
I 20 mV 

IO0 msec 
FIG. 9. Different classes of modeled granule cells. Lcfi column: cell 

geometries. Scale bars are 100 pm on each axis. Right column: responses to 
current injection of 0.125 nA. All models have assumed electrode leak at 
soma of 200 MW. A: type I granule cell. B: type II granule cell. C: type III 
granule cell. 

make specific predictions about the distributions of active 
channels and the physiological consequences of those dis- 
tributions under specified experimental conditions. 

Electrode leak and passive properties of‘ cells . 
The objective of this effort was to construct models that 

reflect the “natural” behavior of these neurons. Accord- 
ingly, our models have taken into account the effects of the 
experimental electrophysiological methods used to obtain 
the physiological records. Although a complete description 
of electrode damage would almost certainly have to take 
into account complex factors such as changes in local ionic 
concentrations, diffusion, and the cytoskeleton of the cell, 
we have adopted the convention of previous modeling ef- 

TABLE 4. Gran ulc cvll model propert its 

Cell n nC 70, ms 71, ms L Rinput, Mf2 

Type I 944 162 36 3.4 1 .o 158.5 
Type II 530 182 33 2.7 0.94 166.5 
Type III 587 134 34 3.8 1.1 166.8 

For abbreviations, see Table 2. 
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forts (e.g., Segev et al. 1990), and assumed that damage 
associated with the insertion of a recording electrode into a 
neuron primarily produces a lowered somatic resistance. 

On the basis of data from current injections and input 
resistance ( Mori et al. 198 1 a), we have included a leak resis- 
tance Rleak of 120 MQ in the mitral cell models. A simple 
calculation shows that this leak resistance would be ex- 
pected to give a much more depolarized value for final 
membrane potential than is actually observed. From 
Ohm’s law 

j ‘final = I:‘,,,, x ( l/C 1 lhak + 1 /RnNl 
R,=-65mVx60MIt/120MQ=-33mV 

where I/final is the potential produced due to the voltage 
divider formed by the leak and the summed membrane 
conductance (including the contributions due to chan- 
nels). This contradiction between predicted and observed 
resting potentials can be resolved by postulating the pres- 
ence of ion-selective channels (Pongracz et al. 199 1) in ad- 
dition to the non-ion-selective current due to electrode dam- 
age. In our models, a candidate for such a channel might be 
the noninactivating, voltage-dependent ion channel KM. 
As has been shown from comparisons of whole-cell patch 
recordings and conventional intracellular recordings, (Sta- 
ley et al. 1992), these channels produce a large inward 
current to compensate for the leak conductance due to elec- 
trode damage. Clearly, the approximation of a voltage-de- 
pendent channel as a linear membrane resistance is valid 
only if the kinetics of the compensating current are much 
slower than any fluctuations of membrane potential. This 
assumption is very likely to be good for the relatively rapid 
time courses of neuronal spiking that we are investigating. 
This condition is not met, however, when long hyperpolar- 
izing current injection pulses are used to estimate mem- 
brane time courses. For example, in the granule cell (Fig. 
8A ) , the time course for the hyperpolarizing phase is much 
longer (by a factor of 2) than the time course for repolariza- 
tion back to resting potential. Thus the granule cell data is 
consistent with the postulate that a K current is active at 
“resting” potentials, thereby affecting the charging curve. 
For this reason, our calculations of the passive properties of 
the granule cell model were based on the repolarizing phase 
of the current pulse, because the current is likely to be inac- 
tive at more hyperpolarized potentials (Fig. 8A). 

In several simulations, we have removed the electrode 
leakage current to estimate the response properties of cells 
that have not been impaled. Under these conditions, we 
have found very little effect on the spike rates and wave- 
forms produced by the models ( Figs. 4 F and 8 F) , when the 
injection currents are compensated for the change in input 
resistance. Presumably this lack of effect on cellular output 
is due to the fact that ionic conductances during an action 
potential are much larger than the leak conductance intro- 
duced by the electrode. 

Active chunnels on mitral cell dendrites 

There is considerable experimental evidence that mitral 
cell dendrites have active properties. For example, fast pre- 
potentials are observed in mitral cell somas when the olfac- 

tory nerve is stimulated (Mori and Takagi 1975; Mori et al. 
198 lb, 1982). Further, these prepotentials persist when a 
hyperpolarizing current is simultaneously presented to the 
soma, suggesting a dendritic origin. Earlier theoretical stud- 
ies of the bulb (Rall and Shepherd 1968) also proposed 
active dendrites to match the experimental data then avail- 
able. Our simulations likewise predict the presence of den- 
dritic spikes, both in the glomerulus and in the secondary 
dendrites (Figs. 10 and 11). Thus the model supports the 
previous interpretations of these experimental results. 
PREDICTIONS. Further exploration of the spike-generating 
mechanism in the dendrites of mitral cells has suggested an 
experimental means of further testing the distribution of 
ion channels predicted here. Specifically, we have found 
that voltage-clamping the model’s soma at depolarizing po- 
tentials around spike threshold can reveal several properties 
of the mitral cell dendrites. 

Figure 10A shows the current record produced by the 
somatic voltage clamp in the model. As can be seen in the 
axonal voltage recording below the current record, the large 
current spikes correspond to action potentials generated in 
the spike initiation zone modeled here in the proximal ax- 
onal compartments. However, when this contribution to 
the current is subtracted (Fig. 1 OB), a number of small 
current peaks occurring at different times remain. Compari- 
son of this current record with voltage traces taken from the 
different dendritic branches reveals that these currents are a 
direct result of the local active properties of these dendrites. 
Closer examination of this record reveals current events 
with two different durations. When the secondary dendritic 
spikes are also removed from the current trace (Fig. 1 OC), a 
correspondence between the broader current peak and the 
calcium spike in the glomerular tuft and primary dendrite is 
evident. 

If our model is correct, a single-cell voltage clamp near 
threshold in the soma of a mitral cell should reveal all three 
types of current events. Our interpretation of this phenome- 
non is that the large physical and electrotonic size of the 
mitral cell makes it difficult to generate a good whole-cell 
space clamp. Consequently, a somatic voltage clamp will 
only keep regions near the soma at the holding potential, 
whereas more distal regions are able to vary in potential. As 
shown in Fig. 10, the active properties of these regions, 
combined with the spread of depolarization from the near- 
spike threshold somatic voltage clamp, result in the genera- 
tion of dendritic electrical events that propagate back to the 
soma and are seen in the current trace. Further, because the 
soma is voltage clamped, the large dendrites are effectively 
decoupled from each other and generate independent 
events at a rate determined by their individual local proper- 
ties. 

In the context of the current modeling effort, the occur- 
rence of small-amplitude events in the current records of a 
somatic voltage clamp of a mitral cell would strongly sup- 
port the existence of active properties in the dendrites of 
these cells. Recent results from whole-cell recordings from 
mitral cells (Bufler et al. 1992; D. P. Wellis, personal com- 
munication) indicate that such multiple current events are 
indeed visible. A careful evaluation of the amplitudes and 
distributions of these spikes might make it possible to deter- 
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FIG. 1 0. Voltage clamp at mitral cell soma. Recording sites are indicated on the figures of the mitral cell. /1: ~cjp tract: 
current recording from voltage-clamp electrode. Scale bar is 20 nA. , iMiddle trace: voltage recording at axon. Bottom trace: 
clamped voltage (-47.5 mV) recorded at soma. B: top trace: current recording with large axonal spikes subtracted out. Scale 
bar = 5 nA. Bottom traces: recordings from various locations on the secondary dendrites. The spikes are out of synchrony 
with each other but tend to be individually periodic. C’: top trace: current recording with axonal and secondary dendritic 
spikes removed. Scale bar = 2 nA. Middle trace: recording from primary dendrite. Bottom traw: recording from glomerular 
tuft. The much wider calcium spike is reflected in the width of the corresponding current event. 

-l 50 mV 

200 msec 

mine whether there are differential thresholds for spiking 
activity in different dendrites. This, in turn, might indicate 
different electrotonic distances of the dendrites from the 
point of voltage clamp, or different local channel distribu- 
tions. Distinguishing between these possibilities, however, 
will require further detailed simulations of the sort de- 
scribed here. 
FUNCTIONAL SIGNIFICANCE. On the basis of several studies 
demonstrating prepotentials (Jahr and Nicoll 1982; Mori 
and Takagi 1975; Mori et al. 1982; Wellis et al. 1989), the 
mitral cell glomerular tuft is believed to possess active chan- 
nels. Taken in conjunction with the electrotonic distance of 
the tuft from the mitral cell soma, this has led to general 
agreement that the glomerular tuft may take part in local 
processing and amplification of incoming synaptic input 
from the olfactory nerve (Jahr and Nicoll 1982; Mori et al. 
1982; Rall and Shepherd 1968; Wellis et al. 1989). Our 
simulations also incorporate active channels in the primary 
dendrites and are consistent with this view. We also observe 
that, in additi on to the amplification of synapt ic input, the 

active channels in the glomerular tuft lead to interesting 
interactions with somatic spikes. 

In the nonphysiological situation where spikes are being 
initiated at the soma by current clamp or antidromic stim- 
uli, action potentials may propagate into the glomerulus to 
initiate a calcium spike (Fig. 1 1 C). This process depends 
on the previous level of depolarization in the tuft. The long- 
lasting depolarization due to the calcium spike in the glo- 
merular tuft may cause the initiation of a second somatic 
spike. Thus the model predicts a conditional propagation of 
spikes into the glomerulus from the soma, and vice versa, 
depending on the state of the cell. Similar interactions be- 
tween dendritic calcium spikes and somatic action poten- 
tials has also been modeled in several other neuronal classes 
such as hippocampal pyramidal neurons (Traub and Llinas 
1979) and Purkinje cells from the cerebellum (De Schutter 
and Bower 199 1). 

In a more physiological context, our model clearly sug- 
gests that the presence of active channels in mitral cell den- 
drites should support the propagation of somatic action po- 
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B: failure of &ke’prdpaiation into secondary dendrite. Antidromic stimulation on axon, with’hyperpolarization (0.5-nA 
current injection) on secondary dendrite 1 (in the 1st quadrant with respect to the soma). Shown at 1.5-ms intervals. C: 
antidromic stimulation with glomerular tuft initially depolarized to -20 mV. The somatic spike leads to a glomerular 
dendritic calcium spike, which causes a 2nd somatic spike. Shown at 3.0-ms intervals. 
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tentials into the secondary dendrites ( Fig. 11 A ) . This propa- 
gation has been previously considered in modeling studies 
(Rall and Shepherd 1968). but interpretations were de- 
ferred pending additional experiments. Such dendritic 
spike propagation is very interesting when considered in the 
context of the dendrodendritic synapses known to occur 
between mitral cell secondary dendrites and granule cells 
(e.g., Mori 1987; Rall and Shepherd 1968). In effect, these 
dendrites may act rather like axons in conveying informa- 
tion in an all-or-nothing manner to the granule cells. One 
manifestation of this sort of all-or-nothing behavior is seen 
in intracellular recordings from mitral cells with paired- 
pulse stimulation of the lateral olfactory tuft (e.g., Mori and 
Takagi 1978). In this case, the second pulse fails to elicit a 
somatic spike, and the inhibitory postsynaptic potential at 
the mitral cell soma due to the second pulse is depressed. 
This is interpreted as a reduction in the dendrodendritic 
inhibition from the granule cell due to the spike blockage at 
the mitral cell soma (Rail and Shepherd 1968). Our model 
suggests that a similar but finer control may be exerted at 
the level of the individual secondary dendritic branch. For 
example, as shown in Fig. 1 1, A and B, action potential 
propagation is quite sensitive to the previous membrane 
potential of local regions of the dendrite. As a result, spike 
propagation into secondary dendrites can be blocked by a 
local hyperpolarization (Fig. 1 113). In this way, inhibitory 
feedback from granule cells could block spike propagation 
along individual mitral cell secondary dendrites and 
thereby alter the information received by granule cells in 
contact with those branches at points more distant from the 
soma. Theoretical studies (Manor et al. 199 1) have investi- 
gated the computational implications of conditional failure 
of spike propagation in axons. Such a blockage of spikes 
propagating outward from the soma along individual den- 
drites, if correct, would be a form of information processing 
that has not yet been described in other parts of the mam- 
malian CNS. 

Active channels on granule cell dendrites 

As mentioned earlier, there have been many speculations 
on the role of active channels in granule cell dendrites, and 
their precise location, on the computational role of these 
cells (Rail and Shepherd 1968; Shepherd and Brayton 
1987; Shepherd et al. 1989: Woolf et al. 199 la,b). Our pres- 
ent study is confined to single-cell models, and therefore 
does not address many of these issues directly. We have 
used our granule cell model to test whether any predictions 
could be made about the exact location of active channels 
on the spines or on their parent dendrites. Specifically, 
under somatic current clamp we held the total conductance 
due to the respective ion channels fixed while placing chan- 
nels on either the dendrites or on the spine heads emerging 
from them. The results, shown in Fig. 8 E, indicate that one 
cannot differentiate between these two possibilities using 
the simple somatic current-clamp approach. 

Whole-bulb models 

Ultimately, understanding the interaction of the active 
properties of the mitral cell on the granule cell and the con- 
sequences of this interaction on the computation per- 

formed by the olfactory bulb will require the study of net- 
work models of the entire bulb (Anton et al. 199 1; Freeman 
et al. 1988; Li and Hopfield 1989; Meredith 1992; Rall 
1970; Rall and Shepherd 1968; Schild and Riedel 1992; 
White et al. 1992). In this regard, the single-cell modeling 
effort just described is a preliminary step toward the devel- 
opment of detailed, realistic models of the bulb as a whole. 
Many of the questions raised by single-cell recordings are 
best addressed in the context of a network, where the ramifi- 
cations of active neuronal properties can be more fully ex- 
plored. This effort will undoubtedly further illuminate the 
complexities of these cells as well as the network in which 
they are embedded. 

Conclusions 
These simulations have made both general and specific 

predictions about voltage-dependent channel distributions 
in the dendrites of mitral and granule cells. The results con- 
firm interpretations of previous experimental work as well 
as make specific experimental predictions that can be used 
to further experimentally test the accuracy of the models. 
Further, they suggest several functional consequences for 
the processing performed in these cells. 

Beyond the significance of model results for function of 
the olfactory bulb, in this paper we have also presented a 
more thorough than usual search of model parameter 
space. The more complete mitral cell results suggest that 
real neurons may operate in ranges that are relatively ro- 
bust with respect to physical variations. In some cases, for 
example, differences in channel densities of up to an order 
of magnitude produce relatively little change in the model 
output. Substantial changes in membrane properties, such 
as the presence or absence of electrode leak at the soma, 
were also shown to cause relatively small effects on the 
spike waveforms. Even applying the calculated channel dis- 
tributions to substantially different morphologies, for dif- 
ferent classes of mitral and granule cells, does not markedly 
affect the spiking properties of the cell models. 

We believe these results have important implications for 
future modeling efforts. First, the search for the “correct” 
model can only be conducted up to a certain level of preci- 
sion, because members of the same class of neurons may 
experience variability below that level. Second, there are 
likely to be whole classes of models that are all equally 
correct as far as reproducing the data is concerned. In the 
absence of further experimental data constraining the 
model one way or another, considerations of aesthetics, ef- 
ficiency, or ideas about function will continue to decide the 
model chosen. We believe it is the modeler’s obligation to 
indicate, as far as possible, the range of models that might 
fit the data. 

APPENDIX A: QUANTITATIVE COMPARISON OF 

MODELED AND REAL DATA 

To automate the parameter search, it is necessary to quantify 
the similarity between simulated and experimental data for each 
set of parameters. The goodness of our model parameters is evalu- 
ated by running a simulation using those parameters under the 
appropriate experimental conditions. The output from this simula- 
tion then has to be compared with intracellular voltage recordings 
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and some measure of similarity evaluated. The measure of match 
we use here is computed by comparing a number of different 
features of the simulated and reference waveforms. These include: 

I) Shape of voltage waveforms Vref and ySi,. The nonspiking 
phase of each spike waveform is scaled to match on the time axis 
and directly compared using root-mean-squared difference over 
all the sample points. Linear interpolation is used when the sam- 
pling intervals for the two curves are different. The root-mean- 
squared value is normalized to a typical spike amplitude of 100 
mV (0.1 V in the equation because the simulation uses SI units). 
The additional square root is an empirical means of keeping the 
scaling commensurate with the other measures 

Shape-match = v( v( 2( Vre~ - vyim)‘)/( 0.1 npoinrs)) 

2) Interspike intervals B&and IsI,,,. The time between spikes 
is calculated and corresponding intervals are compared. The inter- 
spike intervals are compared as the sum of the ratio and inverse 
ratio to ensure that all changes from unity result in an increase in 
the measure of difference. The final sum is normalized to the 
number of spikes and scaled as an inverse exponential to keep the 
scaling commensurate with the other measures 

ISI-match = l - exP( - ( x( rslrejsl rsl,,m + rsIs,ml IsI& - 2 )I nspikesI ) 

3) Peak-to-peak amplitudes PTP,,, and PTPsi,. The amplitudes 
of corresponding spikes are compared using root mean squared 

PTP-match = ( rZ( PTPrtg - PTI),,,) 2, / nspikes 

These three measures of spike waveform similarity are com- 
bined using weighting factors determined by the user. We have 
also used other matching functions, which give similar results for 
parameter searches. 

APP ENDIX B: AUTOMATED SEARCHING OF 
PAR AMETE R SPACE 

There are at least three commonly used numerical methods for 
exploring parameter space: brute force, a systematic search based 
on successive approaches to the final point, and Monte Carlo 
methods. Our study has employed the first two. 

Brute force parameter searches . 
I f  each dimension in parameter space is sampled at a fixed num- 

ber of points, one can in principle exhaustively evaluate every 
sample point in the parameter space. However, this rapidly be- 
comes intractable for large parameter spaces, such as in our mod- 
els. For example, in the mitral cell, we use six channel types and 
subdivide the cell into six regions, giving a total of 36 parameters. 
To search such a parameter space even at a very coarse sampling of 
six values per dimension, we would require 636 ( - 1 02*) simula- 
tions. To reduce the number of simulations to a more tractable 
value, we have adopted the following simplifications: 

1) Intrinsic model constraints. Experimental information often 
enables one to eliminate large numbers of parameters from consid- 
eration. For example, in the mitral cell model under conditions of 
TEA and TTX application, two classes of channel (Na and Kfast) 
were assumed to be completely blocked. This reduces the number 
of free parameters from 36 to 24. 

2) Lumping regions together. For the purposes of searching, one 
can choose to lump certain regions of the cell together and vary the 
channel densities uniformly within the lumped regions. We were 
able to perform searches of 6 parameters at six sample points per 
parameter or 10 parameters at three sample points per parameter 
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( -50,000 simulations each). This method is intrinsically crude 
and is only useful for roughly localizing regions of interest in pa- 
rameter space. 

3) Plane sections through parameter space. This method in- 
volves searches of pairs of parameters to generate plane sections of 
parameter space. Typical numbers for this case are 32 samples for 
each parameter and - 50 combinations of parameter pairs (again, 
-50,000 simulations). This method is only useful when one is 
already in the vicinity of the expected minimum and wishes to 
obtain an estimate of the robustness of the solution. 

Systematic searches using conjugate gradients 

Conjugate gradient methods involve successive computations 
of local gradients followed by exploration of the space along a 
vector determined from that gradient. A number of variations of 
this approach exist. We have developed a modification of the 
Fletcher-Reeves-Polack-Ribiere method ( Press et al. 1988 ), 
which is suited to parallelization. Gradients are evaluated for each 
dimension using two sample points to smooth out the slopes. On 
the basis of the gradient, the algorithm selects a vector in parame- 
ter space, passing through the initial point. The best value of 
match along this selected vector is evaluated on the basis of a fixed 
number of sample points and B-spline interpolation (Enns 1986). 
This match point becomes the starting point for another cycle of 
the gradient method. 

Each of these cycles involves many independent calculations of 
match based on parameters determined at the outset of the stage. 
This allows one to compute each iteration in the same amount of 
time as required for a single simulation by farming out the desired 
parameters to a large number of independent nodes on a parallel 
computer. Conjugate gradient methods are extremely efficient, 
usually converging within five or so cycles, as described above 
(typically 200-300 simulations). 

Comhination ofparameter searching methods 

Basic conjugate gradient methods assume that there is a unique 
solution to the problem, and that the energy (matching) function 
is smooth. Neither of these conditions is met for our neuronal 
parameter searching problem. We have therefore combined con- 
jugate gradient with brute force methods to obtain solutions that 
are very likely to be reliable. Initial parameter searches are usually 
done using brute force methods. When an approximate idea of the 
correct region of parameter space is available, one can use the 
gradient scheme. This is typically done using different weighting 
functions and starting points, to check if there is a common solu- 
tion to which all these converge. Finally, plane sections of parame- 
ter space are used to determine the smoothness of nearby parame- 
ter space and to estimate the robustness of the solution. 

APPENDIX C: CHANNEL PARAMETERS 

The Hodgkin-Huxley formalism is used for all channels. Two 
alternative forms, the cw-p form (& 2) and the T-m, form (Eq. 3) 
are used to describe the channel kinetics. For three channels, 
&,a” ’ Kfast and K, the kinetics have not been reduced to analyti- 
cal form and are therefore described by plots of the voltage depen- 
dencies of their kinetics (Fig. 12). 

Voltage units: millivolts, with respect to extracellular potential. 
The resting potential is -65 mV for all cells. Time units: millisec- 
onds. Resistance units: megohms. Concentration units: milli- 
moles per liter. 

I) Compartment equation. i refers to the index of the present 
compartment, .j is the index for the ionic conductance gj with 
reversal potential Ej. The remaining terms have been defined in 
the text 

CmidVi/dt = (Emi - Vi)/ Rmi + (Vi+, - Vi)/( RUi,i+,) 

+ Cvi-* - K )l(Rai.i-1) + z$?j<E; - Vi > 

2) Dependence of gating parameter m on rate constants cy and p 

dm/dt = a,,( 1 - m) - ,&,m 

3) Dependence of gating parameter m on rate constants 7 and 
mcc 

dm/dt = (m, - m)/r,,, 

4) Mitral Na channel 

g, = K,,m3h 

(yrn = 0.32( V + 42)/( 1 - exp( -( V + 42)/4)) 

p, = 0.28(V+ Is)/(exp((V+ 15)/5) - 1) 

ah = o.l28/exp((v+ 38)/18) 

P h = 4/( 1 + exp(-(C’+ 15)/5)) 

5) Granule Na channel. See Fig. 12, A and B 
- 

KNllgra?l = gNagran %‘3h 

6) Mitral Ca channel 
- 

&a = &h sr 

(Y, = 7.5/( 1 + exp(( 13 - V)/7)) 

0, = 1.65/( 1 + exp(( V - 14)/4)) 

(Y, = 6.8 X 10P3/( 1 + exp(( V + 30)/ 12)) 

& = 0.06/( 1 + exp(-V/11)) 

7) Mitral Kfast channel. See Fig. 12, C and n 

KKfasr = &fasrn 2k 

8) Mitral and granule cell K channel. See Fig. 12, Cand D. The 
7 parameters are slower (larger) by a factor of 4 from the values in 
the figure 

gK = &n2k 

9) Mitral and granule cell KA channel 

&A = FKAPY 

7P 
= 1.38 

Pno = I/( 1 + exp(-(V+ 42)/13)) 

?q = 150 

4, = l/(1 +exp((V+ 110)/18)) 

IO) Granule cell KM channel 

!?KM = i?KMX 

7.x = lOOO/( 3.3 exp(( V + 35)/40) + exp( -( V + 35)/20)) 

x, = I/( 1 + exp(-(V+ 35)/5)) 

II ) Mitral K,, channel. x represents calcium ion concentration 
- 

gKCa = gKCa .r ’ 

a-,, = exp((V- 65)/27) X (500(0.015 - x)/ 

(exp((0.015 - x)/0.0013) - 1) 

p, = 0.05 
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