NEURON-related presentations at SFN 2008

Last revised 11/15/2008. Please report additions and corrections to ted dot carnevale at yale dot edu


NEURON users who have teaching obligations should note the education-oriented posters by Grisham et al. (224.7, UU34) and Carver (225.4, UU53), as well as Moore and Stuart's latest version of Neurons in Action 2 (on display at the Sinauer booth).

Time & Place




Abstract Title
Session # & Title

Sat PM





2 - 3 WCC A-C

36.2

F2

A. NÖRENBERG1, *M. BARTOS2, I. VIDA3, H. HU1, P. JONAS1; 1Dept. I, Physiological Inst., Freiburg, Germany; 2Inst. of Med. Sci., Univ. Aberdeen, Aberdeen, United Kingdom; 3Div. of Neurosci. and Biomed. Systems, Fac. of Biomed. and Life Sciences, Univ. of Glasgow West, Glasgow, United Kingdom

Detailed cable models of fast-spiking basket cells in the dentate gyrus

36.Synaptic Integration I

3 - 4 WCC A-C

36.3

F3

H. HU1,2, *P. M. JONAS1; 1Dept. I, Physiological Inst., Freiburg, Germany; 2Physiol., Inst. of Basal Medicine, Ctr. for Mol. Biol. and Neuroscience, Univ. of Oslo, Oslo, Norway

Propagation of action potentials in the dendrites of fast-spiking basket cells in the dentate gryus

36.Synaptic Integration I

1 - 2 WCC A-C

36.9

F9

*Y. WEI1, B. W. MEL2;
1Dept Neurosci Grad Prgm, 2USC, Los Angeles, CA

Nonlinear synaptic integration depends on relative values and timing of NMDA and AMPA conductances

36.Synaptic Integration I

2 - 3 WCC A-C

36.10

F10

*B. LOSAVIO, P. SAGGAU; Baylor Col. Med., Houston, TX

Non-linear synaptic summation in different types of central neurons

36.Synaptic Integration I

3 - 4 WCC A-C

36.19

G7

T. BRANCO, *B. A. CLARK, M. HAUSSER; WIBR, UCL, London, United Kingdom

Directional selectivity in basal dendrites of cortical pyramidal neurons

36.Synaptic Integration I

4 - 5 WCC A-C

41.16

O3

*T. SHINOZAKI1, H. CATEAU1, A. REYES2, M. OKADA3,1; 1Brain Sci. Inst., RIKEN, Wako, Japan; 2Ctr. for Neural Sci., New York Univ., New York, NY; 3Dept. of Complexity Sci. and Engin., Univ. of Tokyo, Kashiwa, Japan

Preceding inhibition stabilizes propagation of synfire chain in silico and in vitro

41.Oscillations: Modulation

2 - 3 WCC A-C

43.2

R5

*S. DRUCKMANN1, H. MARKRAM2, I. SEGEV1; 1Hebrew Univ., Jerusalem, Israel; 2EPFL, Lausanne, Switzerland

Objective assessment and automated modeling of the different electrical classes of neurons in the neocortex

43.Intrinsic Membrane Properties: Defining Neuron Types, and Relating Neuron Conductances and Anatomy to Activity

2 - 3 WCC A-C

43.10

S1

*H. KUBA, H. OHMORI; Dept Physiol, Fac Med, Kyoto Univ., Kyoto, Japan

Distribution of axonal Na channels for precise spike timing in an auditory relay neuron

43.Intrinsic Membrane Properties: Defining Neuron Types, and Relating Neuron Conductances and Anatomy to Activity

4 - 5 WCC A-C

43.20

S11

A. YADAV1, *C. M. WEAVER1, Y. Z. GAO1, J. I. LUEBKE2, S. L. WEARNE1;
1Dept Neurosci, Mount Sinai Sch. Med., New York, NY; 2Dept. of Anat. and Neurobio., Boston Univ., Boston, MA

Altered mechanisms of calcium handling with age in neocortical neurons: The role of spine size and background synaptic activity

43.Intrinsic Membrane Properties: Defining Neuron Types, and Relating Neuron Conductances and Anatomy to Activity

2 - 3 WCC A-C

43.22

T1

*S. A. PRESCOTT1, S. RATTÉ1, Y. DE KONINCK2, T. J. SEJNOWSKI3,4; 1Neurobio., Univ. of Pittsburgh, Pittsburgh, PA; 2CRULRG, Quebec, QC, Canada; 3Salk Institute, HHMI, La Jolla, CA; 4UCSD, La Jolla, CA

How pyramidal neurons switch from integrators in vitro to resonators under in vivo-like conditions

43.Intrinsic Membrane Properties: Defining Neuron Types, and Relating Neuron Conductances and Anatomy to Activity

1 - 2 WCC A-C

44.5

T11

*J. L. BAKER1, T. PEREZ2, M. MIGLIORE3, G. BARRIONUEVO2, G. A. ASCOLI1; 1Krasnow Inst. Advanced Study, George Mason Univ., Fairfax, VA; 2Dept. of Neurosci., Univ. of Pittsburgh, Pittsburgh, PA; 3Inst. of Biophysics, Natl. Res. Council, Palermo, Italy

Computer simulation of minimally evoked recurrent collateral and perforant path excitatory synaptic responses in hippocampal CA3b pyramidal cells

44.Dendritic Excitability and Synaptic Integration

4 - 5 WCC A-C

44.16

U10

S. RIEUBLAND, J. T. DAVIE, *A. ROTH, M. HAUSSER; Wolfson Inst., Univ. Coll London, London, United Kingdom

The dynamic current-voltage relation of cerebellar Purkinje cells

44.Dendritic Excitability and Synaptic Integration

1 - 2 WCC A-C

44.25

U19

*B. BATHELLIER1, T. W. MARGRIE2, M. E. LARKUM1;
1Inst. Physiol, Univ. Bern, Bern, Switzerland; 2Dept. of Neuroscience, Physiol. and Pharmacol., Univ. Col. London, London, United Kingdom

Dendritic properties of olfatory cortex pyramidal neurons

44.Dendritic Excitability and Synaptic Integration

4 - 5 WCC A-C

44.28

U22

G. CELLOT1, S. CIPOLLONE2, L. GAMBAZZI3, H. MARKRAM3, M. PRATO2, *M. GIUGLIANO3, L. BALLERINI1; 1Physiol. and Pathology Department,, 2Univ. of Trieste, Trieste, Italy; 3Brain Mind Inst, Neural Micro, Ecole Polytech Fed d, Lausanne, Switzerland

Interfacing neurons with carbon nanotubes boosts post spike excitability

44.Dendritic Excitability and Synaptic Integration

3 - 4 WCC A-C

58.11

CC26

*M. MIGLIORE1, C. CANNIA1, C. C. CANAVIER2; 1Inst. of Biophysics, Natl. Res. Council, Palermo, Italy; 2Neurosci. Ctr. of Excellence, LSU Hlth. Sci. Ctr., New Orleans, LA

Getting sober with Ih: a possible pharmacological target to mitigate the effects of ethanol on reward-related dopaminergic signaling

58.Drugs of Abuse: Alcohol, Sedative Hypnotics, and Anxiolytics

2 - 3 WCC A-C

101.14

VV9

R. BRETTE1, J. GOMEZ GONZALEZ2, Z. PIWKOWSKA2, M. RUDOLPH-LILITH2, C. MONIER2, J. FOURNIER2, M. LEVY2, Y. FREGNAC2, T. BAL2, *A. DESTEXHE2; 1Ecole Normale Superieure, Paris, France; 2UNIC, CNRS, Gif-sur-Yvette Cedex, France

Active Electrode Compensation for high-resolution intracellular recordings in vitro and in vivo

101.Recording and Stimulation Techniques II

Sun AM





8 - 9 WCC A-C

136.17

G2

*J. LIU1, D. V. BUONOMANO2; 1Dept. of Mathematics, 2Neurobiol & Psychol, UCLA, Los Angeles, CA

Embedding multiple trajectories in recurrent neural networks in a self-organizing manner

136.Signal Propagation in Networks

10 - 11 WCC A-C

139.7

L10

*A. CHATURVEDI1,3, C. R. BUTSON1, C. B. MAKS1, S. E. COOPER2, C. C. MCINTRYRE1,3,2; 1Biomed. Engin., 2Ctr. for Neurolog. Restoration, Cleveland Clin. Fndn., Cleveland, OH; 3Biomed. Engin., Case Western Reserve Univ., Cleveland, OH

Integrating 3D brain atlases, fiber tractography, and axonal activation models to build patient-specific models of deep brain stimulation

139.Parkinson's Disease: Primate and Rodent Therapies

9 - 10 WCC A-C

139.10

M1

*S. E. COOPER1, P. HAHN2, C. MCINTYRE2; 1Dept Neurol, 2Biomed. Engin., Cleveland Clin. Fndn., Cleveland, OH

Synaptic plasticity in a subthalamopallidal network model of deep brain stimulation

139.Parkinson's Disease: Primate and Rodent Therapies

Sun PM





1 - 2 WCC A-C

237.17

D42

N. DOYON1, H. KROGER2, S. A. PRESCOTT3, *Y. DE KONINCK4; 1Cell. Neurobio., 2Laval Univ., Quebec, QC, Canada; 3Neurobio., Univ. of Pittsburgh, Pittsburgh, PA; 4Cell. Neurobiol, Laval Univ. / CRULRG, Quebec, Canada

Impact of altered chloride extrusion capacity on cell excitability

237.Synaptic Integration II

4 - 5 WCC A-C

240.4

E26

*B. A. MARCELIN1, L. CHAUVIÈRE1, A. BECKER2, M. MIGLIORE3, M. ESCLAPEZ1, C. BERNARD1; 1U751, INSERM, Marseilles, France; 2Dept. of Neuropathology & Natl. Brain Tumor Reference Ctr., Univ. of Bonn Med. Ctr., Bonn, Germany; 3Inst. of Biophysics, Palermo, Italy

Alterations of Ih dynamics underlie a deficit of theta oscillations in a rat model of temporal lobe epilepsy

240.Intrinsic Membrane Properties: Modulation of Neuronal Firing Properties by Inputs and Activity

3 - 4 WCC A-C

250.15

V27

A. BOGAARD1, V. BOOTH2, *M. R. ZOCHOWSKI1; 1Physics, 2Dept. of Mathematics, Anasthesiology, Univ. of Michigan, Ann Arbor, MI

Interaction of cellular and network mechanisms in spatio-temporal pattern formation in neuronal networks and its role in seizure generation

250.Epilepsy: Networks

3 - 4 WCC A-C

224.7

UU34

W. E. GRISHAM, N. A. SCHOTTLER, F. B. KRASNE; Dept Psychol, UCLA, Los Angeles, CA

SWIMMY: inquiry-based, free software providing experience with basic neurophysiology and mechanisms of motor pattern generation

224.Higher Education: Texts and Programs

4 - 5 WCC A-C

225.4

UU53

*S. G. CARVER;
Psycholog & Brain Sci., Johns Hopkins Univ., Baltimore, MD

Bringing the research frontier to the classroom: teaching neural modeling through system identification

225.Higher Education: Funding and Educational Activities

Mon AM





8 - 9 WCC A-C

368.5

JJ30

*A. M. TAN, P. ZHAO, Y.-W. CHENG, S. STAMBOULIAN, J. CHOI, A. B. HAINS, S. G. WAXMAN, B. C. HAINS; Neurol., Yale Univ. Sch. of Med., West Haven, CT

This presenter will not attend
Neuropathic pain memory is maintained by Rac1-regulated dendritic spine remodeling after peripheral nerve injury

368.Neuropathic Pain Mechanisms: Signaling Pathways and Models

10 - 11 WCC A-C

376.23

PP16

T. S. ANDERSON1,2, R. FOGLYANO1, P. J. THOMAS3,4, *C. G. WILSON1; 1Dept Pediatrics, 2Sch. of Med., 3Mathematics, 4Biol., CWRU, Cleveland, OH

Changing external potassium conditions elicits periodic modulation of respiratory rhythm in a preBötzinger complex network model while other methods of boosting neural excitability do not

376.Rhythmic Motor: Network and Cellular Models

Mon PM





2 - 3 WCC A-C

435.6

H11

*S. OZEN1, A. M. SIROTA1, C. A. ANASTASSIOU2, C. KOCH2, G. BUZSAKI1; 1Cntr for Neurosci, Rutgers Univ., Newark, NJ; 2Div. of Biol., Caltech, Pasadena, CA

Entrainment of the cortical slow oscillation by extra-cranial weak electric fields

435.Rhythms of the Brain

4 - 5 WCC A-C

435.8

I1

C. A. ANASTASSIOU1, S. M. MONTGOMERY2, M. BARAHONA3, *G. BUZSAKI2, C. KOCH1; 1Div. of Biol., Caltech, Pasadena, CA; 2Ctr. for Molec & Behav Neurosci, Rutgers Univ., Newark, NJ; 3Dept. of Bioengineering, Imperial Col. London, London, United Kingdom

Effects of spatially inhomogeneous extracellular fields on the membrane potential of single neurons

435.Rhythms of the Brain

4 - 5 WCC A-C

437.8

K4

*R. H. CUDMORE1,2, P. GIRAUD1,2, D. DEBANNE1,2; 1INSERM U641, Marseille, France; 2Univ. de la Méditerranée, Marseille, France

Spike time precision and network synchrony are controlled by the homeostatic regulation of IA/ID

437.Networks and Units

3 - 4 WCC A-C

445.19

W24

*S. M. ELBASIOUNY1, C. J. HECKMAN2; 1Dept Physiol, 2Departments of Physiol. and Physical Med. and Rehabil., Northwestern Univ., Chicago, IL

Upregulation of active conductances and persistent inward currents in mutant SOD1 motoneurons: Insights from computer simulations

445.Motor Neuron Disease: Models and Mechanisms III

3:20 - 3:55 PM WCC Blrm B

399.5
Sympos


A. Destexhe; UNIC, CNRS, Gif-sur-Yvette Cedex, FRANCE.

Modulation of information transfer by network activity

399.State Dependence of Network Output: Modeling and Experiments

Tue AM





8 - 8:15 AM WCC 140A

517.1
Slide

*P. N. STEINMETZ1,2, S. C. BELLINGER1; 1Bioengineering, Arizona St Univ., Tempe, AZ; 2Neurol., Barrow Neurolog. Inst., Phoenix, AZ

Submyelin potassium accumulation may functionally block subsets of local axons during deep brain stimulation: a modeling study

517.Brain Machine Interface: Animal and Model Studies

8 - 9 WCC A-C

535.1

D62

*J. AMBROS-INGERSON1, L. M. GROVER2, W. R. HOLMES1; 1Dept Biol Sci., Ohio Univ., Athens, OH; 2Dept of Pharmacology, Physiol. and Toxicology, Marshall Univ. Sch. of Med., Huntington, WV

The upstroke of the action potential has two events that suggest initiation occurs at the nodes of Ranvier in hippocampal CA1 pyramidal cells

535.Action Potentials and Sodium Channels

9 - 10 WCC A-C

578.10

QQ12

*J. T. MOYER1, B. L. HALTERMAN1, L. H. FINKEL1, J. A. WOLF2; 1Dept Bioengineering, 2Dept Psychiatry, Univ. Pennsylvania, Philadelphia, PA

Functional roles of lateral and feedforward inhibition in the striatum

578.Basal Ganglia: Systems Physiology and Behavior III

Tue PM





1 - 2 WCC A-C

631.5

D41

O. WAROUX1, M. BONJEAN2, G. DRION3, D. ENGEL4, R. SEPULCHRE3, *V. M. SEUTIN4;
1Pharmacol-CNCM, Univ. Liège, Liège, Belgium; 2Computat. Neurobio. Lab., The Salk Inst. for Biol. Studies, San Diego, CA; 3Electricity, electronics and computer science, Univ. of Liège, Liège, Belgium; 4Dept Pharmacol-CNCM, Univ. Liege, Liege, Belgium

Modulation of burst firing by KCNQ channels in dopaminergic neurons: further mechanistic modelling and experimental findings

631.Potassium Channels: Physiology I

2 - 3 WCC A-C

641.2

R12

*C. C. MCINTYRE1, P. J. HAHN1, M. J. LOWE2, M. D. PHILLIPS2; 1Biomed Engin., 2Radiology, Cleveland Clin. Fndn., Cleveland, OH

Integration of patient-specific network models and fMRI activation during deep brain stimulation

641.Parkinson's Disease: Clincal and Animal Therapies

3 - 4 WCC A-C

641.3

S1

*P. J. HAHN, C. C. MCINTYRE; Biomed. Engr, Cleveland Clin. Lerner Resch Inst., Cleveland, OH

Training a subthalamopallidal network model of deep brain stimulation using experimental data

641.Parkinson's Disease: Clincal and Animal Therapies

3 - 4 WCC A-C

641.27

U1

*T. J. FOUTZ1,2, S. MIOCINOVIC1,2, C. C. MCINTYRE1,2; 1Dept of Biomed. Engin., Case Western Reserve Univ., Cleveland, OH; 2Dept of Biomed. Engin., Cleveland Clin. Fndn., Cleveland, OH

Evaluation of novel stimulus waveforms for subthalamic deep brain stimulation

641.Parkinson's Disease: Clincal and Animal Therapies

4 - 5 WCC A-C

690.12

TT85

*S. A. NEYMOTIN1, A. V. OLYPHER5, H.-Y. KAO2, E. KELEMEN2, A. E. JOZWICKA2, W. W. LYTTON3, A. A. FENTON4; 1Biomed. Engin. Program, 2Neural and Behavioral Sci. Program, 3Physiol. & Pharmacology, Neurology, Biomed. Engin., 4Physiol. & Pharmacol., SUNY Downstate, Brooklyn, NY; 5Biol., Emory Univ., Atlanta, GA

Standardized assessment of extracellular single unit isolation quality

690.Learning and Memory: Physiology and Imaging V

3 - 4 WCC A-C

694.20

UU80

A. HAJJ, *P. A. FORTIER; Dept Cell & Molec Med., Univ. Ottawa, Ottawa, ON, Canada

Simulation of retinal triadic circuitry and signal transmission along the early visual pathway

694.Computation, Modeling, and Simulation II

Wed AM





9 - 10 WCC A-C

738.10

N1

*M. FERRANTE1, M. MIGLIORE3,4, G. A. ASCOLI2; 1Krasnow Inst., 2Dept. of Mol. Neurosci., George Mason Univ., fairfax, VA; 3Yale Univ., New Haven, CT; 4Inst. of Biophysics, Natl. Res. Council, Palermo, Italy

Feed-forward inhibition as a buffer of the neuronal input-output relation

738.Network Interactions

8 - 9 WCC A-C

769.25

KK31

S. A. NEYMOTIN1, D. J. UHLRICH3, *W. W. LYTTON2; 1Program in Biomed. Engin., 2Physiol, Pharmacol, Neurol, SUNY Downstate, Brooklyn, NY; 3Anat., U. Wisconsin, Madison, WI

Virtual slice simulation of resonance in a layered cortical model

769.Visual Cortex: Local Circuit Physiology III

10 - 11 WCC A-C

775.19

OO12

B. GUCLU1, G. K. MAHONEY2, L. PAWSON2, *A. PACK3, R. L. SMITH2; 1Biomed. Engin. Inst., Bogazici Univ., Istanbul, Turkey; 2Inst. for Sensory Res., Syracuse, NY; 3Biol., Utica Col., Utica, NY

Computational model predicts directional sensitivity and voltage-sensitive channels in slowly-adapting Type I mechanoreceptive neurites

775.Neural Coding in the Somatosensory System

9 - 10 WCC A-C

798.14

VV7

*M. L. HINES1, F. SCHUERMANN2, H. MARKRAM2; 1Computer Sci., Yale Univ., New Haven, CT; 2Brain Mind Inst., EPFL, Lausanne, Switzerland

Threads on multicore workstations allow a good balance between computational efficiency and ease of use in the NEURON Simulation Environment

798.Computation, Modeling, and Simulation IV

Wed PM





2 - 3 WCC A-C

823.6

C19

*S. MANITA, W. N. ROSS;
Physiol., New York Med. Coll, Valhalla, NY

IP3 production and IP3 diffusion regulate the time window of synergistic Ca2+ release by backpropagating action potentials and mGluR activation in the apical dendrites of CA1 pyramidal neurons

823.Metabotropic Glutamate Receptors

2 - 3 WCC A-C

849.2

BB10

M. FERRANTE1, K. T. BLACKWELL1, M. MIGLIORE2,3, *G. A. ASCOLI1; 1Krasnow Inst. Advanced Studies, George Mason Univ., Fairfax, VA; 2Inst. of Biophysics, Natl. Res. Council, Palermo, Italy; 3Dept. of Neurobio., Yale Univ., New Haven, CT

Computational models of neuronal biophysics and the characterization of potential neuropharmacological targets

849.Behavioral approaches to neuropharmacology