
Numerical Integration
in Computational Neuroscience

The aim of this article is to provide an intuitive introduction to numerical 
integration in the context of simulating model neurons. It begins with a brief 
discussion of the nature of the equations that are to be solved, then examines 
some approaches that have been employed to solve them, and ends with some 
comments to help users apply numerical integration to their own models.

The Nature of the Problem

Most computational models of biological neurons and networks are used to study 
the origin, propagation, and interaction of electrical signals. For this reason, the 
focus here is on numerical solution of initial value problems that involve the cable 
equation. It has been noted that the deterministic diffusion of chemical signals is 
described by equations that are formally equivalent to those that govern the 
spread of electrical signals, and are amenable to similar computational 
approaches (Carnevale and Hines 2006; Zador and Koch 1994). Readers who 
wish more detail on these and related topics are referred to chapter 4 in 
Carnevale and Hines (2006), as well as Iserles (2008), Polyanin et al. (2008), 
and Wolfram Research (2013) Phenomena that involve small numbers of 
molecules or ions require methods that are beyond the scope of this chapter.

The spread of electrical signals along an unbranched neurite is governed by the 
one dimensional cable equation, a partial differential equation (PDE) that is a 
statement of conservation of charge in an anatomically extended structure. The 
cable equation is often written as 
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Eq. 1

where T  and X  are time and anatomical distance scaled by factors related to 
the physical size of a neurite and the electrical properties of its membrane and 

cytoplasm, and V and F are continuous functions of T  and X  (Rall 1977; Jack 
et al. 1983). Branched cellular architectures can be accommodated by combining 
multiple instances of the cable equation (one for each unbranched neurite) with 
appropriate boundary conditions. An analytical solution to the cable equation 

would express membrane potential as v �t , x� , a continuous function of time 
and position. In special cases it is possible to solve the cable equation 
analytically, and those solutions have produced many general insights into 
neuronal function (Rall 1977; Jack et al. 1983; Segev et al. 1995).

However, models that include the anatomical and biophysical complexities of real 
cells typically produce equations that do not have analytical solutions. The 
classical example is the Hodgkin-Huxley model of spike propagation along squid 
axon (Hodgkin and Huxley 1952)
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In this equation, the gating variables h , m , and n  are governed by first order 
ordinary differential equations (ODEs) whose rate constants depend on local 

membrane potential v , and the parameters C
m

, �gna
, �gk

, and g
l

 (specific 

membrane capacitance and channel conductance densities) may vary with 
position; furthermore. Equations with such complexities must be solved 
numerically.

Discretization of the Cable Equation

A broad class of strategies for numerical solution of initial value PDEs is based 
on the notion of discretization. Discretization involves approximating a PDE, 
whose dependent variables are temporally and spatially continuous, with a set of 
difference equations that relate the dependent variables to each other at a finite 
set of points in time and space. This is done by approximating the temporal and 
spatial derivatives with algebraic difference formulas, and it produces a family of 
difference equations. The difference equations are then solved algebraically in 
order to compute the future values of state variables from their present (and 
possibly past) values. Instead of producing a solution that is a continuous 
function of time and position, the result is an approximate solution 
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by discretization depends on the algebraic formulas used to approximate the 
derivatives, and the size of the temporal and spatial intervals between adjacent 
solution points.

Here we introduce basic concepts involved in discretization and then explore the 
stability and precision of various integration methods in the context of some 
simple models. This discussion is guided by the fact that models of neurons that 
involve biological anatomical and biophysical details pose a special challenge 
because the equations that describe them are very stiff, that is, they are 
characterized by a wide range of time constants. For example, even though 
neurons typically have membrane time constants on the order of tens of 
milliseconds, longitudinal redistribution of charge along the length of a neurite 
has sub-millisecond kinetics, and short neurites or dendritic spines can introduce 
sub-microsecond time constants. Single compartment model neurons are not 
immune from stiffness, because some voltage- and ligand-gated ion channels 
(especially spike sodium channels and AMPAergic synaptic channels) have sub-
millisecond time constants. Some voltage-and ligand-gated potassium channels 
are much slower, on the order of hundreds of milliseconds, while ion 
accumulation and active transport can produce concentration changes and shifts 
of membrane potential that evolve over seconds or minutes.

Because of the stiffness of neural models, explicit integration methods (methods 
that predict future values from present and past values) can require impractically 

small � t  to avoid instability; this is illustrated below. Also, stability issues aside, 
the utility of high order methods in fixed time step integration can be limited by 
the necessity of using short time steps to follow the time course of rapidly 
changing state variables. Consequently, only a few of the many methods that 
have been developed for numerical solution of PDEs are suitable for simulating 
models of biological neurons and networks.

Spatial Discretization

Spatial discretization is the first step in transforming the cable equation to 
algebraic difference equations. It approximates a spatially continuous physical 
system by a set of coupled compartments, each of which is small enough that 
membrane current density can be treated as nearly uniform over its surface. This 

figure portrays such a region; as indicated by the arrows, axial currents i
a

 are 

reckoned as positive if they enter the region, and membrane current i
m

 is 

positive when it exits.
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If membrane current density varies widely over a model cell, many compartments 
will be needed to satisfactorily represent this variation. The ODE that describes 
membrane potential in the jth region is
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Eq. 3

where the left hand side is the sum of the capacitive and ionic membrane 
currents in the jth region, and the right hand side is the sum of the axial currents 
that enter this region from its immediate neighbors.

If the compartments are of equal size and the points at which membrane 
potential and currents are computed are located at the compartment centers, the 
right hand side of Eq. 3 is the central difference approximation to the PDE's 
second spatial derivative
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where � r  is the resistance of the cytoplasm between adjacent compartment 
centers. The equivalent electrical circuit for three adjacent compartments along a 
neurite that has been discretized with the central difference approximation is



Here each compartment's membrane properties are depicted as the parallel 
combination of a capacitor and a box that represents the contribution of ion 
channels to transmembrane current. These are attached to a node in the middle 
of the compartment, at which membrane potential is to be calculated; each node 
is separated from adjacent nodes by cytoplasmic resistance.

The accuracy of the central difference approximation is O�� x2� , i.e. the local 
error introduced by replacing the second partial derivative in space with the 
central difference approximation is proportional to the square of the distance 

� x  between adjacent nodes (Iserles 2008). As a consequence, the central 
difference approximation leads to numerical solutions that can be treated as 

piecewise linear approximations to the real solution. In other words, if v
j

 and 

v
j+1

 are second-order accurate at adjacent nodes x
j

 and x
j+1

, linear 

interpolation can be used to find a order accurate value v *  at any point x*  
that lies between them.

The outcome of spatial discretization can be rearranged and written in vector 
form as

d y

d t
= F � y , t� Eq. 5

where the elements of y  include not only the membrane potentials in each 
compartment but also state variables associated with other dynamic processes 
such as ion channel gating and concentrations of ions and second messengers. 

The right hand side includes t  to acknowledge the possible presence of time-
varying parameters (e.g. synaptic conductances) or signal sources such as 
current- or voltage clamps.

Temporal Discretization

Temporal discretization completes the transformation of a PDE to a set of 
algebraic equations by substituting an algebraic approximation for the temporal 
derivatives. There is a wide variety of temporal discretization schemes that are 
characterized by different degrees of stability and orders of accuracy. Those that 
are most relevant to computational neuroscience are discussed in Specific 
Integration Methods below.

Specific Integration Methods

An ideal numerical integration method would generate highly accurate solutions 
quickly and robustly regardless of the details of the model. Unfortunately it is not 
possible to meet all these goals simultaneously. In general, there is a tradeoff 
between speed, stability, and accuracy. 

Explicit Euler method

The explicit Euler method is conceptually simplest and easiest to implement. This 

is a first-order accurate approach (local error is proportional to � t ) that predicts 

the solution at the next time t
i�1

 from the values of the state variables and their 

derivatives at the current time t
i
. It approximates the ODE of Eq. 5 with
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so advancing a solution from one time to the next requires only calculation of the 
derivatives followed by some multiplications and additions.

However, the total computational cost of a simulation depends not only on how 
much effort is needed to advance from one step to the next, but also on the 
number of advances that must be performed. Explicit Euler's weakness is that 

� t  must be smaller than the smallest time constant in the system in order to 
ensure stable solutions that are free of spurious oscillations. For example, 
consider the ordinary differential equation (ODE) 
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According to the explicit Euler method, given y
i

 at time t
i
, the "recurrence 

equation" that generates y
i�1

 at time t
i�1

 is 

y
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i
�1 � � t /�� Eq. 8

The following graphs compare the analytical solution for Eq. 7 with � = 1  and 

initial condition y = 1  (left panel, dashed line) to numerical solutions calculated 

by the explicit Euler method using different values of � t . In both graphs the 

horizontal axis is time in seconds. If � t < 
/2  (left panel, solid line, � t = 0.5
), the numerical solution evolves smoothly with time and converges toward the 
analytical solution. Even though there is some error in the numerical solution, the 
solution is stable because the error decreases at each new time step and 

approaches 0 in the limit as t � � . 
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If � t  lies in the interval �� /2, ��  (right panel, dashed line, � t = 1.9 ) the 
numerical solution shows spurious oscillations. That said, it is still stable because 
error decreases with time and the solution converges toward the analytical 

solution. However, if � t � 2�  the solution becomes unstable: each advance of 
the solution now amplifies whatever error was already present, so the oscillations 

grow without limit (right panel, solid line, � t = 2.1 ).

The instability of the explicit Euler method is a particular problem for 
multicompartmental models because spatial discretization introduces very fast 
time constants, especially when very small compartments are present. Consider 
a model cell that has a 10 µm diameter spherical soma to which a cylindrical 
spine with diameter = length = 1 µm is attached. Let all membrane be passive 
with resting membrane potential 0 mV, specific membrane conductance and 

capacitance 0.001 Siemens/cm2 and 1 µF/cm2, respectively, and cytoplasmic 
resistivity 160 � cm. The electrical equivalent circuit for this model is

v0 v1ra

c0 r1r0 c1

where the soma's parameters are r0 = 3.183e2 meg�, c0 = 3.142e-3 nF, the 
spine's parameters are r1 = 3.183e4 meg�, c1 = 3.142e-5 nF, and the coupling 
resistance between them is ra = 1.0186 meg�. This circuit has two time 
constants: the slower one is 1 ms, and the faster is ~3.2e-5 ms. If membrane 
potential is 1 mV in the soma and spine when t = 0, v0 and v1 should follow a 

monoexponential decay described by e-t, i.e. membrane potential in the soma 
and the spine should both decay toward 0 with a time constant of 1, as shown 
here
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One might think that this model could be simulated using the explicit Euler 

method with � t  = 0.1 ms. However, the simulation blows up after 0.4 ms, as 
shown below. This happens because finite precision arithmetic introduces 
roundoff errors, which are magnified at each step until they completely dominate 
the simulation.
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Implicit Euler method

Like explicit Euler, the implicit Euler method also has first order accuracy. It 
differs from explicit Euler in that its recurrence equation is based on the 

derivative at the new time t
i�1

, i.e.
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Gathering all terms at time t
i�1

 to the left hand side produces a set of algebraic 

equations
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Eq. 10

which must be solved in order to compute the solution at the new time. Now we 
see why this is called the implicit Euler method: the new value of y is not 
computed directly from the previous value, but instead is is implicit in a set of 
equations.

It is clear that implicit Euler requires more computations to advance from one 
step to the next than explicit Euler does. That said, solving Eq. 10 is easier than 
it might seem, because the rows on its left hand side that correspond to the 
nodes of the discretized cable equations are equivalent to a tridiagonal matrix 
and can be solved very efficiently (Hines 1984), a consequence of the fact that 
neurons are singly connected branched structures.

Implicit Euler's extra computational effort is compensated by its greatly improved 
stability. Applying it to Eq. 7, temporal discretization yields
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so the recurrence equation is
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Eq. 12

which is stable for any combination of positive �  and � t , i.e. any plausible 
circumstance. These figures illustrate numerical solutions generated from Eq. 12 

for � = 1  and initial condition y = 1 .
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The analytical solution is plotted as a dashed line; the numerical solution in the 

left panel used a time step � t  of 0.5, and those in the right panel used � t  of 
1, 2, and 5, respectively (thin, medium, and thick lines). Note that all numerical 
solutions converge on the analytical solution, and that there are no spurious 
oscillations. Implicit Euler also handles stiff models very nicely; the two 
compartment model described earlier poses no problem for it.

One useful feature of implicit Euler is that, even when � t  is large compared to 
any time constant in the system, it still tends to produce solutions that are 
qualitatively correct. For a stable linear system, a single step approaches the 

steady state solution as � t � �  (chapter 4 in (Carnevale and Hines 2006)).



Crank-Nicholson method

The Crank-Nicholson (C-N) method applies the central difference approximation 
to both time and space, so it is second order accurate in both (Crank and 
Nicholson 1947). C-N is conceptually equivalent to using implicit Euler to 

advance by � t /2 , then using explicit Euler to advance by another � t /2 , and 
involves little more effort than a single implicit Euler advance:

y
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= 2 y *� y
i Eq. 13

where y *  is the intermediate result produced by the implicit Euler half step 

advance

y *�F ( y * , t
i
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Eq. 14

To understand why, consider this example that involves a single ODE. The 

implicit Euler half step is equivalent to starting at point �t , y �t��

(t, y(t))

and moving to an intermediate point (t+� t /2, y * )  where the slope 

F (t+� t /2, y *)  points back to �t , y �t��

(t, y(t))
∆(t +Fdy/dt = t/2, y*)

∆(t + t/2, y*)

The explicit Euler half step then uses this same slope F (t+� t /2, y *)  to move 

from the intermediate point (t+� t /2, y *)  to the new solution point 

�t�� t , y�t�� t �� .

(t, y(t))

∆(t + t, y(t + t))∆

∆(t +Fdy/dt = t/2, y*)

∆(t + t/2, y*)
∆(t +Fdy/dt = t/2, y*)

Since the slope is the same for both half steps, 

y(t+� t ) = y( t) + 2( y *�y (t )) = 2 y *� y(t ) Eq. 15

This result readily generalizes to a system described by a family of ODEs.

The advantage of C-N over first order methods for dealing with time are that it 
offers greater accuracy for nearly the same computational effort when more 

accuracy is necessary, and it allows use of larger � t  without sacrificing 
accuracy when speed is important. Also, second order accuracy in time means 
that linear interpolation produces second order accurate values between 
adjacent solution times.

However, C-N is prone to spurious oscillations if the system equations are too 
stiff. This occurs if 
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where 

m

 is the membrane time constant, �  is the DC length constant, and 

� x  is compartment length; in other words, when the model's spatial 
discretization is too fine for the integration time step (Carnevale and Hines 2006). 
It can also happen if the model includes a voltage clamp, because voltage 
clamps introduce very fast time constants. Note that even if oscillations do occur, 
they die out with time, so C-N is stable.

Higher Order Methods and Adaptive Integration

Methods that have a higher order of accuracy are tempting because of the 
possibility that the extra computational cost of using a high order method will be 
repaid by the ability to take fewer, longer steps between simulation points without 
compromising simulation results. However, this advantage comes at the cost of 
greater computational burden per time step. Also, high order methods tend to be 

unstable when applied to stiff equations unless � t  is kept small (Iserles 2008).



An alternative strategy for efficiently generating accurate simulations is to use an 
adaptive integration scheme, in which the computer automatically adjusts 
integration step size and/or order of integration so that local error lies below a 
user-specified criterion. Adaptive integration can often reduce total run time, but 

the computational overhead per advance is larger than with fixed � t  methods 
and some simulations will actually slow down.

The principal advantage of adaptive integration is improved quality of the 
numerical results, since local error is controlled and solution points are calculated 
at shorter time intervals when state variables are changing rapidly, and at longer 
intervals when not much is going on.

This is illustrated in the following figure, which shows an action potential 
generated by NEURON (Carnevale and Hines 2006) from a single compartment 

model with 100 µm2 surface area and Hodgkin-Huxley membrane properties 

subjected to a 0.01 nA ×  1 ms stimulus current that started at t  = 1 ms. The 
simulation used the CVODES adaptive integrator of the SUNDIALS suite 
(Hindmarsh et al. 2005) with absolute error tolerance 0.001. The + marks on the 
voltage trace indicate the times at which solutions were generated; the other two 

graphs show how � t  and integration order were varied during the simulation in 
order to satisfy the error criterion. For most of the simulation, integration order 

was > 2 and � t  was substantially longer than 0.025 ms, NEURON's default for 

fixed time step integration (dashed line in middle graph). Note that � t  became 
very small and order dropped back to 1 at the start and end of the stimulus 
current; this happened because an abrupt parameter change constitutes a new 
initial value problem and forces restart of the integrator. 
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Practical Considerations

How to Select �t and �x

The general idea is to make � t  and � x  small enough that the simulation 
captures important features of model behavior in space and time with reasonable 
accuracy, but not so small as to needlessly prolong simulation time, increase 
storage requirements, or make results susceptible to cumulative roundoff error. 

Even if run time is not important, the tactic of cutting � t  and � x  in order to 
reduce the error from one time step to the next ("local error") is eventually limited 
by the accumulation of roundoff error, which increases global error.

That said, certain models and integration methods may limit one's options. As we 

have seen, the explicit Euler method becomes unstable if � t  is larger than the 
fastest time constant in the model, and avoidance of oscillations with the Crank-
Nicholson method requires use of time steps small enough that temporal error 
does not outweigh spatial error (Eq. 16). Even with methods for which stability or 
oscillations are not an issue, it is important to remember that accuracy at short 
spatial scales may require the use of short time steps, and vice versa (e.g. 
simulations of the time course of Ca++ concentration in the near vicinity of open 

channels). Often an empirical approach is necessary, such as making � t  
smaller until simulation results are qualitatively unchanged, then doing the same 

for � x , and repeating until there is no further qualitative change in results.

Hines and Carnevale (2001) described various rules of thumb for spatial 
discretization of the cable equation, and introduced a new approach called the 



"d_lambda rule" which bases spatial discretization on the AC length constant �
f  

at a frequency f  so high that membrane current is almost exclusively capacitive 

and ion channel density doesn't matter. The rationale is that good temporal 
accuracy implies the accurate simulation of signal propagation at "high" 

frequencies. According to the d_lambda rule, a neurite is represented by N  

pieces of equal length where N  is just large enough to satisfy

neurite length

N
< d_lambda �f Eq. 17

where the AC length constant for a cylinder with diameter d  µm, cytoplasmic 

resistivity R
a  � cm, and specific membrane capacitance C

m  µF/cm2 is 

�
f
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Eq. 18

Membrane capacitive current far outweighs ionic currents at frequencies at least 
5 times faster than the frequency that corresponds to the membrane time 
constant, i.e. f > 5/(2� 


m
) . For most cells, it turns out that 100 Hz is more 

than fast enough, and d_lambda = 0.1 at 100 Hz is sufficient to produce good 
results.

The advantages of the d_lambda rule include the facts that it is effective, avoids 
excessive discretization, and is easily automated. The NEURON Simulation 
Environment offers the d_lambda rule as a feature of its CellBuilder tool, but in 
principle it could be easily implemented for any multicompartmental simulator.

Physiological Precision

Any discussion of the accuracy of numerical integration in the context of 
empirically-based modeling in computational neuroscience would be incomplete 
without asking the question: how precise must a simulation be in order to be 
useful? The answer is: it depends.

One concern often raised about empirically-based models is the limited precision 
of experimental data. In order to be useful for simulation, such data are often fit 
to functions that may have a sound theoretical basis, yet are only capable of 
approximating the actual relationships between dependent and independent 
variables. For parameters that result in a trajectory passing near a separatrix, 
simulation results may be highly sensitive to variation in any model parameter or 

simulation parameter (e.g. � t , � x , order of integration) (chapter 4 in 
(Carnevale and Hines 2006)); the same is true for the behavior of a system that 
lies near a bifurcation.

It is widely acknowledged that results that depend on very finely tuned 
parameters are biologically implausible because they seem unlikely to be robust. 
But what degree of accuracy is justified by natural biological variability, let alone 
the quality of the data from which parameters are estimated? Golowasch et al. 
(2002) pointed out the wide range of parameter values observed in normally 
functioning neurons and provided evidence for covariance between parameters. 
To minimize the effects of biological variability, and to avoid the confounding 
effects of parameter covariance, it would be best for all parameters to have been 
acquired in a single set of experiments on a single cell or network. However, this 
is not possible; modelers must rely on parameters gathered from experiments 
performed in different labs on different cell types from different species.

Seldom mentioned is another, deeper issue: the results of any model simulation 
are at least four times removed from the original physical system. The first 
separation occurs with the formulation of a conceptual model, which of necessity 
is a simplified representation of physical reality. Indeed, simplification affects all 
research, even that which does not involve computational modeling, because it is 
an unavoidable consequence of the way we develop an understanding of 
complex systems. Two more separations are imposed when the time and space 
derivatives are replaced by discretization formulas; this produces a new system 
that is only an approximation to the original physical system. The fourth 
separation happens when the discretized equations are solved numerically. Each 
of these separations is a potential source of error that could reduce the value of 
a simulation as a means for gaining insight into the original physical system. 
Discretization schemes and numerical integration methods are useful to the 
extent that the errors they introduce are manageable and allow at least a 
qualitative understanding of the original conceptual model.



To summarize, numerical integration applied to computational neuroscience 
models computes an approximate solution to one or more equations that are 
themselves approximations, and everything rests on partial knowledge inferred 
from imprecise measurements. In light of this, judgment is required when 
applying numerical methods so that results have what might be called 
"physiologically appropriate precision."
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