
Numerical Integration
in Computational Neuroscience

The aim of this article is to provide an intuitive introduction to numerical
integration in the context of simulating model neurons. It begins with a brief
discussion of the nature of the equations that are to be solved, then examines
some approaches that have been employed to solve them, and ends with some
comments to help users apply numerical integration to their own models.

The Nature of the Problem

Most computational models of biological neurons and networks are used to study
the origin, propagation, and interaction of electrical signals. For this reason, the
focus here is on numerical solution of initial value problems that involve the cable
equation. It has been noted that the deterministic diffusion of chemical signals is
described by equations that are formally equivalent to those that govern the
spread of electrical signals, and are amenable to similar computational
approaches (Carnevale and Hines 2006; Zador and Koch 1994). Readers who
wish more detail on these and related topics are referred to chapter 4 in
Carnevale and Hines (2006), as well as Iserles (2008), Polyanin et al. (2008),
and Wolfram Research (2013) Phenomena that involve small numbers of
molecules or ions require methods that are beyond the scope of this chapter.

The spread of electrical signals along an unbranched neurite is governed by the
one dimensional cable equation, a partial differential equation (PDE) that is a
statement of conservation of charge in an anatomically extended structure. The
cable equation is often written as

�V

�T
� F �V � =

�2
V

� X
2

Eq. 1

where T and X are time and anatomical distance scaled by factors related to
the physical size of a neurite and the electrical properties of its membrane and

cytoplasm, and V and F are continuous functions of T and X (Rall 1977; Jack
et al. 1983). Branched cellular architectures can be accommodated by combining
multiple instances of the cable equation (one for each unbranched neurite) with
appropriate boundary conditions. An analytical solution to the cable equation

would express membrane potential as v �t , x� , a continuous function of time
and position. In special cases it is possible to solve the cable equation
analytically, and those solutions have produced many general insights into
neuronal function (Rall 1977; Jack et al. 1983; Segev et al. 1995).

However, models that include the anatomical and biophysical complexities of real
cells typically produce equations that do not have analytical solutions. The
classical example is the Hodgkin-Huxley model of spike propagation along squid
axon (Hodgkin and Huxley 1952)

C
m

� v

�t
� �gna

m
3

h � v�e
na

� � �gk
n

4
�v�e

k
� � g

l
� v�e

l
� =

D

4 R
a

�2 v

� x2
Eq. 2

In this equation, the gating variables h , m , and n are governed by first order
ordinary differential equations (ODEs) whose rate constants depend on local

membrane potential v , and the parameters C
m

, �gna
, �gk

, and g
l

 (specific

membrane capacitance and channel conductance densities) may vary with
position; furthermore. Equations with such complexities must be solved
numerically.

Discretization of the Cable Equation

A broad class of strategies for numerical solution of initial value PDEs is based
on the notion of discretization. Discretization involves approximating a PDE,
whose dependent variables are temporally and spatially continuous, with a set of
difference equations that relate the dependent variables to each other at a finite
set of points in time and space. This is done by approximating the temporal and
spatial derivatives with algebraic difference formulas, and it produces a family of
difference equations. The difference equations are then solved algebraically in
order to compute the future values of state variables from their present (and
possibly past) values. Instead of producing a solution that is a continuous
function of time and position, the result is an approximate solution

v
ij
= v �t

i
, x

j
� over a finite set of points in time and space. The error introduced

by discretization depends on the algebraic formulas used to approximate the
derivatives, and the size of the temporal and spatial intervals between adjacent
solution points.

Here we introduce basic concepts involved in discretization and then explore the
stability and precision of various integration methods in the context of some
simple models. This discussion is guided by the fact that models of neurons that
involve biological anatomical and biophysical details pose a special challenge
because the equations that describe them are very stiff, that is, they are
characterized by a wide range of time constants. For example, even though
neurons typically have membrane time constants on the order of tens of
milliseconds, longitudinal redistribution of charge along the length of a neurite
has sub-millisecond kinetics, and short neurites or dendritic spines can introduce
sub-microsecond time constants. Single compartment model neurons are not
immune from stiffness, because some voltage- and ligand-gated ion channels
(especially spike sodium channels and AMPAergic synaptic channels) have sub-
millisecond time constants. Some voltage-and ligand-gated potassium channels
are much slower, on the order of hundreds of milliseconds, while ion
accumulation and active transport can produce concentration changes and shifts
of membrane potential that evolve over seconds or minutes.

Because of the stiffness of neural models, explicit integration methods (methods
that predict future values from present and past values) can require impractically

small � t to avoid instability; this is illustrated below. Also, stability issues aside,
the utility of high order methods in fixed time step integration can be limited by
the necessity of using short time steps to follow the time course of rapidly
changing state variables. Consequently, only a few of the many methods that
have been developed for numerical solution of PDEs are suitable for simulating
models of biological neurons and networks.

Spatial Discretization

Spatial discretization is the first step in transforming the cable equation to
algebraic difference equations. It approximates a spatially continuous physical
system by a set of coupled compartments, each of which is small enough that
membrane current density can be treated as nearly uniform over its surface. This

figure portrays such a region; as indicated by the arrows, axial currents i
a

 are

reckoned as positive if they enter the region, and membrane current i
m

 is

positive when it exits.

ia ia

im

If membrane current density varies widely over a model cell, many compartments
will be needed to satisfactorily represent this variation. The ODE that describes
membrane potential in the jth region is

c
m

j

d v
j

d t
� i

ion
j
=	

j

v
k
�v

j

r
jk

Eq. 3

where the left hand side is the sum of the capacitive and ionic membrane
currents in the jth region, and the right hand side is the sum of the axial currents
that enter this region from its immediate neighbors.

If the compartments are of equal size and the points at which membrane
potential and currents are computed are located at the compartment centers, the
right hand side of Eq. 3 is the central difference approximation to the PDE's
second spatial derivative

�2v

� x2

v
j�1

�2v
j
�v

j�1

� r2
Eq. 4

where � r is the resistance of the cytoplasm between adjacent compartment
centers. The equivalent electrical circuit for three adjacent compartments along a
neurite that has been discretized with the central difference approximation is

Here each compartment's membrane properties are depicted as the parallel
combination of a capacitor and a box that represents the contribution of ion
channels to transmembrane current. These are attached to a node in the middle
of the compartment, at which membrane potential is to be calculated; each node
is separated from adjacent nodes by cytoplasmic resistance.

The accuracy of the central difference approximation is O�� x2� , i.e. the local
error introduced by replacing the second partial derivative in space with the
central difference approximation is proportional to the square of the distance

� x between adjacent nodes (Iserles 2008). As a consequence, the central
difference approximation leads to numerical solutions that can be treated as

piecewise linear approximations to the real solution. In other words, if v
j

 and

v
j+1

 are second-order accurate at adjacent nodes x
j

 and x
j+1

, linear

interpolation can be used to find a order accurate value v * at any point x*
that lies between them.

The outcome of spatial discretization can be rearranged and written in vector
form as

d y

d t
= F � y , t� Eq. 5

where the elements of y include not only the membrane potentials in each
compartment but also state variables associated with other dynamic processes
such as ion channel gating and concentrations of ions and second messengers.

The right hand side includes t to acknowledge the possible presence of time-
varying parameters (e.g. synaptic conductances) or signal sources such as
current- or voltage clamps.

Temporal Discretization

Temporal discretization completes the transformation of a PDE to a set of
algebraic equations by substituting an algebraic approximation for the temporal
derivatives. There is a wide variety of temporal discretization schemes that are
characterized by different degrees of stability and orders of accuracy. Those that
are most relevant to computational neuroscience are discussed in Specific
Integration Methods below.

Specific Integration Methods

An ideal numerical integration method would generate highly accurate solutions
quickly and robustly regardless of the details of the model. Unfortunately it is not
possible to meet all these goals simultaneously. In general, there is a tradeoff
between speed, stability, and accuracy.

Explicit Euler method

The explicit Euler method is conceptually simplest and easiest to implement. This

is a first-order accurate approach (local error is proportional to � t) that predicts

the solution at the next time t
i�1

 from the values of the state variables and their

derivatives at the current time t
i
. It approximates the ODE of Eq. 5 with

y
i�1

= y
i
�F� y

i
, t

i
� � t Eq. 6

so advancing a solution from one time to the next requires only calculation of the
derivatives followed by some multiplications and additions.

However, the total computational cost of a simulation depends not only on how
much effort is needed to advance from one step to the next, but also on the
number of advances that must be performed. Explicit Euler's weakness is that

� t must be smaller than the smallest time constant in the system in order to
ensure stable solutions that are free of spurious oscillations. For example,
consider the ordinary differential equation (ODE)

d y

d t
=�

y
� Eq. 7

According to the explicit Euler method, given y
i

 at time t
i
, the "recurrence

equation" that generates y
i�1

 at time t
i�1

 is

y
i�1

= y
i
�1 � � t /�� Eq. 8

The following graphs compare the analytical solution for Eq. 7 with � = 1 and

initial condition y = 1 (left panel, dashed line) to numerical solutions calculated

by the explicit Euler method using different values of � t . In both graphs the

horizontal axis is time in seconds. If � t <
/2 (left panel, solid line, � t = 0.5
), the numerical solution evolves smoothly with time and converges toward the
analytical solution. Even though there is some error in the numerical solution, the
solution is stable because the error decreases at each new time step and

approaches 0 in the limit as t � � .

0 1 2 3
0

0.2

0.4

0.6

0.8

1

0 5 10 15

−2

−1

0

1

2

If � t lies in the interval �� /2, �� (right panel, dashed line, � t = 1.9) the
numerical solution shows spurious oscillations. That said, it is still stable because
error decreases with time and the solution converges toward the analytical

solution. However, if � t � 2� the solution becomes unstable: each advance of
the solution now amplifies whatever error was already present, so the oscillations

grow without limit (right panel, solid line, � t = 2.1).

The instability of the explicit Euler method is a particular problem for
multicompartmental models because spatial discretization introduces very fast
time constants, especially when very small compartments are present. Consider
a model cell that has a 10 µm diameter spherical soma to which a cylindrical
spine with diameter = length = 1 µm is attached. Let all membrane be passive
with resting membrane potential 0 mV, specific membrane conductance and

capacitance 0.001 Siemens/cm2 and 1 µF/cm2, respectively, and cytoplasmic
resistivity 160 � cm. The electrical equivalent circuit for this model is

v0 v1ra

c0 r1r0 c1

where the soma's parameters are r0 = 3.183e2 meg�, c0 = 3.142e-3 nF, the
spine's parameters are r1 = 3.183e4 meg�, c1 = 3.142e-5 nF, and the coupling
resistance between them is ra = 1.0186 meg�. This circuit has two time
constants: the slower one is 1 ms, and the faster is ~3.2e-5 ms. If membrane
potential is 1 mV in the soma and spine when t = 0, v0 and v1 should follow a

monoexponential decay described by e-t, i.e. membrane potential in the soma
and the spine should both decay toward 0 with a time constant of 1, as shown
here

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

One might think that this model could be simulated using the explicit Euler

method with � t = 0.1 ms. However, the simulation blows up after 0.4 ms, as
shown below. This happens because finite precision arithmetic introduces
roundoff errors, which are magnified at each step until they completely dominate
the simulation.

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

v0

v1

Implicit Euler method

Like explicit Euler, the implicit Euler method also has first order accuracy. It
differs from explicit Euler in that its recurrence equation is based on the

derivative at the new time t
i�1

, i.e.

y
i�1

= y
i
�F� y

i�1
, t

i�1
� � t Eq. 9

Gathering all terms at time t
i�1

 to the left hand side produces a set of algebraic

equations

y
i+1

�F(y
i+1

,t
i+1

) � t = y
i

Eq. 10

which must be solved in order to compute the solution at the new time. Now we
see why this is called the implicit Euler method: the new value of y is not
computed directly from the previous value, but instead is is implicit in a set of
equations.

It is clear that implicit Euler requires more computations to advance from one
step to the next than explicit Euler does. That said, solving Eq. 10 is easier than
it might seem, because the rows on its left hand side that correspond to the
nodes of the discretized cable equations are equivalent to a tridiagonal matrix
and can be solved very efficiently (Hines 1984), a consequence of the fact that
neurons are singly connected branched structures.

Implicit Euler's extra computational effort is compensated by its greatly improved
stability. Applying it to Eq. 7, temporal discretization yields

y
i�1

�
y

i�1

�
� t = y

i
Eq. 11

so the recurrence equation is

y
i�1

=
y

i

1�
� t
�

Eq. 12

which is stable for any combination of positive � and � t , i.e. any plausible
circumstance. These figures illustrate numerical solutions generated from Eq. 12

for � = 1 and initial condition y = 1 .

0 1 2 3
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

The analytical solution is plotted as a dashed line; the numerical solution in the

left panel used a time step � t of 0.5, and those in the right panel used � t of
1, 2, and 5, respectively (thin, medium, and thick lines). Note that all numerical
solutions converge on the analytical solution, and that there are no spurious
oscillations. Implicit Euler also handles stiff models very nicely; the two
compartment model described earlier poses no problem for it.

One useful feature of implicit Euler is that, even when � t is large compared to
any time constant in the system, it still tends to produce solutions that are
qualitatively correct. For a stable linear system, a single step approaches the

steady state solution as � t � � (chapter 4 in (Carnevale and Hines 2006)).

Crank-Nicholson method

The Crank-Nicholson (C-N) method applies the central difference approximation
to both time and space, so it is second order accurate in both (Crank and
Nicholson 1947). C-N is conceptually equivalent to using implicit Euler to

advance by � t /2 , then using explicit Euler to advance by another � t /2 , and
involves little more effort than a single implicit Euler advance:

y
i+1

= 2 y *� y
i Eq. 13

where y * is the intermediate result produced by the implicit Euler half step

advance

y *�F (y * , t
i
+� t /2) � t /2 = y

i
Eq. 14

To understand why, consider this example that involves a single ODE. The

implicit Euler half step is equivalent to starting at point �t , y �t��

(t, y(t))

and moving to an intermediate point (t+� t /2, y *) where the slope

F (t+� t /2, y *) points back to �t , y �t��

(t, y(t))
∆(t +Fdy/dt = t/2, y*)

∆(t + t/2, y*)

The explicit Euler half step then uses this same slope F (t+� t /2, y *) to move

from the intermediate point (t+� t /2, y *) to the new solution point

�t�� t , y�t�� t �� .

(t, y(t))

∆(t + t, y(t + t))∆

∆(t +Fdy/dt = t/2, y*)

∆(t + t/2, y*)
∆(t +Fdy/dt = t/2, y*)

Since the slope is the same for both half steps,

y(t+� t) = y(t) + 2(y *�y (t)) = 2 y *� y(t) Eq. 15

This result readily generalizes to a system described by a family of ODEs.

The advantage of C-N over first order methods for dealing with time are that it
offers greater accuracy for nearly the same computational effort when more

accuracy is necessary, and it allows use of larger � t without sacrificing
accuracy when speed is important. Also, second order accuracy in time means
that linear interpolation produces second order accurate values between
adjacent solution times.

However, C-N is prone to spurious oscillations if the system equations are too
stiff. This occurs if

� t

m
>

2

1+4 (�
� x)

2

1

2
(� x

�)2
Eq. 16

where

m

 is the membrane time constant, � is the DC length constant, and

� x is compartment length; in other words, when the model's spatial
discretization is too fine for the integration time step (Carnevale and Hines 2006).
It can also happen if the model includes a voltage clamp, because voltage
clamps introduce very fast time constants. Note that even if oscillations do occur,
they die out with time, so C-N is stable.

Higher Order Methods and Adaptive Integration

Methods that have a higher order of accuracy are tempting because of the
possibility that the extra computational cost of using a high order method will be
repaid by the ability to take fewer, longer steps between simulation points without
compromising simulation results. However, this advantage comes at the cost of
greater computational burden per time step. Also, high order methods tend to be

unstable when applied to stiff equations unless � t is kept small (Iserles 2008).

An alternative strategy for efficiently generating accurate simulations is to use an
adaptive integration scheme, in which the computer automatically adjusts
integration step size and/or order of integration so that local error lies below a
user-specified criterion. Adaptive integration can often reduce total run time, but

the computational overhead per advance is larger than with fixed � t methods
and some simulations will actually slow down.

The principal advantage of adaptive integration is improved quality of the
numerical results, since local error is controlled and solution points are calculated
at shorter time intervals when state variables are changing rapidly, and at longer
intervals when not much is going on.

This is illustrated in the following figure, which shows an action potential
generated by NEURON (Carnevale and Hines 2006) from a single compartment

model with 100 µm2 surface area and Hodgkin-Huxley membrane properties

subjected to a 0.01 nA × 1 ms stimulus current that started at t = 1 ms. The
simulation used the CVODES adaptive integrator of the SUNDIALS suite
(Hindmarsh et al. 2005) with absolute error tolerance 0.001. The + marks on the
voltage trace indicate the times at which solutions were generated; the other two

graphs show how � t and integration order were varied during the simulation in
order to satisfy the error criterion. For most of the simulation, integration order

was > 2 and � t was substantially longer than 0.025 ms, NEURON's default for

fixed time step integration (dashed line in middle graph). Note that � t became
very small and order dropped back to 1 at the start and end of the stimulus
current; this happened because an abrupt parameter change constitutes a new
initial value problem and forces restart of the integrator.

0 2 4 6 8 10

−80

−40

0

40

0 2 4 6 8 10
1

2

3

4

5 order

0 2 4 6 8 10
1

0.1

0.01

0.001 dt

dt = 0.025 ms

Practical Considerations

How to Select �t and �x

The general idea is to make � t and � x small enough that the simulation
captures important features of model behavior in space and time with reasonable
accuracy, but not so small as to needlessly prolong simulation time, increase
storage requirements, or make results susceptible to cumulative roundoff error.

Even if run time is not important, the tactic of cutting � t and � x in order to
reduce the error from one time step to the next ("local error") is eventually limited
by the accumulation of roundoff error, which increases global error.

That said, certain models and integration methods may limit one's options. As we

have seen, the explicit Euler method becomes unstable if � t is larger than the
fastest time constant in the model, and avoidance of oscillations with the Crank-
Nicholson method requires use of time steps small enough that temporal error
does not outweigh spatial error (Eq. 16). Even with methods for which stability or
oscillations are not an issue, it is important to remember that accuracy at short
spatial scales may require the use of short time steps, and vice versa (e.g.
simulations of the time course of Ca++ concentration in the near vicinity of open

channels). Often an empirical approach is necessary, such as making � t
smaller until simulation results are qualitatively unchanged, then doing the same

for � x , and repeating until there is no further qualitative change in results.

Hines and Carnevale (2001) described various rules of thumb for spatial
discretization of the cable equation, and introduced a new approach called the

"d_lambda rule" which bases spatial discretization on the AC length constant �
f

at a frequency f so high that membrane current is almost exclusively capacitive

and ion channel density doesn't matter. The rationale is that good temporal
accuracy implies the accurate simulation of signal propagation at "high"

frequencies. According to the d_lambda rule, a neurite is represented by N

pieces of equal length where N is just large enough to satisfy

neurite length

N
< d_lambda �f Eq. 17

where the AC length constant for a cylinder with diameter d µm, cytoplasmic

resistivity R
a � cm, and specific membrane capacitance C

m µF/cm2 is

�
f

1

2 � d

� f R
a

C
m

Eq. 18

Membrane capacitive current far outweighs ionic currents at frequencies at least
5 times faster than the frequency that corresponds to the membrane time
constant, i.e. f > 5/(2�

m
) . For most cells, it turns out that 100 Hz is more

than fast enough, and d_lambda = 0.1 at 100 Hz is sufficient to produce good
results.

The advantages of the d_lambda rule include the facts that it is effective, avoids
excessive discretization, and is easily automated. The NEURON Simulation
Environment offers the d_lambda rule as a feature of its CellBuilder tool, but in
principle it could be easily implemented for any multicompartmental simulator.

Physiological Precision

Any discussion of the accuracy of numerical integration in the context of
empirically-based modeling in computational neuroscience would be incomplete
without asking the question: how precise must a simulation be in order to be
useful? The answer is: it depends.

One concern often raised about empirically-based models is the limited precision
of experimental data. In order to be useful for simulation, such data are often fit
to functions that may have a sound theoretical basis, yet are only capable of
approximating the actual relationships between dependent and independent
variables. For parameters that result in a trajectory passing near a separatrix,
simulation results may be highly sensitive to variation in any model parameter or

simulation parameter (e.g. � t , � x , order of integration) (chapter 4 in
(Carnevale and Hines 2006)); the same is true for the behavior of a system that
lies near a bifurcation.

It is widely acknowledged that results that depend on very finely tuned
parameters are biologically implausible because they seem unlikely to be robust.
But what degree of accuracy is justified by natural biological variability, let alone
the quality of the data from which parameters are estimated? Golowasch et al.
(2002) pointed out the wide range of parameter values observed in normally
functioning neurons and provided evidence for covariance between parameters.
To minimize the effects of biological variability, and to avoid the confounding
effects of parameter covariance, it would be best for all parameters to have been
acquired in a single set of experiments on a single cell or network. However, this
is not possible; modelers must rely on parameters gathered from experiments
performed in different labs on different cell types from different species.

Seldom mentioned is another, deeper issue: the results of any model simulation
are at least four times removed from the original physical system. The first
separation occurs with the formulation of a conceptual model, which of necessity
is a simplified representation of physical reality. Indeed, simplification affects all
research, even that which does not involve computational modeling, because it is
an unavoidable consequence of the way we develop an understanding of
complex systems. Two more separations are imposed when the time and space
derivatives are replaced by discretization formulas; this produces a new system
that is only an approximation to the original physical system. The fourth
separation happens when the discretized equations are solved numerically. Each
of these separations is a potential source of error that could reduce the value of
a simulation as a means for gaining insight into the original physical system.
Discretization schemes and numerical integration methods are useful to the
extent that the errors they introduce are manageable and allow at least a
qualitative understanding of the original conceptual model.

To summarize, numerical integration applied to computational neuroscience
models computes an approximate solution to one or more equations that are
themselves approximations, and everything rests on partial knowledge inferred
from imprecise measurements. In light of this, judgment is required when
applying numerical methods so that results have what might be called
"physiologically appropriate precision."

References

Carnevale, N. and Hines, M.. The NEURON Book. Cambridge, UK: Cambridge
University Press, 2006.

Crank, J. and Nicholson, P.. A practical method for numerical evaluation of
solutions of partial differential equations of the heat-conduction type.
Proceedings of the Cambridge Philosophical Society 43:50-67, 1947.

Golowasch, J., Goldman, M., Abbott, L. and Marder, E.. Failure of averaging in
the construction of a conductance-based neuron model. Journal of
Neurophysiology 87:1129-1131, 2002.

Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R., Shumaker,
D. E. and Woodward, C. S.. SUNDIALS: Suite of nonlinear and
differential/algebraic equation solvers. ACM Transactions on Mathematical
Software (TOMS) 31:363-396, 2005.

Hines, M.. Efficient computation of branched nerve equations. International
Journal of Bio-Medical Computation 15:69-76, 1984.

Hines, M. and Carnevale, N.. NEURON: a tool for neuroscientists. The
Neuroscientist 7:123-135, 2001.

Hodgkin, A. and Huxley, A.. A quantitative description of membrane current and
its application to conduction and excitation in nerve. Journal of Physiology
117:500-544, 1952.

Iserles, A.. A First Course in the Numerical Analysis of Differential Equations. :
Cambridge University Press, 2008.

Jack, J., Noble, D. and Tsien, R.. Electric Current Flow in Excitable Cells.
London: Oxford University Press, 1983.

Polyanin, A. D., Schiesser, W. E. and Zhurov, A. I.. Partial differential equation.
Scholarpedia 3:4605, 2008.

Rall, W.. Core conductor theory and cable properties of neurons. In: Handbook
of Physiology, vol. 1, part 1: The Nervous System, edited by Kandel, E. R..
Bethesda, MD: American Physiological Society, 1977, 39-98.

Wolfram Research, I.. Numerical Solution of Partial Differential Equations, ,
2013.

Zador, A. and Koch, C.. Linearized models of calcium dynamics - formal
equivalence to the cable equation. Journal of Neuroscience 14:4705-4715, 1994.

The Theoretical Foundation of Dendritic Function: Collected Papers of Wilfrid
Rall with Commentaries. Segev, I., Rinzel, J. and Shepherd, G. (Ed.).
Cambridge, MA: MIT Press, 1995.

