
Neurocomputing 58–60 (2004) 1117–1122
www.elsevier.com/locate/neucom

Discrete event simulation in the NEURON
environment

M.L. Hinesa ;∗ , N.T. Carnevaleb
aDepartment of Computer Science, Yale University, 51 Prospect Street, New Haven, CT 06520 8285,

USA
bDepartment of Psychology, Yale University, 51 Prospect Street, New Haven, CT 06520 8285, USA

Abstract

The response of many types of integrate and /re cells to synaptic input can be computed
analytically and their threshold crossing either computed analytically or approximated to high
accuracy via Newton approximation. The NEURON simulation environment simulates networks
of such arti/cial spiking neurons using discrete event simulation techniques in which computa-
tions are performed only when events are received. Thus, computation time is proportional only
to the number of events delivered and is independent of the number of cells or problem time.
c© 2004 Elsevier B.V. All rights reserved.

Keywords: Arti/cial cells; Spiking nets; Discrete events; Simulation; Integrate and /re

1. Introduction

The NEURON simulation environment is capable of e:cient discrete event simula-
tions of networks of “arti/cial” (integrate and /re) spiking neurons, as well as hybrid
simulations of nets whose elements include both arti/cial neurons and neuron models
with membrane currents governed by voltage-gated ionic conductances. In this paper,
we discuss how NEURON uses discrete events to implement the classic single time
constant integrate and /re neuron and a cell with a natural interval between spikes
which is modulated by synaptic input. Readers who wish additional information about
the fundamental principles behind the design and implementation of NEURON, espe-
cially with regard to its use for continuous system simulations of empirically based
models of individual neurons, are referred to [2,3].

∗ Corresponding author. Tel.: +1-203-737-4232; fax: +1-203-785-6990.
E-mail addresses: michael.hines@yale.edu (M.L. Hines), ted.carnevale@yale.edu (N.T. Carnevale).

0925-2312/$ - see front matter c© 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.neucom.2004.01.175

mailto:michael.hines@yale.edu
mailto:ted.carnevale@yale.edu


1118 M.L. Hines, N.T. Carnevale /Neurocomputing 58–60 (2004) 1117–1122

NEURON’s event delivery system draws on ideas previously used by Destexhe et
al. [1] and Lytton [4] in their models of networks of “biological” neurons. It opens
up a large domain of models in which certain types of “arti/cial” spiking cells, and
networks of them, can be simulated hundreds of times faster than with numerical
integration methods. Discrete event simulations are possible when all the state variables
of a model cell can be computed analytically from a new set of initial conditions. That
is, if an event occurs at time t1, all state variables must be computable from the state
values and time t0 of the previous event. Since computations are performed only when
an event is received, total computation time is proportional to the number of events
delivered and independent of the number of cells, number of connections, or problem
time. Thus handling 100,000 spikes in 1 h for 100 cells takes the same time as handling
100,000 spikes in 1 s for 1 cell.
The portion of the event delivery system used to de/ne connections between cells is

the NetCon (Network Connection) class. A NetCon object typically watches its source
cell for the occurrence of a spike, and then, after some time delay, delivers a weighted
synaptic input event to a target cell. That is, the NetCon object represents the axonal
spike propagation and synaptic delay. A NetCon object can be thought of as a channel
on which a stream of events generated at the source is transmitted to the target. Its
implementation takes into account the fact that the delay between initiation and delivery
of events is diGerent for diGerent streams. Consequently the order in which events are
generated by a set of sources is rarely the order in which they are received by a set
of targets. Furthermore the delay may have any value from 0 to 109.
Handling of incoming events and the calculations necessary to generate outgoing

events are speci/ed in the NET RECEIVE block of NEURON’s model description lan-
guage NMODL [3]. Arti/cial cells are implemented as point processes that serve
both as targets and sources for NetCon objects. They are targets because they have a
NET RECEIVE block, which handles discrete event input streams through one or more
NetCon objects. They are also sources because the NET RECEIVE block also generates
discrete output events which are delivered through one or more NetCon objects.
Computer code listings have been edited to remove unnecessary detail, with elisions

marked by ellipses and augmented by italicized pseudocode as necessary for the sake of
clarity. Complete source code for all mechanisms described in this paper are included
with NEURON, which is available at no charge from http://www.neuron.yale.edu.

2. IntFire1: a basic integrate and �re model

The simplest integrate and /re mechanism built into NEURON is IntFire1, which
has a “membrane potential” state m which decays towards 0 with time constant �:

�
dm
dt

+ m= 0: (1)

An input event of weight w adds instantaneously to m, and when m¿ 1 the cell “/res,”
producing an output event and returning m to 0. Negative weights are inhibitory while
positive weights are excitatory. This is analogous to a cell whose membrane time
constant � is very long compared to the time course of individual synaptic conductance

http://www.neuron.yale.edu


M.L. Hines, N.T. Carnevale /Neurocomputing 58–60 (2004) 1117–1122 1119

changes. Every synaptic input shifts membrane potential to a new level in a time that
is much shorter than �, and each cell /ring erases all traces of prior inputs.
An initial implementation of IntFire1 in NMODL is

: : : variable declarations : : :
INITIAL {m = 0 t0 = 0}

NET RECEIVE (w) {
m = m∗exp(- (t - t0)/tau)
m = m + w
t0 = t
if (m >= 1) {

net event(t)
m = 0

}
}

This model lacks the BREAKPOINT and SOLVE blocks, which are used to specify the
calculations that are performed during a time step dt [3]. Instead, calculations only
take place when a NetCon delivers a new event, and these are performed in the
NET RECEIVE block. When a new event arrives, the present value of m is computed
analytically and then incremented by the weight w of the event (speci/ed by the weight
/eld of the NetCon that delivered the event). In this example, the value of m is just
the exponential decay from its value at the previous event; therefore the code contains
variable t0 which keeps track of the last event time.
If an input event drives m to or above threshold, the net event(t) statement noti/es

all NetCon objects that have this point process as their source that it /red a spike at
time t (the argument to net event() can be any time ¿ the current time t). Then
the cell resets m to 0. This particular model has no limit to its /ring frequency, but
elaborating it with a refractory period is not di:cult. However, the system behaves
properly with the variable time step method if a NetCon with delay of 0 and a weight
of 1.1 has such an arti/cial cell as both its source and target. In that case, events are
generated and delivered without time ever advancing.
Note that this arti/cial cell does not need a threshold test at every dt. Contrast

this with the usual test for membrane potential triggering which is essential at every
time step for event generation with “real” cells. Furthermore the event delivery system
only places the earliest event to be delivered on the event queue. When that time
/nally arrives, all targets whose NetCons have the same source and delay get the
event delivery, and longer delay streams are put back on the event queue to await
their speci/c delivery time.
The integration state m is di:cult to plot in an understandable manner, since the

computer value of m remains unchanged in the interval between input events regardless
of how many numerical integration steps were performed in that interval. Consequently
m always has the value that was calculated after the last event was received, and a
plot of m looks like a staircase with no apparent decay pattern or indication of what



1120 M.L. Hines, N.T. Carnevale /Neurocomputing 58–60 (2004) 1117–1122

0 10 20 30
0

0.2

0.4

0.6

0.8

1
IntFire1[0].m

0 10 20 30
0

0.2

0.4

0.6

0.8

1
IntFire1[0].M

0 10 20 30
0

0.2

0.4

0.6

0.8

1
IntFire1[0].M

Fig. 1. Response of an IntFire1 cell with �=10 ms to input events arriving at t=5, 22 and 25 ms (arrows),
each of which has weight w = 0:8. The third input triggers a spike. Left: A plot of m looks like a staircase
because this variable is evaluated only when a new input event arrives. Center: A function can be included in
the mod /le that speci/es IntFire1 (see text) to give a better indication of the time course of the integration
state m. Plotting this function during a simulation with /xed time steps (dt = 0:025 ms here) demonstrates
the exponential decay of m between input events. Right: In a simulation with variable time steps, the decay
appears to follow a sequence of linear ramps. This is only an artifact of the Graph tool drawing lines between
the points computed analytically at the time steps chosen by the integrator.

the value of m was just before the event (Fig. 1 left). This can be partially repaired
by providing a function

FUNCTION M() {
M = m∗exp(- (t - t0)/tau)

}
which returns the present value of the integration state m. This gives nice trajectories for
the /xed step method (Fig. 1 center). However, the natural step with the variable step
method is the interspike interval itself, unless intervening events occur in other cells
(e.g. 1 ms before the second input event in Fig. 1 right). At least the integration step
function fadvance() returns 10−9 ms before and after the event to properly indicate
the discontinuity in M.

3. FreqFire1: synaptic input modi�es the interval between spikes

IntFire1 can be extended to /re at constant frequency (in the absence of synaptic
input) by adding a constant bias current. The equation being solved is now

�
dm
dt

+ m= m∞: (2)

This has analytic solutions for m(t), the /ring time (when m(t)=1), and the value for
m∞. These solutions can be stated in terms of a user-de/ned parameter invl, interspike
interval in the absence of synaptic input.



M.L. Hines, N.T. Carnevale /Neurocomputing 58–60 (2004) 1117–1122 1121

The substantive NMODL code for the model description is

: : : variable declarations : : :
INITIAL {

minf = 1/(1 - exp(- invl/tau))
m = 0
t0 = t
net send(firetime(), 1)

}
NET RECEIVE (w) {

m = minf + (m - minf)∗exp(- (t - t0)/tau)
t0 = t
if (flag == 0) {

m = m + w
if (m > 1) {

m = 0
net event(t)

}
net move(t+firetime())

} else {
net event(t)
m = 0
net send(firetime(),1)

}
}
FUNCTION firetime() {:Note- m < 1 < minf

firetime=tau∗log((minf- m)/(minf - 1))
}
This exploits the notion of a “self event” that can be placed on the event queue for
future delivery to the NET RECEIVE block, and whose delivery time can be adjusted
in response to computations in that block. The self event is placed on the queue by
the net send statement with a flag of 1 to distinguish it from external (synaptic)
events, which always have a flag of 0. When a synaptic event arrives, the self event
is moved to a new /ring time by the net move statement. The synaptic event may
itself be the trigger for /ring, but a returning self event de/nitely signi/es /ring; in
either case, the membrane state variable m is reset to 0.

4. Discussion

NEURON’s application domain extends beyond continuous system simulations of
models of individual neurons with complex anatomical and biophysical properties, to
encompass discrete-event and hybrid simulations that combine “biological” and “arti-
/cial” neuronal models. Arti/cial cell models can have quite elaborate behavior. For
example, an excitatory input to NEURON’s IntFire4 model generates an exponentially



1122 M.L. Hines, N.T. Carnevale /Neurocomputing 58–60 (2004) 1117–1122

decaying current with time constant �e, an inhibitory input generates a biexponential
(alpha-function-like) current with time constants �1 and �2, and the total current is
integrated with membrane time constant �m. The four cell states are analytic, and the
threshold crossing time is computed by a sequence of self events, each triggering a
single Newton iteration. Since NEURON’s library of mechanisms is extensible through
the NMODL programming language [3], users can add new features to existing mech-
anisms, as well as develop new formulations of arti/cial neuron models that have
analytic solutions. For example, an extension of IntFire1 that implements short-term
use-dependent plasticity as described by Varela et al. [5] is available at ModelDB
(http://senselab.med.yale.edu/senselab/modeldb/).

Acknowledgements

This work was supported by NIH Grant NS11613.

References

[1] A. Destexhe, Z.F. Mainen, T.J. Sejnowski, An e:cient method for computing synaptic conductances
based on a kinetic model of receptor binding, Neural Comput. 6 (1994) 14–18.

[2] M.L. Hines, N.T. Carnevale, The NEURON simulation environment, Neural Comput. 9 (1997) 1179–
1209.

[3] M.L. Hines, N.T. Carnevale, Expanding NEURON’s repertoire of mechanisms with NMODL, Neural
Comput. 12 (2000) 839–851.

[4] W.W. Lytton, Optimizing synaptic conductance calculation for network simulations, Neural Comput. 8
(1996) 501–509.

[5] J.A. Varela, K. Sen, J. Gibson, J. Fost, L.F. Abbott, S.B. Nelson, A quantitative description of short-term
plasticity at excitatory synapses in layer 2

3 of rat primary visual cortex, J. Neurosci. 17 (1997)
7926–7940.

http://senselab.med.yale.edu/senselab/modeldb/

	Discrete event simulation in the NEURON environment
	Introduction
	IntFire1: a basic integrate and fire model
	FreqFire1: synaptic input modifies the interval between spikes
	Discussion
	Acknowledgements
	References


