
2013 Using NEURON to Model Cells and Networks

Schedule of Presentations

NTC Ted Carnevale

MLH Michael Hines

WWL Bill Lytton

GMS Gordon Shepherd

Morning session

Time Speaker Title Page

9:00 AM MLH Welcome 3

9:05 NTC NEURON: a brief tour 5

The basics 9

Construction and use of models 19

Using the CellBuilder to make a stylized model 20

Creating and using an interface
for running simulations

32

10:15 NTC The Linear Circuit Builder 43

10:30 Coffee Break

10:45 MLH Using NMODL to add new
biophysical mechanisms

51

11:15 MLH Numerical methods: accuracy, stability, speed 59

11:30 AM NTC Networks: spike-triggered synaptic
transmission, events, and artificial spiking
cells

65

12:15 PM Lunch

Afternoon session

1:15 PM MLH Numerical methods: adaptive integration
and events

75

1:30 MLH Parallelizing network simulations 79

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 1

Using NEURON to Model Cells and Networks 2013

2:00 MLH Python + NEURON 95

3:15 Coffee Break

3:30 GMS Databases for computational neuroscience 103

4:00 WWL Reaction-diffusion supplement

4:45 MLH Future directions

5:00 End of afternoon session

Receipt and Survey last two pages

We value your opinions and suggestions for improving this course. Please take a moment to
fill out and hand in the survey.

Page 2 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

Satellite Symposium, Society for Neuroscience

USING NEURON TO MODEL

CELLS AND NETWORKS

San Diego, CA

Friday, November 8, 2013

Ted Carnevale
Michael Hines

Bill Lytton
Gordon Shepherd

Supported by NINDS

NEURON http://neuron.yale.edu/

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

Using NEURON to Model Cells and Networks 2013

Page 4 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

NEURON: a brief tour

A tool for empirically-based models of neurons
and neural circuits

Open source project directed by Michael Hines

Active development and user support

Documentation, tutorials, and forum at
http://www.neuron.yale.edu/

Courses
SFN meetings
summer course at UCSD
other courses

The NEURON user community

Used by experimentalists, theoreticians, and educators
for neuroscience research and teaching

As of October 2012

� more than 1180 publications
� more than 1500 subscribers to mailing list and forum

http://www.neuron.yale.edu/phpBB/

� source code for 355 published models at ModelDB
http://modeldb.yale.edu/

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

Using NEURON to Model Cells and Networks 2013

Model specifications written in hoc and/or Python
and/or

created with GUI tools (work via hoc)
CellBuilder, Channel Builder,
Network Builder, Linear Circuit Builder

Add new functionality with NMODL (compiled)
new density mechanisms and point processes

described by ODEs, kinetic schemes,
algebraic equations

events, state machines, artificial spiking cells

Specifying and using models with NEURON

Instrumentation
stimulators, current or voltage clamps
plotting and recording variables

Simulation control
default and custom initializations
integration methods

fixed time step
adaptive integration

event system useful for implementing
"experimental protocols"

User interface

Not model specification, but necessary

Page 6 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

Parallel simulation
multithreaded execution
embarrassingly parallel problems
distributed models

Optimization tools

Model analysis
Impedance tools
ModelView

Import3D for detailed morphometric data

Other features

The NEURON Book

The WWW page http://www.neuron.yale.edu/
Documentation

hints and tutorials
link to FAQ list
links to key papers about NEURON

Programmer's Reference
Courses

The Forum http://www.neuron.yale.edu/phpBB/
Getting started
Hot tips

Where to learn more

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

Using NEURON to Model Cells and Networks 2013

Page 8 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

The What and the Why
of Neural Modeling

The moment-to-moment processing of information
in the nervous system involves the propagation
and interaction of electrical and chemical signals
that are distributed in space and time.

Empirically-based modeling is needed to test
hypotheses about the mechanisms that govern
these signals and how nervous system function
emerges from the operation of these mechanisms.

Topics

1. How to create and use models of neurons
and networks of neurons

� How to specify anatomical and biophysical
properties

� How to control, display, and analyze models
and simulation results

2. How NEURON works

3. How to add user-defined biophysical
mechanisms

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

Using NEURON to Model Cells and Networks 2013

From Physical System
to Computational Model

Conceptual model

a simplified representation of the physical system

Computational model

an accurate representation of the conceptual model

Computational
Model

Conceptual
Model

Physical
System

From Physical System
to Computational Model

dendrite

soma

Conceptual
model

ball
and
stick

Physical
system

Ca1
pyramidal

cell

Computational
model

hoc
code

create soma, dendrite
connect dendrite(0), soma(1)v

Page 10 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

Hierarchies of Complexity

Structure

Single compartment

Stylized

Network

Anatomically detailed v

Hierarchies of Complexity

Passive and Active currents
HH-style
kinetic scheme

Synaptic transmission
continuous
spike-triggered

Gap junctions

Extracellular fields, Linear circuits

Diffusion, buffers, transport & exchange

Artificial spiking cells ("integrate & fire")

Mechanism

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 11

Using NEURON to Model Cells and Networks 2013

Fundamental Concepts in NEURON

Signals

Electrical

Chemical

What
moves

charge
carriers

solute

Driving
force

voltage
gradient

concentration
gradient

What is
conserved

charge

mass

Conservation of Charge

C
m

d V
m

d t
� i

ion
=� i

a

im

im
im

im

ia

ia

ia

ia

Page 12 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

The Model Equations

c
j

d v
j

d t
� i

ion
j

=�
k

v
k
� v

j

r j k

v
j

membrane potential in compartment j

i
ion

j

net transmembrane ionic current in compartment j

c
j

membrane capacitance of compartment j

r
jk

axial resistance between the centers of
compartment j

and
adjacent compartment k

Separating Anatomy and Biophysics
from Purely Numerical Issues

section

a continuous length of unbranched cable

Anatomical data from A.I. Gulyás

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

Using NEURON to Model Cells and Networks 2013

Mathematical description of a section

c
j

d v
j

d t
� i

ion
j

=�
k

v
k
� v

j

r j k

c
j

d v
j

d t
=�

k

v
k
� v

j

r jk

i.e. membrane capacitance and axial resistance,
but no ionic current.

How can we put ion channels in the membrane?

What we want:

What a new section gives us:

Density mechanisms
distributed channels
ion accumulation

Point processes
electrodes, synapses

Described by
differential equations
kinetic schemes
algebraic equations

Constructed with
NMODL
Channel Builder

Adding mechanisms to sectionsAdding mechanisms to sections

Page 14 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

create soma, dend
connect dend(0), soma(1)

soma {
 L = 50 // [um] length
 diam = 50 // [um] diameter
 insert hh // Hodgkin-Huxley mechanism
 nseg = 1
}

dend {
 L = 200
 diam = 2
 insert pas // passive channels
 nseg = 3
}

Range Variables

Name Meaning Units

diam diameter [µm]

cm specific membrane [µf/cm2]

capacitance

g_pas specific conductance [siemens/cm2]

of the pas mechanism

v membrane potential [mV]

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 15

Using NEURON to Model Cells and Networks 2013

range

normalized position along the length of a section

0 � range � 1

any variable name can be used for range, e.g. x

0 1
distance

normalized

0
distance
physical

length
physical

Syntax:

sectionname.rangevar(range)

returns or sets value of rangevar
at location that corresponds to range

Examples:

dend.v(0.5)

returns v at middle of dend

Shortcut: dend.v

dend for (x) print x*L, v(x)

prints physical distance and v

at each point in dend where v was calculated

Page 16 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

nseg

the number of points in a section section where

membrane current and potential are computed

nseg=1

nseg=2

nseg=3

Example: axon nseg = 3

To test spatial resolution
forall nseg = nseg*3

and repeat the simulation

Category Variable Units

Time t [ms]

Distance diam, L [µm]

Voltage v [mV]

Current

specific i [mA/cm2] (density)

absolute [nA] (point process)

Capacitance

specific cm [µf/cm2]

absolute [nf] (point process)

Conductance

specific g [S/cm2] (density)

absolute [µS] (point process)

Cytoplasmic resistivity Ra [� cm]

Resistance SEClamp.rs [106 �]

Concentration cai, nao, etc. [mM]

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 17

Using NEURON to Model Cells and Networks 2013

Topology: create and connect sections

Geometry: stylized (L & diam) or 3D (x,y,z,diam)

Biophysics: insert density mechanisms,
attach "biological" point processes (synapses)

Network models

Create cells

Connect cells

Model specification summaryModel specification summary

Page 18 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

Construction and Use of Models

1. Specify the model ("virtual organism").

2. Specify the user interface ("virtual lab rig").

3. Tests
� structural integrity
� spatial grid
� time steps

Example: using the GUI to build
and exercise a stylized model

1. How to use the CellBuilder to create and
manage a model cell.

2. How to use NEURON's graphical tools
to make an interface for running
simulations.

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 19

Using NEURON to Model Cells and Networks 2013

Step 0: Conceptualize the task

Shape
stick figure / detailed

Channel distribution
uniform / nonuniform
whole cell / region / individual neurite

Creation
single cell / use in a network

Step 1: using the CellBuilder
to make a stylized model

Section L diam Biophysics
soma 20 µm 20 µm hh
ap[0] 400 2
ap[1] 300 1
ap[2] 500 1
bas 200 3

axon 800 1 hh

reduced hh *
reduced hh *
reduced hh *

pas §

* - gnabar_hh and gkbar_hh reduced to 10%, el_hh = - 64 mV

§ - e_pas = - 65 mV

Throughout the cell Ra = 160 Ω cm, cm = 1 µf / cm2

Page 20 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

Launch NEURON with its
library of graphical tools

UNIX/Linux nrngui

MSWin or OS X

Bring up a CellBuilder

NEURON Main Menu / Build / Cell Builder

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 21

Using NEURON to Model Cells and Networks 2013

The CellBuilder

Use buttons from left to right.

Topology

CB starts with a "soma" section.
We want to create new sections.

Page 22 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

Specifying the "Basename"

Making a new section

Place cursor near end
of existing section

Click to start new section

Drag to desired length

Release mouse button

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 23

Using NEURON to Model Cells and Networks 2013

Save your work as you make progress!

NEURON Main Menu / File / save session

Subsets

Group sections that have shared properties.
We want to make an "apicals" subset.

Page 24 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

Making a new subset

Click "Select Subtree"

 . . . then "New SectionList"

Click root of apical tree . . .

Making a new subset continued

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 25

Using NEURON to Model Cells and Networks 2013

Subsets finished

Note "apicals".
Time to save a new session file.

Geometry

"Specify Strategy" is ON.
A good strategy is a concise strategy.

Page 26 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

Geometry strategy

Each section has a different L and diam.

Compartmentalize according to λ100 Hz (d_lambda rule).

Implementing geometry strategy

When strategy is complete, turn "Specify Strategy" OFF
and start assigning values to parameters.

d_lambda = 0.1 at 100 Hz usually gives good spatial accuracy.

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 27

Using NEURON to Model Cells and Networks 2013

Implementing geometry continued

Set L and diam for all sections.
Time to save to a session file!

Biophysics

"Specify Strategy" is ON.
Base the plan on shared properties.

Page 28 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

Biophysics strategy

Ra and cm are homogeneous

bas has pas

apicals, soma and axon have hh

Implementing biophysics strategy

Double Ra

Fix apicals hh params

Shift e_pas in bas

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 29

Using NEURON to Model Cells and Networks 2013

Save another session file!!

Management

Option 1: save as a Cell Type
for use in a network

Page 30 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

Management continued

Option 2: save as hoc file

Management continued

Option 3: export to interpreter

Toggle Continuous Create ON and OFF

or just leave it ON all the time.

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 31

Using NEURON to Model Cells and Networks 2013

Step 2: creating and using an interface
for running simulations

We want to
� attach a stimulating electrode
� evoke an action potential
� show time course of Vm at soma
� show Vm along a path from one end of the cell

to the other

We need
� a "Run" button
� graphs to plot results
� a stimulator

Get a "Run" button

NEURON Main Menu / Tools / RunControl

Page 32 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

Init & Run does an Init,
then starts a simulation

Init sets time to 0,
Vm to displayed value, and
conductances to steady-state

Stop interrupts the simulation

Continue til runs until displayed time

Continue for runs for displayed
interval

Single step advances by
1/(Points plotted/ms)

t numeric field shows model time

Tstop specifies when simulation ends

dt is integration time step;
must be integer fraction of
1/(Points plotted/ms)

Points plotted/ms is plotting interval

RunControl panel

We need to plot Vm(t) at soma

NEURON Main Menu / Graph / Voltage axis

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 33

Using NEURON to Model Cells and Networks 2013

Graph window

v(.5) is Vm at middle of default section
(soma in this example)

We need to plot Vm along a path

NEURON Main Menu / Graph / Shape plot

Page 34 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

Bringing up a space plot

Use this "shape plot" to create a "space plot".

Click on its "menu box" . . .

Bringing up a space plot continued

. . . and scroll down to "Space Plot".

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 35

Using NEURON to Model Cells and Networks 2013

Click just left of the shape

Bringing up a space plot continued

Hold button down while dragging
from left . . .

. . . to right . . .

. . . then release button.

This pops up a . . .

Space plot

A plot of Vm vs. distance along a path.

Better save a session file.

Page 36 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

We need a stimulator

NEURON Main Menu / Tools / Point Processes
/ Managers / Point Manager

PointProcessManager window

To make this an IClamp . . .

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 37

Using NEURON to Model Cells and Networks 2013

Creating an IClamp

. . . click on SelectPointProcess
and scroll down to IClamp.

IClamp parameter panel

Next: set parameter values.

Page 38 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

Entering values into numeric fields

Direct entry

Note yellow highlight on button

Spinner

Red check means value has been
changed from default

Mathematical expression

Our user interface

Time to save to a new session file!

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 39

Using NEURON to Model Cells and Networks 2013

It works!

How to get nice space plot "movies"

NEURON Main Menu / Tools / Movie Run

Page 40 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

Space plot "movies" continued

Movie Run / Init & Run

What if channel density in the apical tree varies
systematically with position, e.g. distance from
the soma?

See "Specifying parameterized variation of
biophysical properties" in the CellBuilder tutorial
at http://neuron.yale.edu/neuron/docs

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 41

Using NEURON to Model Cells and Networks 2013

Page 42 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

The Linear Circuit Builder

For building models that have linear circuit elements
and may also involve neurons

Circuit elements include ground, current & voltage
source, R, C, op amp

Potential applications include
� effects and compensation of electrode R & C
� two-electrode voltage clamp
� ohmic and nonlinear gap junctions

1. Bring up a Linear Circuit Builder

NEURON Main Menu / Build / Linear Circuit

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 43

Using NEURON to Model Cells and Networks 2013

The Linear Circuit Builder

wire
resistor
capacitor
voltage source
current source
ground

operational amplifier
intracellular node
intra- and extracellular nodes

Arrange: spawn components
Click on palette and drag onto canvas

Page 44 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

Arrange: connect components

Click and drag to
overlap red circles

Black square is
"solder joint"

Pull apart to break connection

Label: move labels

Click and drag
to new location

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 45

Using NEURON to Model Cells and Networks 2013

Label: change labels 1

Click on a label . . .

. . . to change its name

Label: change labels 2

Click on a node . . .

. . . to label a voltage

Page 46 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

Parameters: non-source elements

Click on
"Parameters"

Parameters: signal sources

Source f(t) / B

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 47

Using NEURON to Model Cells and Networks 2013

Parameters: signal sources continued

Configured

Simulate: creating a graph

New Graph

Page 48 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

Simulate: specifying what to plot

PlotWhat? / variable_label

Simulate: simulation results

After minor cosmetic changes

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 49

Using NEURON to Model Cells and Networks 2013

Patch clamp with electrode R and C

NEURON demo: dynamic clamp

Page 50 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

NMODL
NEURON Model Description Language

Add new membrane mechanisms to NEURON

Density mechanisms Point Processes
Distributed Channels

Ion accumulation

Electrodes

Synapses

Described by

Differential equations
Kinetic schemes
Algebraic equations

Benefits

Consistent Units

Consistent ion current/concentration interactions.

One NMODL statement −> many C statements.

Interface code automatically generated.

Compact

Efficient −− translated into C.

Specification only −− independent of solution method.

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 51

Using NEURON to Model Cells and Networks 2013

NMODL general block structure

What the model looks like from outside

NEURON {

 USEION k READ ek WRITE ik
 RANGE gbar, ...
}

What names are manipulated by this model

UNITS { (mV) = (millivolt) ... }

PARAMETER { gbar = .036 (mho/cm2) <0, 1e9>... }

STATE { n ... }

ASSIGNED { ik (mA/cm2) ... }

Initial default values for states

INITIAL {
 rates(v)
 n = ninf
}

 SUFFIX kchan

Calculate currents (if any) as function of v, t, states
(and specify how states are to be integrated)

BREAKPOINT {
 SOLVE deriv METHOD cnexp
 ik = gbar * n^4 * (v − ek)
}

State equations

DERIVATIVE deriv {
 rates(v)
 n’ = (ninf − n)/ntau
}

Functions and procedures

PROCEDURE rates(v(mV)) {
 ...
}

Page 52 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 53

Using NEURON to Model Cells and Networks 2013

Density mechanism Point Process

NEURON {
 SUFFIX leak
 NONSPECIFIC_CURRENT i
 RANGE i, e, g
}

PARAMETER {
 g = .001 (mho/cm2) <0, 1e9>
 e = −65 (millivolt)
}

ASSIGNED {
 i (milliamp/cm2)
 v (millivolt)
}

BREAKPOINT {
 i = g*(v − e)
}

NEURON {
 POINT_PROCESS Shunt
 NONSPECIFIC_CURRENT i
 RANGE i, e, r
}

PARAMETER {
 r = 1 (gigaohm) <1e−9,1e9>
 e = 0 (millivolt)
}

ASSIGNED {
 i (nanoamp)
 v (millivolt)
}

BREAKPOINT {
 i = (.001)*(v − e)/r
}

NMODL

soma {
 insert leak
 g_leak = .0001
}
print soma.i_leak(.5)

Density mechanism Point Process

objref s
soma s = new Shunt(.5)
s.r = 2

NEURON {
 SUFFIX leak
 NONSPECIFIC_CURRENT i
 RANGE i, e, g
}

NEURON {
 POINT_PROCESS Shunt
 NONSPECIFIC_CURRENT i
 RANGE i, e, r
}

GUI

Interpreter

soma
pas
hh
leak

SingleCompartment
SelectPointProcess

Show

Shunt[0]

at: soma(0.5)

PointProcessManager

Page 54 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

Ion Channel Ion Accumulation

NEURON {
 USEION k READ ek WRITE ik
}
BREAKPOINT {
 SOLVE states METHOD cnexp
 ik = gbar*n*n*n*n*(v − ek)
}
DERIVATIVE states {
 rate(v*1(/mV))
 n’ = (inf − n)/tau
}

NEURON {
 USEION k READ ik WRITE ko
}
BREAKPOINT {
 SOLVE state METHOD cnexp

DERIVATIVE state {
 ko’ = ik/fhspace/F*(1e8)
 + k*(kbath − ko)
}

}

0 2 4 6 8 10

−80

−40

0

40

v(.5)

soma.ek(0.5)

0 2 4 6 8 10
0

5

10

15

20

soma.ko(0.5)

0 2 4 6 8 10
0

1

2

3

soma.ik(0.5)

(ms)

(mM) (mV) (mA/cm2)

STATE {
 Vesicle Ach Achase Ach2ase X Buffer[N] CaBuffer[N] Ca[N]
}
KINETIC calcium_evoked_release {
 : release
 ~ Vesicle + 3Ca[0] <−> Ach (Agen, Arev)
 ~ Ach + Achase <−> Ach2ase (Aase2, 0) : idiom for enzyme reaction
 ~ Ach2ase <−> X + Achase (Aase2, 0) : requires two reactions
 : Buffering
 FROM i = 0 TO N−1 {
 ~ Ca[i] + Buffer[i] <−> CaBuffer[i] (kCaBuffer, kmCaBuffer)
 }
 : Diffusion
 FROM i = 1 TO N−1 {
 ~ Ca[i−1] <−> Ca[i] (Dca*a[i−1], Dca*b[i])
 }
 : inward flux
 ~ Ca[0] << (ica)
}

Internal Free Calcium

Vesicle

Saturable Calcium Buffer

ica

Ach

Achase

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 55

Using NEURON to Model Cells and Networks 2013

UNITS Checking

NEURON { POINT_PROCESS Shunt ... }
PARAMETER {
 e = 0 (millivolt)
 r = 1 (gigaohm) <1e−9,1e9>
}
ASSIGNED {
 i (nanoamp)
 v (millivolt)
}
BREAKPOINT {
 i = (v − e)/r
}

Units are incorrect in the "i = ..." current assignment.

BREAKPOINT {
 i = (v − e)/r
}

The output from
 modlunit shunt
is:
 Checking units of shunt.mod
 The previous primary expression with units: 1−12 coul/sec
 is missing a conversion factor and should read:
 (0.001)*()
 at line 14 in file shunt.mod
 i = (v − e)/r<>

To fix the problem replace the line with:
 i = (.001)*(v − e)/r

What conversion factor will make the following consistent?

(uM/ms) (mA/cm2) (coulomb/mole) (um)
 nai’ = ina / FARADAY * (c/radius)

/ /

Page 56 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 57

Using NEURON to Model Cells and Networks 2013

Page 58 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

Compartmental Modeling

Not much mathematics required.

Good judgment essential!

Section

Node

Segment

Membrane

v(1)v(0) v(1.5/nseg)

Membrane

Extracellular
barrier

v(1)v(0)

vext(0) vext(1)

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 59

Using NEURON to Model Cells and Networks 2013

y = exp(−t)

y’ = −y
y(0) = 1

y’ = f(y)

0 1 2 3

−1

0

1

2

Forward Euler

0 1 2 3
 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

t

dt = .5

y(t + dt) = y(t) + dt *f(y(t))

y’ = f(y)

=
y(t+dt) − y(t)

dt
f(y(t))

Page 60 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

1 1

1 1

1/20
V

1
V

2

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

dt
.02

.2

Forward
Euler

0 1 2 3
 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

t

Backward Euler

y(t + dt) = y(t) + dt *f(y(t + dt))

dt = .75

y’ = f(y)

=
y(t+dt) − y(t)

dt
f(y(t+dt))

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 61

Using NEURON to Model Cells and Networks 2013

1 1

1 1

1/20
V

1
V

2

dt
.02

.2

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

dt = .2

Backward Euler

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

1 1

1 1

1/20
V

1
V

2

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

dt = .2
dt

.02
.2

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

1

1

V
1

0 1 2 3
 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

t

Crank−Nicholson

dt = .75

y(t + dt) = y(t) + dt *f(y(t+dt/2))

y’ = f(y)

=
y(t+dt) − y(t)

dt
f(y(t+dt/2))

Page 62 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

Cvode.atol(1e−3)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

Cvode.atol(1e−1)

_

na
2g = .12 S/cm

.15 nA

.061 nA

mV

ms0 1 2 3 4 5

−80

−40

0

40

− 1%

.15 nA

.061 nA

mV

ms

Implicit dt=.025 ms

0 1 2 3 4 5

−80

−40

0

40 CN dt=.001 ms
CN dt=.025 ms
CVode atol = 1e−2

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 63

Using NEURON to Model Cells and Networks 2013

Page 64 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

Networks:
spike-triggered synaptic transmission,

events, and artificial spiking cells

1. Define the types of cells

2. Create each cell in the network

3. Connect the cells

Communication between cells

Gap junctions

Synaptic transmission
graded
spike-triggered

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 65

Using NEURON to Model Cells and Networks 2013

Spike-triggered synaptic transmission

Physical system:

Presynaptic neuron with axon
that projects to synapse on target cell

Conceptual model:

Spike in presynaptic terminal
triggers transmitter release;
presynaptic details unimportant

Postsynaptic effect described by
DE or kinetic scheme that is perturbed by
occurrence of a presynaptic spike

Spike-triggered transmission:
computational implementation

Basic idea

More efficient: "virtual spike propagation"

Page 66 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

The NetCon class

hoc usage

netcon = new NetCon(source, target)
presection netcon = new NetCon(&v(x), \
 target, threshold, delay, weight)

Defaults

threshold = 10
delay = 1 // must be >= 0
weight = 0

NMODL specification of synaptic mechanism

NET_RECEIVE(weight(microsiemens)) {
 . . .
}

Efficient divergence

Multiple NetCons with a common source
share a single threshold detector

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 67

Using NEURON to Model Cells and Networks 2013

Efficient convergence

Multiple NetCons can share
a single target (many inputs,
but only one equation)

Example: gs with fast rise

and exponential decay

NEURON {
 POINT_PROCESS ExpSyn
 RANGE tau, e, i
 NONSPECIFIC_CURRENT i
}

 . . . declarations . . .

INITIAL { g = 0 }

BREAKPOINT {
 SOLVE state METHOD cnexp
 i = g*(v-e)
}

DERIVATIVE state { g' = -g/tau }

NET_RECEIVE(w (uS)) { g = g + w }

Page 68 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

gs with fast rise and exponential decay

continued

BREAKPOINT {
 SOLVE state METHOD cnexp
 i = g*(v-e)
}

DERIVATIVE state { g' = -g/tau }

NET_RECEIVE(w (uS)) { g = g + w }

Example: use-dependent synaptic plasticity

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 69

Using NEURON to Model Cells and Networks 2013

BREAKPOINT {
 SOLVE state METHOD cnexp
 g = B - A
 i = g*(v-e)
}

DERIVATIVE state {
 A' = -A/tau1
 B' = -B/tau2
}

NET_RECEIVE(weight (uS), w, G1, G2, t0 (ms)) {
 INITIAL {w=0 G1=0 G2=0 t0=t}
 G1 = G1*exp(-(t-t0)/Gtau1)
 G2 = G2*exp(-(t-t0)/Gtau2)
 G1 = G1 + Ginc*Gfactor
 G2 = G2 + Ginc*Gfactor
 t0 = t
 w = weight*(1 + G2 - G1)
 g = g + w
 A = A + w*factor
 B = B + w*factor
}

Use-dependent synaptic plasticity continued

Artificial spiking cells

"Integrate and fire" cells

Prerequisite: all state variables must be
analytically computable from a new initial condition

Orders of magnitude faster than numerical integration

Event-driven simulation run time is
proportional to # of received events
independent of # of cells, # of connections,

and problem time

Hybrid networks

Page 70 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

Example: leaky integrate and fire model

Leaky integrate and fire model continued

NEURON {
 ARTIFICIAL_CELL IntFire
 RANGE tau, m
}
 . . . declarations . . .

INITIAL { m = 0 t0 = t }

NET_RECEIVE (w) {
 m = m*exp(-(t-t0)/tau)
 t0 = t
 m = m + w
 if (m > 1) {
 net_event(t)
 m = 0
 }
}

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 71

Using NEURON to Model Cells and Networks 2013

IntFire1

IntFire2

IntFire4

Defining the types of cells

Artificial spiking cells

ARTIFICIAL_CELL with a NET_RECEIVE block
that calls net_event

NetStim, IntFire1, IntFire2, IntFire4

Biophysical model cells

"Real" model cells

Sections and density mechanisms

Synapses are POINT_PROCESSes
that affect membrane current
and have a NET_RECEIVE block,
e.g. ExpSyn, Exp2Syn

Page 72 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

Defining types of biophysical model cells

Encapsulate in a class

begintemplate Cell
 public soma, E, I
 create soma
 objref E, I
 proc init() {
 soma {
 insert hh
 E = new ExpSyn(0.5)
 I = new Exp2Syn(0.5)
 I.e = -80
 }
 }
endtemplate Cell

objref bag_of_cells
bag_of_cells = new List()
for i = 1,1000 bag_of_cells.append(new Cell())

Connecting cells

Which setup strategy is more efficient?

Iterate over sources

for each cell {
 connect this cell to its targets
}

or iterate over targets?

for each cell {
 connect sources to this cell
}

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 73

Using NEURON to Model Cells and Networks 2013

Connecting cells

For a net distributed over multiple CPUs,
it is most efficient to iterate over targets first.

for each cell {
 connect sources to this cell
}

Page 74 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

Iconify

File Edit Build Tools Graph Vector Window

NEURON Main Menu

RunControl
RunButton
VariableStepControl
Point Processes
Distributed Mechanisms
Fitting
Impedance
Model View
Miscellaneous

Close Hide

Use variable dt

Absolute Tolerance 0.001

Atol Scale Tool Details

VariableTimeStep

cvode_active(1)

Use variable dt

Absolute Tolerance 0.001

Atol Scale Tool Details

VariableTimeStep

Refresh

current model type: <*ODE*> DAE

ODE model allows any method

DAE model allows implicit fixed step or daspk
Implicit Fixed Step
C−N Fixed Step
Cvode
Daspk
Local step

DAE and daspk require sparse solver, cvode requires tree solver
Mx=b tree solver
Mx=b sparse solver

2nd order threshold (for variable step)

Numerical Method Selection

Analysis Run Rescale Original

*10 /10 Hints

v 1 65 0
ca_cadifpmp 1e−06 3e−06 0
pump_cadifpmp 1e−15 1e−13 0
pumpca_cadifpmp 1e−15 3.6e−15 0
oca_cachan 1 0.053 0
n_HHk 1 0.32 0
m_HHna 1 0.053 0
h_HHna 1 0.6 0
Ves_trel 1 0.0004 0
B_trel 1 0 0
Ach_trel 1 0 0
X_trel 1 0 0

Absolute Tolerance Scale Factors

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 75

Using NEURON to Model Cells and Networks 2013

Init (mV) −70

Init & Run

Stop

Continue til (ms) 5

Continue for (ms) 1

Single Step

t (ms) 1000

Tstop (ms) 1000

dt (ms) 0.025

Points plotted/ms 40

Quiet

Real Time (s) 162

RunControl

0 200 400 600 800 1000

−80

−40

0

40

0 200 400 600 800 1000

−80

−40

0

40
v(.5)

Graph x −100 : 1100 y −92 : 52

a. L3 Aspiny

b. L4 Stellate

c. L3 Pyramid

d. L5 Pyramid

Figure 1

v

Shape x −1250 : 550 y −653.432 : 1353.43

soma
pas
hh
ca
cad
kca
km
kv
na

Insert/Remove Mechanisms

Init (mV) −70

Init & Run

Stop

Continue til (ms) 5

Continue for (ms) 1

Single Step

t (ms) 1000

Tstop (ms) 1000

dt (ms) 6.131

Points plotted/ms 40

Quiet

Real Time (s) 36

RunControl

0 200 400 600 800 1000

−80

−40

0

40

0 200 400 600 800 1000

−80

−40

0

40
v(.5)

Graph x −100 : 1100 y −92 : 52

Use variable dt

Absolute Tolerance 0.001

Atol Scale Tool Details

VariableTimeStep

Page 76 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

0 200 400 600 800 1000

−80

−40

0

40

0 200 400 600 800 1000

−80

−40

0

40
v(.5)

3376 steps

Graph Change Text x −100 : 1100 y −92 : 52

0 200 400 600 800 1000

−3

−2

−1

0

1

0 200 400 600 800 1000

−3

−2

−1

0

1 log10(dt + 1e−9)

Graph Move Text x −100 : 1100 y −3.4 : 1.4

0 200 400 600 800 1000
0

1

2

3

4

5

0 200 400 600 800 1000
0

1

2

3

4

5 cvode.order

Graph Move Text x −100 : 1100 y −0.5 : 5.5

665 667 669 671 673 675

−80

−40

0

40

665 667 669 671 673 675

−80

−40

0

40
v(.5)

Graph Pick Vector x 664 : 676 y −92 : 52

665 667 669 671 673 675

−3

−2

−1

0

1

665 667 669 671 673 675

−3

−2

−1

0

1 log10(dt + 1e−9)

Graph Move Text x 664 : 676 y −3.4 : 1.4

665 667 669 671 673 675
0

1

2

3

4

5

665 667 669 671 673 675
0

1

2

3

4

5 cvode.order

Graph Move Text x 664 : 676 y −0.5 : 5.5

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 77

Using NEURON to Model Cells and Networks 2013

Page 78 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

Parallel Computation

"Faster" is the only reason

 But...

 new kinds of bugs
 ...and not much help for fixing them.

 greater programming complexity

Can the day or week of user effort be recovered?

16384 core EPFL IBM BlueGene/P
 1 hour at 850MHz
 6 months at 3GHz

Parallel Computation

A simulation run takes about a second

want to do 1000’s of them,

varying a dozen or so parameters.

A simulation run takes hours.
want to spread the problem over several machines.

Screensaver

Bulletin−board (Linda)

Calin−Jageman and Katz, 2006

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 79

Using NEURON to Model Cells and Networks 2013

Parallel Computation

A simulation run takes hours.
want to spread the problem over several machines.

postsynaptic conductance depends
 continuously on presynaptic voltage.

logical spike events with significant
axonal, synaptic delay.

gap junctions

 Network
Subnets on different machines

Cells communicate by:

Parallel Computation

A simulation run takes hours.
want to spread the problem over several machines.

 Single cells
portions of the tree cable equation on
 different machines.

Page 80 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

PostCell

PostSyn

PreCell

PreSyn

NetCon

nc = new NetCon(PreSyn, PostSyn)

PostCell

PostSyn

PreCell

PreSyn

NetCon

CPU 2
CPU 4

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 81

Using NEURON to Model Cells and Networks 2013

PostCell

PostSyn

PreCell

PreSyn

CPU 2
CPU 4

pc = new ParallelContext()

PostCell

PostSyn

PreCell

PreSyn

CPU 2
CPU 4

Every spike source (cell) must have a global id number.

gid = 7
gid = 9

Page 82 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

for (gid = pc.id; gid < ncell; gid += pc.nhost) {
 pc.set_gid2node(gid, pc.id)
 ...
}

An efficient way to distribute:

body executed only ncell/nhost times, not ncell.

gid
0
5
10

CPU 0
pc.id
pc.nhost
ncell

0
5

pc.id
pc.nhost
ncell

5
pc.id
pc.nhost
ncell

5...
3 4

CPU 4CPU 3

gid
3
8
13

gid
4
9

14 1414

PostCell

PostSyn

PreCell

PreSyn

CPU 2
CPU 4

gid = 7
gid = 9

Create cell only where the gid exists.

if (pc.gid_exists(7)) {
 PreCell = new Cell()
}

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 83

Using NEURON to Model Cells and Networks 2013

PostCell

PostSyn

PreCell

PreSyn

CPU 2
CPU 4

gid = 7

Associate gid with spike source.

nc = new NetCon(PreSyn, nil)
pc.cell(7, nc)

PostCell

PostSyn

PreCell

PreSyn

NetCon

CPU 2
CPU 4

gid = 7

Create NetCon on CPU where target exists.

7

nc = pc.gid_connect(7, PostSyn)

Page 84 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

Run using the idiom

pc.set_maxstep(10)
stdinit()
pc.psolve(tstop)

pc.set_maxstep() uses
MPI_Allreduce
to determine minimum delay.

minimum delay
exchangeexchange

any spike here must be delivered here

PostCell

PostSyn

PreCell

PreSyn

NetCon

gid = 7

CPU 2
CPU 4

0 1 2 3 4 5

−80

−40

0

40

2.875 (ms)

0 2 4 6

7

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 85

Using NEURON to Model Cells and Networks 2013

PostCell

PostSyn

PreCell

PreSyn

NetCon

gid = 7

CPU 2
CPU 4

0 2 4 6

t

7

n
gid
t
gid
t

1

−−−
−−−

2.875
7

PostCell

PostSyn

PreCell

PreSyn

NetCon

gid = 7

CPU 2
CPU 4

MPI_Allgather

0 2 4 6

t

7

n
gid
t
gid
t

1

−−−
−−−

n
gid
t
gid
t

−−−
−−−

0
−−−
−−−

n 0

.

.

.

.

.

.

cpu 3

cpu 2

cpu 1

2.875
7

n
gid
t
gid
t

1

−−−
−−−

2.875
7

Page 86 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

PostCell

PostSyn

PreCell

PreSyn

NetCon

gid = 7

CPU 2
CPU 4

0 2 4 6

t

7

n
gid
t
gid
t

1

−−−
−−−

n
gid
t
gid
t

−−−
−−−

0
−−−
−−−

n 0

.

.

.

.

.

.

cpu 3

cpu 2

cpu 1

2.875
7

time (ms)
0 50 100 150 200 250

ce
ll

n
u

m
b

er

0

100

200

300

400

500

Santhakumar et al. (2005)

time (ms)

0 400 800 1200 1600
0

500

1000

1500

2000

2500

Davison et al., (2003)

time (ms)

0 100 200 300 400 500
0

100

200

300

400

500

Bush et al., (1999)

number of processors
1 2 4 8 16 32 64 128 256 512

T
ru

n
 (

se
c)

2

5

10

20

50

100

200

400

number of processors
1 2 4 8 16 32 64 128 256 512

5

10

20

50

100

200

400

800

1600

number of processors
1 2 4 8 16 32 64 128 256 512

2

5

10

20

50

100

200

400
Beowulf 32-bit

EPFL IBM BlueGene
IBM Linux cluster

Mac G5

Beowulf 64-bit

Migliore et al (2006) J. Comput. Neurosci. 21(2):119

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 87

Using NEURON to Model Cells and Networks 2013

#cells
10k
20k
40k
80k

160k

#states
444,664
888,664

1,777,664
3,553,664
7,107,664

#netcons
17,167,785
68,655,566

274,591,128
1,098,302,267
4,393,084,577

#outputSpikes
31,118
33,960
69,529
294974

844,175

#spikedeliver
52,040,794

110,634,002
452,987,907

2,147,483,647
22,847,784,937

sec

#cpu

80k

160k

40k20k
10k

80002000500125
1

4

16

64

256

runtime

computation time

ideal

runtime (spike exchange
compression + bin queue)

0 50 100 150 200
0

100

200

300

400

500

Bush, Prince, & Miller (1999) J. Neurophys. 82:1748

Increased pyramidal excitability and posttraumatic
epileptogenesis without disinhibition: a model.

4096 700MHz dual processor Powerpc64

EPFL IBM BlueGene/L

*

Strong Scaling

Weak Scaling

8 16 32 64 128

 1

 2

 4

 8

 16

 32

 0.5

K processors

1k Conn/cell
2M Cells

R
un

tim
e

(s
ec

)

10k Conn/cell
1/4M Cells

K processors
8 16 32 64 128

 0.5

 1

 2

 4

 8

 16

 32

R
un

tim
e

(s
ec

)

1k Conn/cell

2M cells 32M cells

K processors
8 16 32 64 128

 0

 10

 20

 30

R
un

tim
e

(s
ec

)

10k Conn/cell

1/4M cells

K processors

4M cells

8 16 32 64 128
 0

 10

 20

 30

R
un

tim
e

(s
ec

)

Allgather

Record−Replay − One Subinterval

MPI_ISend − Two Phase, Two Subinterval

DCMF_Multicast − Two Phase, Two Subinterval

Computation Time (includes queue) Argonne National Lab
Blue Gene/P
Artificial Spiking Net

Page 88 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

s2.v(x2)

s1.v(x1)

g1.vgap

s1 { g1 = new HalfGap(x1) }

g2.vgap

s2 { g2 = new HalfGap(x2) }

gap.mod
NEURON {

 POINT_PROCESS HalfGap

 ELECTRODE_CURRENT i

 RANGE r, i, vgap

}

ASSIGNED {

 v (millivolt)

 vgap (millivolt)

 i (nanoamp)

}

CURRENT { i = (vgap − v)/r }PARAMETER { r = 1e9 (megohm) }

Continuous Voltage Exchange

pc.source_var(&source_var, sgid)

s2.v(x2)

s1.v(x1)

g1.vgap

s1 { g1 = new HalfGap(x1) }

g2.vgap

s2 { g2 = new HalfGap(x2) }

2
sgid

1
sgid

gap.mod
NEURON {

 POINT_PROCESS HalfGap

 ELECTRODE_CURRENT i

 RANGE r, i, vgap

}

ASSIGNED {

 v (millivolt)

 vgap (millivolt)

 i (nanoamp)

}

CURRENT { i = (vgap − v)/r }PARAMETER { r = 1e9 (megohm) }

Continuous Voltage Exchange

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 89

Using NEURON to Model Cells and Networks 2013

pc.source_var(&source_var, sgid)

s2.v(x2)

s1.v(x1)

g1.vgap

s1 { g1 = new HalfGap(x1) }

g2.vgap

s2 { g2 = new HalfGap(x2) }

2
sgid

1
sgid

pc.source_var(&s1.v(x1), 1)

pc.source_var(&s2.v(x2), 2)
gap.mod
NEURON {

 POINT_PROCESS HalfGap

 ELECTRODE_CURRENT i

 RANGE r, i, vgap

}

ASSIGNED {

 v (millivolt)

 vgap (millivolt)

 i (nanoamp)

}

CURRENT { i = (vgap − v)/r }PARAMETER { r = 1e9 (megohm) }

Continuous Voltage Exchange

pc.source_var(&source_var, sgid)
pc.target_var(&target_var, sgid)

s2.v(x2)

s1.v(x1)

g1.vgap

s1 { g1 = new HalfGap(x1) }

g2.vgap

s2 { g2 = new HalfGap(x2) }

2
sgid

1
sgid

pc.source_var(&s1.v(x1), 1)

pc.source_var(&s2.v(x2), 2)

pc.target_var(&g2.vgap, 1)

pc.target_var(&g1.vgap, 2)

gap.mod
NEURON {

 POINT_PROCESS HalfGap

 ELECTRODE_CURRENT i

 RANGE r, i, vgap

}

ASSIGNED {

 v (millivolt)

 vgap (millivolt)

 i (nanoamp)

}

CURRENT { i = (vgap − v)/r }PARAMETER { r = 1e9 (megohm) }

Continuous Voltage Exchange

Page 90 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

pc.source_var(&source_var, sgid)
pc.target_var(&target_var, sgid)

s2.v(x2)

s1.v(x1)

g1.vgap

s1 { g1 = new HalfGap(x1) }

g2.vgap

s2 { g2 = new HalfGap(x2) }

2
sgid

1
sgid

pc.source_var(&s1.v(x1), 1)

pc.source_var(&s2.v(x2), 2)

pc.target_var(&g2.vgap, 1)

pc.target_var(&g1.vgap, 2)

gap.mod
NEURON {

 POINT_PROCESS HalfGap

 ELECTRODE_CURRENT i

 RANGE r, i, vgap

}

ASSIGNED {

 v (millivolt)

 vgap (millivolt)

 i (nanoamp)

}

CURRENT { i = (vgap − v)/r }PARAMETER { r = 1e9 (megohm) }

Continuous Voltage Exchange

Pittsburgh Supercomputing Center

2068 2.4 GHz Opteron Processors

Bigben Cray XT3

25 50 100 200 400 800

1

4

16

64

256

1024

#CPU

(s)

5954

8516

Run time

Spike exchange time

Ideal run time

Mean, max, min Computation time

Mean, max, min variable transfer time

0 50 100 150 200
0

70

140

210

280

350

Traub et. al. (2005) J. Neurophysiol 93: 2194
A single column thalamocortical network model
exhibiting gamma oscillations, sleep spindles and
epileptogenic bursts.

3560 cells 14 types
3500 gap junctions
5,596,810 equations
73,465 spikes
1,122,520 connections
19,844,187 delivered

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 91

Using NEURON to Model Cells and Networks 2013

2000 3000 4000 5000
0

20

40

60

80

#Cells

Traub

Complexity

32 128 512 2048
CPUs

1024

256

64

16

4

s

13.2
18.7
26.1

Runtime
Computation time
Whole cell balance
Multisplit, No Gap Junctions
Multisplit, With Gap Junctions

356 Cells

4058 pieces

0 4 8 12 16
0

50

100

150

200

0 1 2 3 4

100

200

300

400
401 395 400 404

16 Pieces
4 CPU

Computation

Time (s)

ExchangeCPU

0

1

2

3

wholecell, 1 cpu

16 pieces, 4 cpu

56.2

55.0

Runtime(s)

CPU

Piece

#comp

#comp

16 pieces, 1 cpu

14.4

13.82 0.56

13.35 1.03

13.47 0.90

13.56 0.82

Page 92 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

0 10000 20000 30000 40000 50000
0

50

100

150

200

Complexity

#

10000 cells

0 10000
 0

 50

 100

 150

 200
16694
Pieces

Complexity

#

1024 2048 4096 8192

CPUs

s

128

256

512

1024

2048

64

Runtime, Whole Cell

Average Computation time
Runtime, Multisplit

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 93

Using NEURON to Model Cells and Networks 2013

Page 94 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

Python + NEURON

All legacy models must work.

Superior representation of
 underlying concepts.

No extra installation difficulty.

Compiled

Neuron specific syntax

Interpreter

Section
Range Variable
Mechanism

HOC

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 95

Using NEURON to Model Cells and Networks 2013

Compiled

Neuron specific syntax

Interpreter

HOC

InterpreterPython

Installation
Linux x86_64

i686

MSWin Cygwin
MinGW

NumPy
NEURON
PythonLaunch

>>> import neuron

PythonMac OS X 10.5−8
2.3−4
2.5−7
3.0−2

Page 96 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

About Topology Subsets Geometry Biophysics Management Continuous Create

d

Cell Type Export Import
Hints

Import from top level of interpreter.

 This works only if there is one cell in the interpreter.

Or import from NeuroML (Level 2) file.

From top level, imports: Topology, 3-D info.

From NeuroML file: Topology, 3-D info, Subsets, Biophysics.

 Don’t forget to specify compartmentalization in Geometry.

Import

Turn off indexed name display.
Don’t draw short sections as circles.

CellBuild[0]

./pyr.xml
File format: MorphML

Zoom
Translate
Rotate (about axis in plane)
Rotate 45deg about y axis
Rotated (vs Raw view)
Show Points
Show Diam

View all types

View type
Select point

Select id 0

Edit

Export

MorphML filter facts

Import3d_GUI[0]

$ nrniv −python

>>> from neuron import h

TopLevelHocInterpreter

>>> print h.hname()

>>> print h

<hoc.HocObject object at 0x2b4f1b81e030>

NEURON −− VERSION 7.3 ...

... s = "hello"

... ’’’)

1

>>> h(’’’

... strdef s

... x = 5

5.0 hello 16.0

>>> print h.x, h.s, h.square(4)

... func square() { return $1*$1 }

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 97

Using NEURON to Model Cells and Networks 2013

>>> v = h.Vector(4).indgen().add(10)

Vector[1] 4 4.0 12.0 12.0

>>> v.printf()

10 11 12 13

4.0

>>> for x in v: print x

...

10.0

11.0

12.0

13.0

>>>

>>> print v.hname(), len(v), v.size(), v.x[2], v[2]

>>> import numpy

>>> na = numpy.arange(0, 10, 0.00001) # 0.0131

>>> v = h.Vector(na) # 0.0197

>>> v.size()

1000000.0

>>> nb = numpy.array(v) # 0.0125

>>> nb[999999]

9.9999900000000004

>>> b = list(v) # 0.0717

>>> for i in xrange(0, len(nb)):

... v.x[i] = na[i]

... # 3.7497

>>> nc = v.as_numpy()

>>> v.x[20] = 50.0

>>> nc[20]

50.0

Page 98 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

>>> def callback(a = 1, b = 2):

... print "callback: a=%d b=%d" % (a, b)

...

>>> fih = h.FInitializeHandler(callback)

>>> h.finitialize()

callback: a=1 b=2

1.0

>>> fih = h.FInitializeHandler((callback,\

... (4, 5)))

>>> h.finitialize()

callback: a=4 b=5

1.0

>>>

assume hh soma model

vvec = h.Vector()

vvec.record(soma(.5)._ref_v, sec=soma)

tvec = h.Vector()

tvec.record(h._ref_t, sec=soma)

h.run()

g = h.Graph()

g.size(0, 5, −80, 40)

vvec.line(g, tvec)

0 1 2 3 4 5

-80

-40

0

40

0 1 2 3 4 5

-80

-40

0

40

Graph x -0.5 : 5.5 y -92 : 52

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 99

Using NEURON to Model Cells and Networks 2013

>>> from neuron import h

>>> axon = h.Section()

>>> axon.nseg = 5

>>> h.topology()

 ‘−−−−| PySec_2b371cd17190(0−1)

1.0

>>> soma = h.Section(name = ’soma’)

|−| soma(0−1)

>>> axon.connect(soma(1))

>>> axon.L = 1000

>>> axon.diam = 1

>>> for sec in h.allsec():

... sec.cm = 1

... sec.Ra = 100

... sec.insert(’hh’)

...

>>> axon.gnabar_hh = .1

>>> axon(.5).hh.gnabar = .09

>>> for seg in axon:

... print seg.x, seg.hh.gnabar

...

0.1 0.1

0.3 0.1

0.5 0.09

0.7 0.1

0.9 0.1

Page 100 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

>>> stim.delay = .5

>>> stim.dur = .1

>>> stim.amp = .4

>>> stim = h.IClamp(soma(.5))

class Cell(object):

 def __init__(self):

 self.topology()

 self.subsets()

 ...

 def topology(self):

 self.soma = h.Section(cell = self)

 self.dend = h.Section(cell = self)

 self.dend.connect(self.soma)

 ...

 def subsets(self):

 self.all = h.SectionList()

 self.all.wholetree(sec=self.soma)

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 101

Using NEURON to Model Cells and Networks 2013

Page 102 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

SenseLab

Neuron Course SfN 2013

Gordon Shepherd

Friday November 8th

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 103

Using NEURON to Model Cells and Networks 2013

Page 104 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 105

Using NEURON to Model Cells and Networks 2013

Page 106 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 107

Using NEURON to Model Cells and Networks 2013

Page 108 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 109

Using NEURON to Model Cells and Networks 2013

Page 110 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 111

Using NEURON to Model Cells and Networks 2013

Receipt

Received: $110

From:

For: Using the NEURON Simulation Environment
Held Nov. 8, 2013 in San Diego, CA
http://www.neuron.yale.edu/neuron/static/courses/sd2013/sd2013.html

By: N.T. Carnevale
Director, Using the NEURON Simulation Environment
203-494-7381
ted.carnevale@yale.edu

For deposit in: Yale University account "NNC--Fees"

Page 112 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

2013 Using NEURON to Model Cells and Networks

Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved Page 113

Using NEURON to Model Cells and Networks 2013

Survey

We'd appreciate your frank opinions and suggestions to help us refine this course and design
future offerings on related subjects.

Please score these according to this scale

Overall impression no opinion 0

Relevance to my
research

poor, not helpful 1

Didactic presentations fair 2

Written handouts good 3

Overhead transparencies excellent, very helpful 4

Computer projection

Classroom

Food

Best feature

Weakest feature

Additional topics that should be covered, topics that should receive more or less coverage, or
other suggestions for improvement.

Circle one

Y N I would recommend this course to others who are interested in neural modeling.

Y N I have developed my own modeling software using a high-level language
(FORTRAN, C/C++ etc.).

Y N I have created my own models using modeling software.

Which software? ___

My primary area of research interest is __

To help us better meet the needs of NEURON users, please circle all platforms that you plan to
use for modeling.

Hardware Mac PC Other __

OS MacOS X Win XP | Vista | 7 | 8 UNIX | Linux | OS X | BSD

If Linux, which distribution? __

Page 114 Copyright © 1998-2013 N.T. Carnevale and M.L. Hines, all rights reserved

