
Hines and Carnevale Translating NEURON network models to parallel hardware

Translating network models to parallel hardware
in NEURON

M.L. Hines
Departments of Computer Science and Neurobiology

michael.hines@yale.edu

N.T. Carnevale
Department of Psychology

ted.carnevale@yale.edu

Yale University, New Haven, CT, USA

Network modeling is a common research activity in computational neuroscience. As a
general rule, investigators eventually find that they need to study larger and more complex
models. Often this runs up against storage and runtime limitations that interfere with achieving
their goals. An obvious solution is to move to parallel simulations which accommodates larger
networks on hardware with multiple processors and large amounts of total memory.

Migliore et al. (Migliore et al. 2006) showed that large gains can be achieved with NEURON
by distributing network models over multiple processors. They introduced the framework used in
NEURON for parallel simulations, and examined performance scaling with published models.
They found linear improvement of execution speed until there were so many processors, each
working on such a small task, that communication became rate limiting (about 100 ODEs per
processor).

Investigators increasingly have ready access to parallel hardware, such as multiprocessor
personal computers, workstation clusters, and massively parallel supercomputers. The practical
question is how to move a working network model from a single processor to parallel hardware.
The aim of this paper is to show how to make this transition for a model implemented with
NEURON. This is written from the perspective of UNIX/Linux, but the basic concepts are
independent of the operating system, as are all NEURON programming issues.

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 1

Hines and Carnevale Translating NEURON network models to parallel hardware

NEURON offers users the ability to parallelize network models while maintaining, as much
as possible, a separation between the specification of the network (i.e. all of the cells and all of
the connections between them), and how the cells are distributed among the host CPUs. This
makes it possible to write code that will execute properly, without modification, in any serial or
parallel hardware environment, producing quantitatively identical results regardless of the
number of CPUs or which CPU handles which cell(s). In this document we present two concrete
examples of how this is done.

2. Materials and Methods
The literature on parallel processing is full of "terms of art," such as CPUs, cores, processors,

processing units, nodes, and hosts, but unfortunately these are not used synonymously by
everyone. Here we define the number of processing units in a computer to be the number of
programs that can be executed simultaneously. For the sake of convenience, we refer to each
processing unit as a processor, so what is commonly called a "dual core, dual processor" PC has
four processing units, or four processors. When a processor is part of a parallel computing
architecture, it is called a host. Note that the latter differs from the usage of host in discussions of
computer networking, where it refers to an individual server or workstation.

2.1 Installation and configuration of software

2.1.1 Installing and testing MPI

For parallel simulations, installation of NEURON requires a pre-existing installation of MPI-
1.1 (Message Passing Interface) standard or greater. MPI almost certainly exists on any parallel
hardware that accepts remote login clients. The easiest way to find out if MPI has already been
installed is to ask your system administrator. Otherwise, with a UNIX command line

whi ch mpi cc
whi ch mpi c++ # or mpi cxx, mpi CC, . . .

will at least tell if it is in your PATH.

Individuals who have multiprocessor workstations, or who wish to configure their own
private workstation cluster, have a variety of choices of open source implementation of the MPI
standard. For example one can obtain MPICH2 from http://www-unix.mcs.anl.gov/mpi/mpich2/.

Unfortunately, the syntax for launching a program is different for every implementation of
MPI, and also depends on the nature of the parallel hardware, i.e. supercomputer, workstation

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 2

Hines and Carnevale Translating NEURON network models to parallel hardware

cluster, or standalone multiprocessor personal computer. Furthermore, the launch process itself
is often encapsulated in batch queue control programs, e.g. LoadLeveler, PBS, etc.. Regardless
of the details, the underlying principles are the same, but for the sake of illustration it is helpful
to have a concrete example, so we will assume the simplest case: MPICH2 on a standalone
multiprocessor personal computer.

With the proviso that versions and README instructions may change, this sequence of
commands will download and install MPICH2

cur l ht t p: / / www- uni x. mcs. anl . gov/ mpi / mpi ch2/ downl oads\
/ mpi ch2- 1. 0. 5p2. t ar . gz > mpi ch2- 1. 0. 5p2. t ar . gz

t ar xzf mpi ch2- 1. 0. 5p2. t ar . gz
cd mpi ch2- 1. 0. 5p2
. / conf i gur e - - pr ef i x=$HOME/ mpi ch2
make
make i nst al l
expor t PATH=$HOME/ mpi ch2/ bi n: $PATH

Setting up a cluster that has several hosts will also probably involve creating a file that lists those
hosts. Also, before testing on a workstation cluster that has a shared file system, make sure that
you can login to any node using ssh without a password, e.g. ssh ` host name` . If not,

ssh- keygen - t r sa
cd $HOME/ . ssh; cat i d_r sa. pub >> aut hor i zed_keys

It may also be necessary to explicitly set permissions on the aut hor i zed_keys file
chmod 600 . ssh/ aut hor i zed_keys

Of course, proper functioning of the installed software should be verified. You must be able
to start, query, and stop the MPI daemon

$ mpdboot
$ mpdt r ace
l ocal host
$ mpdal l exi t

(listings that combine user entries and computer responses use $ to denote the system prompt,
display user entries in bol d monospace, and show computer responses as pl ai n

monospace). In addition, it is a good idea to build and run one or more of the test programs that
are distributed with MPICH2, such as cpi _ani m.
$ cd $HOME/ mpi ch2/ shar e/ exampl es_gr aphi cs
$ make
$ mpi exec - np 4 cpi _ani m
Pr ocess 0 on l ocal host . l ocal domai n
Pr ocess 2 on l ocal host . l ocal domai n

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 3

Hines and Carnevale Translating NEURON network models to parallel hardware

Pr ocess 3 on l ocal host . l ocal domai n
Pr ocess 1 on l ocal host . l ocal domai n
pi i s appr oxi mat el y 3. 1416009869231249, Er r or i s 0. 0000083333333318
wal l cl ock t i me = 0. 041665

Observe that the - np 4 argument caused four processes to be launched. Ordinarily, the chosen
number of processes will match the number of processing units. However, to check that things
are working properly, it is very useful to test with a single process (- np 1). If the processes
have a very wide range of run times, it may be useful to launch many more processes than there
are processing units, thereby letting the operating system balance the problem.

2.1.2 Building and testing NEURON

This sequence of commands will download and install NEURON 6.0 and InterViews 17:
mkdi r $HOME/ neur on
cd $HOME/ neur on
downl oad and i nst al l I nt er Vi ews
unnecessar y i f you wi l l onl y r un i n bat ch mode
cur l ht t p: / / www. neur on. yal e. edu/ f t p/ neur on/ ver si ons\

/ v6. 0/ i v- 17. t ar . gz | t ar xzf
cd i v- 17
. / conf i gur e - - pr ef i x=` pwd`
make
make i nst al l
cd . .
downl oad and i nst al l NEURON
cur l ht t p: / / www. neur on. yal e. edu/ f t p/ neur on/ ver si ons\

/ v6. 0/ nr n- 6. 0. t ar . gz | t ar xzf
cd nr n- 6. 0
i f I nt er Vi ews i s not i nst al l ed, r epl ace " - - wi t h- i v. . . " wi t h
- - wi t hout - x
. / conf i gur e - - pr ef i x=` pwd` - - wi t h- i v=$HOME/ neur on/ i v- 17 \

- - wi t h- par anr n
make
make i nst al l
expor t CPU=i 686 # or per haps x86_64- - t o deci de whi ch you have,

 # l i st t he di r ect or y, or r un . / conf i g. guess
expor t PATH=$HOME/ neur on/ i v- 17/ $CPU/ bi n: $HOME/ neur on\

/ nr n- 6. 0/ $CPU/ bi n: $PATH

NEURON is distributed with several test programs that are located in
nr n- x. x / sr c / par al l el , where x. x is the version number. The simplest is t est 0. hoc

obj r ef pc
pc = new Par al l el Cont ext ()
st r def s

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 4

Hines and Carnevale Translating NEURON network models to parallel hardware

{
syst em(" host name" , s)
pr i nt f (" Ther e ar e %d pr ocesses. My r ank i s %d and I am on %s\ n" \

pc. nhost , pc. i d, s)
}
{ pc. r unwor ker () }
{ pc. done() }
qui t ()

pc. nhost is a synonym for the number of processes, i.e. the value of the - np argument. pc. i d

is a synonym for the MPI rank of a process, and ranges from 0 to pc. nhost -1. Running
t est 0. hoc under MPI with - np 4

$ cd sr c/ par al l el
$ mpi exec - np 4 $HOME/ neur on/ nr n- 6. 0/ $CPU/ bi n/ nr ni v - mpi t est 0. hoc

should generate this output on a "dual core, dual processor" PC
Ther e ar e 4 pr ocesses. My r ank i s 0 and I am on l ocal host . l ocal domai n
Ther e ar e 4 pr ocesses. My r ank i s 1 and I am on l ocal host . l ocal domai n
Ther e ar e 4 pr ocesses. My r ank i s 2 and I am on l ocal host . l ocal domai n
Ther e ar e 4 pr ocesses. My r ank i s 3 and I am on l ocal host . l ocal domai n

Note the - mpi switch in the command line, which tells NEURON that it is running in parallel
mode, so that each process is assigned a different rank. Trying again but omitting - mpi

$ mpi exec - np 4 $HOME/ neur on/ nr n- 6. 0/ $CPU/ bi n/ nr ni v t est 0. hoc

makes NEURON run in serial mode, so the four processes will execute one after another with no
communication between them, and NEURON sets pc. i d to 0 and pc. nhost to 1

Ther e ar e 1 pr ocesses. My r ank i s 0 and I am on l ocal host . l ocal domai n
Ther e ar e 1 pr ocesses. My r ank i s 0 and I am on l ocal host . l ocal domai n
Ther e ar e 1 pr ocesses. My r ank i s 0 and I am on l ocal host . l ocal domai n
Ther e ar e 1 pr ocesses. My r ank i s 0 and I am on l ocal host . l ocal domai n

One small but very practical issue deserves mention: NEURON has many commonly used
procedures and methods that return a numerical result which is printed to standard output when
they are executed at the top level of the interpreter, e.g. l oad_f i l e() , syst em() ,
pc. r unwor ker () . This may be helpful for development and debugging, but can be a big
nuisance when a program runs in parallel mode on more than a few processors. Printing of
dozens (or thousands) of lines of 0s and 1s can be suppressed by surrounding offending
statements with pairs of curly brackets, as in

{ pc. r unwor ker () }

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 5

Hines and Carnevale Translating NEURON network models to parallel hardware

2.2 Important concepts

NEURON uses an event delivery system to implement spike-triggered synaptic transmission
between cells ((Hines and Carnevale 2004), chapter 10 in (Carnevale and Hines 2006)). In the
simplest case on serial hardware, the connection between a spike source (presynaptic cell) and its
target is made by executing a statement of the form

nc = new Net Con(sour ce, t ar get)

This creates an object of the Net Con (Network Connection) class, which monitors a source
(presynaptic cell) for spikes. Detection of a spike launches an event which, after an appropriate
delay, will be delivered to the Net Con's target. The target is either an artificial spiking cell or a
synaptic mechanism attached to a biophysical model cell (Fig. 2.2.1; also see Fig. 3.2). In either
case, delivery of the event causes some change in the postsynaptic cell.

PreCell PostCell

source

target

NetCon

Figure 2.2.1. A Net Con attached to the presynaptic neuron PreCell detects spikes
at the location labeled source, and delivers events to the synapse target which is
attached to the postsynaptic neuron PostCell.

The basic problem that has to be overcome in a parallel simulation environment is that the
source cell and its target usually do not exist on the same host. The solution is to give each cell
(spike source) its own global identifier (gid) that can be referred to by every host. Then, if a
presynaptic cell on one host generates a spike, a message that notes the gid and time of the spike
will be passed to all other hosts. Net Cons on those hosts that have this gid as their source will
then deliver events to PreCell's targets with appropriate delays and weights (Fig. 2.2.2).

Synapses usually far outnumber spike sources, but fortunately synapse identifiers are
unnecessary because we use a target-centric strategy to set up network connections. That is, each
host is asked to execute the following conceptual task

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 6

Hines and Carnevale Translating NEURON network models to parallel hardware

for each cell c on this host {
for each spike source gid s that targets c {

set up a connection between spike source s and the proper target synapse on c
}

}

PreCell

source
gid = 7

PostCell

target

7 NetCon

Host 2 Host 4

Figure 2.2.2. A presynaptic spike source PreCell with gid = 7 is on host 2, but its
target is a synapse attached to PostCell on host 4. If PreCell spikes, a message is
passed to all hosts so that Net Cons that have gid 7 as their source will deliver
events to their targets.

3. First example: a ring network
A good strategy for developing parallel network models is to first create a scalable serial

implementation, and then transform the implementation into a parallel form. The basic steps in
constructing any network model are to define the cell types, create instances of the cells, and
finally to connect them together. For our first example of how to do this with NEURON, we
imagine 20 cells connected in a ring where cell i projects to cell i+1, and the last cell (cell 19)
projects to the first cell (cell 0) (Fig. 3.1). For didactic purposes we give each cell some structure
consisting of a soma and a dendrite, as in the classical ball and stick model (Fig. 3.2). The soma
has Hodgkin-Huxley channels so that it can generate spikes. The dendrite is passive, with an
excitatory synapse attached to it. Activating the synapse produces a large enough depolarization
to trigger a somatic spike.

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 7

Hines and Carnevale Translating NEURON network models to parallel hardware

0 119

Fig. 3.1. A network of 20 ball and stick cells arranged in a ring. Each cell i makes
an excitatory synaptic connection to the middle of the dendrite of cell i+1, except
for cell 19 which projects back to cell 0.

0 5 10 15 20

−80

−40

0

40

B_BallStick[0].soma.v(1)

Fig. 3.2. Left: A ball and stick model cell driven by an excitatory synapse at the
middle of its dendrite. Right: Effects of weak and strong EPSPs on membrane
potential v observed at the junction of the dendrite and soma, where a Net Con is
attached whose t hr eshol d is 10 mV (dashed line). The strong EPSP elicits a
spike, making v cross the Net Con's threshold in a positive-going direction
(arrow) so that an event will be sent to the Net Con's target.

3.1 Define the cell type

To define a cell type, one would either write hoc code, or use the Network GUI tools as
described in the tutorial at http://www.neuron.yale.edu/neuron/docs/netbuild/main.html, then
export a hoc file and extract the cell type definition from it as described in chapter 11 of The

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 8

Hines and Carnevale Translating NEURON network models to parallel hardware

NEURON Book (Carnevale and Hines 2006). In either case, the essential elements of a cell type
are its morphology and distributed membrane properties. It is also generally convenient to
specify the location of the spike trigger zone, and the threshold for spike detection (see Fig. 3.2),
which are almost always the same for all cells of a given type. This makes it easier to implement
a sour ce. connect 2t ar get procedure for connecting cells with simple syntax.

Synapses are a different matter. The question is whether, apart from toy networks, it is
possible to construct all synapses with proper locations and types when a cell is created, without
regard to what the connections are going to be. If synapse properties depend in any way upon the
source cell type and location, it will be simpler to create the synapse at the same time as the
Net Con. In any event, it is useful for each cell instance to have a list that holds the synaptic
instances.

For this example we can just extract the template that defines the B_Bal l St i ck cell type
from the tutorial example at http://www.neuron.yale.edu/course/net2/net2run_.hoc . Reading
through the template (Listing 1), we find that it follows our recommendations with regard to
specifying the spike trigger zone and detection threshold; obf unc connect 2t ar get ()

contains the statements
soma nc = new Net Con(&v(1) , $o1)
nc. t hr eshol d = 10

which specify the variable and location that is monitored for occurrence of a spike (membrane
potential v at the 1 end of soma, which also happens to be where the dendrite is attached), and
the threshold at which the spike triggers an event (v rising above 10 millivolts). A bit farther into
the listing, we discover that pr oc synapses() has this statement

/ * E0 * / dend syn_ = new ExpSyn(0. 8) synl i s t . append(syn_)

where synl i st is a public list that contains all synapses that are attached to a B_Bal l St i ck

cell. In passing, we should mention that:

1. The reversal potential e of this ExpSyn is left unchanged from its default value of 0 mV,
so we know that ExpSyn is excitatory.

2. geom_nseg() sets dend. nseg to 7 before synapses() is called (see pr oc i ni t ()

for the execution sequence when a new B_Bal l st i ck is created), so the ExpSyn is
actually located at 0.78571429 instead of 0.8.

3. If we were developing de novo, it would be essential to verify that the anatomical and
biophysical properties are correct and that the cell generates a spike when driven when

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 9

Hines and Carnevale Translating NEURON network models to parallel hardware

the excitatory synapse is activated. However, from the tutorial example, we already know
that the B_Bal l s t i ck cell type works.

[Listing 1 near here]

3.2 Serial implementation of the network

Listing 2 is a program that implements and exercises the network model in a manner that is
suitable for execution on serial hardware. For ease of development and debugging, the program
has a modular structure with a sequence of procedures, each of which has a particular purpose,
and it makes extensive use of lists so that collections of objects can be treated as sets (see chapter
11 in (Carnevale and Hines 2006)).

[Listing 2 near here]

In broad outline, it starts by following the natural sequence of defining the cell types that are
involved, creating the instances of the cells, and then setting up the connections between them.
The rest of the program is devoted to instrumentation (stimulating the network and recording the
times at which cells fire), simulation control (launching a simulation for a specified time), and
reporting simulation results (printing out which cell fired when).

We already discussed the definition of the cell type in the previous section. Since all cells are
to exist on a single host, the remaining tasks are quite straightforward.

3.2.1 Creating and connecting the cells

A simple f or loop in pr oc mkcel l s() is sufficient to create all instances of cells that will
be part of the ring, and append them to a list called cel l s .

pr oc mkcel l s() { l ocal i l ocal obj cel l
 cel l s = new Li st ()
 f or i =0, $1- 1 {
 cel l = new B_Bal l St i ck()
 cel l s. append(cel l)
 }
}

Another f or loop in pr oc connect cel l s() iterates over the contents of this list to set up the
network connections by creating a Net Con for each cell i that will drive the excitatory synapse
on cell i +1, and wraps around so that the last cell in the ring drives the synapse on the first cell.
These Net Cons are appended to another list called ncl i s t .

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 10

Hines and Carnevale Translating NEURON network models to parallel hardware

pr oc connect cel l s() { l ocal i l ocal obj sr c, t ar get , syn, nc
 ncl i st = new Li st ()
 f or i =0, cel l s. count - 1 { / / i t er at i ng over sour ces
 sr c = cel l s. obj ect (i)
 t ar get = cel l s. obj ect ((i +1) %cel l s. count)
 syn = t ar get . synl i st . obj ect (0) / / t he f i r st obj ect i n synl i st
 / / i s an ExpSyn wi t h e = 0, t her ef or e an exci t at or y synapse
 nc = sr c. connect 2t ar get (syn)
 ncl i st . append(nc)
 nc. del ay = 1
 nc. wei ght = 0. 01
 }
}

Note that the iteration in connect cel l s() is source-centric, i.e. each new i is treated as
the index of a source cell, so that the index of its target is i +1 modulo NCELL. We could just as
easily have used a target-centric strategy by treating i as the index of a target, and found the
index of the source as i -1 modulo NCELL. In either case, the computational effort would have
been the same. However, in a parallel environment the choice of source-centric vs. target-centric
iteration has a bearing on setup efficiency; we will return to this later.

3.2.2 Instrumentation and simulation control

Stimulation is achieved by pr oc mkst i m() , which creates a Net St i m that will generate a
single spike event source and attaches it via a Net Con to the excitatory synapse on cell 0.
Recording of spike times is set up by pr oc spi ker ecor d() , which uses the Net Con class's
r ecor d() method to capture spike times to a Vect or . Simulation control makes use of the
r un() procedure which is part of NEURON's standard run system, and pr oc spi keout ()

handles printout of spike times.

3.3 Transforming the implementation from serial to parallel

A parallel implementation of the ring network is presented in Listing 3. Creating an instance
of the Par al l el Cont ext class gives us access to the methods that support the ideas discussed
in 2.2 Important concepts. We will discuss these methods as they come up in the revised
implementation of our model network.

Note the use of curly brackets around l oad_f i l e() to suppress printing of superfluous 0s
and 1s to standard output, as mentioned at the end of 2.1.2 Building and testing NEURON. This
has also been done to several Par al l el Cont ext method calls near the end of the listing.

[Listing 3 near here]

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 11

Hines and Carnevale Translating NEURON network models to parallel hardware

3.3.1 Creating the cell instances

For the sake of illustration, the parallel implementation of mkcel l s() is excerpted here with
a bol d monospace typeface that marks changes from the serial implementation.

pr oc mkcel l s() { l ocal i l ocal obj cel l , nc, ni l
 cel l s = new Li st ()
 / / each host get s ever y nhost ' t h cel l ,
 / / st ar t i ng f r om t he i d of t he host
 / / and cont i nui ng unt i l al l cel l s have been deal t out
 f or (i =pc. i d; i < $1; i += pc. nhost) {
 cel l = new B_Bal l St i ck()
 cel l s. append(cel l)
 pc. set _gi d2node(i , pc. i d) / / associ at e gi d i wi t h t hi s host
 nc = cel l . connect 2t ar get (ni l) / / at t ach spi ke det ect or t o cel l
 pc. cel l (i , nc) / / associ at e gi d i wi t h spi ke det ect or
 }
}

The f or loop no longer iterates over all cells in the net; instead, on each host the f or statement
iterates i over just those gid values that belong on that host. In essence, this "deals out" the cells
to the hosts, one at a time., so that the cells are distributed more or less evenly over the hosts. In
the end, each host will have its own cel l s list, which will be about 1/N as long as the cel l s list
in the serial implementation.

The f or loop also associates each gid with a spike source on a particular host. In principle
this could be done with a single primitive method, but for the sake of flexibility the process has
been divided into three steps. First, we call set _gi d2node() on the host that "owns" the cell to
associate the cell's gid with the id of the host. Second, we create a temporary Net Con that
specifies the location of the spike detector on the cell; this Net Con does not need to have a real
target. Third, we use pc. cel l () to associate the spike detector location with the gid. Note that
the gid of a cell's spike detector will have the same value as the index of that cell in the cel l s

list of the original serial implementation, and since there is only one spike detector per cell, we
can use the gids to refer to individual cells. If the number of hosts is N, the mapping of cells to
hosts will be as shown in Table 1.

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 12

Hines and Carnevale Translating NEURON network models to parallel hardware

host id gid

0 0, N, 2N . . .

1 1, 1 + N, 1 + 2N . . .
� �

N - 1 N - 1, 2N - 1, 3N - 1 . . .

Table 1. The mapping of cells to hosts in this example. There are
N hosts whose ids range from 0 to N - 1, and the gids are the global
identifiers of the cells.

3.3.2 Setting up the network connections

In the serial program, when we made connections between cells i and i +1, we were able to
exploit the cel l s list as a map between index integers and the corresponding cell objects. This
is not possible in the parallel implementation because the indices of cel l s no longer have that
meaning; as noted above, each host has its own cel l s list, which contains just those cells that
belong to that host.

Parallelizing this model requires several changes to connect cel l s() , all of which are
direct consequences of the need to refer to cells by their gids instead of cel l s list indices
(revisions indicated by bol d monospace typeface).

pr oc connect cel l s() { l ocal i , t ar gi d l ocal obj sr c, t ar get , syn, nc
 ncl i st = new Li st ()
 f or i =0, NCELL - 1 { / / i t er at i ng over sour ce gi ds
 t ar gi d = (i +1) %NCELL
 i f (! pc. gi d_exi st s(t ar gi d)) { cont i nue }
 t ar get = pc. gi d2cel l (t ar gi d)
 syn = t ar get . synl i st . obj ect (0) / / t he f i r st obj ect i n synl i st
 / / i s an ExpSyn wi t h e = 0, t her ef or e an exci t at or y synapse
 nc = pc. gi d_connect (i , syn)
 ncl i st . append(nc)
 nc. del ay = 1
 nc. wei ght = 0. 01
 }
}

The first significant change is that the f or statement, which iterates over all spike source
gids, must use NCELL (the total number of cells in the net) instead of cel l s. count to specify
the number of iterations.

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 13

Hines and Carnevale Translating NEURON network models to parallel hardware

The simple rule that defined the architecture of the ring network must now be expressed in
terms of gids, hence t ar gi d = (i +1) %NCELL where i is the gid of a source and t ar gi d is
the gid of the corresponding target. Also, before trying to set up a synaptic connection on any
host, we verify that t ar gi d belongs to a cell that actually exists on that host by executing

i f (! pc. gi d_exi st s(t ar gi d)) { cont i nue }

If the target cell does not exist, the remaining statements inside the f or loop will be skipped.
Otherwise, gi d2cel l () gets an obj r ef for the cell, which is used to get an obj r ef for the
synapse that is to receive events from the spike source. The last change in connect cel l s() is
to use gi d_connect () , which creates a Net Con that conveys events from spike source gid i to
target synapse syn.

Earlier we noted that the computational effort required to set up a serial implementation of
this network was the same regardless of whether the f or loop iterated over sources or targets.
On parallel hardware, however, it is less efficient to iterate over sources. In this particular
example, each host must iterate over all source gids in order to find the gids of the targets that
exist. The penalty is small because it doesn't take that much time to increment i from 0 to
NCELL-1, generate the target's gid, and check to see if that gid exists, but as a rule it is better for
each host to iterate over the targets that exist on itself. Later in this paper we will present a
strategy for doing this.

3.3.3 Instrumentation

As in the serial implementation, stimulation is accomplished by a Net St i m that sends a
single event to the excitatory synapse on the first cell in the net, i.e. the cell whose gid is 0. This
Net St i m, and the Net Con that delivers its event, need to exist only on the host that has the first
cell, so we have inserted

i f (! pc. gi d_exi st s(0)) { r et ur n }

at the start of pr oc mkst i m() so that nothing is done on the hosts that do not have this cell. We
also changed the statement that creates the Net St i m so that it uses gid 0 to retrieve the cell's
obj r ef

ncst i m = new Net Con(st i m, pc. gi d2cel l (0) . synl i st . obj ect (0))

Also as in the serial implementation, the Net Con class's record method is used to capture the
spiking of the ring network's cells into a pair of Vect or s. However, each host can only record
the spike times of the cells that exist on itself, so each host must have its own t vec and i dvec

to hold the spike times and corresponding cell gids. Furthermore, the f or loop must iterate over
all cells on any particular host, which is the same as all items in that host's cel l s list. Finally,

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 14

Hines and Carnevale Translating NEURON network models to parallel hardware

we must remember to record the cell's gid, which is unique to each cell, not its index i into the
cel l s list. Consequently the r ecor d() statement must be changed to

nc. r ecor d(t vec, i dvec, nc. sr cgi d)

where the Net Con class's sr cgi d method is used to retrieve the gid of the spike source to which
a Net Con is attached.

3.3.4 Simulation control

With the serial implementation, it is only necessary to specify the duration t st op of a
simulation, and then call the standard run system's r un() . In turn, r un() calls st di ni t ()

which initializes the model, and cont i nuer un(t st op) which carries out the simulation per se.

Simulations of distributed network models require replacing r un() by three statements. The
first is pc. set _maxst ep() , which examines all connections between cells on different hosts
(i.e. the delays of all Net Cons that were created by calling gi d_connect ()) to find the
minimum delay, then sets the maximum integration step size on every host to that value (but not
greater than the value of its second argument). The second statement is just st di ni t () which
initializes the model, and the third is pc. psol ve(t st op) which has an effect similar to
cvode. sol ve(t st op) , i.e. integrates until its step passes tstop, then interpolates the values of
the states at exactly t st op and calls the functions necessary to update the assigned variables.

3.3.5 Reporting simulation results

Simulations on parallel hardware are generally done in batch mode with no graphical user
interface, and typically produce a large volume of data that must be stored for later analysis. For
this toy example, we will just dump the spike times and cell gids to the terminal.

The serial version collects all spike times and cell ids in a pair of Vect or s called t vec and
i dvec , in the sequence in which the spikes occurred. The spi keout () procedure prints a
header, then uses a f or loop to print out all contents of these Vect or s, e.g.

t i me cel l
2. 05 0
5. 1 1
8. 15 2
11. 2 3
 . . .
93. 55 10
96. 6 11
99. 65 12

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 15

Hines and Carnevale Translating NEURON network models to parallel hardware

However, in the parallel version each host has its own t vec and i dvec , which can only
capture the spike times and gids of the cells that exist on that host. Printing out these results
requires a nested pair of f or loops: the outermost iterates over the hosts, and the inner one
iterates over the contents of the individual host's t vec and i dvec . Special care must be taken or
else each host will compete to print its own t vec and i dvec , scrambling the printout because
there is no guarantee as to which host starts printing first, nor is there any protection against one
host's output stream being interrupted at any arbitrary point by the output stream from another
host.

We can prevent this by forcing the parallel computer to emulate a serial computer while
outputting simulation results. This is done with the Par al l el Cont ext class's bar r i er ()

method, which makes hosts that are racing ahead wait until all other hosts have caught up before
proceeding further. The first pc. bar r i er () statement in spi keout () ensures completion of
all printing that must be finished before the header is printed. The second one is the last
statement in the outermost f or loop, so that each host has sufficient time to finish printing its
spike times. These changes are shown below in bol d monospace typeface.

pr oc spi keout () { l ocal i , r ank
 pc. bar r i er () / / wai t f or al l host s t o get t o t hi s poi nt
 i f (pc. i d==0) pr i nt f (" \ nt i me\ t cel l \ n") / / pr i nt header j ust once
 f or r ank=0, pc. nhost - 1 { / / host 0 f i r st , t hen 1, 2, et c.
 i f (r ank==pc. i d) {
 f or i =0, t vec. si ze- 1 {
 pr i nt f (" %g\ t %d\ n" , t vec. x[i] , i dvec. x[i])
 }
 }
 pc. bar r i er () / / wai t f or al l host s t o get t o t hi s poi nt
 }
}

The parallel version's printout will be grouped according to which cells are on which hosts,
as in this run with four hosts

t i me cel l
2. 05 0
14. 25 4
26. 45 8
38. 65 12
 . . .
72. 2 3
84. 4 7
96. 6 11

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 16

Hines and Carnevale Translating NEURON network models to parallel hardware

But all the spike times and cells are the same as in the serial implementation, as we can verify by
capturing the outputs of the two programs to files, sorting the parallel output, and comparing

$ sor t - g par out . t x t > sor t ed_par out . t xt
$ cmp ser out . t x t sor t ed_par out . t xt
$

Further tests (results not shown) confirm that this program generates identical firing patterns
regardless of the number of hosts. It also produces the same firing patterns when run on a single
processor PC without MPICH2.

4. Second example: a network with random connectivity
A recurring theme in computational modeling is randomness, which may be manifested in

the model specification (anatomical and biophysical attributes of cells, locations and properties
of synapses, network topology and latencies of connections between cells) or as stochastic
perturbations of variables in the course of a simulation (noisy voltage or current sources,
fluctuation of model parameters such as ionic conductances, stochastic transmitter release or
channel gating, spatiotemporally varying patterns of afferent spike trains). It is essential to
achieve statistical independence of such parameters, while at the same time ensuring
reproducibility--i.e. the ability to recreate any particular model specification and simulation--no
matter how many hosts there are, or how the cells are distributed over them. Being able to
generate quantitatively identical results on parallel or serial hardware is particularly important
for debugging.

The key to achieving this goal is for each cell to have its own independent random number
generator. This is the one thing that will be the same regardless of the number of hosts and the
distribution of cells. To see how this is done with NEURON, let us consider a network with 20
cells in which each cell receives excitatory inputs from three other cells, chosen at random. The
network is perturbed by an excitatory input to the "first" cell at t = 0. The cells and synapses are
identical to those used in the first example (Fig. 3.2), so we can omit any discussion of cell types
and focus on how to set up the network.

4.1 Serial implementation of the network

The problem of achieving reproducible, statistically-independent randomness can be solved
by assigning each cell its own pseudorandom sequence generator, which is seeded with a unique
integer so that the sequences will be independent. For this model, the sequences will be used to
select the presynaptic sources that target each cell.

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 17

Hines and Carnevale Translating NEURON network models to parallel hardware

The final implementation of a program to create this network on serial hardware is presented
in Listing 4. The general outline of this program is very similar to the serial implementation of
the ring network, and many the details are identical (especially simulation control and reporting
results). There are some cosmetic differences, e.g. the renaming of the mkr i ng() procedure,
which is now called mknet () and new parameter declarations, e.g. C_E which defines the
number of excitatory inputs per cell, and connect _r andom_l ow_st ar t _ which is the lower
32 bit seed for the pseudorandom sequence generators that determine network connectivity. The
most substantive changes, however, are those that we have focused on in the preceding
paragraphs, which fall into two categories. The first category is code that introduces randomness
into the network architecture. The second category, which is necessitated by the first, is code that
analyzes and reports the network architecture. The following discussion examines these changes
and the rationale behind them.

4.1.1 Planning ahead: verification of network architecture

Verification of network architecture is a critical test of reproducibility. The ring network was
simple enough that we could write a program whose correctness could be determined almost by
inspection. For a random net it is not enough to write code that purports to set up connections
according to our plan; we must also make sure that the resulting network really does meet our
design specifications. This can be done by exploiting the same Net Cons that are used to set up
the network connections. In the serial implementation, they are all contained in a single ncl i st ,
so we can iterate over the elements of this list and use the Net Con class's pr ecel l () and
syn() methods to discover the identities of each spike source - target pair. What we really want,
however, are the identities of the presynaptic cell, the synaptic mechanism that receives input
events, and the postsynaptic cell to which that mechanism is attached. We can get these if we add
"synapse id" and "cell id" variables to the synaptic mechanisms, and initialize the contents of
these variables when each cell instance is created. With slight modification, this same strategy
will work for the parallel implementation.

The original ball and stick model cell used the ExpSyn synaptic mechanism, so we make a
local copy of nrn-6.0/src/nrnoc/expsyn.mod (c:\nrn60\src\nrnoc\expsyn.mod under MSWin), and
change its NEURON block to

NEURON {
: POI NT_PROCESS ExpSyn
 POI NT_PROCESS ExpSi d
 RANGE t au, e, i , si d, ci d
 NONSPECI FI C_CURRENT i
}

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 18

Hines and Carnevale Translating NEURON network models to parallel hardware

and change its PARAMETER block to
PARAMETER {
 t au = 0. 1 (ms) <1e- 9, 1e9>
 e = 0 (mV)
 si d = - 1 (1) : synapse i d, f r om cel l t empl at e
 ci d = - 1 (1) : i d of cel l t o whi ch t hi s synapse i s at t ached
}

(changes indicated in bol d monospace). We also copy cel l . hoc to a new file called
cel l i d. hoc , then edit cel l i d. hoc to change each appearance of ExpSyn to ExpSi d in the
template that defines the B_Bal l St i ck class. Below in 4.1.4 Verifying network architecture we
will see how to use these changes to discover the architecture of a network after it has been set
up.

4.1.2 Creating the cell instances

A first draft of the mkcel l s() procedure is very similar to what we used for the ring
network, with two new statements that associate each cell with a pseudorandom sequence
generator.

pr oc mkcel l s() { l ocal i l ocal obj cel l
 cel l s = new Li st ()
 r anl i st = new Li st ()
 f or i =0, $1- 1 {
 cel l = new B_Bal l St i ck()
 cel l s. append(cel l)
 r anl i st . append(new RandomSt r eam(i))
 }
}

Every time a new cell is created and appended to the cel l s list, a corresponding object of the
RandomSt r eam class is also created and appended to a list called r anl i st by the statement
r anl i st . append(new RandomSt r eam(i)) . The file r anst r eam. hoc , which is loaded
near the beginning of the program, defines the RandomSt r eam class plus an integer called
r andom_st r eam_of f set _ as shown here:

r andom_st r eam_of f set _ = 1000

begi nt empl at e RandomSt r eam
publ i c r , r epi ck, st ar t , st r eam
ext er nal r andom_st r eam_of f set _
obj r ef r

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 19

Hines and Carnevale Translating NEURON network models to parallel hardware

pr oc i ni t () {
 st r eam = $1
 r = new Random()
 st ar t ()
}
f unc st ar t () {
 r et ur n r . MCel l Ran4(st r eam* r andom_st r eam_of f set _ + 1)
}
f unc r epi ck() {
 r et ur n r . r epi ck()
}
endt empl at e RandomSt r eam

From this we see that the f or i =0, $1- 1 { } loop in mkcel l s() creates a set of
RandomSt r eam objects whose MCel l Ran4 generators have highindex values which differ by
unique integer multiples of 1000. To quote from the entry on MCel l Ran4 in NEURON's online
Programmer's Reference, "each stream should be statistically independent as long as the
highindex values differ by more than the eventual length of the stream". A difference of 1000 is
more than enough for our purpose, because it is only necessary to draw a few samples from each
cell's random stream in order to determine the three cells that drive its excitatory synapse. Note
that the argument to r . MCel l Ran4 is 1 + st r eam* r andom_st r eam_of f set _, which is
always > 0. This is necessary because an argument of 0 would result in the system automatically
choosing a highindex value that depends on the number of instances of the random generator that
have been created--an undesirable outcome that would defeat the reproducibility that we are
trying to achieve.

Of course we must also initialize the si d and ci d variables that belong to the synaptic
mechanisms, as discussed in the previous section. This is done by inserting this f or loop

f or j =0, cel l . synl i st . count - 1 {
 cel l . synl i st . o(j) . si d = j
 cel l . synl i st . o(j) . ci d = i
}

after the cel l s. append(cel l) statement in mkcel l s() . This inner loop iterates over all
synapses in a new cell's synl i st to assign the appropriate values to their si ds and ci ds.

4.1.3 Setting up the network connections

The algorithm for setting up this network's connections can be expressed in pseudocode as

for each cell c in the network {
repeat {

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 20

Hines and Carnevale Translating NEURON network models to parallel hardware

pick a cell s at random
if s is not the same as c {

if s does not already send spikes to the excitatory synapse syn on c {
set up a connection between s and syn

}
}

} until 3 different cells drive syn
}

Note that the network architecture lends itself naturally to a target-centric approach, so the outer
loop iterates over target cells. This algorithm is implemented in connect cel l s() , which is
excerpted here minus some "housekeeping" statements indicated by ellipses. Substantive
differences from the ring network's connect cel l s() are in bol d monospace.
pr oc connect cel l s() { l ocal i , nsyn, r l ocal obj sr c, syn, nc , r s, u
 / / i ni t i al i ze t he pseudor andom number gener at or
 mcel l _r an4_i ni t (connect _r andom_l ow_st ar t _)
 u = new Vect or (NCELL) / / f or sampl i ng wi t hout r epl acement
 ncl i st = new Li st ()
 f or i =0, cel l s. count - 1 {
 / / t ar get synapse i s synl i st . obj ect (0) on cel l s. obj ect (i)
 syn = cel l s. obj ect (i) . synl i st . obj ect (0)
 r s = r anl i st . obj ect (i) / / t he cor r espondi ng RandomSt r eam
 r s. st ar t ()
 r s. r . di scuni f (0, NCELL- 1) / / r et ur n i nt eger i n r ange 0. . NCELL- 1
 u. f i l l (0) / / u. x[i] ==1 means spi ke sour ce i has al r eady been chosen
 nsyn = 0
 whi l e (nsyn < C_E) {
 r = r s. r epi ck()
 / / no sel f - connect i on, & onl y one connect i on f r om any sour ce
 i f (r ! = i) i f (u. x[r] == 0) {
 / / set up connect i on f r om sour ce t o t ar get
 sr c = cel l s. obj ect (r)
 nc = sr c. connect 2t ar get (syn)
 ncl i st . append(nc)
 nc. del ay = 1
 nc. wei ght = 0. 01
 u. x[r] = 1
 nsyn += 1
 }
 }
 }
}

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 21

Hines and Carnevale Translating NEURON network models to parallel hardware

The outer loop is a f or loop that marches through the list of cells, one cell at a time. On each
pass, the local object reference syn is made to point to the excitatory synapse of the current
target cell, and the u Vect or 's elements and the "connection tally" nsyn are all set to 0. The
inner loop is a whi l e loop that repeatedly

� picks a new random integer r from the range [0, cel l s . count - 1] until it finds an r
that {is not the index of the current target cell} and {is not the index of a cell that has
already been connected to syn}

� creates a new Net Con nc that connects cell r 's spike source to syn, and appends nc to
ncl i s t

� sets the corresponding element of the u Vect or to 1 and increases the synapse count
nsyn by 1

until nsyn equals the desired number of connections C_E.

4.1.4 Verifying network architecture

The network architecture is analyzed by t r acenet () . This procedure iterates over each
Net Con in ncl i st to retrieve and report the source cell id, target cell id, and target synapse id
information for every network connection, using information that was stored in the network's
cells and synaptic mechanisms at the time they were created.

pr oc t r acenet () { l ocal i l ocal obj sr c, t gt
 pr i nt f (" sour ce\ t t ar get \ t synapse\ n")
 f or i = 0, ncl i st . count - 1 {
 sr c = ncl i st . o(i) . pr ecel l
 t gt = ncl i st . o(i) . syn
 pr i nt f (" %d\ t %d\ t %d\ n" , sr c. synl i st . o(0) . ci d, t gt . ci d, t gt . si d)
 }
}

For our random net, the output of t r acenet () is
sour ce t ar get synapse
12 0 0
16 0 0
17 0 0
9 1 0
16 1 0
 . . .
10 18 0
5 19 0
15 19 0
13 19 0

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 22

Hines and Carnevale Translating NEURON network models to parallel hardware

which immediately confirms that
� each target cell receives only three streams of spike events
� all events are delivered to the excitatory synapse
� there is no obvious regularity to the pattern of connectivity

4.1.5 Instrumentation, simulation control, and reporting simulation results

Here the only difference from the code used for the ring network is in the spi ker ecor d()

procedure. With the ring network, it was acceptable to let the f or loop run from 0 to
ncl i s t . count -1 because ncl i st . count was identical to cel l s . count . However, the
random network has more connections than cells, so this loop must stop at cel l s. count -1.

4.2 A parallel implementation with reproducible randomness

As with the parallelized ring network model, the code starts by creating an instance of the
Par al l el Cont ext class and uses curly brackets to suppress printing of unwanted results.

[Listing 5 near here]

4.2.1 Creating the cell instances

The parallelized mkcel l s() procedure for the random net is excerpted here, with
differences from the serial implementation indicated by bol d monospace.
pr oc mkcel l s() { l ocal i l ocal obj cel l , nc, ni l
 cel l s = new Li st ()
 r anl i st = new Li st ()
 gi dvec = new Vect or ()
 f or (i =pc. i d; i < $1; i += pc. nhost) {
 cel l = new B_Bal l St i ck()
 cel l s. append(cel l)
 f or j =0, cel l . synl i st . count - 1 {
 cel l . synl i st . o(j) . si d = j
 cel l . synl i st . o(j) . ci d = i
 }
 pc. set _gi d2node(i , pc. i d) / / associ at e gi d i wi t h t hi s host
 nc = cel l . connect 2t ar get (ni l) / / at t ach spi ke det ect or t o cel l
 pc. cel l (i , nc) / / associ at e gi d i wi t h spi ke det ect or
 r anl i st . append(new RandomSt r eam(i)) / / r anl i st . o(i) cor r esponds t o
 / / cel l associ at ed wi t h gi d i
 gi dvec. append(i)

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 23

Hines and Carnevale Translating NEURON network models to parallel hardware

 }
 r epor t _gi dvecs()
}

Most of these differences are similar to what we did with the ring network: a f or loop deals out
the cells across the hosts, so that each host gets every nhost 'th cell, starting from the id of the host and
continuing until no more cells are left. Each host has its own cel l s list to hold the cells that
belong to it, plus a r anl i st to hold the corresponding RandomSt r eam objects. Two statements
have been added so that each host also has a Vect or called gi dvec . The elements of gi dvec

are the gids that correspond to the cells in the cells list; in the next section we will see that this
simplifies the task of setting up the network connections. Creating a cell involves appending it to
the cel l s list, initializing the si ds and ci ds that belong to its synapses, attaching a spike
detector (Net Con) to it, associating a unique gid with the spike detector and with the host to
which the cell belongs, creating a new RandomSt r eam object and appending it to r anl i st , and
appending the gid to gi dvec .

For the sake of debugging and development, we have added a purely diagnostic
r epor t _gi dvecs() that is called at the end of mkcel l s() :

pr oc r epor t _gi dvecs() { l ocal i , r ank
 pc. bar r i er () / / wai t f or al l host s t o get t o t hi s poi nt
 i f (pc. i d==0) pr i nt f (" \ ngi dvecs on t he var i ous host s\ n")
 f or r ank=0, pc. nhost - 1 { / / host 0 f i r st , t hen 1, 2, et c.
 i f (r ank==pc. i d) {
 pr i nt " host " , pc. i d
 gi dvec. pr i nt f ()
 }
 pc. bar r i er () / / wai t f or al l host s t o get t o t hi s poi nt
 }
}

This procedure prints out the gids of the cells that are on each host, one host at a time. With four
hosts, the distribution of gids is

host 0
0 4 8 12 16
host 1
1 5 9 13 17
host 2
2 6 10 14 18
host 3
3 7 11 15 19

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 24

Hines and Carnevale Translating NEURON network models to parallel hardware

4.2.2 Setting up the network connections

We assembled cel l s , r anl i st , and gi dvec in tandem so that the nth element in each of
these data structures corresponds to the nth elements in the other two. Consequently we can use
the same index i to iterate over each cell on a host plus its associated RandomSt r eam object and
gid. This reduces the task of parallelizing connect cel l s() to making just two changes:

1. The test for "no self-connection and only one connection from any source" changes from
i f (r ! = i) i f (u. x[r] == 0) { }

to
i f (r ! = gi dvec. x[i]) i f (u. x[r] == 0) { }

2. Setting up a connection from source to target changes from
sr c = cel l s. obj ect (r)
nc = sr c. connect 2t ar get (syn)

to
nc = pc. gi d_connect (r , syn)

4.2.3 Verifying network architecture

Most of the necessary revisions to t r acenet () are required for the sake of orderly
execution, and are similar to those that were necessary to parallelize the ring network's
spi keout () procedure: in essence, using Par al l el Cont ext bar r i er () statements and
iteration over hosts to reduce a parallel computer to a serial machine. The other change, which is
needed because source cells may not be on the same host as their targets, consists of referring to
the source cell by its gid, and affects two statements in t r acenet () (indicated in bol d

monospace):
pr oc t r acenet () { l ocal i , r ank, sr ci d l ocal obj t gt
 pc. bar r i er () / / wai t f or al l host s t o get t o t hi s poi nt
 i f (pc. i d==0) pr i nt f (" sour ce\ t t ar get \ t synapse\ n") / / pr i nt header once
 f or r ank=0, pc. nhost - 1 { / / host 0 f i r st , t hen 1, 2, et c.
 i f (r ank==pc. i d) {
 f or i = 0, ncl i st . count - 1 {
 sr ci d = ncl i st . o(i) . sr cgi d()
 t gt = ncl i st . o(i) . syn
 pr i nt f (" %d\ t %d\ t %d\ n" , sr ci d, t gt . ci d, t gt . si d)
 }
 }
 pc. bar r i er () / / wai t f or al l host s t o get t o t hi s poi nt
 }
}

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 25

Hines and Carnevale Translating NEURON network models to parallel hardware

On parallel hardware, the revised t r acenet () prints out the connectivity information in a
different sequence

sour ce t ar get synapse
12 0 0
16 0 0
17 0 0
1 4 0
0 4 0
2 4 0
10 8 0
0 8 0
 . . .
12 15 0
5 19 0
15 19 0
13 19 0

than it does on serial hardware, but sorting reveals that connectivity is identical regardless of the
architecture of the computer on which it is run, and also identical to the connectivity produced
by the serial implementation of this model.

4.2.4 Instrumentation, simulation control, and reporting simulation results

These are identical to the parallel implementation of the ring network. The serial
implementation's spike times are reported in a monotonically increasing sequence

t i me cel l
2. 05 0
5. 1 16
5. 1 8
 . . .
34. 1 14
36. 675 11

but, as with connectivity, the parallel implementation's output is grouped according to which
cells are on which hosts

t i me cel l
2. 05 0
5. 1 4
5. 1 8
 . . .
31. 4 7
36. 675 11

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 26

Hines and Carnevale Translating NEURON network models to parallel hardware

After capturing the spike times of the serial and parallel implementations to files and sorting
them, comparison finds no difference in simulation results between the output of the serial or
parallel implementations

$ sor t - g ser out . t x t > sor t ed_ser out . t xt
$ sor t - g par out . t x t > sor t ed_par out . t xt
$ cmp sor t ed_ser out . t xt sor t ed_par out . t x t
$

regardless of whether the parallel code is run on serial hardware with or without MPICH2, or on
parallel hardware under MPICH2 with any number of hosts.

References
Carnevale, N.T. and Hines, M.L. The NEURON Book. Cambridge, UK: Cambridge University
Press, 2006.

Hines, M.L. and Carnevale, N.T. Discrete event simulation in the NEURON environment.
Neurocomputing 58-60:1117-1122, 2004.

Migliore, M., Cannia, C., Lytton, W.W., Markram, H., and Hines, M.L. Parallel network
simulations with NEURON. J. Comput. Neurosci. 21:119-129, 2006.

Entry on MCellRan4 in NEURON's online Programmer's Reference:
http://www.neuron.yale.edu/neuron/docs/help/neuron/general/classes/random.html#MCellRan4

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 27

Hines and Carnevale Translating NEURON network models to parallel hardware

Listings

Listing 1. Definition of the ball and stick model cell class.

begi nt empl at e B_Bal l St i ck
publ i c i s_ar t
publ i c i ni t , t opol , bas i c_shape, subset s, geom, bi ophys, geom_nseg, \

bi ophys_i nhomo
publ i c synl i s t , x, y, z, pos i t i on, connect 2t ar get

publ i c soma, dend
publ i c al l

obj r ef synl i s t

pr oc i ni t () {
 t opol ()
 subset s()
 geom()
 bi ophys()
 geom_nseg()
 synl i st = new Li s t ()
 synapses()
 x = y = z = 0 / / onl y change vi a posi t i on
}

cr eat e soma, dend

pr oc t opol () { l ocal i
 connect dend(0) , soma(1)
 bas i c_shape()
}
pr oc basi c_shape() {
 soma { pt 3dcl ear () pt 3dadd(0, 0, 0, 1) pt 3dadd(15, 0, 0, 1) }
 dend { pt 3dcl ear () pt 3dadd(15, 0, 0, 1) pt 3dadd(105, 0, 0, 1) }
}

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 28

Hines and Carnevale Translating NEURON network models to parallel hardware

obj r ef al l
pr oc subset s() { l ocal i
 obj r ef al l
 al l = new Sect i onLi st ()
 soma al l . append()
 dend al l . append()
}
pr oc geom() {
 f or sec al l { }
 soma { / * ar ea = 500 * / L = di am = 12. 6157 }
 dend { L = 200 di am = 1 }
}
ext er nal l ambda_f
pr oc geom_nseg() {
 f or sec al l { nseg = i nt ((L/ (0. 1* l ambda_f (100)) +. 9) / 2) * 2 + 1 }
}
pr oc bi ophys() {
 f or sec al l {
 Ra = 100
 cm = 1
 }
 soma {
 i nser t hh
 gnabar _hh = 0. 12
 gkbar _hh = 0. 036
 gl _hh = 0. 0003
 el _hh = - 54. 3
 }
 dend {
 i nser t pas
 g_pas = 0. 001
 e_pas = - 65
 }
}
pr oc bi ophys_i nhomo() { }
pr oc posi t i on() { l ocal i
 soma f or i = 0, n3d() - 1 {
 pt 3dchange(i , $1- x+x3d(i) , $2- y+y3d(i) , $3- z+z3d(i) , di am3d(i))
 }
 x = $1 y = $2 z = $3
}
obf unc connect 2t ar get () { l ocal obj nc / / $o1 t ar get poi nt pr ocess, \

opt i onal $o2 r et ur ned Net Con
 soma nc = new Net Con(&v(1) , $o1)
 nc. t hr eshol d = 10
 i f (numar g() == 2) { $o2 = nc } / / f or backwar d compat i bi l i t y
 r et ur n nc
}

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 29

Hines and Carnevale Translating NEURON network models to parallel hardware

obj r ef syn_
pr oc synapses() {
 / * E0 * / dend syn_ = new ExpSyn(0. 8) synl i s t . append(syn_)
 syn_. t au = 2
 / * I 1 * / dend syn_ = new ExpSyn(0. 1) synl i s t . append(syn_)
 syn_. t au = 5
 syn_. e = - 80
}
f unc i s_ar t () { r et ur n 0 }

endt empl at e B_Bal l St i ck

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 30

Hines and Carnevale Translating NEURON network models to parallel hardware

Listing 2. Serial implementation of the ring network.

l oad_f i l e(" nr ngui . hoc") / / l oad t he GUI and st andar d r un l i br ar i es

/ /
/ / St ep 1: Def i ne t he cel l cl asses
/ /

l oad_f i l e(" cel l . hoc")

/ /
/ / St eps 2 and 3 ar e t o cr eat e t he cel l s and connect t he cel l s
/ /

NCELL = 20 / / t ot al number of cel l s i n t he r i ng net wor k

obj r ef cel l s, ncl i st / / wi l l be Li st s t hat hol d al l net wor k cel l
 / / and Net Con i nst ances, r espect i vel y

pr oc mkr i ng() {
 mkcel l s($1) / / cr eat e t he cel l s
 connect cel l s() / / connect t hem t oget her
}

/ / cr eat es t he cel l s and appends t hem t o a Li st cal l ed cel l s
/ / ar gument i s t he number of cel l s t o be cr eat ed
pr oc mkcel l s() { l ocal i l ocal obj cel l
 cel l s = new Li st ()
 f or i =0, $1- 1 {
 cel l = new B_Bal l St i ck()
 cel l s. append(cel l)
 }
}

/ / connect s t he cel l s
/ / appends t he Net Cons t o a Li st cal l ed ncl i st
pr oc connect cel l s() { l ocal i l ocal obj sr c, t ar get , syn, nc
 ncl i st = new Li st ()
 f or i =0, cel l s. count - 1 { / / i t er at i ng over sour ces
 sr c = cel l s. obj ect (i)
 t ar get = cel l s. obj ect ((i +1) %cel l s. count)
 syn = t ar get . synl i st . obj ect (0) / / t he f i r st obj ect i n synl i st
 / / i s an ExpSyn wi t h e = 0, t her ef or e an exci t at or y synapse
 nc = sr c. connect 2t ar get (syn)
 ncl i st . append(nc)

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 31

Hines and Carnevale Translating NEURON network models to parallel hardware

 nc. del ay = 1
 nc. wei ght = 0. 01
 }
}

mkr i ng(NCELL) / / go ahead and cr eat e t he net !

/ /
/ / I nst r ument at i on, i . e. st i mul at i on and r ecor di ng
/ /

/ / st i m wi l l be an ar t i f i ci al spi ki ng cel l t hat gener at es a " spi ke" event
/ / t hat i s del i ver ed t o t he f i r st cel l i n t he net by ncst i m
/ / i n or der t o i ni t i at e net wor k spi ki ng.
/ / We won' t bot her i ncl udi ng t hi s " ext er nal st i mul us sour ce" or i t s Net Con
/ / i n t he net wor k' s l i st s of cel l s or Net Cons.
obj r ef st i m, ncst i m
pr oc mkst i m() {
 st i m = new Net St i m()
 st i m. number = 1
 st i m. st ar t = 0
 ncst i m = new Net Con(st i m, cel l s. obj ect (0) . synl i st . obj ect (0))
 ncst i m. del ay = 0
 ncst i m. wei ght = 0. 01
}

mkst i m()

obj r ef t vec, i dvec / / wi l l be Vect or s t hat r ecor d al l spi ke t i mes (t vec)
 / / and t he cor r espondi ng i d number s of t he cel l s t hat spi ked (i dvec)
pr oc spi ker ecor d() { l ocal i l ocal obj nc, ni l
 t vec = new Vect or ()
 i dvec = new Vect or ()
 f or i =0, ncl i st . count - 1 {
 nc = cel l s. obj ect (i) . connect 2t ar get (ni l)
 nc. r ecor d(t vec, i dvec, i)
 / / t he Vect or wi l l cont i nue t o r ecor d spi ke t i mes
 / / even af t er t he Net Con has been dest r oyed
 }
}

spi ker ecor d()

/ /
/ / Si mul at i on cont r ol
/ /

t st op = 100

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 32

Hines and Carnevale Translating NEURON network models to parallel hardware

r un()

/ /
/ / Repor t si mul at i on r esul t s
/ /

pr oc spi keout () { l ocal i
 pr i nt f (" \ nt i me\ t cel l \ n")
 f or i =0, t vec. si ze- 1 {
 pr i nt f (" %g\ t %d\ n" , t vec. x[i] , i dvec. x[i])
 }
}

spi keout ()

qui t ()

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 33

Hines and Carnevale Translating NEURON network models to parallel hardware

Listing 3. Parallel implementation of the ring network.

{ l oad_f i l e(" nr ngui . hoc") } / / l oad t he GUI and st andar d r un l i br ar i es

obj r ef pc
pc = new Par al l el Cont ext ()

/
/ / St ep 1: Def i ne t he cel l cl asses
/

{ l oad_f i l e(" cel l . hoc") }

/
/ / St eps 2 and 3 ar e t o cr eat e t he cel l s and connect t he cel l s
/

NCELL = 20 / / t ot al number of cel l s i n t he r i ng net wor k
 / / i dent i cal t o t ot al number of cel l s on al l machi nes

obj r ef cel l s, ncl i st / / cel l s wi l l be a Li st t hat hol ds
 / / al l i nst ances of net wor k cel l s t hat exi st on t hi s host
 / / ncl i st wi l l hol d al l Net Con i nst ances t hat exi st on t hi s host
 / / and connect net wor k spi ke sour ces t o t ar get s on t hi s host (ncl i st)

pr oc mkr i ng() {
 mkcel l s($1) / / cr eat e t he cel l s
 connect cel l s() / / connect t hem t oget her
}

/ / cr eat es t he cel l s and appends t hem t o a Li st cal l ed cel l s
/ / ar gument i s t he number of cel l s t o be cr eat ed
pr oc mkcel l s() { l ocal i l ocal obj cel l , nc, ni l
 cel l s = new Li st ()
 / / each host get s ever y nhost ' t h cel l ,
 / / st ar t i ng f r om t he i d of t he host
 / / and cont i nui ng unt i l al l cel l s have been deal t out
 f or (i =pc. i d; i < $1; i += pc. nhost) {
 cel l = new B_Bal l St i ck()
 cel l s. append(cel l)
 pc. set _gi d2node(i , pc. i d) / / associ at e gi d i wi t h t hi s host
 nc = cel l . connect 2t ar get (ni l) / / at t ach spi ke det ect or t o cel l
 pc. cel l (i , nc) / / associ at e gi d i wi t h spi ke det ect or
 }
}

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 34

Hines and Carnevale Translating NEURON network models to parallel hardware

/ / connect s t he cel l s
/ / appends t he Net Cons t o a Li st cal l ed ncl i st
pr oc connect cel l s() { l ocal i , t ar gi d l ocal obj sr c, t ar get , syn, nc
 ncl i st = new Li st ()
 f or i =0, NCELL - 1 { / / i t er at i ng over sour ce gi ds
 t ar gi d = (i +1) %NCELL
 i f (! pc. gi d_exi st s(t ar gi d)) { cont i nue }
 t ar get = pc. gi d2cel l (t ar gi d)
 syn = t ar get . synl i st . obj ect (0) / / t he f i r st obj ect i n synl i st
 / / i s an ExpSyn wi t h e = 0, t her ef or e an exci t at or y synapse
 nc = pc. gi d_connect (i , syn)
 ncl i st . append(nc)
 nc. del ay = 1
 nc. wei ght = 0. 01
 }
}

mkr i ng(NCELL) / / go ahead and cr eat e t he net !

/
/ / I nst r ument at i on, i . e. st i mul at i on and r ecor di ng
/

/ / st i m wi l l be an ar t i f i ci al spi ki ng cel l t hat gener at es a " spi ke" event
/ / t hat i s del i ver ed t o t he f i r st cel l i n t he net by ncst i m
/ / i n or der t o i ni t i at e net wor k spi ki ng.
/ / We won' t bot her i ncl udi ng t hi s " ext er nal st i mul us sour ce" or i t s Net Con
/ / i n t he net wor k' s l i st s of cel l s or Net Cons.
obj r ef st i m, ncst i m
pr oc mkst i m() {
 / / exi t i f t he f i r st cel l i n t he net does not exi st on t hi s host
 i f (! pc. gi d_exi st s(0)) { r et ur n }
 st i m = new Net St i m()
 st i m. number = 1
 st i m. st ar t = 0
 ncst i m = new Net Con(st i m, pc. gi d2cel l (0) . synl i st . obj ect (0))
 ncst i m. del ay = 0
 ncst i m. wei ght = 0. 01
}

mkst i m()

obj r ef t vec, i dvec / / wi l l be Vect or s t hat r ecor d al l spi ke t i mes (t vec)
 / / and t he cor r espondi ng i d number s of t he cel l s t hat spi ked (i dvec)
pr oc spi ker ecor d() { l ocal i l ocal obj nc, ni l
 t vec = new Vect or ()
 i dvec = new Vect or ()

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 35

Hines and Carnevale Translating NEURON network models to parallel hardware

 f or i =0, cel l s. count - 1 {
 nc = cel l s. obj ect (i) . connect 2t ar get (ni l)
 nc. r ecor d(t vec, i dvec, nc. sr cgi d)
 / / t he Vect or wi l l cont i nue t o r ecor d spi ke t i mes
 / / even af t er t he Net Con has been dest r oyed
 }
}

spi ker ecor d()

/
/ / Si mul at i on cont r ol
/

t st op = 100
{ pc. set _maxst ep(10) }
st di ni t ()
{ pc. psol ve(t st op) }

/
/ / Repor t si mul at i on r esul t s
/

pr oc spi keout () { l ocal i , r ank
 pc. bar r i er () / / wai t f or al l host s t o get t o t hi s poi nt
 i f (pc. i d==0) pr i nt f (" \ nt i me\ t cel l \ n") / / pr i nt header once
 f or r ank=0, pc. nhost - 1 { / / host 0 f i r st , t hen 1, 2, et c.
 i f (r ank==pc. i d) {
 f or i =0, t vec. si ze- 1 {
 pr i nt f (" %g\ t %d\ n" , t vec. x[i] , i dvec. x[i])
 }
 }
 pc. bar r i er () / / wai t f or al l host s t o get t o t hi s poi nt
 }
}

spi keout ()

{ pc. r unwor ker () }
{ pc. done() }
qui t ()

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 36

Hines and Carnevale Translating NEURON network models to parallel hardware

Listing 4. Serial implementation of the network with random connectivity.

{ l oad_f i l e(" nr ngui . hoc") } / / l oad t he GUI and st andar d r un l i br ar i es

/
/ / St ep 1: Def i ne t he cel l cl asses
/

{ l oad_f i l e(" cel l i d. hoc") }
{ l oad_f i l e(" r anst r eam. hoc") } / / t o gi ve each cel l i t s own sequence
gener at or

/
/ / St eps 2 and 3 ar e t o cr eat e t he cel l s and connect t he cel l s
/

NCELL = 20 / / t ot al number of cel l s i n t he r i ng net wor k
C_E = 3 / / # of exci t at or y connect i ons r ecei ved by each cel l
 / / 2 gi ves mor e sust ai ned act i vi t y!
connect _r andom_l ow_st ar t _ = 1 / / l ow seed f or mcel l _r an4_i ni t ()

obj r ef cel l s, ncl i st / / wi l l be Li st s t hat hol d al l net wor k cel l
 / / and Net Con i nst ances, r espect i vel y
obj r ef r anl i st / / f or RandomSt r eams, one per cel l

pr oc mknet () {
 mkcel l s($1) / / cr eat e t he cel l s
 connect cel l s() / / connect t hem t oget her
}

/ / cr eat es t he cel l s and appends t hem t o a Li st cal l ed cel l s
/ / ar gument i s t he number of cel l s t o be cr eat ed
pr oc mkcel l s() { l ocal i , j l ocal obj cel l
 cel l s = new Li st ()
 r anl i st = new Li st ()
 f or i =0, $1- 1 {
 cel l = new B_Bal l St i ck()
 f or j =0, cel l . synl i st . count - 1 cel l . synl i st . o(j) . ci d = i
 cel l s. append(cel l)
 r anl i st . append(new RandomSt r eam(i))
 }
}

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 37

Hines and Carnevale Translating NEURON network models to parallel hardware

/ / connect s t he cel l s
/ / appends t he Net Cons t o a Li st cal l ed ncl i st
/ / each t ar get wi l l r ecei ve exact l y C_E uni que non- sel f r andom connect i ons
pr oc connect cel l s() { l ocal i , nsyn, r l ocal obj sr c, syn, nc, r s, u
 / / i ni t i al i ze t he pseudor andom number gener at or
 mcel l _r an4_i ni t (connect _r andom_l ow_st ar t _)
 u = new Vect or (NCELL) / / f or sampl i ng wi t hout r epl acement
 ncl i st = new Li st ()
 f or i =0, cel l s. count - 1 {
 / / t ar get synapse i s synl i st . obj ect (0) on cel l s. obj ect (i)
 syn = cel l s. obj ect (i) . synl i st . obj ect (0)
 r s = r anl i st . obj ect (i) / / t he cor r espondi ng RandomSt r eam
 r s. st ar t ()
 r s. r . di scuni f (0, NCELL- 1) / / r et ur n i nt eger i n r ange 0. . NCELL- 1
 u. f i l l (0) / / u. x[i] ==1 means spi ke sour ce i has al r eady been chosen
 nsyn = 0
 whi l e (nsyn < C_E) {
 r = r s. r epi ck()
 / / no sel f - connect i on, & onl y one connect i on f r om any sour ce
 i f (r ! = i) i f (u. x[r] == 0) {
 / / set up connect i on f r om sour ce t o t ar get
 sr c = cel l s. obj ect (r)
 nc = sr c. connect 2t ar get (syn)
 ncl i st . append(nc)
 nc. del ay = 1
 nc. wei ght = 0. 01
 u. x[r] = 1
 nsyn += 1
 }
 }
 }
}

mknet (NCELL) / / go ahead and cr eat e t he net !

/
/ / Repor t net ar chi t ect ur e
/

pr oc t r acenet () { l ocal i l ocal obj sr c, t gt
 pr i nt f (" sour ce\ t t ar get \ t synapse\ n")
 f or i = 0, ncl i st . count - 1 {
 sr c = ncl i st . o(i) . pr ecel l
 t gt = ncl i st . o(i) . syn
 pr i nt f (" %d\ t %d\ t %d\ n" , sr c. synl i st . o(0) . ci d, t gt . ci d, t gt . si d)
 }
}

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 38

Hines and Carnevale Translating NEURON network models to parallel hardware

t r acenet ()

/
/ / I nst r ument at i on, i . e. st i mul at i on and r ecor di ng
/

/ / st i m wi l l be an ar t i f i ci al spi ki ng cel l t hat gener at es a " spi ke" event
/ / t hat i s del i ver ed t o t he f i r st cel l i n t he net by ncst i m
/ / i n or der t o i ni t i at e net wor k spi ki ng.
/ / We won' t bot her i ncl udi ng t hi s " ext er nal st i mul us sour ce" or i t s Net Con
/ / i n t he net wor k' s l i st s of cel l s or Net Cons.
obj r ef st i m, ncst i m
pr oc mkst i m() {
 st i m = new Net St i m()
 st i m. number = 1
 st i m. st ar t = 0
 ncst i m = new Net Con(st i m, cel l s. obj ect (0) . synl i st . obj ect (0))
 ncst i m. del ay = 0
 ncst i m. wei ght = 0. 01
}

mkst i m()

obj r ef t vec, i dvec / / wi l l be Vect or s t hat r ecor d al l spi ke t i mes (t vec)
 / / and t he cor r espondi ng i d number s of t he cel l s t hat spi ked (i dvec)
pr oc spi ker ecor d() { l ocal i l ocal obj nc, ni l
 t vec = new Vect or ()
 i dvec = new Vect or ()
/ / t he next l i ne causes pr obl ems i f t her e ar e mor e Net Cons t han cel l s
/ / f or i =0, ncl i st . count - 1 {
 f or i =0, cel l s. count - 1 {
 nc = cel l s. obj ect (i) . connect 2t ar get (ni l)
 nc. r ecor d(t vec, i dvec, i)
 / / t he Vect or wi l l cont i nue t o r ecor d spi ke t i mes
 / / even af t er t he Net Con has been dest r oyed
 }
}

spi ker ecor d()

/
/ / Si mul at i on cont r ol
/

t st op = 100
r un()

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 39

Hines and Carnevale Translating NEURON network models to parallel hardware

/
/ / Repor t si mul at i on r esul t s
/

pr oc spi keout () { l ocal i
 pr i nt f (" \ nt i me\ t cel l \ n")
 f or i =0, t vec. si ze- 1 {
 pr i nt f (" %g\ t %d\ n" , t vec. x[i] , i dvec. x[i])
 }
}

spi keout ()

qui t ()

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 40

Hines and Carnevale Translating NEURON network models to parallel hardware

Listing 5. Parallel implementation of the network with random connnectivity.

{ l oad_f i l e(" nr ngui . hoc") } / / l oad t he GUI and st andar d r un l i br ar i es

obj r ef pc
pc = new Par al l el Cont ext ()

/
/ / St ep 1: Def i ne t he cel l cl asses
/

{ l oad_f i l e(" cel l i d. hoc") }
l oad_f i l e(" r anst r eam. hoc") / / t o gi ve each cel l i t s own sequence gener at or

/
/ / St eps 2 and 3 ar e t o cr eat e t he cel l s and connect t he cel l s
/

NCELL = 20 / / t ot al number of cel l s i n t he r i ng net wor k
 / / i dent i cal t o t ot al number of cel l s on al l machi nes
C_E = 3 / / # of exci t at or y connect i ons r ecei ved by each cel l
 / / 2 gi ves mor e sust ai ned act i vi t y!
connect _r andom_l ow_st ar t _ = 1 / / l ow seed f or mcel l _r an4_i ni t ()

obj r ef cel l s, ncl i st / / cel l s wi l l be a Li st t hat hol ds
 / / al l i nst ances of net wor k cel l s t hat exi st on t hi s host
 / / ncl i st wi l l hol d al l Net Con i nst ances t hat exi st on t hi s host
 / / and connect net wor k spi ke sour ces t o t ar get s on t hi s host (ncl i st)
obj r ef r anl i st / / f or RandomSt r eams on t hi s host

pr oc mknet () {
 mkcel l s($1) / / cr eat e t he cel l s
 connect cel l s() / / connect t hem t oget her
}

obj r ef gi dvec / / t o associ at e gi d and posi t i on i n cel l s Li st
 / / usef ul f or set t i ng up connect i ons and r epor t i ng connect i vi t y

/ / cr eat es t he cel l s and appends t hem t o a Li st cal l ed cel l s
/ / ar gument i s t he number of cel l s t o be cr eat ed
pr oc mkcel l s() { l ocal i l ocal obj cel l , nc, ni l
 cel l s = new Li st ()
 r anl i st = new Li st ()
 gi dvec = new Vect or ()

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 41

Hines and Carnevale Translating NEURON network models to parallel hardware

 / / each host get s ever y nhost ' t h cel l ,
 / / st ar t i ng f r om t he i d of t he host
 / / and cont i nui ng unt i l no mor e cel l s ar e l ef t
 f or (i =pc. i d; i < $1; i += pc. nhost) {
 cel l = new B_Bal l St i ck()
 f or j =0, cel l . synl i st . count - 1 cel l . synl i st . o(j) . ci d = i
 cel l s. append(cel l)
 pc. set _gi d2node(i , pc. i d) / / associ at e gi d i wi t h t hi s host
 nc = cel l . connect 2t ar get (ni l) / / at t ach spi ke det ect or t o cel l
 pc. cel l (i , nc) / / associ at e gi d i wi t h spi ke det ect or
 r anl i st . append(new RandomSt r eam(i)) / / r anl i st . o(i) cor r esponds t o
 / / cel l associ at ed wi t h gi d i
 gi dvec. append(i)
 }
 r epor t _gi dvecs()
}

/ / r epor t s di st r i but i on of cel l s acr oss host s
pr oc r epor t _gi dvecs() { l ocal i , r ank
 pc. bar r i er () / / wai t f or al l host s t o get t o t hi s poi nt
 i f (pc. i d==0) pr i nt f (" \ ngi dvecs on t he var i ous host s\ n")
 f or r ank=0, pc. nhost - 1 { / / host 0 f i r st , t hen 1, 2, et c.
 i f (r ank==pc. i d) {
 pr i nt " host " , pc. i d
 gi dvec. pr i nt f ()
 }
 pc. bar r i er () / / wai t f or al l host s t o get t o t hi s poi nt
 }
}

/ / connect s t he cel l s
/ / appends t he Net Cons t o a Li st cal l ed ncl i st
pr oc connect cel l s() { l ocal i , nsyn, r l ocal obj syn, nc, r s, u
 / / i ni t i al i ze t he pseudor andom number gener at or
 mcel l _r an4_i ni t (connect _r andom_l ow_st ar t _)
 u = new Vect or (NCELL) / / f or sampl i ng wi t hout r epl acement
 ncl i st = new Li st ()
 f or i =0, cel l s. count - 1 {
 / / t ar get synapse i s synl i st . obj ect (0) on cel l s. obj ect (i)
 syn = cel l s. obj ect (i) . synl i st . obj ect (0)
 r s = r anl i st . obj ect (i) / / t he RandomSt r eam t hat cor r esponds t o
 / / cel l s. obj ect (i)
 r s. st ar t ()
 r s. r . di scuni f (0, NCELL- 1) / / r et ur n i nt eger i n r ange 0. . NCELL- 1
 u. f i l l (0) / / u. x[i] ==1 means spi ke sour ce i has al r eady been chosen
 nsyn = 0

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 42

Hines and Carnevale Translating NEURON network models to parallel hardware

 whi l e (nsyn < C_E) {
 r = r s. r epi ck()
 / / no sel f - connect i on, & onl y one connect i on f r om any sour ce
 i f (r ! = gi dvec. x[i]) i f (u. x[r] == 0) {
 / / set up connect i on f r om sour ce t o t ar get
 nc = pc. gi d_connect (r , syn)
 ncl i st . append(nc)
 nc. del ay = 1
 nc. wei ght = 0. 01
 u. x[r] = 1
 nsyn += 1
 }
 }
 }
}

mknet (NCELL) / / go ahead and cr eat e t he net !

/
/ / Repor t net ar chi t ect ur e
/

pr oc t r acenet () { l ocal i , sr ci d l ocal obj sr c, t gt , ni l
 pc. bar r i er () / / wai t f or al l host s t o get t o t hi s poi nt
 i f (pc. i d==0) pr i nt f (" sour ce\ t t ar get \ t synapse\ n") / / pr i nt header once
 f or r ank=0, pc. nhost - 1 { / / host 0 f i r st , t hen 1, 2, et c.
 i f (r ank==pc. i d) {
 f or i = 0, ncl i st . count - 1 {
 sr ci d = ncl i st . o(i) . sr cgi d()
 t gt = ncl i st . o(i) . syn
 pr i nt f (" %d\ t %d\ t %d\ n" , sr ci d, t gt . ci d, t gt . si d)
 }
 }
 pc. bar r i er () / / wai t f or al l host s t o get t o t hi s poi nt
 }
}

t r acenet ()

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 43

Hines and Carnevale Translating NEURON network models to parallel hardware

/
/ / I nst r ument at i on, i . e. st i mul at i on and r ecor di ng
/

/ / st i m wi l l be an ar t i f i ci al spi ki ng cel l t hat gener at es a " spi ke" event
/ / t hat i s del i ver ed t o t he f i r st cel l i n t he net by ncst i m
/ / i n or der t o i ni t i at e net wor k spi ki ng.
/ / We won' t bot her i ncl udi ng t hi s " ext er nal st i mul us sour ce" or i t s Net Con
/ / i n t he net wor k' s l i st s of cel l s or Net Cons.
obj r ef st i m, ncst i m
pr oc mkst i m() {
 / / exi t i f t he f i r st cel l i n t he net does not exi st on t hi s host
 i f (! pc. gi d_exi st s(0)) { r et ur n }
 st i m = new Net St i m()
 st i m. number = 1
 st i m. st ar t = 0
 ncst i m = new Net Con(st i m, pc. gi d2cel l (0) . synl i st . obj ect (0))
 ncst i m. del ay = 0
 ncst i m. wei ght = 0. 01
}

mkst i m()

obj r ef t vec, i dvec / / wi l l be Vect or s t hat r ecor d al l spi ke t i mes (t vec)
 / / and t he cor r espondi ng i d number s of t he cel l s t hat spi ked (i dvec)
pr oc spi ker ecor d() { l ocal i l ocal obj nc, ni l
 t vec = new Vect or ()
 i dvec = new Vect or ()
 f or i =0, cel l s. count - 1 {
 nc = cel l s. obj ect (i) . connect 2t ar get (ni l)
 nc. r ecor d(t vec, i dvec, nc. sr cgi d)
 / / t he Vect or wi l l cont i nue t o r ecor d spi ke t i mes
 / / even af t er t he Net Con has been dest r oyed
 }
}

spi ker ecor d()

/
/ / Si mul at i on cont r ol
/

t st op = 100
{ pc. set _maxst ep(10) }
st di ni t ()
{ pc. psol ve(t st op) }

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 44

Hines and Carnevale Translating NEURON network models to parallel hardware

/
/ / Repor t si mul at i on r esul t s
/

pr oc spi keout () { l ocal i , r ank
 pc. bar r i er () / / wai t f or al l host s t o get t o t hi s poi nt
 i f (pc. i d==0) pr i nt f (" \ nt i me\ t cel l \ n") / / pr i nt header once
 f or r ank=0, pc. nhost - 1 { / / host 0 f i r st , t hen 1, 2, et c.
 i f (r ank==pc. i d) {
 f or i =0, t vec. si ze- 1 {
 pr i nt f (" %g\ t %d\ n" , t vec. x[i] , i dvec. x[i])
 }
 }
 pc. bar r i er () / / wai t f or al l host s t o get t o t hi s poi nt
 }
}

spi keout ()

{ pc. r unwor ker () }
{ pc. done() }
qui t ()

Copyright © 2007 M.L. Hines and N.T. Carnevale, All Rights Reserved. Page 45

