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Using the NEURON Simulation Environment November 2005

Appendices start after p. 120.
These are drafts of selected chapters of the NEURON book, as submitted to the publisher in late 2004,
as such, they do not include revisions that were made during subsequent proofreading of the book.

Chapter 6: How to build and use models of individual cells. 30 pages
Chapter 8: How to initialize simulations 28 pages
Chapter 10: Synaptic transmission and artificial spiking cells 41 pages
Chapter 11: Modeling networks 36 pages
Survey last page

We value your opinions and suggestions for improving this course. Please take a moment to fill out and
hand in the survey.
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The What and the Why
of Neural Modeling

The moment-to-moment processing of information
in the nervous system involves the propagation
and interaction of electrical and chemical signals
that are distributed in space and time.

Empirically-based modeling is needed to test
hypotheses about the mechanisms that govern
these signals and how nervous system function
emerges from the operation of these mechanisms.

Topics

1. How to create and use models of neurons
and networks of neurons

* How to specify anatomical and biophysical
properties

* How to control, display, and analyze models
and simulation results

2. How NEURON works

3. How to add user-defined biophysical
mechanisms
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From Physical System
to Computational Model

Physical Conceptual Computational
System Model Model

Conceptual model
a simplified representation of the physical system

Computational model
an accurate representation of the conceptual model

From Physical System
to Computational Model

Physical Conceptual Computational
system model model

dendrite
create somm, dendrite
Q soma connect dendrite(0), soma(l)
Cal ball hoc
pyramidal and code

cell stick
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Hierarchies of Complexity
Structure

Single compartment ()

Stylized >i>—<

Anatomically detailed

Network %

Hierarchies of Complexity
Mechanism

Passive and Active currents
HH-style
kinetic scheme

Synaptic transmission
continuous
spike-triggered

Gap junctions

Extracellular fields, Linear circuits
Diffusion, buffers, transport & exchange
Artificial spiking cells ("integrate & fire")
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Fundamental Concepts in NEURON

Driving What is
Signals Flux force conserved
Electrical current voltage charge
gradient
Chemical solute  concentration mass
gradient

Conservation of Charge
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The Model Equations

dvj v, — vJ.
c—+i. =
V. membrane potential in compartment |

i net transmembrane ionic current in compartment |

c, membrane capacitance of compartment |
ik axial resistance between the centers of
compartment j
and

adjacent compartment k

Separating Anatomy and Biophysics
from Purely Numerical Issues

section
a continuous length of unbranched cable

Anatomical data from A.l. Gulyas

Copyright © 1998-2005 N.T. Carnevale and M.L. Hines, all rights reserved
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Range Variables

Name Meaning Units

di am diameter [Mm]

cm specific membrane [uf/cm?]
capacitance

g_pas specific conductance [siemens/cm?]
of the pas mechanism

% membrane potential [MmV]

range

normalized position along the length of a section
O<range <1
any variable name can be used for range, e.g. X

physical
distance physical
0 v length
]
normalized
distance
0 \]/ 1
]
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Syntax:
sect i onnane. r angevar ( r ange)
returns or sets the value of rangevar
at the location corresponding to range

Examples:
dend. v(0.5)
returns membrane potential at the middle of dend
Shortcut: dend. v
dend for (x) print x*L, v(Xx)
prints physical distance and v
at each point in dend where v was calculated

nseg
the number of points in a section section where
membrane current and potential are computed

nseg=1 e ° [
nseg=2 ¢ (] | (] ®
nseg=3 ¢ ___e® I 0 I ° o

Example: axon nseg = 3

To test spatial resolution
forall nseg = nseg*3
and repeat the simulation
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Category Variable
Time t
Voltage Y,
Current i
Concentration  nai etc.
Specific cm
capacitance
Length diam L
Conductance g
Cytoplasmic Ra
resistivity
Resistance ri

Units

Units

[ms]

[mV]

[mA/cm?] (distributed)
[NA] (point process)
[mM]

[uf/cm?] (distributed)
[US] (point process)
[um]

[S/cm?] (distributed)
[US] (point process)
[Q cm]

[106 Q]
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Construction and Use of Models

1. Specify the model ("virtual organism").
2. Specify the user interface ("virtual lab rig").

3. Tests
* structural integrity
e spatial grid
* time steps

Example: using the GUI to build
and exercise a stylized model

1. How to use the CellBuilder to create and
manage a model cell.

2. How to use NEURON's graphical tools
to make an interface for running
simulations.
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Step 1: using the CellBuilder
to make a stylized model

ap[1]
ap
ap[2]

Section L diam Biophysics

soma 20 pm 20 pm hh

ap[0] 400 2 reduced hh *

ap[1] 300 1 reduced hh *

ap[2] 500 1 reduced hh *

bas 200 3 pas §

axon 800 1 hh

* - gnabar_hh and gkbar_hh reduced to 10%, el_hh = - 64 mV
§-e_pas=-65mV
Throughout the cell Ra = 160 Q cm, cm = 1 pf / cm?

November 2005

UNIX/Linux

Launch NEURON with its
library of graphical tools

nr ngui

3% 4 B

MSWin or OS X %
nrngui
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Bring up a CellBuilder

i e Jl=Ip

Izonify

File  Edit Buildl Tools  Graph  Vector Windowl

single compartment
[cell Builder |
Metiwiork Cell Mg
HetWor k Builder
Linear Circuit

Channel Builder

NEURON Main Menu / Build / Cell Builder

The CellBuilder

CellBuild[0]
Close

4 About ~ Topology ., I W 8 ¥ - Biophysi W M D Conti Create
Topology refers to section hames, ions, and 2d ori

without regard to section length or diameter.
Short sections are represented in that tool as circles, longer ones as lines.
Subsets allows one to define named section subsets as functional
groups for the purpose of specifying membrane properties.
Geometry refers to specification of L and diam {microns), and nseg
for each section (or subset) in the topology of the cell.
Biophysics is used te insert membrane density mechanisms and specify their parameters.
Management specifies how to actually bring the cell into existence for simulatien.
The defaultis to first build the entire cell and expeort it to the top level
Or else specify it as a cell type for use in networks,
It alse allows you to import the existing top level cell inte this builder
for medification.
If "Continuous Create" is checked, the spec is continuously instantiated
at the top level as it is changed.

Use buttons from left to right.
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Close

Topology

Hide

o (=[]

e About ‘Topology s Subsets .- Geometry -, Biophysics - Managemert D Continuous Creste

Click and drag to
4 Make Section
a Copy Subtree
w Reconnect Subtree
W Reposition

wr Move Label
Click to

e Imsert Section
w Delete Section
= Delete Subtree
~ Change Name

Easename: Ndand

CB starts with a "soma" section.
We want to create new sections.

November 2005

Specifying the "Basename"

Basename: adend

IVYOC

Section name prefix:

|dend Iy

Accept ¢

Cancel

IVYOC

Section name prefix:

fap

Cancel

Acceptg‘J
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Making a new section

Place cursor near end O
of existing section &

Click to start new section  skp——,

Drag to desired length ~ &——,

Release mouse button  spr——,

Save your work as you make progress!

= neuron o] x|

Wi mdow

NEURON Main Menu / File / save session

Copyright © 1998-2005 N.T. Carnevale and M.L. Hines, all rights reserved Page 17
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Subsets
=k

Close Hide

s Pbout .- Topology # Subsets e« Geometry «, Biophysics - Management Ij Cortinuous Create
=l Al First, select,

ws Select One
w Select Subtree
w Select Basename

then, act.

Newr SectionList
Selection-=SecList

soma :
apl2] Delete Seclist

=p[1]

=HOn

Change Marme

Mowe up
ﬂ fanve davem
Hirts I Parameterized Domain Pagel

"all" includes all sections.
We want to make an "apicals" subset.

Making a new subset

~ Select One

" Select Basename

Click "Select Subtree" ‘ Select Subtree

Click root of apical tree . . .

.. .then "New SectionList" H NewSec:I{ionList

hy 1

Copyright © 1998-2005 N.T. Carnevale and M.L. Hines, all rights reserved



November 2005 Using the NEURON Simulation Environment

Making a new subset continued

IvVOC
New SectionList name

Jan N

Accept ¢ Cancel

IvoC

New SectionList name

|apicals

Accept ¢ Cancel

Subsets finished
=

Close Hide
ws Pbout - Topology # Subsets = Geometry ., Biophysics «, Managemernt Ij Cortinuous Create
all Al First, select,

ical
o

ws Select One
w Select Subtres
w Select Basename

then, act.

Mewr Sectionlist

Selection-=SecList

Delete Seclist

1
baz =p ap[1]
0N e apl2]

Change Name

Mowe up

hd fowe dawn

Hirt= I Parameterized Domain Page I

Note "apicals".
Time to save a new session file.
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Close

Geometry

=10l x|

Hide

s Pbout .- Topology - Subsets > Geometry «- Biophysics - Managemernt Ij Cortinuous Create

=p[1]
bas =p
soma
axan =p[2]

|E‘Specify Strategy

all Y
apicals
sama
ap
ap(1]
ap[2]
bas
R

Ad|
Hirts

—_—

Distinct walues over subset
L
diam

Constant walue over subset

L
diam
ares
circuit

Spatizl Grid

nseg
d_lambda
d_X

"Specify Strategy" is ON.
Make an efficient plan.

November 2005

Geometry strategy

Clase

=10l x]

Hide

~s Pbout .- Topology - Subsets L 3 Geometry «, Biophysics s+ Managerment Ij Cortinuous Create

=p[1]

soma
=Hon

=p[]

| Specify Strategy

all: L, dizm, d_lambda A
apicals
Foma
ap
ap[1]

ap[2]
bas
ER]

Hirt= I

Distinet walues over subset
L
diam

Constant value over subset

L
diam
ares
circuit

Spatial Grid

nseg
d_lambda
d_X

v -

Each section has a different L and diam.

Use d_lambda rule to automatically adjust nseg.
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Implementing geometry strategy

=10l x]

i CellBuild[0]

s Pbout .- Topology - Subsets > Geometry «, Biophysics - Management Cortinuous Create

"2 = di *P 4R
B N =N e I_ Hlambda_w(f 12 = diamA4*FI¥*Ra*cm)

M nzeg = ~Li{d_|lambda*ambda_w(1007])
Hfraction of space constant =t 100Hz

1
I ][00
axan == =p[2] I I- I.100

=p[1]
bas =p

When strategy is complete, turn "Specify Strategy” OFF
and start assigning values to parameters.

0.1 at 100 Hz is generally OK for d_lambda.

Implementing geometry continued

s Pbout .- Topology - Subsets L 3 Geometry «, Biophysics s+ Managerment Cortinuous Create

F
o
Set L and diam for all sections.
Time to save to a session file!

r Specify Strategy

# all: L, diam, d_lambda

Copyright © 1998-2005 N.T. Carnevale and M.L. Hines, all rights reserved
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Biophysics

Llose Hide

=10 |

w Pbowt .- Topology -, Subsets .- Geometry - Biophysics -, Management Ij Cortinuous Craste

|WSpeclry Strategy

=il A Ra
apicals (=111}
s0ma pas
=F
apM] extracellular
=p[2] hh
bas
baz - =p[1] awon
=amm
=xon =p[2
hd
Hirit=

torsec all { Fspecity

"Specify Strategy” is ON.
Make another efficient plan.

November 2005

Biophysics strategy

Ra and cm are homogeneous

apicals, soma and axon have hh

bas has pas

|E8pecify Strategy

forsec all { fspecify

all:  manage ...
apicals
soma
ap
=p[1]
=p[2]
bas
ERLL

Ra

cm

pas
extracellular
hh

|E8pecify Strategy

all:  manage ...
apicals:  manac
soma:  manage
ap
=p[1]
=pl2]
bas
IHON:  MINIJE

axon { Mspecify
Ra
cm
pas

extracellular

hh

|E8pecify Strategy

apicals:  manac
soma:  manage

ap
ap[1]

£l
bas: manage .

all:  manage ... &

bas [ fzpecify

Ra
cm
pas

extracellular

IHON:  MEn3ge

hh

Copyright © 1998-2005 N.T. Carnevale and M.L. Hines, all rights reserved
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Implementing biophysics strategy

Double Ra

Fix apicals hh params

Shift e_pas in bas

D Specify Strategy

forsec all { & specify R=a

A

Ra[ohm-cm]l i S0*2

forsec apicals { insert hh

A

gnabar_hh [Shcmz) .01z
gkbar_hh [Sicmz] 0.0036
gl_hh [SiamZ) | 0.0003 ;]

el_hh [m¥) i’ |54 E

|D Specify Strategy

baz [insert pas

all

o
apicals
x  hh
soma
hh
bas

¥ pas
a

Faly]
kh

A

T

a_pa= (siemz) | L [o:007 ;]

Save another session file!!

Copyright © 1998-2005 N.T. Carnevale and M.L. Hines, all rights reserved
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Management

Option 1: save as a Cell Type
for use in a network

4 Management D Continuous Create

{XCeII Type ., Export .. Import ‘ Lints |

This is necessary only if the cell is used in a network

This creates a file that declares a cell type
with the current specification
Such a cell ¢lass is usable in networks and

can be employed by the network builder teol.

Classname

Cell

+ Select Qutput
soma.v(1)

Save hoc code in file

Management continued

Option 2: save as hoc file

4 Management D Centinueus Create

+ Cell Type & Export .. Import ‘ g |

Exportto file {or top level with "Continuous')
i.e. does not encapsulate the cell in an object.
Kind of infoermatien exported
Topolegy (Destroys all existing top level sections)
Subsets
Geometry
Membrane

Export to file

Copyright © 1998-2005 N.T. Carnevale and M.L. Hines, all rights reserved
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Management continued

Option 3: export to interpreter

Toggle Continuous Create ON and OFF

&Continuous Create

@Continuous Create

&Continuous Create

or just leave it ON all the time.

Copyright © 1998-2005 N.T. Carnevale and M.L. Hines, all rights reserved Page 25
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Step 2: creating and using an interface
for running simulations

bas ap(1]

ap

soma
axon ap([2]

We want to
 attach a stimulating electrode
* evoke an action potential
* show time course of Vm at soma
* show Vm along a path from one end of the cell
to the other
We need
* a "Run” button
» graphs to plot results
* a stimulator

Get a "Run" button

il NEURON ™ =10] x|

Izonify

File Edit Build ToolslGraph “ector \Mndowl

|Runl30ntr0| b

RunBEutton l‘\i‘

“ariable StepContral
Point Processes
Distributed Mechanisms
Fitting

Impedance

bodel Wigwr

Mowie Run

Mizcellaneous

NEURON Main Menu / Tools / RunControl

Page 26 Copyright © 1998-2005 N.T. Carnevale and M.L. Hines, all rights reserved
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RunControl panel _Iojx]

Init sets time to 0,

Vm to displayed value, and \ -10] x|

conductances to steady-state

Init & Run does an Init,
then starts a simulation

Stop interrupts the simulation —_—

Copyright © 1998-2005 N.T. Carnevale and M.L. Hines, all rights reserved Page 27
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1=

Continue til runs until displayed time
Continue for runs for displayed
interval

Single step advances by
1/(Points plotted/ms)

——

_loix

t numeric field shows model time/

Tstop specifies when simulation ends/

Page 28 Copyright © 1998-2005 N.T. Carnevale and M.L. Hines, all rights reserved
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il RunControl o [m] 1
Closa Hida

Imit [ ) Al | 65 ;l
Init & Run |

Stop

Continue til [rms] 44

Iﬁ ;I
Continue for [ms]d"lj |'1 ;I
. Single Step |
Single step advances by / \ .
1/(Points plotted/ms) M
T=top [m=] |5 ;]
dt (=] ||:|.025 ;I
Faoint=s plottedims lj IAD ;I
dt is integration time step; ern paate imat ()| ] W
must be integer fraction of '
1/(Points plotted/ms) R

Points plotted/ms is plotting interval

We need to plot Vm(t) at soma

_ioix

lzanify

|Fi|e Edit Build Tools Graehl\.-’ector \Mndowl

“oltage axis

Current sxis
State axis
Shape plot
Wector movie

FPh=ase Flanse

Grapher

NEURON Main Menu / Graph / Voltage axis
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Graph window

I Graph x -0.5:5.5 ¥ -92:52 10| x|
[cose  Hee |

40 —

wI5)

40—

80 —

v(.5) is Vm at middle of default section
(soma in this example)

We need to plot Vm along a path

[ NEUR.ON Mai

=10 %]

lzanify

|Fi|e Edit Build Tools Graehl\.-’ector \Mndowl

Waoltage axis
Current sxis
State axis

Shape plot
Wector oo

FPh=ase Flanse

Grapher

NEURON Main Menu / Graph / Shape plot
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Bringing up a space plot

[l Shape »-824.931: 10| x|
[cose  Hde |

P

Use this "shape plot" to create a "space plot".
Click on its "menu box" . . .

Bringing up a space plot continued

i x|
= shove

Miews . == 2 I

FAuxis Type
Move Text
Change Text
Delete

# section

20 Rotate
Redraw Shape /—Q
Shape Stye

Flot What?
Variable scale
Time Plot
Space Plot
Shape Plaot

. .. and scroll down to "Space Plot".

Copyright © 1998-2005 N.T. Carnevale and M.L. Hines, all rights reserved Page 31
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Bringing up a space plot continued

Click just left of the shape
Hold button down while dragging
from left . . .

...toright. ..

... then release button.

399!

Thispopsupa...

Space plot

[ Graph x-972:1092 ¥ -92:52 _|EI|1|
EEETe

40 —

-300 =300 300 00

-40 [~

-80 —

A plot of Vm vs. distance along a path.
Better save a session file.
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We need a stimulator
1o/

Izonify

|Fi|e Edit Build TnnlslGraph “ector \Mndowl

RunControl
RunButton
“ariableStepCaontrol

Point Processes Manzgers

|P0int banag
Point Group kW

Fitting Electrode
Irmpedance

todel Migws
Moie Run

Distributed Mechanizms | yviawers

Miscellaneous

NEURON Main Menu / Tools / Point Processes
/ Managers / Point Manager

PointProcessManager window

[ PointProcessManag 10l =|

Close Hide
SelectPointProcess I

Showr I

None

at: soma(0.5)

<

To make this an IClamp . . .
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Creating an IClamp

Il PointPro

=1k

Cloze

nome

Hide

SelectPoirt Process

ExpSyn
Exp2Syn
SEClamp
WClamp
OClamp
AP Count
NetStim
IntFire1
IntFiraZz
IntFired

1C1=rmny
Alphas; pse

PointProcessMark

—

... click on SelectPointProcess
and scroll down to IClamp.

IClamp parameter panel

[ PointProcessManag - | Ellll
Close Hide
SelectPoint Process | I
Shows I
IClarmp[0]
at: somaf0.5)
IClamp[0]
del (=) ID g
dur [m=] ID 3
amp [nA] ID g
T [

Next: set parameter values.
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Entering values into numeric fields

Direct entry

delms) || m

Note yellow highlight on button

Spinner

dur {ms) 2'1_@

Red check means value has been
changed from default

Mathematical expression

amp {nA) :||0+.6 L} :|

Our user interface

i Graph % -972:1092
Close Hide:

[l

iinAl [ 80—

Time to save to a new session file!

Copyright © 1998-2005 N.T. Carnevale and M.L. Hines, all rights reserved
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How to get nice space plot "movies"
1o x

NEURON Main Menu / Tools / Movie Run
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Space plot "movies" continued

_iojx
Close Hide

Init & Run [: |
o'l
Seconds per step [S]I I II:I.I:I1 ;I

Movie Run / Init & Run
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What if hh is nonuniform
over the apicals?

1
bas ap[1]

ap

soma
axon ap[2]

Suppose gnhabar_hh, gkbar_hh, and el _hh
all derease linearly with distance
from the origin of the apical tree?
Details:
1. All have full density at origin of apical tree.
2. Density falls to 0% at most the most distant termination.
3. For uniform -65 mV resting potential, e_pas = -54.3 mV.

1

'
)—TQ
This example:

gnabar_hh =0.12 * (1 - p) where p = Lg;/Lax
(normalized path distance from origin of apical tree)

The general task: param = f(p), where p is one of the following:

» path length from a reference point
* radial distance from a reference point
« distance from a plane ("3D projection onto a line")

An equivalent hoc idiom:
forsec subset for (x,0) { rangevar_suffix(x) = f(p(x)) }

Copyright © 1998-2005 N.T. Carnevale and M.L. Hines, all rights reserved
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Setting up a SubsetDomainlterator

= CellBuild[0] i [=] S|

e Abowt .- Topology 4 Subzets w~ Geametry -, Biophysics - Managemert I?Continuous Create

Select a subset, then click on
"Parameterized Domain Page"

SubsetDomainlterator continued

~ Manzgement I?Continuous Create

Click on "Create a SubsetDomainlterator"

Copyright © 1998-2005 N.T. Carnevale and M.L. Hines, all rights reserved Page 39
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SubsetDomainlterator continued

w Manzgerment |?Continuous Create

Note "apicals_x" in middle panel.
Clickonit. ..

SubsetDomainlterator continued

=10l x|

v # Subsets ~ Geometry -, Biophysics -+ Managemert I?Continuous Create

Parameterized Domain Specification

Path Length from root

with no translation
and no normalization

ranges from 20to 920

: =]
Shows domain walue

[ree eosnel wea ]

[eemeee |

p=470

. . to see controls for specifying the distance metric.
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SubsetDomainlterator continued

w Manzgerment I?Continuous Create

l Parameterized Domain Specification

Path Length from root

apicals_x

with no translation
and no nor malization

ranges from 20 to 920

Show domain walue

"metric" offers the three basic choices

SubsetDomainlterator continued

~ Manzgement I?Continuous Create

Parameterized Domain Specification

Path Length from root

with no translation

and no nor zation
ranges from 20 to 920

Show domain walue

proximal / Most proximal at O
makes distance start at root of apical tree
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SubsetDomainlterator continued

=100

E1 # Subsets e Geametry - Biophysics -, Managemert WContinuous Crezte

arameterized Domain Specification

Path Length from root

translated =0 most proximal end =t 0
and no nor malization

nges from 0 to 300

: ra =]
Show domain walue

p=450

distal / Most distal at 1
finishes "normalization" of distance

Back to Biophysics Strategy

=

¥ = Subsets .- Geometry &+ Eiophysics + Manzagement I?Continuous Create

WSpecify Strategy

for apicals_x.loop( &=, &p) [ specify

=l
i

bas - =p[1]
Tean =p[2]

Click on apicals_x,
then select the parameters it will control.
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Biophysics Strategy continued

e -i0ix

w Manzgerment I?Continuous Create

ESpecify Strategy for apicals_x.loop[&x, &p) { i specify &

o

all:  manage ... F'y

apicals:  mana gnabar_hh
= 5 gkbar_hh

s0ma:  manage

=p al_hh

ap[1] I_hh

=p[2]
bas: manage ..
axon:  manage

K
Hirts I ¥

We want gnabar_hh, gkbar_hh, and gl_hh
to be inhomogeneous.

Implement the strategy
B Lo x|

Hide

¥ = Subsets .- Geometry &+ Eiophysics + Manzagement I?Continuous Create

|D Specify Strategy # pis Path Length from root
translated so most proximal end =t 0

all A
R= and normalized so most distal end =t 1
=]

=pical and ranges from Oto 1%
hh for apicals_x.loop(&x, 4p] L

Spicals_x
gribar_hh gnabar_hh(x] ={(p]

gkbar_hh 1
< al_hh =
soma | flp] show I
(aly]

bas fip) = A0+ Af1 + exp(k*(d - p]))
T | o
hh i " fﬂ—g
L[:;g ;I K |o g
Hirt= q Ljﬁ—g

Click on one of the inhomogeneous parameters.
Note that default f( ) is Boltzmann.
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Implement the strategy continued

=10l
w Manzgerment I?Continuous Create
D Specify Strategy # pis Path Length from root
all i translated =0 most proximal end =t 0
Ra and normalized so most distal end =t 1
aprcn;Is and ranges from Oto 1 *F
hh

gkbar_kh

for apicals_x.loop[&x, &p){

apicals_x
anabar_hh gnabar_hh(x)=f(p]

1
| _kh =
sc? ma | | showy I
bahsh Ecltzmann

pas

E ‘—k-

(1 + explkeid - pI)
Ram) I—

aiohn Expontstial Jj a

Hewy j ID

—

@[ [ o]

f(p) / Ramp

selects linear function

Hide

Implement the strategy continued

I _inix

¥ = Subsets .- Geometry &+ Eiophysics + Manzagement I?Continuous Create

|D Specify Strategy

# pis Path Length from root

all F Y

Spicals_x
gnabar_hh

translated so most proximal end =t 0

and normalized so most distal end =t 1

and ranges from Oto 1%

for apicals_x.loop( &, &p] L
gnabar_hh(x]=f(p]

gkbar_hh 1
gl_hh =
soma | flp] show I
(aly]
e fip)=b + m*pdp1 - p0]
pas
EEL] b 0.12 g
hh
N Cx—
fpED .06 ¥
p=0.5 -I

Hirt=s I

After setting intercept b and slope m for gnabar_hh
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Verify the implementation

=10l
w Manzgerment I?Continuous Create
D Specify Strategy # pis Path Length from root
all i translated =0 most proximal end =t 0
Ra and normalized so most distal end =t 1
cm
apicals and ranges from Oto 1 *F
hh for apicals_x.loopid:x, &p){
apicals_x
anabar_hh gnabar_hh(x)=f(p]
gkbar_kh 1
al_hh =
sama | hil=1] | shovwr I I
hh
bas #(p) o Sraph
pas Shove fip) on shape g
axon o g
hh
I N x|
b
Hirt= I

show / graph
show / Show f(p) on shape

Verify the implementation continued

I Graph x-0.1:1.1 ¥-0.012:0.13 10| =|
Close Hide I
0.1z
0.0z [—
0.04 —
a | | | | |
i 0z 04 05 0z 1

"show / graph" results:
X axis: normalized distance from origin of apicals
y axis: ghabar_hh
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Verify the implementation continued

1. show / Show f(p) on shape
2. Click next to shape and drag . . .

...fromleft. .. ...toright. ..
fip 0. 105447 fipF0.0204554
p=0.121278 p=0.823422

ap [0.272875] ap[2] (0.692359)

. . . while watching the values of p and f(p)

Save another session file!!
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A simulation with the revised model

—iDix]

Closa Hida
it (o) 44 I3 ;i
Init & Run
I Graph #-0.5:5.5 -1ol x|
=2 Close Hide |
Cortinue il (ms] 4 [= E

a0
Cortinue for (ms] 1 ;I v15)
Single Step R

- ) I I |

1 (ms)

I I
1 2 3 5
Tstop (ms) 5 E
) =z |
a0

Poirts plotted/ms 40

Sorn update invl (s) 005

Real Time (=) f 4.01 80
e

P [ JE3 | i Graph x -972: 10 I [ ]

¥
L | 1 |
ICIamp 0]

at: soma(0.5)

el (ms] 05 E
dur ms) I ] N
3mp (4] 06 E

IS C— -0
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The Channel Builder

Voltage- and ligand-gated channels

Kinetic schemes, HH-style differential equations
Optional stochastic gating mode for point processes
Faster than equivalent NMODL mechanisms

Much easier to use than writing NMODL code

Limited to channels

NMODL needed for pumps, buffers, diffusion, event-driven
synaptic mechanisms, artificial spiking cells

Tutorial: see Documentation at NEURON's home page
http://www.neuron.yale.edu/

Implementing the HH Iy,
with the Channel Builder

ina = INa (V- Eng) Where
Ong = gbary, meh
gbary, = 0.12 S/cm?

m and h are described by DEs of the form
dx/dt=a, (1 - x) - by X
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General strategy

1. Bring up a Channel Builder
2. Specify channel's basic properties

3. Specify channel gating
e states
e transitions (if a kinetic scheme)
o effects of voltage and ligands

1. Bring up a Channel Builder

i eUROY R [=[E]
lzanify
File  Edit BuiIdI Tools Graph “ector Windows I

single compart ment
Cell Bum:ler
Metwiork Cell
Metwork Builder
Line=r Circuit

Channel Builder Density

Paint
import KSChan

NEURON Main Menu / Build
/ Channel Builder / Density
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The Channel Builder

i ChannelBuild[0] naamnageme (=] 4|

We need to change its name,

leak Density Mechanism

|On, Mon Specific obmic ion current

default Conductance’ i_leak [mAfcm2] = g_leak * (v - e_leak)
e . . g = gmax

and equilibrium potential Detauit g = 0 (Siomz) =0 (m¥]

2. Specify channel's basic properties
= ool onve PUMEY

Click on Properties,
then select item to change
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Properties / Channel Name

Then change leak to myna

Name

T —
=] =

i NEURON |

Properties

| Selective for lon... / na

lon

[ ChannelBuild[0] managedaam (=] 3
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Default conductance
and equilibrium potential

Properties / Default gmax =10l x|

. Close Hide
SpeCIfy 012 Slcmz { Default gmax [Sfomz] 0.1z

Equilibrium potential:
na has its own ena,
so nothing to do!

3. Specify channel gating

_lojx

Clase Hide

| Froperties I

"Select here to construct gates”

rmyna Density Mechanism
na ohmic ion current

ina [mAfcm2) = g_myna * [v - ena)

g = gmax

Default gmax = 0.12 [Sizm2)

| Select here to construct gates % ﬂ

L«

Copyright © 1998-2005 N.T. Carnevale and M.L. Hines, all rights reserved Page 53



Using the NEURON Simulation Environment

Page 54

"GateGUI": States page

[ ChannelBuildGateGUI[0] for ChannelBuild[0] - IEllll
Clase Hide
4 States., Transitions., Properties no gate selected
Drag new state from left. Drag off canwvas to delete
[u}
C
~ Adjust D Run no KSTrans selected r
11—
0z r—
0E —
04—
0z
| | o | |
-a0 -40 10 [=01] hJ

November 2005

Spawn states

Click and drag O ("open")

from palette . . .

... to canvas.

Repeat for C ("closed")

i ChannelBuildGateGUI[0] fa

Clo=se

E 3 Statesv Transitionsv Frope

Orag newr state from |eft.

T
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Click O without dragging

Using the NEURON Simulation Environment

Rename states

Change tom

Change Cto h

Change state name

|m

| Accepti" | Cancel I

=10l x|

Close

"GateGUI": Properties page

[ ChannelBuildGateGUI[0] for ChannelBuild[0]

Hide

=0l x|

+s States., Transitions4 Properties

m

Select hh state or ks transition to change properties
[N

Selectm . ..

... to see all this

m'=am*1-m]-bm*m

[

Fractional Conductance

m fraction I I|1—E LI
D I

»]

/.I

+ Adjust D Run

N\
e

\ == (E, b [KETran=[1])

D Display inf, tau
arm
brn

1
am=A
0E [—
brn=A
0z — | EquationType |
| | b | |
u i)
-390 -40 10 B0
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Set m exponent

=10l |

mo3

m'=am*1- m]- bm*m

Change Powerto 3 | Fewer (ST 3

Specify voltage dependence
of am and bm

EﬂuationTEe | I
alpha beta
fam A
. km Atexplkiv - d]]
Choose functional form e Sep 0 Whera = i
for am A1+ expl-ki(d - vl 1
KSChanTable

am = A*1 - expl-x]] where = = k*[v - d]
ry

Allms) 1

Set parameter values V]

i

d [m¥]

Do same for bm
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Close

[ ChannelBuildGateGUI[0] for ChannelBuild[0]

Hide

Using the NEURON Simulation Environment

=10l x|

+s States,, Transitions4 Properties

ma3

m

Select hh state or ks transition to change properties

h

m properties

after configuring am and bm

m'==am*1 - m)-bm*m

v [T

Fractional Conductance

rn fraction lj |1 g

3

KT

[l >

m

Select hh state or ks transition to change properties

h

h properties

after configuring ah and bh

h' = ah#*(1 - h]- bh*h

Fractional Conductance

# Adjust D Fun me=mia,b]  [KETrans[]) A
— D Display inf, tau
RN am = ar = k¥
b am = At - axpl-x)) where x = k¥ v - d)
Affms=]) 1
TEI
k [ [o g
d [ |-40 g
57
brm = Arexplk*v - d])]
T Alims) 4 a
k [frm] -0.055555 g
19—
d [m¥] = g
| | | |
T - I
-80 -40 10 &0 Equati onType ¥
= ChannelBuildGateGUI[0] for ChannelBuild[ - | Ellll
Clase Hide
+s States, Transitions4 Properties h

R L™

thracﬁon I IIW
-

>]

# Adjust D Run

h == h[a, b] [KETran=[1])

I Display inf, tau

ah = Arexp(k*w - d]))

A firns) 0.07

k [ 0.05 g
d [m¥) |85 g

bh = A1 + expl-k*d - w]))

Afms) 1

K [fmv] |-0.1 g
d[mv] | .35 g

-80

EquationType I
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Testing

[l RunControl P[] 53|l il Graph Crosshair x-1: 11 y -92:52 ] P4

=101 x|

Itz mp ]

%4 mo3 th
Default gmas = 0.12 [3/3m2)

November 2005

Copyright © 1998-2005 N.T. Carnevale and M.L. Hines, all rights reserved



November 2005 Using the NEURON Simulation Environment

NMODL

NEURON Model Description Language

Add new membrane mechanismsto NEURON

Density mechanisms Point Processes

® Distributed Channels ® Electrodes
® |on accumulation ® Synapses
Described by

® Differentia equations
® Kinetic schemes
® Algebraic equations

Benefits

® Specification only -- independent of solution method.
® Efficient -- trandated into C.
® Compact
O One NMODL statement -> many C statements.
O Interface code automatically generated.
® Consistent ion current/concentration interactions.
® Consistent Units
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NMODL general block structure

What the model looks like from outside

NEURON {
SUFFI X kchan
USEI ON k READ ek WRITE i k
RANGE gbar, ...

}
What names are manipulated by this model

UNITS { (mV) = (millivolt) ... }
PARAVETER { gbar = .036 (nmho/cmR) <0, 1e9>... }
STATE { n ... }

ASSIGNED { ik (mNcmR) ... }

Initial default values for states

INITIAL {
rates(v)
n = ninf

}
Calculate currents (if any) asfunction of v, t, states

(and specify how states are to be integrated)

BREAKPO NT {
SOLVE deriv METHOD cnexp
ik = gbar * n"4 * (v - ek)
}

State equations

DERI VATI VE deriv {
rates(v)
n = (ninf - n)/ntau

}
Functions and procedures

PROCEDURE rates(v(nmV)) {
y

Page 60
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UNI X

nr ni v_m)dl
nr ngui

MSWIN
P ANNEURON
|

rkrrndll Chooze directory [containing .mod files ] for creating nrnmech.dll
ﬁ Recent directorie
- Choose directory
FrFIgU

Select NEURON Main Menu / Build / single compartment

Izomify

File EditlEuiId Toolz  Graph  ‘ector  Windoow

|5ing|e compartrfgrq

Cell Builder
Met'Wiork Cell
Metwiork Builder
Limear Circuit

Channels
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NEURON {
SUFFI X | eak
NONSPEC!I FI C_CURRENT i
RANGE i, e, ¢

}

PARAMETER {
g = .001 (mho/cnR) <O,
e =-65 (mllivolt)

BREAKPOI NT {
i=g*(v - e)

soma
pas
hh
leak

soma {
i nsert
g_l eak =

| eak
. 0001

print soma.i | eak(.5)

Density mechanism

NMODL
NEURON {
PO NT_PROCESS Shunt
NONSPECI FI C_ CURRENT i
RANGE i, e, r
}
PARAMETER {
1e9> r =1 (gigaohnm) <le-9, 1e9>
e =0 (mllivolt)
}
ASS| GNED {
i (nanoanp)
v (mllivolt)
}
BREAKPO NT {
i = (.00)*(v - e)/r
}
GUI
Sel ect Poi nt Process |
Show |
Shunt[0]
at:soma(0.5)
_._
Interpreter
objref s
soma s = new Shunt (.5)
s.r =2

Point Process

Page 62
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lon Channel lon Accumulation
NEURON { NEURON {

USElI ON k READ ek WRI TE i k USEI ON k READ i k WRI TE ko
} }
BREAKPO NT { BREAKPO NT {

SOLVE states METHOD cnexp SOLVE state METHOD cnexp

ik = gbar*n*n*n*n*(v - ek)
} }
DERI VATI VE st ates { DERI VATI VE state {

rate(v*1(/ mv)) ko’ = ik/fhspace/ F*(1e8)

n = (inf - n)/tau + k*(kbath - ko)
} }

40 20 1 soma.ko(0.5)

v(.5)
15 |
0 ‘
)| 2 4 6 8 10 10
-40 | s |
| soma.ek(0.5)
-80 0 ‘
0o 2 4 6 8 10

soma.ik(0.5)
3.0

20 1

10 1

0.0
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Achase
Vesicle
O
0 O
Ach Do
_ (Z/A Internal Free Calcium
ICa
_— q\\ O\\ Q\\ Ck\
Saturable Calcium Buffer
STATE {
Vesicle Ach Achase Ach2ase X Buffer[N] CaBuffer[N] Ca[N]
}
KINETIC calcium_evoked release {
. release
~ Vesicle + 3Ca[0] <-> Ach (Agen, Arev)
~ Ach + Achase <-> Ach2ase (Aase2, 0) :idiom for enzyme reaction
~ Ach2ase <-> X + Achase (Aase2, 0) : requires two reactions
: Buffering
FROM 1 = 0 TO N-1 {
~ Ca[i] + Buffer[i] <—> CaBuffer[i] (kCaBuffer, kmCaBuffer)
:Diffusion
FROM i = 1 TO N-1 {
~ Ca[i-1] <> Ca[i] (Dca*a[i-1], Dca*b[i])
: inward flux
~ Ca[0] << (ica)
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UNITS Checking

NEURON { POl NT_PROCESS Shunt ... }

0 (millivolt)

PARAVETER {
e =
r = 1 (gigaohm <le-9, 1e9>

}
ASS| GNED {
i (nanoanp)
v (mllivolt)
}
BREAKPO NT {
i = (v - elr
}

Units are incorrect in the "i = ..." current assignment.
The output from

nodl unit shunt

Checking units of shunt. nod
The previous primary expression with units: 1-12 coul /sec
is mssing a conversion factor and should read:
(0.001) *()
at line 14 in file shunt. nod
i =(v - e)lr<>

To fix the problemreplace the line with:

i = (.001)*(v - e)lr

What conversion factor will make the following consistent?

nai’ = i na / FARADAY * (c/radius)
(uM ns) (mdVcm) / (coulonmb/nole) / (um
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The Linear Circuit Builder

For building models that have linear circuit elements
and may also involve neurons

Circuit elements include ground, current & voltage
source, R, C, op amp

Potential applications include

e effects and compensation of electrode R & C
¢ two-electrode voltage clamp

e ohmic and nonlinear gap junctions

1. Bring up a Linear Circuit Builder

= NEURON =10/ x|

lzonify

File  Edit Buildl Tools  Graph Wector "Mndnwl

single compart ment
Cell Builder
Metiiiork Cell
MetWork Builder
Linear Circuit

Channel Builde

NEURON Main Menu / Build / Linear Circuit
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The Linear Circuit Builder

i LinearCircuit[0] =10] x|
Close Hide

: 4 Arrange

wire we Label
A I’eSiStOI’ v FParamesters
] s Simulste

== CapaCItOI’ Keep Connected
—+ voltage source —

current source
ground

¥

operational amplifier
Qintracellular node
4

intra- and extracellular nodes

November 2005

Arrange: spawn components

Click on palette and drag onto canvas

i LinearCircuit[0]

Close

R1

i

¥
S
1

i LinearCircuit[0]

Close

=
-
—+ Ri

b
3
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Arrange: connect components

Click and drag to R 2
(WAL
overlap red circles Sl

Black square is S g;)

"solder joint"

Pull apart to break connection

Label: move labels

Arrange
Label
% Farameters
RA1 cz A Simulate

Click and drag E\gv—{ i S
to new location
Label

+ Farameters

RA1 cz +r Simulate
v & Move
Bk‘* ii Chanle
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Label: change labels 1

B (ol

Arrange
Label
% Farameters

November 2005

m cz o Simulste

e Mowe

CIiCk On a_ Iabel . B% i +* Chanie
lm -1ol x|

.tochangeitsname [ "

=T ey

Label: change labels 2

I (5]

Arrange
x Label
»s FParameters
»s Simulzte

Click on a node . M i

e Mo
“‘ Change

M;IEI_I

.to labelavoltage (I

=T ey
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Parameters: non-source elements
E _ioix

W Arrange
Label

c x FParametars

R 3 Simulate

Click on

i o
B + i Parﬁmeters " "
i Soura 1) | Parameters

J Turn off consistency checking
FParasitic aFbattery mOhm

il ¥alues for Linear! -|O0] =
Print hdztriz Info' _I
Cloze Hide I

Hints
R [Mohirn] [4 ;I
 [nF) | I [4 ;I

Parameters: signal sources

I =10 %

Hide

ws Arrange
Label
x Paramesters

W Vo »s Simulzte
n Farameters
E

Source f(t) / B i

Turn off consistency checking
k Farasitic aFbattery mOhm

Frirt M=triz Info

Hirts
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Parameters: signal sources continued

[l F{t) for B of Linea

-0 x|
Close Hide I

External Stim Pattern

durd [m=s)

armpl [

durd [m=]

amp1 [

durZ [ms)

amp2 [

twvec is Wector [2E1E]
amp is Vector [2615]
amp is Vector[2615]

1 e
T
1 il
1 il
C—

Configured

November 2005

Simulate: creating a graph

=10 %

New Graph

ws Arrange
»s Label

Paramesters
x Sirmulate

i

Parameters |

Source flt)

Initizl Conditions

States
e

Mews Graph

X
Marme map

Hirts
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Simulate: specifying what to plot
JAT=IE

Clase Hide

Flotwhat? I I

[ (v
i [ k

E[ra)

05—

PlotWhat? / variable_label

Simulate: simulation results
=10l x|
Close Hide
PlotWhat>
D—;I
L
()
o [m')
o —
oE [—
04—
0z
a | |
u] 1 2 ] 4 i)
After minor cosmetic changes
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Patch clamp with electrode R and C

Re1
Ve

Iclamp CEI :;! s
somal0.s

Rez
.wm

= | LincirGraph[1] for LinearCircuit[0] [Eq %| LincirGraph[0] for LinearCircuit[0] [E
Close Hide Close Hide
PilotWhat? | PilotWhat? |
1 30
lclamp (nA) Vim (mv)
e IR AT IR
06 a1 1024 103 4 105
04 -30
0z el
] ] ]
|u) L
00 101 102 103 104 105 =70

November 2005

NEURON demo: dynamic clamp

LinearCircuit[0]

v Arrange
[ ~~ Label
; s Parameters
F’&J‘/‘! . & Simulate
- P a>ﬁ§ .
g’ lc ! —| Parameters
nth{0.5) 5 Source f(t)
Yy | Initial Conditions
Yy [}
fe +|I Stafes
1 N Rez '@
soma(0.5)
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Compartmental M odeling

Not much mathematics required.

Good judgment essential!

|

AR

N
w

NN
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Forward Euler

1.00 ,
y' =1(y)
080 | HED YO <y
\
' y(t +dt) = y(t) + dt *f(y(t))
0.60
0.40 |
020 |
0.00
0

1 1
— 1 —T1— 1
\Y \Y
2
dt Forward
15 |} 02 I
: /2 Euler
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1.00

0.80

0.60

0.40

0.20

0.00

15

05

Using the NEURON Simulation Environment

Backward Euler

y' =f(y)

y(t+dt) - y(t) _
B f(y(t+dt))

\\ y(t + dt) = y(t) + dt *f(y(t + dt))
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Crank—Nicholson

1.00 y = f(y)

y(tHdt) —y(t) _
080 | T = f(trdy2)
y(t + dt) = y(t) + dt *f(y(t+dt/2))

0.60 |
0.40 |
0.20 |-
0.00

0

Cvode.atol(1e-3)

26—
Cvode.atol(1e-1)
15
1
05
0 1 1 1 1 |
0 0.2 04 0.6 0.8 1
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CN dt=.001 ms

CN dt=.025 ms
/\ CVode atol = 1e-2
| | \ | |

4 ths

Implicit dt=.025 ms
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Networks:
spike-triggered synaptic transmission,
events, and artificial spiking cells

1. Define the types of cells
2. Create each cell in the network
3. Connect the cells

Communication between cells

Gap junctions

Synaptic transmission
graded
spike-triggered
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Graded synaptic transmission

Physical system:

A presynaptic variable governs
continuous transmitter release

Transmitter modulates
a postsynaptic property
Vore
9SYNpost = 1E(Vpre)
9SYNpost

Problem: how does postsynaptic cell know Vpre?

November 2005

Graded synaptic transmission continued

Answer: use POINTER to link postsynaptic variable
to the presynaptic variable

NMODL specification of synaptic mechanism:

NEURON {
PO NT_PROCESS Syn
PO NTER v_pre

}

hoc usage
obj ref syn
dend syn = new Syn(0.5)
setpointer syn.v_pre, precell.axon.v(1)
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Spike-triggered synaptic transmission

: O .
Physical system:
Presynaptic neuron with axon
that projects to synapse on target cell

Conceptual model:
Spike in presynaptic terminal
triggers transmitter release;
presynaptic details unimportant
Postsynaptic effect described by
DE or kinetic scheme that is perturbed by
occurrence of a presynaptic spike

Spike-triggered transmission:
computational implementation

Basic idea
Complete
representation
of propagation Spike Synaptic g Postsynaptic
from spike init. detector latency S/ region
zone through
axon to terminal

More efficient: "virtual spike propagation”

Delay
Spike Spik conduction P :
initiation plke latency ng ostsynaptic
zone detector + region

synaptic

latency
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The NetCon class

hoc usage

net con = new Net Con(source, target)
presecti on netcon = new Net Con(&v(x), \
target, threshold, delay, weight)

Defaults

threshold = 10
delay =1 // must be >0
weight =0

NMODL specification of synaptic mechanism
NET_RECEI VE(wei ght (m crosi enens)) {

}

Efficient divergence

Multiple NetCons with a common source
share a single threshold detector

Spike - .
SEIRE Spike Postsynaptic
initiation Delay 0 ng ;
Jone detector region 0
Postsynaptic
Delay 1 ng region 1
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Efficient convergence

Using the NEURON Simulation Environment

Path 0
O———————/ O
Path 1
Multiple NetCons can share

a single target (many inputs,

but only one equation)
Spike Spike Postsynaptic
'chl;f,'lzt'gn d(gtector 0 Delay 0 regiony P
Spike Spi
v pike
'Znoltr'g'? : detector 1 Delay 1

NEURON {

RANGE t au,

}

€,

INNTIAL { g =0
CHANNEL {

i = g*(v-e)

Example: g¢ with fast rise
and exponential decay

PO NT_PROCESS ExpSyn
NONSPECI FI C_CURRENT i

decl arati ons .

SOLVE state METHOD cnexp

DERI VATI VE st at e
NET_RECEI VE(wW) {

}

g = -g/tau }

{
g=9g+w}
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g With fast rise and exponential decay
continued

| 111l °
| 111111 .
g_» N kakkkkkk_
\" o NM

CHANNEL {
SOLVE state METHOD cnexp
i = g*(v-e)

DERI VATI VE state { g = -g/tau }
NET RECEIVE(W) { g = g + w}

November 2005

CHANNEL {
SOLVE state METHOD cnexp
g B- A
i = g*(v-e)

}

DERI VATI VE state {
A = -Ataul
B = -B/tau2

}

NET _RECEI VE(wei ght, w, Gl, @&, t0) {
INITIAL {w=0 Gl=0 &=0 tO0=t}
Gl = Gl*exp(-(t-t0)/ G aul)
@ = @*exp(-(t-t0)/ G au2)
GlL = Gl + Gnc*d act or
QR =& + Gne*H act or

t0 =t

w = weight*(1 + & - Gl)
g=9g+w

A=A+ wfactor

B =B + wfactor

Example: use-dependent synaptic plasticity
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Use-dependent synaptic plasticity continued

GSyn[0l.g

NEI'

B>Ce=SRRBR

0.003 —
us
0.002 =

0.001

Inm II—|%

Using the NEURON Simulation Environment

L

CEl VE(wei ght, w, Gl, @&,
AL {w=0 Gl=0 &=0 tO0=t}
Gl*exp(-(t-t0)/ G aul)

R*exp(-(t-t0)/ & au2)

Gl + G nc*G actor

& + @ nc*G actor

t

weight*(1 + & - @Gl)

g t+w

A + wfactor

B + wfactor

NOANNNNY
80 100

]

t0) {

Artificial spiking cells

"Integrate and fire" cells

Prerequisite: all state variables must be
analytically computable from a new initial condition

Orders of magnitude faster than numerical integration

Event-driven simulation run time is
proportional to # of received events
independent of # of cells, # of connections,

and problem time

Hybrid networks
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Example: leaky integrate and fire model

S1 LI I L
S2 [ L1 1 1 | I

1 =

0.8 |-

0.6 |~

0.4 |-

0.2 |-

o | 1 1 1 ]
0 20 40 60 80 100

November 2005

Leaky integrate and fire model continued

NEURON {
ARTIFICIAL_CELL IntFire
RANGE tau, m
}
decl arations . :
INITIAL { m= 0 t0o =t }
NET_RECEI VE (w) {
m = nmfexp(-(t-t0)/tau)
t0 =t
m=m+ w
if (m>1) {
net _event (t)
m=20
}
}
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1

IntFire1[0] 08
tau (ms) 10 ;] 06
I ntFI re 1 refrac (ms! | 3 ;] IntFira1{0].M
0.4 \
m Q
0.2 \\
o | I~ 1 | |
0 20 40 60 80 100
-
IntFire2[0] IntFire2[0].1
taus (ms) 20 ;] 08~
taum (ms) I‘IO_E - ~
H r 06 ——
IntFire2 |—& jacs s
- ) 04
: - IntFire2[0].M
m 0 0.2 7
0 1 | | 1 ]
0 20 40 60 80 100
IntFire4[0]
taue (ms) 5 ;i 05
tauil (ms) |10 M IntFire4[0].M
N 03[
() IZD Ml IntFire4[0].E s
IntFireq (Bl |op [
nt ire e I° ot zf\ 0 60 —100
i (o]
0 [ 031 ‘”’F”")‘Q InFiredM__
—
m_Jo 05— =

Defining the types of cells

Artificial spiking cells
Point Processes with a NET_RECEIVE block
that calls net_event

NetStim, IntFirel, IntFire2, IntFire4

Biophysical model cells
"Real" model cells
Sections and density mechanisms

Synapses are Point Proceses
that affect membrane current
and have a NET_RECEIVE block,
e.g. ExpSyn, Exp2Syn

Copyright © 1998-2005 N.T. Carnevale and M.L. Hines, all rights reserved
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Defining types of biophysical model cells

Encapsulate in a class

begi ntenpl ate Cel |

public soma, E, |

cCreate soma

objref E, |

proc init() {

soma {

insert hh
E = new ExpSyn(O0.5)
I new Exp2Syn(0. 5)
l.e = -80

@ Il 1l

}

}
endtenpl ate Cell

objref bag_of_cells
bag_of _cells = new List()
for i = 1,1000 bag_of _cells.append(new Cell ())
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40 —
IF."”“ | |II
Global Step | " I
1 1 I
0 | | |I | | 'y
1 2 3 5
113 points I III|I !
107 advance I | Iy
5interpolate Iy
4init ! II IIl||I
a0l 177 f(y) II| |'| I|||II
I
! ! I I
T ==|IIII||” : U1 ! L
Iy
9= 'f‘| |I| II|||III|||III
Local Step ! "|II Py
I I
III ! | |I ! |
° ) . R T :
78 points 71 points o
e, ) S (778)/(138*4+11574) = 14
2init | 3init | |
sl 138 f(y) |'|I 1151f(y) I|' |
|IIIIII TR !
AR |||||I”'| | I pitl |I
|III
-80 L
Oneintegrator instance per cell
Uij: tay < th,
ta t tb
O o O
Init
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i |
1 O o
20 (]
i |
1 O [
2 O o
i |
1 O [ ]
2 O o
i |
1 QO o [ J
2 O o
|
1 QO o [ J
2 O o
|
1 @®
2 O o
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|
1 @
2 O o
|
1 Oe
2 O o
|
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| |
1 O [ ]
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i i

1 O o

2 O o [ J
i

1 O [

2 O o [ J
i

1 O [

2 @
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PreCdl PostCell
PostSyn

PreSyn

PostCell
PostSyn

nc = new Net Con(PreSyn, Post Syn)
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CPU 2
PreCell CPU4 PostCell
PostSyn
NetCon //’V
//
//
7’
PreSyn
CPU 2
PreCell CPU4 PostCell
PostSyn
PreSyn

pc = new Parall el Cont ext ()
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CPU 2
CPU 4

gid=7
gid=9

Every spike source (cell) must have a global id number.

CPU O CPU 3 CPU 4
pc.id 0 pc.id 3 pc.id 4
pc.nhost 5 pc.nhost 5 pc.nhost 5
ncell 14 I ncell 14 ncell 14

gid gid gid
0 3 4
5 8 9
10 13

An efficient way to distribute:

for (gid = pc.id; gid < ncell; gid += pc. nhost)
pc. set gi d2node(gid, pc.id)

}

body executed only ncell/nhost times, not ncell.
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CPU 2
PreCell CPU 4

gid=7

Create cell only wherethe gid exists.

if (pc.gid exists(7)) E
1

PreCell = new Cell ()

CPU 4

Associate gid with spike source.

nc = new Net Con(PreSyn, nil)
pc.cell (7, nc)

gid =

November 2005

9
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CPU4 PostCell
PostSyn
NetCon ///
//
//

Create NetCon on CPU wheretarget exists.

nc = pc.gid connect (7, PostSyn

Run using the idiom

pc.set_maxstep(10)
stdinit()
pc.psolve(tstop)

pc.set_maxstep() uses
MPI_Allreduce
to determine minimum delay.
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CPU 2
PreCell CPU 4

CPU4

F4
NdCon,/

7’
7’

n 1
gid 7
t 2875
gid ——-
t —_
t
G 5“1“1 :
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n 1

gid 7
t 2875

O
N

O
N

MPI_Allgather

Using the NEURON Simulation Environment

CPU4 PostCell

PostSyn

cpu 2

cpu 3

CPU 4

PostCell

PostSyn

s
NetCon PR

7

n 1
2
k gd 7| ™
t 2875
gid ——-
t —_
nvu cpu 3

Copyright © 1998-2005 N.T. Carnevale and M.L. Hines, all rights reserved

Page 103



Using the NEURON Simulation Environment November 2005

Davison et al., (2003)

Santhakumar et al. (2005)

Bush et al., (1999)

' 2500
500 - "
2000
5 400
£
1500
3 300 A
3
S 500 4 1000
100 + 500
0 k 0 !
0 50 100 150 200 250 0 400 800 1200 1600 0 100 200 300 400 500
time (ms; .
(ms) time (ms) time (ms)
® Mac G5
O Beowulf 32-bit
400 1600 A Beowulf 64-bit
200 800 O IBM Linux cluster
A
,g 100 200 EPFL IBM BlueGene
<2 N
2 50 200
2 100
=20 50
10
20
5 10
2 d 5 T T T T T T T T d d
1 2 4 8 16 32 64 128 256 512 1 2 4 8 16 32 64 128 256 512 1 2 4 8 16 32 64 128 256 512
number of processors number of processors number of processors

25000

20000

e———

15000

10000

cell number

5000

time (ms)
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128

32

Using the NEURON Simulation Environment

#CPU
1000

2500

5000

500 2000 500
#CPU

Computation (s) Communication ()

16.4 1.98
6.3 3.42
34 5.64
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e

}\Jﬂ

SenseLab

Login
The Senselab Project is a long term effort to build integrated, multidisciplinary
models of neurons and neural systems=, using the olfactory pathway as a model. This is
one of a number of projects funded as part of the Human Brain Project whose aim is to
develop neuroinformatics tools in support of neuroscience research. The project
involves novel informatics approaches to constructing databases and database tools
for collecting and analvzing neuroscience information, and providing for efficient
interoperability with other neuroscience databases.

* Overview
+ Membrane Properties Resource

Brain Database Research
B 0 B
Neurcnal Databases E' Ee“PmpDB‘ g NeumnDB‘ E‘ MndﬂDB‘
_—— = —
g I \;r = g .
Olfactory Databases = ||’:’$i ORDE g E: -'.'.Hurt-lap{)~
(e - - :
Neuroscience Database Gateway Human Brain Project Database

Help & Introduction Labs & FPeople Links Publications Architecture Teaching

Total =ite hits s=ince January 1, 2004: 6026139

Questions, comments, problems? Email the Senselab Administrator
This site is Copyright 2000 shepherd Lak,. ¥Yale University
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NeuronDB

Back to Senselab

NeuronDB provides a dynamically searchable database of three types of neuronal properties: wvoltage gated conductances, neurotransmitter
receptors, and neurcotransmitter substances. It contains tools that provide for integration of these properties in a given type of neuron and
compartment, and for comparison of properties across different types of neurons and compartments. Read the tutorial for searching for Neuron
Proper s in NeuronDBE

This resource is intended to:

Support the genomics and proteomics of neuron types

Support research on neuron properties

Facilitate the creation of computational neurcnal models
Identify receptors across neuron types to aid in drug development
Serve as a teaching aid

Search the Database By:

Weuron List Alphabetically

Weuron List By Brain Regions

Menbrane Properties Comprehensive Inventorv: Channels, Receptors, Neurotransmitters/Neuromodulators
Menmbrane Properties for NeuronDB: Currents, Receptors, MNeurotransmitters/Neuromodulators

Canonical forms of neurons (see explanation)

Bibliographic citations

Signup to receive the NeuronDB email newsletter
Give us your feedback

Deposit to the Database

FAQ and related Links

WeuronDE Login

This database is being developed by Luis N. Marenco®, Chigquito Crasto®, Prakash M. Nadkarni®, Perry L. Miller? and Gordon M. Shepherd®,

!Section of Weurobiology, “Center for Medical Informatics, Yale University School of Medicine, New Haven, CT 06510.

Some of the data, together with the graphics on the NeuronDB banner, are taken from The Synaptic Organization of the Brain, edited by G.M.
Shepherd, New York: Oxford University Press (Second to Fourth Editions: 1979, 1990, 1998).

Supported by MIDCD, NASA, & NIMH (Human Brain Project) and the National Library of Medicine's IAIMS Program.

Total site hits since January 1, 2004: 130412

EG }I@ (Questions, comments, problems? Email the NeuronDB Administrator

This mite is Copyright 2000 Shepherd Lab, ¥als University

Last modified: august 02, 2004

\_t NeuronDB

Back olfactory bulb mitral cell

Mode: QOverview Data/Search plus Connectivity plus References/Notes Models

Region: Dad Dam Dap Dbd Dbm Dbp Soma 2H A T All Compartments

Properties: Receptors Channels Transmitters All Properties

Interoperation: Gene and Chromosome Experimental Data [(neurodatabase.orqg) Microsco Data (CCDE
Weuron type: principal

Organism: Vertebrates

Dbp Dbm Dbd
 ENS—

T

Key: Region: D, dendrite; S, soma (cell body); AH, axon
hillock-initial segment of the axon; &, axon; T, axon
terminal. Type of dendrite: e, eguivalent cylinder (for
single dendrites and multipolar trees); a, apical; b, basal;
o, obligue. Level of dendrite: (p) proximal, (m) middle, and
(d) distal with respect to the cell body. For further
explanations, see canonical representations.

Graphic from: GM Shepherd, Synaptic Organization of the
Brain, New York: Oxford University Press 1979.

Total site hits since January 1, 2004: 130414

Questions, comments, problems? Email the Neu
This site is Copyright 2000 shegherd Lab,

DB Administrator
= university

Last Modified: November 23. 2004

-

)

B,

@"»

-4
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NeuronDB

e
Back Olfactory bulb mitral cell

Mode: Overview Data/Search plus Connectivit Models
Region: Dad Dam Dap Dbd Dbm Dbp Soma 2H A T |

Properties: Receptors Channels Transmitters

Interoperation: Gene and Chromosome Experimental Data (neurodatabase.org) Microsco Data (CCDB

Are:| Present | Absent

Neuren type: principal
Organism: Vertebrates
Input Receptors Intrinsic Currents Output Transmitters
Dad  popamine from periglomerular cell dendrite Dopaminergic Receptor 1 Na.t Mitral cell
DA receptors in mitral cell dendrites implied by DA localization in PG |Implied by recording of fast prepotential. glomerular tuft
dendrites presynaptic to mitral dendrites [Halasz and et al, 1976% ). | Dual patch recordings provide evidence for S el e
Glutamate from olfactory receptor neuron axon panie BmeRpronagR g Bl TORMRTE HEDHRGRLING dind“tis =
Aty AMPA impulses in the primary dendrite (Mori K et e o
. - al, 1982 [turtlel® ; Chen et al 1397). (Eresmaniy)
Intracellular recordings: CHQX blocks early component of EPSP elicited hEF . TG {ed by GIi reTeEEado
by olfactory nerve volley merve volley (Berkowicz DA and Trombley Po | [PoRdritic pakch recordings showed an even e, 3, i
e 5 density of Na channels (120pS um-2) up te 350 | Other compartments of the
and Shepherd GM, 1994 [turtle]?? ). Electrophysiology data: DNQX um from the soma along the primary dendrite to mitral cell (Dale's law).
attenuates early and late excitatory components in peristimulus time | |ipe origin of the glomerular tuft Target (destination) is
histograms of mitral cell unit responses to leaczt:ry nerve volleys tHimshoiierger & and donas by 19998LT: Ry presumably PG cell dendrites
(Ennis M and Zimmer LA and Shipley MT, 1896 [rat]= ). Intracellular combining intracellular recordings and in the glomerulus (van den
recordings: CNQX blocks early component of EPSP response to olfactory two-photon microscopy imaging of [Cali in rat Pol AN, 1995 [rat]d ).
nerve volley (Chen WR and Shepherd GM, 1997 [rat]® ). Paired it was shown that APs backpropagate at full
whole-cell recording revealed reciprocal excitatory connections amplitude up to the tuft (Debarbieux ¥ and
between mitral cells. Pharmacological analysis suggested that it could |a qinar § and Charpak S, 20032 ).
be mediated by both AMPA and NMDA receptors (Urban NN and Sakmann B,
ass n
2002452 ).
Glutamate from olfactory receptor neuron axon oo 1A .
terminals = (Bischofberger J and Jonas B, 199722 .
Intracellular recordings: APS blocks late component of EPSP elicited
by olfactory nerve volley (Berkowicz DA and Trombley PQ and Shepherd
GM, 1994 [turtle]?? ). Electrophysiology data: APS attenuates delayed
excitatory components in peristimulus time histograms of mitral cell
unit responses to olfactory nerve volleys (Ennis M and Zinmer LA and
Shipley MT, 1996 [rat]®! ). Intracellular recordings: APS blocks late
conponent of EPSP response to olfactory nerve. volley (Chen WR and
shepherd GM, 1997 [rat]®® ). Paired whole-cell recording revealed
reciprocal excitatory connections between mitral cells.
Pharmacological analysis suggested that it could be mediated by both
AMPA and NMDA receptors (Urban NN and Sakmann B, 2002%%2 ).
"
ModelDB
—
Back to Senselab NeuronDB (in this context)
Models which contain: Olfactory bulb mitral cell
Models Description
01factory Bulb Network A biologically-detailed model of the mammalian olfactory bulb, incorporating the mitral and granule cells and the
(Davison et al 2003 dendrodendritic synapses between them. The results of simulation experiments with electrical stimulation agree classly in
most details with published experimental data. The model predicts that the time course of dendrodendritic inhibition is
dependent on the network connectiwity as well as on the intrinsic parameters of the synapses. In response to simulated
odor stimulation, strongly activated mitral cells tend to suppress neighboring cells, the mitral cells readily
synchronize their firing, and increasing the stimulus intensity increases the degree of synchronization. For more
details, see the reference below.
Olfactory Mitral Cell This is a conversion to NEURCN of the mitral cell model described in Bhalla and Bower (1993). The original model was
(Bhalla, Bower 1993 written in GENESIS and is available by joining
Olfactory Mitral Cell A four-compartment model of a mammalian olfactory bulb mitral cell, reduced from the complex 286-compartment model
(Davison et al 2000 described by Bhalla and Bower (1993). The compartments are soma/axon, secondary dendrites, primary dendrite shaft and
primary dendrite tuft. The reduced model runs 75 or more times faster than the full model, making its use in large,
realistic network models of the olfactory bulb practical.
©lfactory Mitral Cell Mitral cell model with standard parameters for the paper: Shen, G.Y., Chen, W. R., Midtgaard, J., Shepherd, G.M., and
(Shen et al 1999 Hines, M.L. (1999) Computational Analysis of Action Potential Initiation in Mitral Cell Soma and Dendrites Based on Dual
Patch Recordings. Journal of Neurophysiology 82:3006. Contact Michael.Hines@yale.edu if you have any guestions about the
implementation of the model.
lO1factory Mitral Cell: INEURCN mod files for the I-A and I-K currents from the paper: X.Y. Wang, J.S. McKenzie and R.E. Kemm, Whole-cell K+
I-A and I-K currents currents in identified olfactory bulb output neurones of rats. J Physiol. 1996 490.1:63-77. Please see the readme.txt
(Wang et al 1996 included in the model file for more information.
lO1factory Mitral cell: The mitral cell primary dendrite plays an important role in transmitting distal olfactory nerve input from olfactory
AP initiation modes lglomerulus to the soma-axon initial segment. To understand how dendritic active properties are involved in this
(Chen et al 2002 transmission, we have combined dual soma and dendritic patch recordings with computational modsling to analyze
action-potential initiation and propagation in the primary dendrite.
lOl1factory bulb granuls The model supports the experimental findings on the effects of postnatal odor deprivation, and shows that a -10mV shift
cell: effects of odor in the Na activation or a reduction in the dendritic length of newborn GC could independently explain the observed
deprivation (Saghatelvan| |increase in excitability.
et al 2005
01factory bulb mitral In a realistic model of two electrically connected mitral cells, the paper shows that the somatically-measured
cell; synchronization by | |experimental properties of Gap Junctions (GJs) may correspond to a variety of different local coupling strengths and
lgap junctions (Migliore dendritic distributions of GJ= in the tuft. The model suggests that the propagation of the GJ-induced local tuft
st a1 2005 depolarization is a major mechanim for intraglomerular synchronization of mitral cells.
Total site hit ince Januarv 1 004: 552289
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ModelDB

Olfactory Mitral Cell (Shen et al 1939)

Mitral cell model with standard parameters for the paper: Shen, G.¥., Chen, W. R., Midtgaard, J.,
Shepherd, G.M., and Hines, M.L. (1999) Computational Analysis of Action Potential Initiation in Mitral
Cell Soma and Dendrites Based on Dual Patch Recordings. Journal of Neurophysiology 82:3006. Contact
Michael.Hines@yale.edu if you have any guestions about the implementation of the model.

Reference: Shen GY, Chen WR, Midtgaard J, Shepherd GM, Hines ML (1999) Computational analysis of
action potential initiation in mitral cell soma and dendrites based on dual patch recordings. J
Neurophysiol 82:3006-20 [fuked]

Citations Citation Browser

Model Informatien (Click on a link to find other models with that property)
Model Type: Neuron;
Cell Type(s): Olfactory bulb mitral cell;
Channel(s): I Na,.t; I K; I Sodium; I Potassium;

Receptor (=) :
Transmitter (s) =
Simalation
s Neuronp
Environment: —
Action Potential Tnitiation; Dendritic Action Potentials; Parameter Fitting;
Active Dendrites;
Implementer (s) : Hines, Michael :

Model Conceptis):

Search NeuronDB for information about: Olfactory bulb mitral cell; I Na,t; I K; I Sodiumy I
Potassium;

Model filee Download zip file Auto- launch Help downloading and running modele

(RN Mitral cell model with standard parameters for the paper:
Omitral
O ce112 Shen, G.Y., Chen, W. R., Midtgaard, J., Shepherd, G.M., and Hines, M.L.
(1999)
S data Computational Analysis of Action Potential Tnitiation in Mitral
O Xtrastuf.mac Cell Soma and Dendrites Based on Dual Patch Recordings.
[ README Journal of Neurophysiology 82: 3008
[ kd. mod
Bna.nod Questions about how to use this simulation should be

directed to

Delecl.hoc michael.hines@yale.edu

D menb .hoc
Dmitral.hoc Running the model (execution of the mosinit.hoc file) will display
Dmosinit.hoc the data and simulation results as in Fig 3 and 5.

O init.hoc
[ data The cell? subdirectory contains cell data and simulation which shows

n.hoc
Anlw a limitad Aarraaca in tha actinn nntential intarwal

= RunControl [x] Attach Graph to Run x|

Close Hide Close Hide

Use CVode [~ ”[“qu X

. g[0]: soma weal

Init (m -B5 . g1]: primary weak

. .~ g[3]: soma strang
Init & Run 4]: primary strong

Stop Onset of Stimulus 1 ;]

Continue til (ms) Hlj S ;] Duration of Stimulus 10.05 ;]
Continue for (ms) ] [7 [21)||| 5oma weak current stimulus D 0.4 |

Priden weak current stimulus|_{ [0.5 =l
Soma strong current stimulus 0.8 ;i
Priden strong current stimulus1 ' I |D.E

] Graph[2] x-1.5: 16.5 y 92 : 52 = Graph[0] x-1.5: 165 y 92 : 52 (x|
Close Hicle || close Hice |
E‘E‘ELéIUSE. th { T T bitb;\uat. EHE j— 4
— . = e.electroae.n| 0.
D [fie-data/3asadat oo 0 [fle-darafaasacar "
h f
0 | | | 0 | H | |
10 15 5 10 15
bap (- 40— i
lag - gl3] a0 g0l
] Graph[3] x-15:16.5 y -92 : 52 [E3) (] Graph[1] x-15 : 165 y 02 : 52 [x]
Close Hide | Close Hide |

T EleCnone t 0. TEleCuonT, k T

D [ R S pe‘e\ectmde:v 05 i—ps 0 (Fiodata'3327 dat pe:e\ectmde‘v 05 ﬁ—ps
a | | |
5 10 15
40—
a0 gl1]

Page 110 Copyright © 1998-2005 N.T. Carnevale and M.L. Hines, all rights reserved



November 2005 Using the NEURON Simulation Environment
Multiple Run Fitter

Goal: Adjust model parametersto fit data
from multiple experiments.

Dendrite
Soma

See: Shen et. al. (1999), J. Neurophysiol. 82:3006

Computational analysis of action potential initiation
in mitral cell soma and dendrites based on dual patch
recordings.
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Optimizing over multiple experimental protocols
For each protocol:

Which model variables areto be compared
to the data?

What isthe data?
What istheerror function?

What isthe stimulus protocol?

Par ameters:

Which model parametersareyou allowed
to vary to obtain afit.
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exanple.ses.ftl

Par nFi t ness: Mtral cell 2 electrode nodel
Fi t nessGenerator: Somatic high current
RunConst ant : sestimanp 0.3 0
RunSt at enent : 1, set _rest(ivl)

Regi onFi t ness: se.electrode.v(.5)
Regi onFi tness: pe.electrode.v(.5)

Fi tnessGenerator: Primary high current
RunConst ant : pestimanp 0.4 0O
RunSt at enent : 1, set _rest(iv3)
Regi onFi tness: se.electrode.v(.5)
Regi onFi t ness: pe.electrode.v(.5)

FitnessGenerator: Primary current, hyperpolarize soma
RunConst ant : pestimanp 0 O
sestimanp 0 O
sestimdel 0 1
sestimdur 0 10
APFi t ness: se. el ectrode. v(.5)
APFi t ness: pe. el ectrode. v(.5)

Par anet ers:

"ncen_na", -31. 2258, -100, 20, 0, O
"nahi gh($1)", 1.52812, 1e-9, 1le+09, 1, 1
"kdhi gh($1) ", 0.0704842, 1le-9, 1le+09, 1, 1
"nal om $1) ", 49. 7024, 1le-9, 1le+09, 1, 1
"kdl ow( $1) ", 0. 230715, 1e-9, 1le+09, 1, 1
"forsec alls Ra=70*$1", 1.716, 0.1, le+06, 0, 1
"forsec axon g_pas=$1/1000", 1, 0.01, 100, 0, O
"ivi", -57.9528, -67, -50, 0, O
"iv4", -58. 3375, -67, -50, 0, O
"pe. el ectrode. Ra=$1", 11.3141, 0.5, 100, 0, O
"pe. el ectrode. cm=$1", 10.5573, 0.01, 50, 0, O

End Par nFi t ness
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MUl RunFitter[0]

titral cell 2 electrode model with several stimulus protocols iSJ’ESB

Display
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+ Somatic [ow current

Somatic low current 1.2873
_ [0.15 B # seelectrode.w(.5)

~ peelectrode.wi.5)
set_rest(ivg)

55 -——-—-//’I/ [~
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=

NMRODDOEEE
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mMulBunFitter[o]

titral cell 2 electrode model with several stimulus protocol5_3-5151

+ Somatic low current

35

3.6181

guad forms = 0 means praxis returns by itself

Append the path to savepath fit
Running
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|n the future...

e Real-time Linux Dynamic Clamp
with Gwendal L eM asson.
e Singleneuron parallel
with Macig L azarewicz.
e Re-vectorization.
e GUI tool for ionic accumulation modedls.
e Read/WriteNeuroML.

|N the future...

e WWW gte: codefrom NEURON book,
new tutorials, documentation wiki

e Courses: hands—on at UCSD, UMN

e NEURON Users Group meeting TBA
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Chapter 6

How to build and use models of individual cells

In Chapter 2 we remarked that a conceptual model is an absolute prerequisite for the
scientific application of computational modeling. But if a computational model isto be a
fair test of our conceptual model, we must take special careto establish a direct
correspondence between concept and implementation. To this end, the research use of
NEURON involves all of these steps:

1. Implement a computational model of the biological system
Instrument the model

Set up controls for running simulations

Save the model with instrumentation and run controls

Run simulation experiments

o 0k~ WD

Analyze results

These steps are often applied iteratively. We first encountered them in Chapter 1, and we
will return to each of them repeatedly in the remainder of this book.

GUI vs. hoc code: which to use, and when?

At the core of NEURON is an interpreter which is based on the hoc programming
language (Kernighan and Pike 1984). In NEURON, hoc has been extended by the
addition of many new features, some of which improve its general utility asa
programming language, while others are specific to the construction and use of models of
neurons and neural circuitsin particular. One of these featuresis a graphical user
interface (GUI) which provides graphical tools for performing most common tasks. We
have already seen that many of these tools are especialy useful for model development
and exploratory simulations (Chapter 1).

Prior to the advent of the GUI, the only way to use NEURON was by writing
programsin hoc. For many users, convenience is probably reason enough to use the
GUI. We should also mention that several of the GUI tools are quite powerful in their
own right, with functionality that would require significant effort for users to recreate by
writing their own hoc code. Thisis particularly true of the tools for optimization and
electrotonic analysis.

But sooner or later, even the most inveterate GUI user may encounter situations that
call for augmenting or replacing the default implementations provided by the GUI.
Traditional programming allows maximum control over model specification, ssmulation
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control, and display and analysis of results. It is aso appropriate for noninteractive
simulations, such as "production” runs that generate large amounts of datafor later
anaysis.

So the answer to our question is. use the GUI and write hoc code, in whatever
combination gets the job done with the greatest conceptual clarity and the least human
effort. Each has its own advantages, and the most productive strategy for working with
NEURON isto combine them in away that exploits their respective strengths. One
purpose of this book isto help you learn what these strengths are.

Hidden secrets of the GUI

There aren't any, really. All but one of the GUI tools are implemented in hoc, and al
of the hoc code is provided with NEURON (see nr n- x. x/ shar e/ nrn/ | i b/ hoc/ under
UNIX/Linux, c: \ nrnxx\ | i b\ hoc\ in

MSWindows). Thusthe CellBuilder, the
Network Builder, and the Linear Circuit
Builder are al implemented in hoc, and

The only GUI tool that is not implemented in hoc
isthe Print & File Window Manager, which is
written in C. The source code for it isincluded

with the UNIX distribution of NEURON.

each of them works by executing hoc
statements in away that amountsto
creating hoc programs "on the fly." It can be instructive to examine the source code for
these and NEURON's other GUI tools. A recurring theme in many of them is a sequence
of hoc statements that construct a string, followed by ahoc statement that executes this
string (if it isavalid hoc statement) or usesit as an argument to some other hoc function
or procedure. We will return to thisideain Chapter 14: How to modify NEURON itself,
which shows how to create new GUI tools and add new functions to NEURON.

Anything that can be done with a GUI tool can be done directly with hoc. To
underscore this point, we will now use hoc statements to replicate the example that we
built with the GUI in Chapter 1. Our code follows the same broad outline as before,

specifying the model first, then
instrumenting it, and finally setting up
controls for running simulations. For
clarity of presentation, we will consider
this code in the same sequence: model
implementation, instrumentation, and
simulation control.

If you want to work along with this example, it
would be agood ideato create an empty directory
in which to save thefile or files that you will
make. These will be plain text files, which are
also sometimes known as ASCII files. Begin by
using atext editor to create afile called

exanpl e. hoc that will contain the code.

Implementing a model with hoc

The properties of our conceptual model neuron are summarized in Fig. 6.1 and Tables
6.1 and 6.2. For the most part, the steps required to implement a computational model of
this cell with hoc statements parallel what we did to build the model with NEURON's
GUI; differences will be noted and discussed as they arise. In the following program
listings, single line comments begin with a pair of forward dashes// and multiple line

Page 2
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comments begin with / * and are terminated by */ . For a discussion of hoc syntax, see

Chapter 12.
basilar \S;r:a lS
ynapse

A
axon apical

Fig. 6.1. The model neuron. The conductance change synapse can be located
anywhere on the cell.

Table6.1. Model cell parameters

Length Diameter Biophysics

pm pm

soma 30 30 HH e 9k ad g

apical dendrite 600 1 passive with Rm = 5,000 Q cm?, Epasz -65 mV
basilar dendrite 200 2 same as apical dendrite

axon 1000 1 same as soma

Cm=1pf / cm?
cytoplasmic resistivity = 100 Q cm

Temperature = 6.3 °C

Table 6.2. Synaptic mechanism parameters

Omax  0-05 LS
Tg 0.1 ms
E omv

S

Topology

Our first task is to map the branched architecture of this conceptual model onto the
topology of the computational model. We want each unbranched neurite in the
conceptual model to be represented by a corresponding section in the computational
model, and thisis done with acr eat e statement (top of Listing 6.1). The connect
statements attach these sections to each other so that the conceptual and computational
models have the same shape. Aswe noted in Chapter 5, each section has a normalized
position parameter which ranges from O at one end to 1 at the other. The basi | ar and
axon sections arise from one end of the cell body while the api cal section arises from
the other, so they are attached by connect statementsto the O and 1 ends of the soma,
respectively.

This model is simple enough that its geometry and biophysical properties can be
specified directly in hoc without having to resort to sophisticated strategies. Therefore
we will not bother with subsets of sections, but proceed immediately to geometry.
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LEEEETEEE i rrrirrrr
/* nmodel specification */
FEEEEEEEE i rriirrd

I111111 topology /1111111

create somm, apical, basilar
connect apical (0), soma(1)
connect basilar(0), soma(0)
connect axon(0), soma(0)

1111111 geonmetry [/11111]

soma {
L=23
di am
nseg

I no

api cal
L=2¢6
di am
nseg

Inn o
o

basi | ar
L =2
di am
nseg

{
0

Inno

2
5

axon
L = 1000
diam=1
nseg = 37

111111 biophysics /11111

forall {
Ra = 100
cm=1

}

soma {
i nsert hh

}

api cal {
i nsert pas
g_pas = 0. 0002
} e _pas = -65

axon

November 21, 2004
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basi | ar {
i nsert pas
g_pas = 0.0002
e _pas = -65

}

axon {
insert hh

Listing 6.1. Thefirst part of exanpl e. hoc specifiesthe anatomical and
biophysical attributes of our model.

Geometry

Each section of the model hasits own length L, diameter di am, and discretization
parameter nseg. The statementsinside the block soma { } pertainto the soma section,
etc. (the "stack of sections’ syntax--see Which section do we mean? in Chapter 5).
Since the emphasis here is on elementary aspects of model specification with hoc, we
have assigned specific numeric values to nseg according to what we learned from prior
use of the CellBuilder (see Chapter 1). A more genera approach would be to wait until L,
di am and biophysical properties (Ra and cm) have been assigned, and then compute
values for nseg based on afraction of the AC length constant at 100 Hz (see The
d_lambda rule in Chapter 5).

Biophysics

The biophysical properties of each section must be set up individually because we
have not defined subsets of sections. Cytoplasmic resistivity Ra and specific membrane
capacitance cmare supposed to be uniform throughout the model, so we use af or al |
statement to assign these values to each section.

The Hodgkin-Huxley mechanism hh and the passive mechanism pas are distributed
mechanisms and are specified with i nsert statements (see Distributed mechanisms in
Chapter 5). No further qualification is necessary for hh because our model cell usesits
default ionic equilibrium potentials and conductance densities. However, the parameters
of the pas mechanismin thebasi | ar and api cal sectionsdiffer from their default
values, and so require explicit assignment statements.

Testing the model implementation

Testing is aways important, especially when project development involves writing
code. If you are working along with this example, this would be an excellent time to save
what you have written to exanpl e. hoc and use NEURON to test it. Then, if you're
using aMac, just drag and drop exanpl e. hoc onto nr ngui . Under MSWindows use
Windows Explorer (the file manager, not Internet Explorer) to go to the directory where
you saved exanpl e. hoc and double click on the name of the file. Under UNIX or
Linux, type the command nr ni v exanpl e. hoc - a the system prompt (we're
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Page 6

deliberately not typing nr ngui exanpl e. hoc, to avoid having NEURON load its GUI
library).

Thiswill launch NEURON, and NEURON's interpreter will then process the contents
of exanpl e. hoc and generate a message that |0oks something like this:
NEURON -- Version 5.6 2004-5-19 23:5:24 Main (81)

by John W Mboore, M chael Hines, and Ted Carneval e
Duke and Yal e University -- Copyright 2001

oc>

The NEURON Main Menu toolbar will not appear under MSWindows, UNIX, or Linux.
This happens because NEURON did not load its GUI library, which contains the code
that implements the NEURON Main Menu. We're roughing it, remember? We trust that
Mac users will pretend they don't see the toolbar, because dropping ahoc file on the

nr ngui icon automatically loads the GUI library.

Since we aren't using the CellBuilder, there isn't see a nice graphical summary of the
model's properties. However a couple of hoc commands will quickly help you verify that
the model has been properly specified.

We can check the branched architecture of our model by typingt opol ogy() at the
oc> prompt (see Checking the tree structure with topology() in Chapter 5). This
confirmsthat soma is the root section (i.e. the section that has no parent; note that thisis
not the same as the default section). It also shows that api cal isattached to the 1 end of
somm, and basi | ar and axon are connected to its 0 end.

oc>t opol ogy()

B e | axon( 0-1)

Thecommand foral | psection() generatesa printout of the geometry and
biophysical properties of each section. The printout isin the form of hoc statements that,
if executed, will recreate the model.

oc>forall psection()
soma { nseg=1 L=30 Ra=100
/*l ocation O attached to cell 0*/
/* First segnent only */
i nsert norphol ogy { di am=30}
i nsert capacitance { cnrl}
insert hh { gnabar_hh=0.12 gkbar _hh=0.036 gl _hh=0. 0003 el _hh=-54. 3}
insert na_ion { ena=50}
insert k_ion { ek=-77}
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api cal { nseg=23 L=600 Ra=100
soma connect apical (0), 1
/* First segnent only */
i nsert capacitance { cn¥l}
i nsert norphol ogy { dian¥l}
insert pas { g_pas=0.0002 e_pas=-65}

}
basil ar { nseg=5 L=200 Ra=100
soma connect basilar (0), O
/* First segnent only */
i nsert capacitance { cn¥l}
i nsert norphol ogy { dianr2}
insert pas { g_pas=0.0002 e_pas=-65}

}
axon { nseg=37 L=1000 Ra=100
soma connect axon (0), O
/* First segnent only */
i nsert capacitance { cnrl}
i nsert norphol ogy { dian¥l}
insert hh { gnabar_hh=0.12 gkbar _hh=0.036 gl _hh=0. 0003 el _hh=-54. 3}
insert na_ion { ena=50}
insert k_ion { ek=-77}
}
oc>
After verifying that the model specification is correct, exit NEURON by typing

qui t () inthe interpreter window.

An aside: how does our model implementation in hoc
compare with the output of the CellBuilder?

The hoc code we have just written is supposed to set up a model that has the same
anatomical and biophysical properties as the model that we created in Chapter 1 with the
CellBuilder. We can confirm that thisisindeed the case by starting a fresh instance of
NEURON, using it to load the session file that we saved in Chapter 1, and then typing
topol ogy() andforal | psection().ButtheCellBuilder can also create afile
containing hoc statements that, when executed, recreate the model cell. How do the
statements in this computer-generated file compare with the hoc code that we wrote for
the purpose of specifying this model ?

To find out, let us retrieve the session file from Chapter 1, and then select the
Management page of the CellBuilder. Next we click on the Export button (Fig. 6.2), and
save al the topology, subsets, geometry, and membrane information to afile called
cel I . hoc. Executing the hoc statementsin thisfile will recreate the model cell that we
specified with the CellBuilder.

It isinstructive to briefly review the contents of cel | . hoc, which are presented in
Listing 6.2. At first glance this looks quite complicated, and its organization may seem a
bit strange--after al, cel | . hoc isacomputer-generated file, and this might account for
its peculiarities. But let him who has never written an idiosyncratic line of code cast the
first stone! Actually, cel | . hoc isfairly easy to understand if, instead of attempting a
line-by-line analysis from top to bottom, we focus on the flow of program execution.
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* Manage ment EContinuous Creste

Hirts
~ Cell Type 4 Export -, Import

Export to file [or top lewvel with "Continuous")
i.e. does not encapsulate the cell in an object.
Kind of infor mation exported
Topology [Destroys all existing top lewvel sections)
Subsets
Geometry

Mermbrans

Export to file

I

Figure 6.2. The Management page of the CellBuilder. We have clicked on the
Export radio button, and are about to export the model's topology, subsets,
geometry, and membrane information to a hoc file that can be executed to
recreate the model cell.

proc cel I def () {
topol ()
subset s()
geonf)
bi ophys()
geom hseg()

create sona, apical, basilar, axon

proc topol () { local i
connect api cal (0), sona(1)
connect basilar(0), soma(0)
connect axon(0), sona(0)
basi c_shape()

proc basi c_shape()
soma { pt 3dcl ear() t 3dadd(0, O,
api cal {pt 3dcl ear(gJ pt 3dadd( 15,
basil ar {pt3dcl ear() pt3dadd(O0,
axon {pt3dcl ear() pt3dadd(0O, O,

1) pt3dadd(15, 0, 0, 1)}

0, 1) pt3dadd(75, 0, 0, 1)}
0, 1) pt3dadd(-29, 30, 0, 1)}
1) pt3dadd(-74, 0, 0, 1)}

cooo

objref all, has_HH no HH

proc subsets() { local i
objref all, has_ HH no HH
all = new SectionLi st ()

soma al | . append()
api cal all.append()
basilar all. append()
axon al | . append()

has_HH = new Sect i onLi st ()

sorma has_HH append()
axon has_HH append()
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no_HH = new Secti onLi st ()
api cal no_HH append()
} basi | ar no_HH append()

proc geont)
forsec all {
soma{ L =30 diam=30 }
apical { L=600 diam=1 }
basilar { L =200 diam=2 }
}axon{ L =1000 diam=1 }

proc geomnseg() {
sona area(.5) // nake sure diamreflects 3d points
forsec all { nseg = int((L/(0.1*l anbda_f(100))+.9)/2)*2 + 1 }

proc biophys() {
forsec all {
Ra = 100
cm=1

forsec has HH {
insert hh
gnabar _hh = 0. 12
gkbar _hh = 0. 036

gl _hh = 0. 0003
el_hh =-54.3
forsec no HH {
insert pas
g_pas = 0. 0002
e pas = -65
}
}
access sona
cel | def ()

Listing 6.2. The contents of cel | . hoc, afile generated by exporting data from
the CellBuilder that was used in Chapter 1 to implement the model specified in
Table 6.1 and 2 and shown in Fig. 6.1.

So we skip over the definition of pr oc cel | def () to find the first statement that is
executed:

create sona, apical, basilar, axon

Nothing too obscure about this. Next we jump over the definitions of two more pr ocs
(the temptingly smplet opol () and theslightly puzzling basi c_shape() ) before
encountering a declaration of three obj r ef s(see Chapter 13: Object oriented
programming)

objref all, has_HH no HH
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that are clearly used by the immediately following pr oc subset s() (what doesit do?
patience, all will bereveded. . .).

Finally at the end of the file we find a declaration of the default section, and then the
procedurecel | def () iscalled.
proc cel I def () {
topol ()
subset s()
geonf)
bi ophys()
geom nseg()

}

Thisisthe master procedure of thisfile. It invokes other procedures whose names remind
us of that familiar sequence "topology, subsets, geometry, biophysics' before it ends with
the eponymic geom nseg() . Using cel | def () asour guide, we can skim through the
rest of the procedures.

e topol () first connects the sections to form the branched architecture of our model,
and then it callsbasi c_shape() . Thelatter uses pt 3dadd statements that are based
on the shape of the stick figure that we saw in the CellBuilder itself. This establishes
the orientations (angles) of sections, but the lengths and diameters will be superseded
by statementsin geon() , which is executed later.

e subsets() usesSecti onLi st stoimplement the three subsets that we defined in
the CellBuilder (al | , has_HH, no_HH).

e geom() specifiesthe actual physical dimensions of each of the sections.
e bi ophys() establishesthe biophysical properties of the sections.

e geom nseg() appliesthe discretization strategy we specified, which in this caseisto
ensure that no segment islonger than 0.1 times the length constant at 100 Hz (see The
d_lambda rule in Chapter 5). This procedure is last to be executed because it needs
to have the geometry and biophysical properties of the sections.

Instrumenting a model with hoc

The next part of exanpl e. hoc contains The strategy for dealing with synapses
statements tha.t set L_Jp a W”ap?' Cl npgt and depends on the nature of the model. They
create agraphical display of simulation results aretreated as part of the instrumentation in

(Listing 6.3). The synapse and the graph are cellular and subcellular models, and thereis
specific instances of the Al phaSynapse and indeed a sense in which they can be

G aph classes, and are managed with object regar ?ﬁﬁi"nphys O;Oagtlh‘;a':gﬁe‘?”s" of
Syntax (See Chapter 13). The _synap_se Is placed Synapses betvx?egﬁp%ells ina network' model
at the middle of the sona and is assigned the are clearly intrinsic to the biological
desired time constant, peak conductance, and system. Thisdifference is reflected in the
reversal potential. The graph will be used to GUI tooals for constructing models of

show the time course of soma. v( 0. 5) , the individual cells and networks.

somatic membrane potential.
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(00 rrrrrrrd
/* i nstrument ati on */
(00 rrrrrird

[111] synaptic input ////

objref syn

soma syn = new Al phaSynapse(0.5)
syn.onset = 0.5

syn.tau = 0.1

syn. gmax = 0.05

syn.e =0

/1] graphical display ///
objref g

g = new G aph()

g.si ze(0, 5, -80, 40)

g. addvar ("soma. v(0.5)",

The NEURON Book: Chapter 6

1, 1, 0.6, 0.9, 2)

Listing 6.3. The second part of exanpl e. hoc specifies the instrumentation

used to stimulate and monitor our mode!.

Setting up simulation control with hoc

The code in the last part of exanpl e. hoc controls
the execution of simulations. This code must
accomplish many tasks. It must define the size of the
time step and the duration of asimulation. It also has
to initialize the smulation, which means setting time
to 0, making membrane potential assume its proper
initial value(s) throughout the model, and ensuring that
all gating variables and ionic currents are consistent
with these conditions. Furthermore, it has to advance
the solution from beginning to end and plot the
simulation results on the graph. Finaly, if interactive
use isimportant, initializing and running simulations
should be as easy as possible.

Setting up simulation control isa
recurring task in developing
computational models, and much
effort can be wasted trying to
reinvent the wheel. For didactic
purposes, in this example we
create our own simulation control
code de novo. However, itis
always far more efficient to use the
powerful, customizable functions
and proceduresthat are built into
NEURON's standard run system
(see Chapter 7).

The code in Listing 6.4 accomplishes these goals for our ssimple example. Smulation
initialization and execution are generally performed by separate procedures, as shown
here; the sole purpose of the final procedure isto provide the minor convenience that
simulations can be initialized and executed by merely typing the command go() at the

oc> prompt.

The first three statementsin Listing 6.4 specify the default values for the time step,
simulation duration, and initial membrane potential. However, initialization doesn't
actualy happen until you invokethei niti al i ze() procedure, which contains
statements that set time, membrane potential, gating variables and ionic currentsto their
proper initial values. The main computational loop that executes the ssimulation (whi | e

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved
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(t<tstop) { } )isintheintegrate() procedure, with additional statements that
make the plot of somatic membrane potential appear in the graph.
(EEEEErEErrrrrrrirrrrrrr

/* simulation control */
(00 rrrrrrrd

dt = 0.025
tstop = 5
v _init = -65

proc initialize() {
t =0
finitialize(v_init)
fcurrent ()

pr oc éntegrate() {
. begin
ghilg (gltstop) {
fadvance()

g. plot(t)
g. fl ush()

proc go()
initialize()
i ntegrate()

Listing 6.4. Thefinal part of exanpl e. hoc providesfor initialization and
execution of simulations.

Testing simulation control

Use NEURON to execute exanpl e. hoc (agraph should appear) and then type the
command go() (thisshould launch asimulation, and atrace will appear in the graph).
Change thevalue of v_i ni t to-60mV and repeat the simulation (at the oc> prompt type
v_ini t =-60, thentypego() ). When you are finished, type qui t () inthe interpreter
window to exit NEURON.

Evaluating and using the model

Now that we have aworking model, we are aimost ready to put it to practical use. We
have already checked that its sections are properly connected, and that we have correctly
specified their biophysical properties. Although we based the number of segments on
nseg generated by the CellBuilder using thed_lambda rule, we have not really tested
discretization in space or time, so some exploratory simulations to evaluate the spatial
and temporal grid are advisable (see Chapter 4 and Choosing a spatial grid in
Chapter 5). Once we are satisfied with its accuracy, we may be interested in improving
simulation speed, saving graphical and numerical results, automating simulations and
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data collection, curve fitting and model optimization. These are somewhat advanced
topicsthat we will examine later in thisbook. The remainder of this chapter is concerned
with practical strategies for working with models and fixing common problems.

Combining hoc and the GUI

The GUI tools are arelatively "recent” addition to NEURON (recent is arelative term
in a fast-moving field--would you believe 1995?) so many published models have been
implemented entirely in hoc. Also, many long-time NEURON users continue to work
quite productively by developing their models, instrumentation, and simulation control
exclusively with hoc. Often the resulting software is elegantly designed and implemented
and servesits original purpose quite well, but applying it to new research questions can
be quite difficult if significant revision is required.

Some of this difficulty can be avoided by generic good programming practices such
as modular design, in particular striving to keep the specifications of the model,
instrumentation, and simulation control separate from each other (see Elementary
project management below). Thereis also alarge class of problemsthat would require
significant programming effort if one starts from scratch, but which can be solved with a
few clicks of the mouse by taking advantage of existing GUI tools. But what if you don't
see the NEURON Main Menu toolbar, or (as often happens when you first start to work
with a"legacy” model) you do see it but many of the GUI tools don't seem to work?

No NEURON Main Menu toolbar?

Thisis actually the easiest problem to solve. At the oc> arngui also loads the
prompt, type the command | oad_fi I e("nrngui . hoc") and | gandard run library
the toolbar should quickly appear. If you add this statement to
the very beginning of the hoc file, you'll never have to bother with it again.

The toolbar will always appear if you use nr ngui toload ahoc file. Onthe Mac this
is what happens when you drag and drop ahoc file onto the nr ngui icon. Under
M SWindows you would have to start NEURON by clicking on its desktop nr ngui icon
(or on the nr ngui itemin the Start menu's NEURON program group), and then use
NEURON Main Menu / File / load hoc to open the the hoc file. UNIX/Linux users can
justtypenr ngui fil ename at the system prompt.

However, even if you see the toolbar, many of the GUI tools will not work if the hoc
code didn't define a default section.

Default section? We ain't got no default section!

No badges, either. But to make full use of the GUI tools, you do need a default
section. To see what happens if there isn't one, let's add a second synapse to the
instrumentation of our example as if we were modeling feedforward inhibition. We could
do this by writing hoc statements that define another point process, but this time let's use
the GUI (see 4. Instrument the model. Signal sources in Chapter 1).
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First, change exanpl e. hoc by adding the statement
| oad_file("nrngui.hoc")

at the very beginning of the file. Now when NEURON executes the commandsin
exanpl e. hoc, the first thing that happensis the GUI UNIX/Linux users can go back to
library isloaded and the NEURON Main Menu tool bar typing nrngui exanpl e. hoc.

appears.
But NEURON Main Menu / Tools / Point Processes / Managers / Point Manager

doesn't work. Instead of a PointProcessManager we get an error message that thereis
"no accessed section” (Fig. 6.2). What went wrong, and how do we fix it?

= MEURON M =] E3

Mo accessed section: Can't start a Point Process Manager

Fig. 6.2. A useful error message.

Many of the GUI tools, such as voltage graphs, shape plots, and point processes, must
refer to aparticular section at the moment they are spawned. This is because sections
share property names, such asL and v. Remember the statement we used to create a point
processin exanpl e. hoc:

soma syn = new Al phaSynapse(0.5)

This placed the newly created synapse at the 0.5 location on a particular section: the
soma. But we're not writing hoc statements now; we're using agraphical tool (the
NEURON Main Menu) to create another graphical tool that we will use to attach a point
process to a section, and the NEURON Main Menu has no way to guess which section
we're thinking about.

The way to fix this problem is to add the statement
access som

to our model description, right after the cr eat e _ _
statement. The access statement defines the default If there are many sections, which
section (see Which section do we mean? in one should be the default section?
; . A good rule of thumb isto pick a
Chapter 5). If we assign membrane properties or attach | conceptually privileged section
apoint process to amodel, the default section is that will get most of the use. The
affected unless we specify otherwise. And if we usethe | somaisgenerally agood choice.
GUI to create a plot of voltage vs. time, v at the middle

of the default section is automatically included in the list of things that are plotted.
So click on the "Continue" button to dismiss the error message,

quit NEURON, add the access sonm statement to Sclertific question:
- o . can you explain the
exanpl e. hoc, and try again. Thistime it works. Configure the effect of the
PointProcessManager to be an AlphaSynapse with onset = inhibitory synapse's
0.5 ms, tau = 0.3 ms, gmax = 0.04 uS, and e =-70 mV and type tau on cell firing?
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go() torunasimulation. Run a couple more smulations with tau = 1 msand 3 ms. Then
exit NEURON.

Strange Shapes?

The barbed wire model

In Chapter 1 we mentioned that the 3-D method for specifying geometry can be used
to control the appearance of amodel in a Shape plot. The benefits of the 3-D method for
model s based on detailed morphometric data are readily appreciated: the direct
correspondence between the anatomy of the cell as seen under a microscope, and its
representation in a Shape plot, can assist conceptual clarity when specifying model
properties and understanding simulation results. Perhaps less obvious, but no lessredl, is
the utility of the 3-D method for dealing with more abstract models, whose geometry is
easy enough to specify interms of L and di am We hinted at this in the walkthrough of
the hoc code exported by the CellBuilder, but afew examples will proveits value and at
the same time help prevent misapplication and misunderstanding of this approach.

Suppose our conceptual model isacell with an apical dendrite that givesriseto 10
oblique branches along its length. For the sake of visual variety, we will have the lengths
of the obliques increase systematically with distance from the soma. Listing 6.5 presents
an implementation of such amodel using L and di amto specify geometry. The apical
trunk is represented by the proximal section api cal and the sequence of progressively
more distal sectionsap[ 0] - ap[ NDEND- 1] . With our mind's eye, aided perhaps by dim
recollection of Ramon y Cgjal's marvel ous drawings, we can visualize the apical trunk
stretching away from the somain amore or less straight line, with the obliques coming
off at an angleto one side.

I111111 topology /1111111
NDEND = 10

create somm, apical, dend[ NDEND], oblique[ NDEND]
access somm

connect apical (0), som(1)

connect ap[0](0), apical (1)

connect oblique[0](0), apical (1)

for i=1, NDEND- 1 {
connect ap[i](0), ap[i-1](1)
connect obliquel[i]( ) dend[i-1] (1)

}
[111111 geonmetry [/11111]

soma { L = 30 diam= 30 }
apical { L =3 diam=5}
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for i =0, NDEND- 1 {
ap[i] { L = 15 diam= 2 }
oblique[i] { L = 15+5*i diam= 1 }

Listing 6.5. Implementation of an abstract model that has a moderate degree of
dendritic branching using L and di amto specify geometry.

But executing this code and bringing up a Shape plot (e.g. by NEURON Main Menu /
Graph / Shape plot) produces the results shown in Figure 6.3. So much for our mind's
eye. Where did all the curvature of the apica trunk come from?

This violence to our imagination stems from the fact that stylized specification of
model geometry says nothing about the orientation of sections. At every branch point,
NEURON's internal routine for rendering shapes makes its own decision, and in doing so
it follows a ssmple rule: make a fork with one child pointing to the left and the other to
the right by the same amount relative to the orientation of the parent. Models with more
complex branching patterns can look even stranger; if the detailed architecture of ared
neuron istranslated to simple hoc statements that assert nothing more than connectivity,
length, and diameter, the resulting Shape may resemble atangle of barbed wire.

Fig. 6.3. Shape plot rendering of the model produced by the codein Listing 6.5.
To help indicate the location of the soma section, Shape Style: Show Diam was
enabled.

To gain control of the graphical appearance of our model, we must specify its
geometry with the 3-D method. Thisisillustrated in Listing 6.6, where we have
meticulously used absolute (x,y,z) coordinates, based on the actual location of each
section, as arguments for the pt3dadd() statements. Now when we bring up a Shape plot,
we get what we wanted: a nice, straight apical trunk with oblique branches coming off to
oneside (Fig. 6.4).

[T geometry /1111111
forall pt3dclear()
soma {

pt 3dadd(0, 0, 0, 30)
pt 3dadd(30, 0, 0, 30)

api cal
pt 3dadd(30, 0O, 0, 5)
pt 3dadd(60, O, 0, 5)
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for i=0, NDEND-1 {
ap[i] { |

pt 3dadd(60+i *15, 0, 0, 2)

pt 3dadd(60+(i +1)*15, 0, 0, 2)

L. :
oblique[i]

pt 3dadd(60+i *15, 0, 0, 1)
pt 3dadd(60+i *15, -15-5%i, 0, 1)

Listing 6.6. Specification of model geometry using the 3-D method. This
assumes the same model topology as shown in Listing 6.5.

il

Fig. 6.4. Shape plot rendering of the model when the geometry is specified
using the 3-D method shown in Listing 6.6.

Although we scrupuloudly used absolute (x,y,z) coordinates for each of the sections,
we could have saved some effort by taking advantage of the fact that the root section is
treated as the origin of the cell with respect to 3-D position. When any section's 3-D
shape or length changes, the 3-D information of al child sectionsistranslated to
correspond to the new position. Thus, if the somais the root section, we can move an
entire cell to another location just by changing the location of the soma. Another useful
implication of thisfeature allows us to simplify our model specification: the only
pt 3dadd() statements that must use absolute coordinates are those that belong to the
root section. We can use relative coordinates for all child sections, instead of absolute
(x,y,2) coordinates, aslong as they result in proper length and orientation (see
Listing 6.7).

111111 geometry /1111111
forall pt3dclear()

soma {
pt 3dadd(0, 0, 0, 30)
pt 3dadd(30, O, 0, 30)

api cal
pt 3dadd(0, 0, 0, 5)
pt 3dadd(30, O, 0, 5)
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for i=0, NDEND-1 {
ap[i] {

pt 3dadd(0, 0, 0, 2)

pt 3dadd(15, 0, 0, 2)

}
oblique[i] {
pt 3dadd(0, 0, 0, 1)
pt 3dadd(0, -15-5*i, 0, 1)

Listing 6.7. A smpler 3-D specification of model geometry that relies on the
absol ute coordinates of the root section and relative coordinates of all child
sections. Compare the (x,y,z) coordinatesin the pt 3dadd() statementsfor
api cal , ap, and obl i que withthosein Listing 6.6.

The case of the disappearing section

In Chapter 5 we mentioned that it is generally agood idea to attach the O end of a
child section to its parent, in order to avoid confusion. For an example of one particularly
vexing problem that can arise when this recommendation isignored, consider Listing 6.8.
Theaccess dend[ 0] statement and the argumentsto the pt 3dadd() statements
suggest that the programmer's conceptual model had the sections arranged in the left to
right sequence dend[ 0] - dend[ 1] - dend[ 2] . Notethat the 1 end of dend[ 0] is
connected to the 0 end of dend[ 1] , and the 1 end of dend[ 1] is connected to the O end
of dend[ 2] . Thismeansthat dend[ 2] , which is not connected to anything, is the root
section. From a purely computational standpoint thisis perfectly fine, and if we simulate
the effect of acurrent step applied to the 0 end of dend[ 0] , there will be an orderly
spread of charge and potential along each section fromits 0 end to its 1 end, with the
largest membrane potentia shift in dend[ 0] and the smallest indend[ 2] .

I111111 topology /1111111
NDEND = 3

creat e dend[ NDEND]
access dend| 0]

connect dend[0] (1), dend[1
connect dend[1] (1), dend[2

[111111 geonmetry [/11111]

[T

(0)
(0)

forall pt3dclear()

dend[ 0]
pt 3dadd(0, 0, 0, 1)
pt 3dadd(100, 0, 0, 1)

dend[ 1] {
pt 3dadd(100, 0, O, 1
pt 3dadd(200, O, O, 1
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dend[ 2] {
pt 3dadd(200, 0O, 0, 1)
pt 3dadd(300, 0, 0, 1)

Listing 6.8. The programmer's intent seems to be for dend[ 0] , dend[ 1] , and
dend[ 2] toline up from left to right. However, the connect statements make
dend[ 2] theroot section, and thereby hangs atale.

However, we'rein for asurprise when we bring up a PointProcessManager
(NEURON Main Menu / Tools / Point Processes / Managers / Point Manager) and try to
place an | O anp at different locations in this model. No matter where we click, we can
only put thel C anp ondend[ 0] or dend[ 2] (Fig. 6.5). Try aswe might to find it,
there just doesn't seem to be any dend] 1] !

But dend[ 1] readlly does exist, and we can easily prove this by invoking the

t opol ogy() function, which generates this diagram:

|- dend[ 2] (0- 1)

N dend[ 1] ( 1- 0)
Y dend[ 0] ( 1- 0)

This not only confirms the existence of dend[ 1] , but also showsthat dend[ 2] isthe
root section, with the 1 end of dend[ 1] connected to itsto the O end, and the 1 end of
dend[ 0] connected to the O end of dend[ 1] . Exactly as we expected, and just as
specified by the code in Listing 6.8.

PointProcessManager

SelectPointProcess | -
PointProcessManager
Show -
IClamp[0] SelectPointProcess |
at:dend[0](0.5) [Show |
IClamp|[0]
at:dend[2](0.5)
. e

Fig. 6.5. The code in Listing 6.8 produces a model that seems not to have a
dend[ 1] --or at least, we can't find dend[ 1] when wetry to usea
PointProcessManager to attach an 1 Cl anp toit.

But isn't something terribly wrong with the appearance of our model in the Shape
plot? Not at all. Although we might not likeit, the model looks exactly asit should, given
the statementsin Listing 6.8.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 19



The NEURON Book: Chapter 6 November 21, 2004

Here'swhy. Aswe mentioned above in The barbed wire model, the location of the
root section determines the placement of all other sections. Theroot sectionisdend[ 2] ,
and the pt 3dadd() statementsin Listing 6.8 placeits 0 end at (200, 0, 0) and its 1 end at
(300, 0, 0) (Fig. 6.6).

Sincedend[ 1] is attached to the O end of dend[ 2] , the first 3-D data point of dend[ 1]
is mapped to (200, 0, 0) (see 3-D specification in Chapter 5). According to the
pt 3dadd() statementsfor dend[ 1], itslast 3-D data point lies 100 pm to the right of its
first 3-D point. This meansthat the 1 end of dend[ 1] isat (200, 0, 0) and itsOend is at
(300, 0, 0) (Fig. 6.6)--precisely the locations of the left and right ends of dend[ 2] ! So
dend[ 1] and dend[ 2] will appear as the same line in the Shape plot. When we try to
select one of these sections by clicking on this line, the section we get will depend on the
inner workings of NEURON's GUI library. It just happens that, for the particular hoc
statementsin Listing 6.8, we can only select pointson dend[ 2] . Thisisasif dend[ 1] is
hidden from view and shielded from our mouse cursor.

Finally we consider dend[ 0] , whose 1 end is connected to the 0 end of dend[ 1] .
Thusitsfirst 3-D data point is drawn at (300, 0, 0), and, following its pt 3dadd()
statements, its last 3-D data point lies 100 um to the right, i.e. at (400, O, 0). Thus
dend[ 0] runsfrom (400, O, 0) (its 0 end) to (300, 0, 0) (its 1 end), whichisjust to the
right of dend[ 2] and the hidden dend[ 1] (Fig. 6.6).

So the mystery is solved. All three sections are present, but two are on top of each
other.

Thefirst lesson to take from this sad tale is the usefulness of t opol ogy() asa
means for diagnosing problems with model architecture. The second lesson is the
importance of following our recommendation to avoid confusion by connecting the O end
of achild section to its parent. The strange appearance of the model in the Shape plot
happened entirely because this advice was not followed. There are probably occasionsin
which it makes excellent sense to violate this simple rule; please be sure to let us know if

you find one.

dend[2] runs

fromhere | ... ... . to here

(its 0 end) (its 1 end) dend[0] runs

fromhere .......... to here

dendilruns \ 1 here | (its 1 end) (its 0 end)

(its 1 end) (its 0 end)

(200,0,0) (300,0,0) (400,0,0)

Fig. 6.6. Deciphering the pt 3dadd() statementsin Listing 6.8 leads usto
realize that we only see two sections in the Shape plot because two of them
(dend[ 1] and dend[ 2] ) aredrawn in the same place. This figure shows the
(x,y,z) coordinates of the sections and indicates their 0 and 1 ends.
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Graphs don't work?

If there is no default section, new graphs created with the GUI won't work properly.
Y ou've already seen how to declare the default section, so everything should be OK,
right? Let's see for ourselves.

Make sure that exanpl e. hoc startswith | oad_fi | e("nrngui . hoc") and
containsan access soma statement, and then use NEURON to execute it. Then follow
the steps shown in Fig. 1.27 (see Signal monitors in Chapter 1) to create a space plot
that will show membrane potential along the length of the cell. Now type go() . What
happens?

The graph of soma. v( 0. 5) shows an action potential, but the trace in the space plot
remains aflat line. |s there something wrong with the space plot, or does the problem lie
elsewhere?

To find out, use NEURON Main Menu / Tools / RunControl to bring up a RunControl
window. Click on the RunControl's Init & Run button. Result: thistime it's the space plot
that works, and the graph of soma. v( 0. 5) that doesn't (Init & Run should have erased
the trace in the latter and drawn a new one).

So there are actually two problems. The simulation control code in our hoc file can't
update new graphs that we create with the GUI, and the GUI's own simulation control
code can't update the "old" graph that is created by our hoc file. Of the many possible
ways to deal with these problems, oneisridiculoudy easy and another requires alittle
effort (but only avery little).

The ridiculously easy solution isto use the GUI to make a new graph that shows the
same variables, and ignore or throw away the old graph. In this example, resorting to
NEURON Main Menu / Graph / Voltage axis gets us a new graph. Since the sona isthe
default section, thev( . 5) that appears automatically in our new graph isredly
soma. v(0.5).

What if alot of programming went into one or more of the old graphs, so the GUI
tools offer nothing equivalent? This calls for the solution that requires a little effort:
specificaly, we add asingle line of hoc code for each old graph that needs to be fixed. In
this example we would revise the code that defines the old graph by adding the line
shown herein bold:

/1] graphical display ///

objref g

g = new G aph()

addpl ot (g, 0)

g.si ze(0, 5, -80, 40)

g. addvar ("soma.v(0.5)", 1, 1, 0.6, 0.9, 2)

Listing 6.9. Fixing an old graph so it works with NEURON's standard run
system.

This takes advantage of NEURON's standard run system, a set of functions and
procedures that orchestrate the execution of simulations (see Chapter 7). The statement
addpl ot (g, 0) addsg toalist of graphs that the standard run system automatically
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updates during the course of a simulation. The standard run system has many powerful

Also, the x-axis of our graph will be adjusted features and can be used in any simulation,

automatically when we changet st op (Tstop with or without the GUI. The statement

in the RunControl panel). NEURON's GUI load_file("stdrun.hoc") loadsthe

relies heavily on the standard run system, and hoc code that implements the standard run
. . e system, without loading the GUI.

every time we click on the RunControl's

Init & Run button we are actually invoking

routines that are built into the standard run system.

Does this mean that we have to abandon the simulation control code in our hoc
program, and does it matter if we do? The control codein exanpl e. hoc performsa
"plain vanilla" initialization and simulation execution, so abandoning it in favor of the
standard run system only makes things better by providing additional functionality. But
what if we want a customized initialization or some unusual flow of simulation
execution? Aswe shall see in Chapter 7, the standard run system was designed and
implemented so that only minor changes are required to accommodate most special
needs.

Conflicts between hoc code and GUI tools

Many of the GUI tools specify properties of the model or the interface, and this leads
to the possibility of conflicts that cause a mismatch between what you think isin the
computer, and what actually isin the computer. For example, suppose you use the
CellBuilder to construct amodel cell with asection called dend that hasdi am= 1 um,

L =300 um, and passive membrane, and you turn Continuous create ON. Then typing
dend psection() attheoc> prompt will produce something like this

oc>dend psecti on()
dend { nseg=11 L=300 Ra=80

i nsert pas { g_pas=0.001 e pas= 70}

(afew lines were omitted for clarity), which confirms the presence of the pas
mechanism.

A bit later, you decide to make dend active and get rid of its pas mechanism. You
could do this with the CellBuilder, but let's say you find it quicker just to type

oc>dend {uninsert pas insert hh}
and then confirm the result of your action with another psect i on()

oc>dend psecti on()
dend { nseg=11 L=300 Ra=80

insert hh { gnabar_hh=0.12 gkbar hh=0.036 gl _hh=0.0003 el hh=-54. 3}
insert na_ion { ena=50}
insert k ion { ek=77}

So far, so good.
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But check the Biophysics page of the CellBuilder, and you will see that the change
you accomplished with hoc did not track back into the GUI tool, which still shows dend
as having pas but not hh. Thisis particularly treacherous, because it is al too easy to
become confused about what is the actual specification of the model. If these new
biophysical properties|ead to particularly interesting simulation results, you might save
"everything" to a session file, thinking that you would be able to reproduce those results
in the future--but the session file would only contain the state of the GUI tools.
Completely absent would be any reflection of the fact that you had executed your own
hoc statement to override the CellBuilder's model specification.

And still more surprises are in store. Using the CellBuilder, with Continuous create
still ON, change dendritic diameter to 2 um. Now use psect i on() to check the
properties of dend

oc>dend psecti on()
dend { nseg=7 L=300 Ra=80

insert hh { gnabar_hh=0.12 gkbar hh=0.036 gl _hh=0.0003 el hh=-54. 3}
insert na_ion { ena=50}
insert k ion { ek=77}
insert pas { g pas=0.001 e pas= 70}
}
and you see that both pas and hh are present, despite the previous use of uni nsert to
get rid of the pas mechanism.

Similar conflicts can arise between hoc statements and other GUI tools (e.g. the
PointProcessManager) All of these problems have a common source: changes you make
at the hoc level are not propagated to the GUI tools, so if you then make any changes
with the GUI tools, it islikely that al the changes you
made with hoc statements will be lost. The lesson Conflicts may also occur between
here isto exercise great caution when combining GUI the CellBuilder and older GUI tools
tools and hoc statements, in order to avoid for managing section properties.
introducing potentially confusing conflicts.

Elementary project management

The example used in this chapter issimple so adl of its code fitsin asingle, small file
that can be quickly understood. Nonetheless, we were careful to organize exanpl e. hoc
in away that separates specification of the model per se from the specification of the
interface, i.e. the instrumentation and control procedures for running simulations. This
separation maximizes clarity and reduces effort, and it should begin while the model is
still in the conceptual stage.

Designing amodel starts by answering the questions: what anatomical features are
necessary, and what biophysical properties should be included? The answers to these
guestions govern key decisions about what what kinds of stimuli to apply, what kinds of
measurements to make, and how to display, record, and analyze these measurements.
When it isfinally time to implement the computational model, it isagood ideato try to
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keep these questions separate. Thisisthe way NEURON's graphical tools are organized,
and thisis the way models specified with hoc should be organized.

e First you create amodel, specifying its topology, geometry, and biophysics, either
with the CellBuilder or with hoc code. Thisis arepresentation of selected aspects of a
biological system, and you might think of it asavirtua experimental preparation.

e Then you instrument that model. Thisis analogous to applying stimulating and
recording electrodes and other apparatus to areal neuron or neura circuit in the
laboratory.

e Finally, you set up controls for running simulations.

Instrumentation and simulation controls are the user interface for exercising the
model. Metaphorically speaking, they amount to avirtual experimental rig. In awet lab,
noone would ever confuse a brain slice with the microscope or instrumentation rack. The
physical and conceptual distinction between biological preparation and experimental rig
them is an inescapabl e fact and has a strong bearing on the and execution of
experiments. NEURON lets you carry this separation over into modeling. Why confound
the code that defines the properties of amodel cell with the code that generates a stimulus
or governsthe sequence of eventsin asimulation?

One way to help separate model specification from user interface is to put the code
that defines them into separate files. One file, which we might call cel | . hoc, would
contain the statements that specify the properties of the model: its topology, geometry,
and biophysics. The code that defines point processes, graphs, other instrumentation, and
simulation controls would go into a second file that we might call ri g. hoc. Finally, we
would use athird file for purely administrative purposes, so that a single command will
make NEURON execute the other filesin proper sequence. Thisfile, which we might call
i ni t. hoc, would contain only the statements shown in Listing 6.10. Executing
i nit. hoc with NEURON will make NEURON load its GUI and standard run libraries,
bring up aNEURON Main Menu toolbar, execute the statementsin cel | . hoc to
reconstitute the model cell, and finally execute the statementsinri g. hoc to reconstitute
our user interface for exercising the model.

| oad_file("nrngui.hoc")

| oad_file("cell.hoc")
load _file("rig.hoc")

Listing 6.10. Contents of i ni t . hoc.

For instance, we could recast exanpl e. hoc in this manner by putting its model
specification component into cel | . hoc, while the instrumentation and simulation
control components would becomer i g. hoc. Thiswould allow usto reuse the same
model specification with different instrumentation configurationsri g1. hoc, ri g2. hoc,
etc.. To make it easy to select which rig is used, we could create a corresponding series of
init files(initl. hoc,init2. hoc, etc.) that differ only in the argument to the third
| oad_fil e() statement. Thisstrategy is not limited to hoc files, but can also be used to
retrieve cells and/or interfaces that have been constructed with the GUI and saved to
session (ses) files.
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Iterative program development

A productive strategy for program development in NEURON isto revise and
reinterpret hoc code and/or GUI tools repeatedly during the same session. Bugs afflict all
nontrivial programs, and the process of making incremental changes, saving them to
intermediate hoc or ses files, and testing at each step, reduces the difficulty of trying to
diagnose and eliminate them. In thisway it is possible begin with a program skeleton that
consists of one or two hoc fileswith ahandful of | oad_fi | e() statementsand function
stubs, and quickly refine it until everything works properly. However, two caveats do
apply.

First, avariable cannot be declared with a new type during the same session. In other
words, "once a scalar, alwaysascaar" (or double, or string, or object reference).
Attempting to redeclare a variable will produce an error message, e.g.

oc>x = 3
first instance of x
oc>obj ref x

[usr/local /nrn/i 686/ bin/nrniv: x already declared near |ine 2
objref x
N

oc>

Trying to redefine a double, string, or object reference as something else will likewise
fall. Thisis generally of little consequence, since it is rarely absolutely necessary to
change the type assigned to a particular variable name. When this does happen, you just
have to exit NEURON, make your changes to the hoc code, and restart.

The second caveat is that, once the hoc interpreter has parsed the code in atemplate
(see Chapter 13: Object-oriented programming), the classthat it definesis fixed for
that session. This means that any changes to a template require exiting NEURON and
restarting. The result is some inconvenience when developing and testing new classes,
but thisis still easier than having to recompile and link a program in C or C++.

References
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Chapter 8

How to initialize simulations

In most cases, initialization basically means the assignment of values at timet =0 for
membrane potential, gating states, and ionic concentrations at every spatial position in the
model. A model is properly initialized when clicking on the Init & Run button produces
exactly the same resullts, regardless of previous simulation history. Of course we assume
that model parameters have not changed between runs, and that any random number
generator has been re-initialized with the same seed so that it produces the same sequence
of "random" numbers. Models described by kinetic schemes require that each of the
reactant states be initialized to some concentration. If linear circuits are involved, initia
values must be assigned to voltages across capacitors and the internal states of
operational amplifiers. For networks and other models that use the event delivery system,
initialization aso includes specifying which events are in transit to their destinations at
time O (i.e. events generated, at least conceptually, at t < 0 for delivery at t = 0). Complex
models often have complex recording and analysis methods, perhapsinvolving counters
and vectors, and these may also need to be initialized.

State variables and STATE variables

In rough mathematical terms, if a system consists of n first order differential
equations, then initialization consists in specifying the starting values of n variables. For
the Hodgkin-Huxley membrane patch (only one compartment), these equations have the

form
%z fl(m,h,n,v) Eq. 8.1ad
%-T: f,(m,v)
%: f4(h,v)
%: f,(n,v)

so that, knowing the value of each variable at time t, we can specify the dope of each
variable at time t. We have already seen (Chapter 7) that integration of these equationsis
an iterative process in which the purpose of an individual integration step (f advance() )
isto carry the system from time t to time t + At using more or less sophisticated equations
of theform
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V(t+At) = v(t) + At % Eq. 8.2
dm(t*)

m(t+At) = m(t) + At "

where the sophistication isin the choice of a value of t* somewhere betweent and t + At.
However, regardless of the integration method, the iterative process cannot begin without
choosing starting values for v, m, h, and n. This choice is arbitrary over the domain of the
variables (-0 <v<o,0<m<1,...), but oncetheinitial v, m, h, and n are chosen, all
auxiliary variables (e.g. conductances, currents, d/dt terms) at that instant of time are
determined, and the equations determine the trgjectories of each variable forever after.
The actual evaluation of these auxiliary variables is normally done with assignment
statements, such as

gna = gnabar *nmfnfnth

ina = gna*(v - ena)
Thisiswhy the model description language NMODL designatesgna andi na as
ASS| GNED variables, as opposed to the gating variables m h, and n, which are the
dependent variables in differential equations and are therefore termed STATE variables.

Unfortunately, over time an abuse of notation has evolved so that STATE refers to any
variable that is an unknown quantity in a set of equations, and ASSI GNED refers to any
variable that is not a STATE or a PARAMVETER (PARAMETERs can be meaningfully set by
the user as constants throughout the simulation, e.g. gnabar ). Currently, within asingle
model description, STATE just specifies which variables are the dependent variables of
KI NETI C schemes, algebraic equationsin LI NEAR and NONLI NEAR blocks, or
differential equationsin DERI VATI VE blocks. Generally the number of STATESin a
model description isequal to the number of equations. Thus, locally in a model
description, the membrane potential v is never a dependent variable (the model
description contains no equation that solves for its value) and it cannot be regarded as a
user-specified value. Instead, it is declared in model descriptions as an ASSI GNED
variable, even though it is obviously a state variable at the level of the entire ssmulation.
This abuse of terminology also occurs in linear circuits, where the potential at every node
is an unknown to be solved and therefore a STATE. However, aresistive network does
not add any differential equation to the system (although it adds algebraic equations), so
those additional dependent variables do not strictly need to be initialized.

While STATE variables may be assigned any values whatever during initialization, in
practice only afew general categories of custom initialization are used. Some of these are
analogous to experimental methods for preparing a system for stimulation, e.g. letting the
system rest without experimental perturbation, or using a voltage clamp or constant
injected current to hold the system at a defined membrane potential--the ideais that the
system should reach an unchanging steady state independent of previous history. Itis
from this steady state that the simulation begins at timet = 0. When there is no steady
state, as for oscillating or chaotic systems, whatever initialization is ultimately chosen
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will need to be saved in order to be able to reproduce the smulation. More complicated
initializations involve finding parameters that meet certain conditions, such as what value
of some parameter or set of parameters yields a steady state with a desired potential.
Some initial conditions may not be physically realizable by any possible manipulations of
membrane potential. For example, with the hh model the h gating state has a steady state
of 1 at large hyperpolarized potentials and the n gating state has a steady state of 1 at
large depolarized potentials. It would therefore be impossible to reach acondition of h =
1 and n =1 by controlling only voltage.

Basic initialization in NEURON: finitialize()

Basic initialization in NEURON is accomplished withthefi ni tiali ze() function,
whichisdefined in nr n- x. x/ src/ nrnoc/ f advance. ¢ (UNIX/Linux). Thiscarries
out several actions.

1. t issetto 0 and the event queueis cleared (undelivered events from the previous run
are thrown away).

2. Variablesthat receive arandom stream (the list defined by Random pl ay()
statements) are set to values picked from the appropriate random distributions.

3. All internal structures that depend on topology and geometry are updated, and chosen
solvers are made ready.

4. The controller for Vect or . pl ay() variablesisinitialized. The controller makes use
of the event delivery system for Vect or . pl ay() specificationsthat define transfer
times for a step function in terms of dt or atime Vect or .

Eventsat timet =0 (e.g. appropriate Vect or . pl ay() events) are delivered.

5. Iffinitialize() wascalledwith anargument v_i ni t, the membrane potential v
in every compartment is set to the value v_i ni t with a statement equivalent to

forall for (x) v(x) = v_init

6. Thel NI TI AL block of every inserted mechanism in every segment of every section is
called. Thisincludes point processes as well as distributed mechanisms (see | NI Tl AL
blocks in NMODL later in this chapter). The order in which mechanisms are
initialized depends on whether any mechanism has a USEI ON statement or WRI TES an
ion concentration.

lon initialization is performed first, including calculation of equilibrium potentials.
Then mechanismsthat WRI TE an ion concentration are initialized; this necessitates
recal culation of the equilibrium potentials for any affected ions. Finally, al other
mechanism | NI TI AL blocks are called.

Apart from these constraints, the call order of user-defined mechanismsis currently
defined by the alphabetic list of nod file names or the order of the nod file arguments
to nrni vnodl (or mknr ndl I ). However one should avoid sequence-dependent

I NI TI AL blocks. Thusif thel NI TI AL block of one mechanism needs the values of
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variables another mechanism, the latter should be assigned beforefini tiali ze() is
executed.

If extracellular mechanisms exist, their vext states are initialized to O before any other
mechanism isinitialized. Therefore, for every mechanism that computes an
ELECTRODE_CURRENT, v_i ni t refersto both the internal potential and the
membrane potential.

I NI TI AL blocks are discussed in further detail below.
7. Li near Mechani smgtates, if any, areinitialized.

8. Network connections areinitialized. This means that the | NI TI AL block inside any
NET_RECEI VE block that is atarget of aNet Con object is called to initialize the states
of the Net Con object.

9. Thel NI TI AL blocks may have initiated net _send events whose delay is 0. These
events are delivered to the corresponding NET_RECE! VE blocks.

10. If fixed step integration is being used, all mechanism BREAKPOINT blocks are
called (essentially equivalent to acall tof cur rent () ) inorder toinitialize all
assigned variables (conductances and currents) based on the initial STATE and
membrane voltage.

If any variable time step method is active, then those integrators are initialized. In this
case, if you desire to change any state variable (here "state variable" means variables
associated with differential equations, such as gating states, membrane potential,
chemical kinetic states, or ion concentrations in accumulation models) after
finitialize() iscalled, youmustthencall cvode. re_i nit () tonotify the
variable step methods that their copy of the initial states needs to be updated. Note that
initialization of the differential algebraic solver IDA consists of two very short (dt =

10°® ms) backward Euler time steps in order to ensure the validity of f (y',y)=0.
11. Vect or recording of variables using the list defined by cvode. r ecor d( &st at e,
vector) statementsisinitialized. Asdiscussed in Chapter 7 under The fixed step

methods: backward Euler and Crank-Nicholson, cvode. recor d() istheonly
good way of keeping the proper association between local step state value and local t .

12. Vect or sthat record avariable, and are in the list defined by Vect or. recor d()
statements, record the valuein Vect or . x[ 0] , if t = Oisarequested timefor
recording.

Default initialization in the standard run system:
stdinit() andinit()

The standard run system's default initialization takes effect when you enter anew
valuefor v_i ni t into the field editor next to the RunControl panel's Init button, or when
you press either RunControl panel's Init or Init & Run button. These buttonsdo not cal the
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i nit() proceduredirectly but instead execute a procedure called st di ni t () which has
the implementation

proc stdinit() {
realtime=0 // "run tinme" in seconds
startsw() /[l initialize run time stopwatch
setdt ()

init()

} initPlot()

set dt () ensures (by reducing dt , if necessary) that the points plotted fall on time step
boundaries, i.e. that 1/ (st eps_per _ns*dt) isaninteger. Theini t Pl ot () procedure
begins each plotted lineat t = 0 with the proper y value.

Thedefaulti ni t () procedureitselfis

proc init() {
finitialize(v_init)
User-specified custom zati ons go here.
If this invalidates the initialization of
variable time step integration and vector recording,
uncomrent the foll ow ng code.

—_——— — — —
TR e e e

(cvode. active()) {
cvode.re_init()

} else {

fcurrent ()

i;ecord_init()

}
Custom initialization is generally accomplished by inserting additional statements after
thecall tofini tiali ze(). These statements often have the effect of changing one or
more state variables, i.e. variables associated with differential equations, such as gating
states, membrane potential, chemical kinetic states, or ion concentrations in accumulation
models. Thisinvalidates the initialization of the variable time step integrator, making it
necessary to call cvode. re_i ni t () tonotify the variable step integrator that its copy of
theinitia states needsto be updated. If instead fixed step integration is being used,
fcurrent () should be called to make the values of conductances and currents
consistent with the new states. Changing state variables after callingfini tiali ze()
can also cause incorrect values to be stored as the first element of recorded vectors.
Addingfrecord_init() totheendofinit () preventsthis.

| NI TI AL blocks in NMODL

I NI TI AL blocksfor channel models generally set the gating states to their steady
state values with respect to the present value of v. Hodgkin-Huxley style models do this
easly and explicitly by calculating the voltage sensitive a pha and betarates for each
gating state and using the two state formulafor the steady state, e.g.
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PROCEDURE rates(v(mv)
/ (al

m nf = al pha(v)/(a |)oh£1(v) + beta(v))

}
and then
I NITIAL {
rates(v)
m = m nf
}

When channel models are described by kinetic schemes, it is common to calculate the
steady states with the idiom

INITIAL {
SCLVE schene STEADYSTATE sparse
}

where schene isthe name of aKl NETI C block. To place thisin an amost complete
setting, consider thisimplementation of a three state potassium channel with two closed
states and an open state:

NEURON {
USEl ON k READ ek WRITE ik

}
STATE { c1 c2 o}
INITIAL {
SCLVE schene STEADYSTATE sparse
}
BREAKPO NT {

SCLVE schene METHCD sparse
ik = gbar*o*(v - ek)

KI NETI C schene {
rates(v) : calculate the 4 k rates.
~cl <->c2 (k12, k21)
~c2 <-> o0 ( k20, ko2)

}
(ther at es() procedure and some minor variable declarations are omitted for clarity).
As mentioned earlier in Default initialization in the standard run system: st di ni t ()
and i ni t (), wheninitialization has been customized so that states are changed after
finitialize() hasbeencaled,itisgeneraly useful to call thef current () function
to make the values of al conductances and currents consistent with the newly initialized
states. In particular thiswill call the BREAKPO NT block (twice, in order to compute the
Jacobian (di/dv) elements for the voltage matrix equation) for all mechanismsin all
segments, and on return the ionic currents such asi na, i k, andi ca will equal the
corresponding net ionic currents through each segment.

Page 6 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 28, 2004 The NEURON Book: Chapter 8

Default vs. explicit initialization of STATEs

In model descriptions, a default initialization of the STATES of the model occurs just
prior to the execution of the | NI TI AL block. However, this default initialization is rarely
useful, and one should always explicitly implement an | NI TI AL block. If the name of a
STATE variableis st at e, then there is also an implicitly declared parameter called
st at 0. The default value of st at e0 is specified either in the PARAMETER block

PARAVETER {
state0 = 1

or implicitly in the STATE declaration with the syntax

STATE {
state START 1

}

If aspecific value for st at e0 isnot declared by the user, st at e0 will be assigned a
default value of 0. st at e0 isnot accessible from the interpreter unlessit is explicitly
mentioned in the GLOBAL or RANGE list of the NEURON block. For example,

NEURON {

GLCBAL nD
RANGE hO

}
specifiesthat every mwill be set to the single globa nD value during initialization, while
h will be set to the possibly spatially-varying h0 values. Clarity will be served if, in using
the st at e0 idiom, you explicitly usean | NI TI AL block of the form

I NITIAL {
m= D
h = hO
n = no

}

lon concentrations and equilibrium potentials

Each ion type is managed by its own separate ion mechanism, which keeps track of
the total membrane current carried by the ion, itsinternal and external concentrations,
and its equilibrium potential. The name of this mechanism is formed by appending the
suffix _i on to the name of the ion specified in the USElI ON statement. Thusif cai and
cao are integrated by amodel that declares

USEl ON ca READ ica WRI TE cai, cao
there would also be an automatically created mechanism called ca_i on, with associated
variablesi ca, cai , cao, and eca. Theinitial values of cai and cao are set globally to
thevauesof cai 0_ca_i on and cao0_ca_i on, respectively (see Initializing
concentrationsin hoc below).
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Prior to version 4.1, model descri ptions Since calcium currents, concentrations, and

could not initialize concentrations, or at equilibrium potential s are managed by the
least it was very cumbersome to do so. ca_i on mechanism, one might reasonably ask
Instead, the automatically created ion why we can refer to the short namesi ca, cai ,
mechanism would initiaize the ionic cao and eca, father than the longer forms that
. - include the suffix _i on, i.e.ica_ca_i on €c..
Concen_trat' on adjacent _tO the membrane The answer isthat there is unlikely to be any
according to global variables. The reason mistake about the meaning of i ca, cai , . .. S0
that model mechanisms were not allowedto | we might aswell take advantage of the
specify ion variables (or other potentially convenience of using these short names.

shared variables such ascel si us) was that
confusion could result if more that one mechanism at the same location tried to assign
different values to the same variable. The unintended consequence of this policy is
confusion of adifferent kind, which happens when a model declares an ion variable, such
asena, to be aPARAMETER and attempts to assign avaue to it. The attempted
assignment has no effect, other than to generate awarning message. Consider the
mechanism

NEURON {

SUFFI X t est
USElI ON na READ ena

}

PARAMETER {
ena = 25 (nV)

When this model istranslated by nr ni vnod| (or nknr ndl | ) we see

$ nrnivrodl test. nod
Transl ating test.nod into test.c
Warni ng: Default 25 of PARAMETER ena will be ignored and set by NEURON.

and use of the model in NEURON shows that the value of ena isthat defined by the
na_i on mechanism itself, instead of what was asserted inthet est model.
$ nrngui

Addftional mechani sns fromfil es
t est. nod

oc>create soma
oc>access soma
oc>i nsert test
oc>ena

50

If we add the initialization

INITIAL {
printf("ena was %@\ n", ena)
ena = 30
printf("we think we changed it to %g\n", ena)

tot est . nod, we quickly discover that ena remains unchanged.
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oc>finitialize(-65)

ena was 50

we think we changed it to 30
1

oc>ena
50

It is perhaps not a good ideato invite dinersinto the kitchen, but the reason for this
can be seen from the careful hiding of the ion variables by making local copies of them in
the C code generated by the nocnod| trandator. Translation of the | NI TI AL block into a
model-specifici ni t nodel function isan almost verbatim copy, except for some trivia
boiler plate. However, fi ni ti al i ze() calsthisindirectly viathe model-generic
nrn_i ni t function, which can be seenin al its gory detail in the C file output from
nocnodl test.nod:

/***************************/

static nrn_init(_count, _nodes, _data, _pdata, _type_ignore)

int _count, _type_ignore; Node** _nodes; double** _data; Datum¥* _pdat a;
{ int _ix; double _v;
_p = _data; _ppvar = _pdat a;

#f _CRAY
#pragma _CR ivdep
#endi f

for (_Lix =0; _ix < _count; ++.ix) {
v = _nodes[ _i x]->_v;

]
V= v

ena = _ion_ena;
i ni tmodel (_ix);
}

/***************************/

It suffices merely to call attention to the statement
ena = _ion_ena;

which shows the difference between the local copy of ena and the pointer to theion
variable itself. The model description can touch only the local copy and is unable to
change the value referenced by _i on_ena. Some old model descriptions circumvented
this hiding by using the actual reference to the ion mechanism variablesin the | NI TI AL
block (from a knowledge of the trandation implementation), but that was always
considered an absolutely last resort.

This hands-off policy for ion variables has recently been relaxed for the case of
modelsthat WRI TE ion concentrations, but only if the concentration is declared to be a
STATE and the concentration isinitialized explicitly inan | NI TI AL block. Itis
meaningless for more than one model at the same location to specify the same
concentrations, and an error is generated if multiple models WRI TE the same
concentration variable at the same location.

If we try this mechanism

NEURON {
SUFFI X test?2
USEI ON na WRI TE na
RANGE nai O

}
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PARAMETER {
nai0 = 20 (mlli/liter)

STATE {
nai (mlli/liter)

INITIAL {
nai = nai 0
}

we get this result

oc>create soma
oc>access soma
oc>i nsert test2
oc>nai

10

oc>finitialize(-65)
1

oc>nai
20
oc>nai 0 test2 = 30
oc>finitialize(-65)
1

oc>nai
30

If thel NI TI AL block isnot present, the nai 0_t est 2 starting value will have no effect.

Initializing concentrationsin hoc

The best way to initialize concentrations depends on the design and intended use of
the model. One must ask whether the concentration is supposed to start at the same value
in al sections where the mechanism has been inserted, or should it be nonuniform from
the outset?

Take the case of a mechanism that WRI TES an ion concentration. Such a mechanism
has an associated global variable that can be used to initialize the concentration to the
same vaue in each section where the mechanism exists. These global variables have
default values for [Na], [K] and [Ca] that are broadly "reasonable” but probably incorrect
for any particular case. The default concentrations for ion names created by the user are
1 mM; these should be assigned correct valuesin hoc. A subsequent call to
finitialize() will usethisto initializeionic concentrations.

The name of the global variableis formed from the name of the ion that the
mechanism uses and the concentration that it WRI TES. For example, suppose we have a
mechanism kext that implements extracellular potassium accumulation as described by
Frankenhaeuser and Hodgkin (Frankenhaeuser and Hodgkin 1956). The kext
mechanism WRI TES ko, so the corresponding global variableisko0_k_i on. The
sequence of instructions

koO_k_ion = 10 Il seawater, 4 x default value (2.5)
kio k ion = 4*54.4 || 4 default value, preserves ek
finitialize(v_init) // v_init is the starting Vm
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will set ko to 10 mM and ki to 217.6 mM in every segment that has the kext
mechanism.

What if one or more sections of the model are supposed to have different initial
concentrations? For these particular sections we can use thei on_styl e() functionto
assert that the global variable is not to be used to initialize the concentration for this
particular ion. A complete discussion of i on_styl e(), itsarguments, and its actionsis
contained in NEURON's help system, but we will consider one specific example here.
Let's say we have inserted kext into section dend. Then the numeric argumentsin the
statement

dend ion_style("k_ion",3,2,1,1,0)

would have the following effects on the kext mechanism in the dend section (in
sequence): treat ko asa STATE variable; treat ek asan ASSI GNED variable; on call to
finitialize() usetheNernst equationto compute ek from the concentrations;
compute ek from the concentrations on every call to f advance() ; do not use
koO_k_i onor ki 0_k_i on toset theinitial values of ko and ki . The proper
initialization isto set ko and ki explicitly for this section, e.g.

koO_k ion = 10 // all sections start with ko = 10 nM

dend {ko = 5 ki = 2*54.4} [/ . . . except dend
finitialize(v_init)

Examples of custom initializations

Initializing to a particular resting potential

Perhaps the most trivial custom initialization isto force the initialized voltage to be
the resting potential. Returning our consideration to initialization of the HH membrane
compartment,

finitialize(-65)
will indeed set the voltage to -65 mV, and m h, and n will be in steady state relative to

that voltage. However, this must be considered analogous to a voltage clamp initialization
since the sum of all the currents may not be O at this potential, i.e. -65 mV may not be the

resting potential. For this reason it is common to adjust the equilibrium potential of the
leak current so that the resting potentia is precisely -65 mV.

This can be done with auser-defined i ni t () Remember to load user-defined
procedure based on the idea that total membrane versions of functions or
current at steady state must be 0. For our single procedures that are part of the
compartment HH model, this means that standard system, such asi ni t (),
— ; * ) after loading stdrun.hoc.
0 =ina+ik+gl_hh*(v - el_hh) Otherwise, the user-defined
So our customi ni t () is version will be overwritten.
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proc init(
finitiall

(-65

el _hh = (ina +
|

i

{
ze )
in I k
if (cvode. active()

cvode.re_init()
el se {

fcurrent ()

+ gl _hh*v)/gl _hh
Y ) {

frecord_init()

}

Thecvode. re_init () cal isnot essentia here since states have not been changed, but
itis still good practice since it will update the calculation of all the dstate/dt (note that
now dv/dt should be 0 as a consequence of the changein el _hh) aswell asinternally

makeacal tof current () (necessary because changing el _hh requires recalculation
of i I _hh).

Calculating the value of leak equilibrium potential in order to realize a specific
resting potential isnot fail-safe in the sense that the resultant value of el _hh may be very
large and out of its physiological range--after all, gl _hh may be avery small quantity. It
may sometimes be better to introduce a constant current mechanism and set its value so
that

O =ina+ ik +ica + i_constant
holds at the desired resting potential. An example of such a mechanismis

constant current for custominitialization

NEURON {
SUFFI X const ant
NONSPECI FI C_CURRENT i
RANGE i, ic

}

UNI TS {

} (my) = (mllianp)

PARAMETER {
ic =0 (mVcnR)

ASSI GNED {
i (MY cnR)

BREAKPO NT {
i =ic
}

and the corresponding custom i ni t () would be
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proc init() {
finitiallze(-65)
ic_constant = -(i
if (cvode. active(
cvode.re_init()
el se {
fcurrent ()

na + ik + il_hh)
))

+
{

frecord_init()

}

Before moving on to the next example, we should mention that testing is required to
verify that the system is stable at the desired v_i ni t , i.e. that the system returns to
v_i ni t after small perturbations.

Initializing to steady state

In Chapter 4 we mentioned that NEURON's default integrator uses the backward
Euler method, which can find the steady state of alinear system in asingle step if the
integration step size is large compared to the longest system time constant. Backward
Euler can aso find the steady state of many nonlinear systems, but it may be necessary to
perform severad iterationswith largedt . Ani ni t () that takes advantage of thisfactis

proc init() { |ocal dtsav, tenp
finitialize(v_init)

t = -1el0
dt sav = dt
dt = 1e9

/1 if cvode is on, turn it off to do large fixed step
tenp = cvode. active()

if (tenp!'=0) { cvode.active(0) }

while (t<-1e9) {

fadvance()

}
/] restore cvode if necessary
if (tenp!'=0) { cvode.active(l) }
dt = dtsav
t =0
if (cvode.active()) {
cvode.re_init()
} else {
fcurrent ()

frecord_init()

}

Thisfirst performs a preliminary "voltage clamp" initializationtov_i ni t . Then it sets
time to a very large negative value (to prevent triggering point processes and other
events) and integrates over several steps with alarge fixed dt so that the system can
reach steady state. The procedure wraps up by returning dt toitsoriginal value, setting t
back to O, and, if necessary, reactivating the variable step integrator. The last few
statements are the familiar re-initialization of cvode or invocation of f cur rent (),
followed by initialization of vector recording.
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Thisinitialization strategy generaly works well, but there are circumstances in which
it may fail. Active transport mechanisms can be troublesome with fixed time step
integration if dt islarge, because even asmall pump rate may produce a negative
concentration. To see a more mundane example of instability with large dt , construct a
single compartment model that has the hh mechanism. With the default hh parameters,
and in the absence of any injected current, thisis quite stable even for huge values of dt

(e.g. 10° ms). Now reduce gnabar _hh to 0, increase dt to 100 ms, and watch what
happens over the course of 5000 ms. The result is an oscillation whose peak-to-peak
amplitude gradually increasesto ~ 10 mV. It would be al to easy to miss such
oscillations when using steady state initialization with large steps. This underscores the
need for careful testing of any initialization strategy, since in asense all of them work
"behind the scenes."

Initializing to a desired state

Suppose the end of some run isto serve as theinitial condition for subsequent runs;
thisisaparticularly useful strategy for dealing with models that oscillate or otherwise
lack a"resting" state. We can save al the states with

objref svstate, f

svstate = new SaveState()
svst at e. save()

The binary state information can be saved for use in later neuron sessions with

f = new File("states.dat")
svstate.fwite(f)

and future sessions can read the file into the Save St at e object with

objref svstate, f
svstate = new SaveSt at e()
f = new File("states.dat")
svstate.fread(f)

Whether or not the state information comes from asvst at e. save() inthissession
or was read from afile, we only have to make aminor changetoi ni t () inorder to use
that information to initialize the system.

proc init()
finitialize(v_init)
svstate.restore()
t =0// t is one of the "states"”
if (cvode.active()) {

g}lgge{ re_init() This might be called a"groundhog
fcurrent () day initiaization," after the moviein

which the protagonist awakened to

frecord_init() the same day over and over again.

}

Now every ssimulation will start from the state that we saved earlier.
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Initializing by changing model parameters

Occasionaly theamisto bring amodel to aninitial condition that it would never
reach on itsown. This can be aparticular challenge if the model involves several
interacting nonlinear processes, making it difficult or impossible to know in advance
what values the states should have. Such problems can sometimes be circumvented by
changing the parameters of the model so that initialization reaches the desired state, and
then restoring the original parameters of the model.

As aspecific example, consider aconceptual model of the regulation of the calcium
concentration in athin intracellular compartment ("shell™) adjacent to the cell membrane

(Fig. 8.1). Calcium (Ca*?) can enter or leave the shell in one of three ways: by diffusion
between the shell and the core of the cell, by active transport via a membrane-bound
pump, or as aresult of non-pump calcium current I -, (i.e. transmembrane calcium flux

not produced by the pump). For the sake of simplicity, we will assume that Ca, . and

Ca, ([Ca*?] in the core and extracellular solution) are constant. However, the problems

that we encounter, and the manner in which we solve them, would be the same even if
Ca,,e and Ca, were allowed to vary.

Fig. 8.1. Schematic diagram of a model of regulation of [Ca*z] in athin shell
just inside the cell membrane.

Our gods areto:

1. initialize the internal calcium concentration next to the membrane [Ca*2] el
(hereafter called Cay ) to adesired vaue and then plot Cay ,, and the pump

current ICa as functions of time
pump

2. plot thestarting value of I, asafunction of theinitial Cay
pump

To achieve these goals, we must be able to set the initia value of Cag,, to whatever level
we want and ensure that the pump reaches its corresponding steady state.

Details of the mechanism
The kinetic scheme that describes this mechanism of calcium regulation is
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ks
e R
diffusion Cacore - Cashd Eqg. 8.3a
ks
kl
active transport Cayg,y + Pump ~ CaPump Eg.8.3bandc
(_
k2
k3
CaPump ~ Ca_+ Pump
(_
k4
1/2Fvol
calcium current Cagy < ~lo Eq. 8.3d

where T is the time constant for equilibration of Ca*2 between the shell and the core, Fis
Faraday's constant, and vol is the volume of the shell.

The NMODL code that implements this mechanismis

NEURON {
SUFFI X capnp
USEl ON ca READ cao, ica, cai WRITE cai, ica
} RANGE tau, width, cacore, ica, punpO
UNI TS {
(u n) = (mcron)
(molar) = (2/liter
(mv) = (mllinolar)
(uM = (mcronolar)
(mA) = (mllianp)
(ol ) = (1)
} FARADAY = (faraday) (coul onmb)
PARAMETER {
wdth = 0.1 (um
tau = 1 (ns) corresponds to D = 2e-7 cn®/s
: Dfor Cain water is 6e-6 cn2/s, i.e. 30x faster
kl = 5e8 [ Mt s)
k2 = 0. 25e6 /'s)
k3 = 0.5e3 (/s)
k4 = 5e0 (/ mvts)
cacore = 0.1 (uM
} punpO = 3e-14 (nol/cnR)

Page 16
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ASSI GNED {
cao (M) on the order of 10 niM
cai (mMV) : on the order of 0.001 nmM
ica (mA/ cni)
ica_pnp (md cnR)
} i ca_pnp_l ast (M cnR)
STATE {
cashell (uM <le- 6>
punp (rmol/cnm2) <le-16>
capunp (nmol/cn2) <le-16>
INITIAL {
ica =0
ica_pmp =0
ica_pnp_last =0
SOLVE pnp STEADYSTATE sparse
BREAKPO NT {
SOLVE pnp METHCD sparse
ica_pnmp_last = ica_pnp
ica = I1ca_pnp

KI NETI C pnp {

vol une/ unit surface area has di mensi ons of um
: area/unit surface area is di nensionl ess
COMPARTMENT wi dth {cashel |}
COVMPARTMENT (1e13) {punp capunp}
COMPARTMENT 1(un) {cacore}
COVPARTMENT (1e3)*1(unm) {cao}

CONSERVE
~ cacore
~ cashel
~ capunp

ica_pnmp =

ica_pnmp is the "new' val ue,
computed using the "ol d" value, i.e.

~ cashel |

cai = (0.

}

punp + capunp = (1el3)* punpO

<-> cashell (width/tau, w dth/tau)

+ punp <-> capunp ((le7)*kl, (1el0)*k2)
<-> cao + pu (1e10) *k3, (1lel0)*k4)
(le-7)*2* FARADAY* (f _flux - b_flux)

but cashel | be
i ca_pnp_| ast
<< (-(ica - ica_pnp_last)/(2* FARADAY) *(1e7))

001) *cashel |

nmust

Initializing the mechanism

For the sake of convenience we will assume that our model cell has only one section

called sonma, and that

sona isthe default section. Also suppose that we have aready

assigned the desired value of Cag,, to a parameter wewill call ca_i ni t, eg. witha

statement of the form

ca_init = someval ue. Our problemishow to ensure that

initialization makes cashel | _capnp takeonthevaueof ca_i nit.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved
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Asanaivefirst stab at this problem, we might try changing thei ni t () procedure

like this
proc ini
cashel
|

(
finitial

) |
capnp = ca_init
ize(v_init)

t
I
a

i.e. inserting aline that sets the desired value of Ca,, beforecallingfinitialize().

To see whether this has the desired effect, we need only to run a smulation and examine

the time course of Cay, and the pump current | ., . Thisquickly showsthat, no
pump
matter what value we first assign to cashel | _capnp, finitialize() drivesCagyy,

andl, tothesamesteady state levels (Fig. 8.2). We might have anticipated this
pump
result, because it iswhat steady state initialization is supposed to do. If Cay, istoo high,

the excess calcium will diffuse into the core or be pumped out of the cell until Cag,
returns to the steady state value. On the other hand, if Cay, istoo low, calcium will

diffuse into the shell from the core, and the pump will slow or may even reverse, until
Cay,q Comes back to the steady state value. Thus, regardiess of how we perturb Cay

steady state initialization always brings the model back to the same condition.

0.1 _ cashell_capmp 0.0002 _ ica
HM mA/cm?
0.08 0.00015 | _
0.06 |
le-04_
0.04
5e-05[_
0.02 |
0 | | l J 0 | | l J
0 5 10 15 20 0 5 10 15 20
ms ms

Fig. 8.2. Default initialization after setting cashel | _capnp to 0.1 pM leaves
Cayg (leftyand I,  (right) at their steady state levels of ~ 0.034 uM and
pump

~ 1.3 x 104 mA/cm?, respectively.
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For our second attempt wetry callingfi ni tiali ze() first, and then setting the
desired value of Cag,y,-

proc init()
finitialize(v_init)
cashell _capnp = ca_init
// we've changed a state, so the follow ng are needed
if (cvode.active()) {
cvode.re_init()
} else {
fcurrent ()

frecord_init()

}

Thisis partly successful, in that it does affect Cay,, and I, , but plots of these
pump
variables seem to start from the wrong initial conditions. For example, if we try
ca_init =0.1uM, the plot of cashel | _capnp appearsto start with avalue of
~0.044 pM instead. Using the Graph menu's Color/Brush to change the color and
thickness of the plots of cashel | _capnp andi ca, we discover the presence of early,
fast transients that overliethey axis (Fig. 8.3 top). Thuscashel | _capnp realy does
start at theright initial value, but in less than 5 microsecondsit drops by ~ 56%. So we
have solved one mystery only to uncover another: what causes these fast transients?

Some reflection brings the realization that, although we changed the concentration in
the shell, we did not properly initialize the pump. Consequently, as soon as we launch a
simulation, Ca*? starts binding to the pump, and this is responsible for the precipitous
drop of Cay,,- At the same time, the rate of active transport beginsto rise, whichis
reflected intheincrease of I -, . These changes produce the "pump transients’ in
pump

Cay g andl-, ,whichcanbequitelarge asFig. 8.3 shows.
pump
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0.1 _ cashell_capmp 0.0002 _ ica
HM mA/cm?
0.08
0.00015 k
0.06
le-04 |
0048
0.02 5e-05 |
0 | | | J 0 | | |
0 5 10 15 20 0 5 10 15 20
ms ms
0.1 _ cashell_capmp 0.0002 _ ica
uM mA/cm2
0.08
0.00015 7////”—
0.06 |
le-04 |
0.04 |
002 L 5e-05|_
0 | | | J 0 | | |
0 0.0025 0.005 0.0075 0.01 0 0.0025 0.005 0.0075 0.01
ms ms

Fig. 8.3. Time course of Cay,, (I€ft) and I,  (right) following an
pump

initialization that increased Cay,, abruptly after calling i ni t () . Thetracesin

the top figures were thickened to make the early fast transients easier to see.
The time scal e of the bottom figures has been expanded to reveal the details of

these fast transients. The final steady state levelsof Cay,, and I, arethe
pump
sameasin Fig. 8.2.

A strategy that does what we want is to change the value of cacor e_capnp to
ca_i nit and maket very fast beforecallingfi ni tiali ze() , then wrap up by
restoring the values of cacor e_capnp and T. This amounts to changing the model in
order to achieve the desired initialization. One example of such acustomi nit () is

Page 20

proc init() { |oca

savtau
to ca_init

savcore,
/'l make cacore equa
savcore = cacor e_capnp
cacore_capnmp = ca_init
/1 initialize cashel
savtau = tau_capnp
tau_capnp = le-6 // so cashel
finitialize(v_init)

to cacore

tracks cacore closely
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/'l restore cacore and tau
cacore_capnp = savcore
tau_capnp = savtau
if (cvode.active()) {
cvode.re_init()
el se {
fcurrent ()

frecord_init()

}
This code ensures that the difference between Cag,, and Ca,_, becomes vanishingly
small, and at the same time allows the pump to initialize properly (Fig. 8.4).

0.1 _ cashell_capmp 0.00052 _ica
UM mA/cm
0.08 0.0004
0.06 |- 0.0003 |
0.04 0.0002 |-
0.02 0.0001 |-
0 l | | J 0 L l | J
0 5 10 15 20 0 5 10 15 20
ms ms

Fig. 8.4. Following proper initialization, plots of Cay,, (left)and 1,  (right)
pump

begin at the correct values and do not display the early fast transient that
appeared in Fig. 8.3.

Now we can plot the starting value of |, asafunction of theinitial Cay,.
pump
Figure 8.5 shows a Grapher configured to do this. To make this a semilog plot, we used

an independent variable x to sweep ca_i ni t from 104 to 102 uM in 30 logarithmically
equally spaced intervals. For each value of x the Grapher calculated the corresponding

valueof ca_i nit as10%, called our customii ni t (), and plotted theresulting i ca_capnp
vs.1 0g10( cashel | _capnp) ,i.e l0g;,(Cay,y,)- Note that | og10( cashel | _capnp)

ranges from -4 to 2, which meansthat Ca,, ranges from 104 to0 102 pM, i.e. exactly the

same range of concentrationsasca_i ni t . Thisconfirmsthe ability of our cugsominit () to
set cashel | _capnp to the desired values.
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Fig. 8.5. A Grapher used to plot of I~
p

Grapher

Plot I Erase AIII

Indep Begini—4

Indep End f2

Steps l 30

Independent Var || x

ﬂ

log10(cashell_capmp)

ca_init=10"x init()

0,003  [cacapmp
mA/cm2 /
0.002

0001~

ump

Change Text was used to add the m&/ cn? label.
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Chapter 10

Synaptic transmission and artificial spiking cells

In NEURON, acell model isaset of differential equations. Network models consist
of cell models and the connections between them. Some forms of communication
between cells, e.g. graded synapses, gap junctions, and ephaptic interactions, require
more or less complete representations of the underlying biophysical mechanisms. In these
cases, coupling between cellsis achieved by adding terms that refer to one cell's variables
into equations that belong to a different cell. Thefirst part of this chapter describes the
PO NTER syntax that makes this possible in NEURON.

The same approach can be used for detailed mechanistic models of spike-triggered
transmission, which entails spike initiation and propagation to the presynaptic terminal,
transmitter release, ligand-receptor interactions on the postsynaptic cell, and
somatodendritic integration. However, it is far more efficient to use the widespread
practice of treating spike propagation from the trigger zone to the synapse as a delayed
logical event. The second part of this chapter tells how the Net Con (network connection)
class supports this event-based style of communication.

In the last part of this chapter, we use event-based communication to smplify
representation of the neurons themselves, creating highly efficient implementations of
artificial spiking cells, e.g. integrate and fire "neurons.” Artificia spiking cells are very
convenient sources of spike trains for driving synaptic mechanisms attached to
biophysical neuron models. Networks that consist entirely of artificial spiking cells run
hundreds of times faster than their biophysical counterparts, so they are particularly
suitable for prototyping network models. They are also excellent tools in their own right
for studying the functional consequences of network architectures and synaptic plasticity
rules. In Chapter 11 we demonstrate network models that involve various combinations
of biophysical and artificial neuron models.

Modeling communication between cells

Experiments have demonstrated many kinds of interactions between neurons, but for
most cells the principal avenues of communication are gap junctions and synapses. Gap
junctions and synapses generate localized ionic currents, so in NEURON they are
represented by point processes (see Point processes in Chapter 5, and Example 9.2: a
localized shunt and Example 9.3: an intracellular stimulating electrode in
Chapter 9).

The point processes used to represent gap junctions and synapses must produce a
change at one location in the model that depends on information (membrane potential,
calcium concentration, the occurrence of a spike) from some other location. Thisisin
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sharp contrast to the exampleswe discussed in | \;oddls with LONG TUDI NAL_DI FFUSI ON
Chapter 9, al of which are"loca" in the sense might also be considered "nonlocal," but
that an instance of a mechanism at a particular their dependence on concentration in
location on the cell depends only on the adjacent segments is handled automatically
STATEs and PARAVETERS of that model at that | 2 the NMODL transiator.

location. They may also depend on voltage and

ionic variables, but these also are at that location and automatically available to the
model. To see how to do this, we will examine models of graded synaptic transmission,
gap junctions, and spike-triggered synaptic transmission.

Example 10.1: graded synaptic transmission

A minimal conceptual model of graded synaptic transmission is that neurotransmitter
isreleased continuoudy at arate that depends on something in the presynaptic terminal,
and that this causes some change in the postsynaptic cell. For the sake of discussion, let's

say this something is [Ca?"] ore the concentration of free calcium in the presynaptic
terminal. We will also assume that the transmitter changes an ionic conductance in the

postsynaptic cell.
l S l c I ion
% Cn—=
E

1

<

Figure 10.1. Membrane potential in the immediate neighborhood of a
postsynaptic conductance depends on the synaptic current (1), the currents

through the local membrane capacitance and ionic conductances (I, and ;)
and the axial current arriving from adjacent regions of the cell (1)

From the standpoint of the postsynaptic cell, a conductance-change synapse might
look like Fig. 10.1, where g, E, and | ; are the synaptic conductance, equilibrium

potential, and current, respectively. The effect of graded synaptic transmission on the
postsynaptic cell is expressed in Equation 10.1.

C—dvm | =1 —(V_—EJ-g.(Ca%"] Eq. 10.1
m ot + lion=1a= (V= Eg) - gg(lCa pre) T
Thisisthe charge balance equation for the electrical vicinity of the postsynaptic region.
The terms on the left hand side are the usual local capacitive and ionic transmembrane
currents. The first term on the right hand side is the current that enters the postsynaptic
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region from adjacent parts of the cell, which NEURON takes care of automatically. The
second term on the right hand side expresses the effect of the ligand-gated channels. The
current through these channels is the product of two factors. The first factor is merely the
local electrochemical gradient for ion flow. The second factor is a conductance term that
depends on the calcium concentration at some other location.

We already know that a localized conductance isimplemented in NEURON with a
point process, and that such a mechanism is automatically able to access al the local
variables that it needs (in this case, the local membrane potential and the synapse's
equilibrium potential). But the calcium concentration in the presynaptic terminal is
nonlocal, and that poses a problem; furthermore, it islikely to change with every
fadvance().

We could try inserting ahoc statement like this into the main computational loop
sonmedendrite.syn. capre = precell.bouton.cai (1)

At each time step, this would update the variable capr e in the synaptic mechanism syn
attached to the postsynaptic section sonmedendr i t e, making it equal to the free calcium
concentration cai at the 1 end of the bout on section in the presynaptic cell pr ecel | .
However, this statement would have to be reinterpreted at each f advance( ) , which
might slow down the simulation considerably.

If what happensto th_e postsynaptic c_ell depgands onthe PO NTER Variables are not
moment-to-moment details of what is going on inthe limited to point processes.
presynaptic terminal, it isfar more efficient tousea Distributed mechanisms can
PO NTERvariable (see Listing 10.1). In NMODL, a al'so use POl NTERS, dthough
POl NTER variable holds a reference to another variable. possibly for very different
The specific referenceis defined by ahoc statement, aswe | PUPOS&
shall see below.

G aded synaptic transm ssion
NEURON {

PO NT_PROCESS GradSyn
PO NTER capre
RANGE e, k, g, i

} NONSPECI FI C_CURRENT i

UNI TS {
(nA) nanoanp)

mllivolt)

nm cr osi enens)

= (1/liter)

mllinolar)

QD
n_=mwni

e = (mV) : reversal potenti al
k = 0.02 (uS/ mvB)
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ASS| GNED {

v () |
capre (mM : presynaptic [Ca]

g (ug
i (nA)

Listing 10.1. gr adsyn. nod

The NEURON block

The PO NTER statement in the NEURON block declares that capr e refersto some
other variable that may belong to a noncontiguous segment, possibly even in a different
section; below we show how to attach this to the free calcium concentrationin a
presynaptic terminal. The synaptic strength is not specified by a peak conductance, but in

terms of a "transfer function scale factor" k, which has units of (US/mM3).

The BREAKPO NT block

The synaptic conductance g is proportional to the cube of capr e and does not
saturate. Thisis similar to the calcium dependence of synaptic conductance in a model
described by De Schutter et al. (1993).

Usage

After creating a new instance of the G adSyn point process, we link its PO NTER
variable to the variable at some other location we want it to follow with hoc statements,
eg.

objref syn
sonmedendrite syn = new G adSyn(0. 8)
set poi nter syn.cp, precell.bouton.cai(0.5)

The second statement attaches an instance of the G adSyn mechanism, called syn, to
sonedendr i t e. The third statement uses set poi nt er to assert that the synaptic
conductance of syn will be governed by cai inthe middle of asection called bout on
that is part of cell precel | . Of course this assumes that the presynaptic section
precel | . bout on contains a calcium accumulation mechanism.

Figure 10.2 shows ssimulation results from amodel of graded synaptic transmission.
In this model, the presynaptic terminal pr ecel | isal pm diameter hemisphere with
voltage-gated calcium current cachan (cachan. nod in c: nrnxx\ exanpl es\ nr ni v\ nnodl
under MSWindows or nr n-x. x/ shar e/ exanpl es/ nrni v/ nnodl under UNIX) and a
calcium accumul ation mechanism that includes diffusion, buffering, and a pump (cdp,
discussed in Example 9.9: a calcium pump). The postsynaptic cell isa passive single

compartment with surface area 100 pm?, C,=1 pf/cm?, and 7,=30ms. A G adSyn
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synapse with transfer function scale factor k = 0.2 uSYmM3 is attached to the postsynaptic
cell, and presynaptic membrane potential is driven between -70 and -30 mV by a sinusoid
with a period of 400 ms. The time course of presynaptic [Cal, and synaptic conductance

show clipping of the negative phases of the sine wave; the postsynaptic membrane
potential shows less clipping because of filtering by membrane capacitance.

preterm.v(0.5)

mv
-50
-70
0 400 800 1200
ms
preterm.cai(0.5)
0.06
mM
0.03
0
0 400 800 1200
ms
GradSyn[0].g9
5e-5
us
0 | |
0 400 800 1200
ms
postcell.v(0.5)
-30
mV
-50
-70
0 400 800 1200

ms

Figure 10.2. Graded synaptic transmission. Top two graphs: Presynaptic
membrane potential pr et er m v was "clamped" to -70-20cos(21t/400) mV/,
producing a periodic increase of [Ca]; (pr et er m cai isthe concentration just

inside the cell membrane) with clipping of the negative peaks. Bottom two
graphs: The synaptic conductance GradSyn[0].g shows even more clipping of
the negative phases of the sinusoid, but membrane capacitance smoothes the
time course of postsynaptic membrane potential.

Example 10.2: a gap junction

The current that passes through a gap junction depends on the moment-to-moment
fluctuations of voltage on both sides of the junction. This can be handled by a pair of
point processes on the two sides that use PO NTERs to monitor each other's voltage, asin
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sectionl gapl = new Gap(x1)

section2 gap2 = new Gap(x2)

set poi nter gapl.vpre, section2.v(x2)

set poi nter gap2.vpre, sectionl.v(x1l)
Conservation of charge requires the use of two point processes: one drains current from
one side of the gap junction, and the other delivers an equal current to the other side.

Listing 10.2 presents the NMODL specification of a point process that can be used to
implement ohmic gap junctions.
NEURON {
PO NT_PROCESS Gap
PO NTER vgap
RANGE r, |
NONSPECI FI C_CURRENT i

}
PARAVETER { r = 1e10 (negohm }

ASSI GNED {
v (mllivolt)
vgap (mllivolt)
i (nanoanp)

BREAKPONT { i = (v - vgap)/r }
Listing 10.2. gap. nod

This implementation can cause spurious oscillations if the coupling between the two
voltagesistoo tight (i.e. if the resistancer istoo low) because it degrades the Jacobian
matrix of the system equations. While it does introduce off-diagonal terms to couple the
nodes on either side of the gap junction, it fails to add the conductance of the gap junction
to the terms on the main diagonal. The result is an approximate Jacobian, which makes
numeric integration effectively a modified Euler method, instead of the fully implicit or
Crank-Nicholson methods which are numerically more robust. Consequently, results are
satisfactory only if coupling isloose (i.e. if r islarge compared to the total conductance
of the other ohmic paths connected to the affected nodes). If oscillations do occur, their
amplitude can be reduced by decreasing dt , and they can be eliminated by using
CVODE. In such cases, it may be preferable to implement gap junctions iswith the
Li near Mechani smclass (e.g. by using the LinearCircuitBuilder), which sets up the
diagonal and off-diagonal terms of the Jacobian properly so that smulations are
completely stable.

Usage

The following hoc code use this mechanism to set up a model of a gap junction
between two cells. The Gap mechanisms allow current to flow between the internal node
at the 1 end of a and the internal node at the O end of b.

create a, b
access a

forall {nseg=10 L=1000 di am=10 i nsert hh}
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objref g 2]
for i=0,1 {
g[i] = new Gap()
gli].r =3
}
a g[0].10c(0.9999) // just inside "distal" end of a
b g[1].10oc(0.0001) // ]USt i nside "proximal" end of b
setpointer g[0].vgap, b.v(0.0001)
setpointer g[1l].vgap, a.v(0.9999)

Modeling spike-triggered synaptic transmission:
an event-based strategy

Prior to NEURON 4.1, model descriptions of synaptic transmission could only use
PO NTER variables to obtain their presynaptic information. This required adetailed
piecing together of individual components that was acceptable for models with only a
few synapses. Models of larger networks required users to exert considerable
administrative effort to create mechanisms that handle synaptic delay, exploit potentially
great simulation efficiencies offered by smplified models of synapses, and maintain
information about network connectivity.

The experience of NEURON usersin creating special strategies for managing
network simulations (e.g. (Destexhe et al. 1994a; Lytton 1996)) stimulated the
development of NEURON's network connection (Net Con) class and event delivery
system. Instances of the Net Con class manage the delivery of presynaptic "spike" events
to synaptic point processes via the event delivery system. Thisworks for all of
NEURON's integrators, including the local variable time step method in which each cell
isintegrated with atime step appropriate to its own state changes. Model descriptions of
synapses never need to queue events, and there is no need for heroic efforts to make them
work properly with adaptive integration. These features offer enormous convenience to
users who are interested in models that involve synaptic transmission at any level of
complexity from single cell to large networks.

Conceptual model

In its most basic form, the physical system that we want to represent consists of a
presynaptic neuron with a spike initiation zone that gives rise to an axon, which leadsto a
terminal that makes a synaptic connection onto a postsynaptic cell (Fig. 10.3). Our
conceptual model of spike-triggered transmission isthat arrival of a spike at the
presynaptic terminal has some effect (e.g. a conductance change) in the postsynaptic cell
that is described by a differential equation or kinetic scheme. Details of what goes on at
the spike initiation zone are assumed to be unimportant--all that mattersis whether a
spike has, or has not, reached the presynaptic terminal. This conceptual model lets us take
advantage of special features of NEURON that allow extremely efficient computation.
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pre

post

Figure 10.3. Cartoon of a synaptic connection (filled circle) between a
presynaptic cell pre and a postsynaptic cell post.

A first approach to implementing a computational representation of our conceptual
model might be something like the top of Fig. 10.4. We would monitor membrane
potential at the presynaptic terminal for spikes (watch for threshold crossing). When a
spike is detected, we wait for an appropriate delay (latency of transmitter release plus
diffusion time) and then notify the synaptic mechanism that it's time to go into action. For
this simple example, we have assumed that synaptic transmission ssimply causes a
conductance change in the postsynaptic cell. It is also possible to implement more
complex mechanisms that include representations of processes in the presynaptic terminal
(e.g. processes involved in use-dependent plasticity).

We can speed things up alot by leaving out the axon and presynaptic terminal
entirely, i.e. instead of computing the propagation of the action potential along the axon,
just monitor the spike initiation zone. Once a spike occurs, we wait for atotal delay equal
to the sum of the conduction latency and the synaptic latency, and then activate the
postsynaptic conductance change (Fig. 10.4 bottom).

Complete
representation
of propagation Spike Synaptic g Postsynaptic
from spike init. detector latency region
zone through
axon to terminal
Delay
Spike Spi conduction .
Ly pike Postsynaptic
initiation latency gsg >
zone detector + region
synaptic
latency

Figure 10.4. Computational implementation of amodel of spike-triggered
synaptic transmission. Top: The basic ideais that a presynaptic spike causes
some change in the postsynaptic cell. Bottom: A more efficient version doesn't
bother computing conduction in the presynaptic axon.
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The Net Con class

Let's step back from this problem for amoment and think about the bottom diagram
in Fig. 10.4. The "spike detector" and "delay” in the middle of this diagram are the seed
of an ideafor agenera strategy for dealing with synaptic connections. In fact, the
Net Con object classis used to apply this strategy in defining the synaptic connection
between a source and a target.

A Net Con object connects a presynaptic variable, such as voltage, to atarget point
process (here a synapse) with arbitrary delay and weight. If the presynaptic variable
crossest hr eshol d inapositive direction at timet , then at time t +del ay a special
NET_RECEI VE procedure in the target point process is called and receives the wei ght
information. Each Net Con can haveitsownt hr eshol d, del ay, and wei ght , i.e. these
parameters are stream-specific. The only constraint on del ay isthat it be nonnegative.
Thereisno limit on the number of eventsthat can be "in the pipelinge," and thereisno
loss of events under any circumstances. Events always arrive at the target at the interval
del ay after the time they were generated.

When you create a Net Con object, at a minimum you must specify the source
variable and the target. The source variable is generally the membrane potential of the
currently accessed section, as shown here. The target is a point process that contains a
NET_RECEI VE block (see Listing 10.3 below).

section netcon = new NetCon(&v(x), target, thresh, del, wt)

Threshold, delay, and weight are optional; their defaults are shown here, and they can be
specified after the Net Con object has been constructed.

netcon.threshold = 10 // nmVv

netcon.delay =1 [l ms

netcon.weight = 0 /'l uS

The weight associated with a Net Con object is actually the first element of aweight

vector. The number of elementsin the weight vector depends on the number of
arguments in the NET_RECEI VE statement of the NMODL source code that defines the
point process. We will return to thisin Example 10.5: use-dependent synaptic
plasticity and Example 10.6: saturating synapses.

NEURON's event-based approach to implementing communication between cells
reduces the computational burden of network simulations tremendously, because it
supports efficient, unlimited divergence and convergence (fan-out and fan-in). To
understand why, first consider divergence. What if apresynaptic cell projects to multiple
postsynaptic targets (Fig. 10.5 top)? Easy enough--just add a Net Con object for each
target (Fig. 10.5 bottom). Thisis computationally efficient because threshold detection is
done on a"per source" basis, rather than a"per Net Con" basis. That is, if multiple
Net Cons have the same source with the samet hr eshol d, they all share asingle
threshold detector. The source variable is checked only once per time step and, when it
crossest hr eshol d in the positive direction, events are generated for each connecting
Net Con object. Each of these Net Cons can have its own weight and delay, and the target
mechanisms can belong to different classes.
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Page 10

Now consider convergence. Suppose a neuron receives multiple inputs that are
anatomically close to each other and of the same type (Fig. 10.6 top). In other words,
we're assuming that each synapse has its postsynaptic action through the same kind of
mechanism (i.e. it hasidentical kinetics, and (in the case of conductance-change
synapses) the same equilibrium potential). We can represent this by connecting multiple
Net Con objects to the same postsynaptic point process (Fig. 10.6 bottom). Thisyields
large efficiency improvements because a single set of synaptic equations can be shared
by many input streams (one input stream per connecting Net Con instance). Of course,
these synapses can have different strengths and latencies, because each Net Con object
has its own weight and delay.

Spike ) .
ot Spike Postsynaptic
initiation Delay 0 gsg >
zone detector region 0
Postsynaptic
Delay 1 gsg region 1

Figure 10.5. Efficient divergence. Top: A single presynaptic neuron projects to two
different target synapses. Bottom: Computational model of this circuit uses multiple
Net Conswith asingle threshold detector that monitors a common source.

Path 0
""""" Path 1

Spike : .
Nl veod Spike Postsynaptic
initiation Delay 0 gsg >
zone 0 detector 0 region
Spike .
v Spike
initiation Delay 1
zone 1 detector 1

Figure 10.6. Efficient convergence. Top: Two different presynaptic cells make synaptic
connections of the same class that are electrically close to each other. Bottom:
Computational model of this circuit uses multiple Net Consthat share asingle
postsynaptic mechanism (single equation handles multiple input streams).
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Having seen the rationale for using events to implement models of synaptic
transmission, we are ready to examine some point processes that include a
NET_RECE! VE block and can be used as synaptic mechanisms in network models.

Example 10.3: synapse with exponential decay

Many kinds of synapses produce a synaptic conductance that increases rapidly and
then declines gradually with first order kinetics, e.g. AMPAergic excitatory synapses.
This can be modeled by an abrupt change of conductance, which istriggered by arrival of
an event, and then decays with asingle time constant.

The NMODL code that implements such a mechanism is shown in Listing 10.3. This
mechanism is similar to NEURON's built in ExpSyn. Calling it ExpSyn1 alows usto
test and modify it without conflicting with NEURON's built-in ExpSyn.

The synaptic conductance of this mechanism summates not only when events arrive
from a single presynaptic source, but also when they arrive from different places
(multiple input streams). This mechanism handles both situations by defining asingle
conductance state g which is governed by adifferential equation whose solution is

t—t )/t
o) =gltge °
event.

, where 9(t,) isthe conductance at the time of the most recent

expsynl. nod

NEURON {
PO NT_PROCESS ExpSynl
RANGE tau, e, i
NONSPECI FI C_CURRENT i

}

PARAMETER {
tau = 0.1

(s)
e =0 (ml

livol t)

}

ASSI GNED {
v (mllivolt)
i (nanoanp)
STATE { g (m crosienens) }

INNTIAL { g = 0 }

BREAKPO NT {
SOLVE state METHOD cnexp
i=g*(v - e)

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 11



The NEURON Book: Chapter 10 November 28, 2004

DERI VATI VE state { g' = -g/tau }

NET_RECEI VE(wei ght (m crosi enens)) {
} g = g + weight

Listing 10.3. expsynl. nod

The BREAKPO NT block

The BREAKPO NT block of this mechanism isits main computational block. This
contains the SOLVE statement that tells how states will be integrated. The cnexp method
is used because the kinetics of ExpSyn1 are described by a differential equation of the
formy” =1(y), wheref(y) islinear in y (see also The DERI VATI VE block in Example
9.4: avoltage-gated current in Chapter 9). The BREAKPO NT block ends with an
assignment statement that sets the value of the synaptic current.

The DERI VATI VE block

The DERI VATI VE block contains the differential equation that describes the time
course of the synaptic conductance g: afirst order decay with time constant t au.

The NET_RECEI VE block

The NET_RECEI VE block contains the code that specifies what happens in response
to presynaptic activation. Thisis called by the Net Con event delivery system when an
event arrives at this point process.

So suppose we have amodel with an ExpSyn1 point process that is the target of a
Net Con. Imagine that the Net Con detects a presynaptic spike at time t . What happens

next?

ExpSynil's con_ductance g _conFi nues to follow Aswe mentioned in Chapter 9, earlier
asmooth exponential decay with time constant versions of NEURON had to change g
tau until timet +del ay, wheredel ay isthedelay | withastate_di scontinuity()
associated with the Net Con object. At this point, statement. Thisis no longer necessary.

an event is delivered to the ExpSyn1. Just before
entry to the NET_RECEI VE block, NEURON makes al STATEs, v, and values assigned in
the BREAKPQO NT block consistent at t +del ay. Then the code in the NET_RECEI VE
block is executed, making the synaptic conductance suddenly jump up by the amount
specified by the Net Con'sweight.

Usage

Suppose we wanted to set up a synaptic connection between two cellsusing an
ExpSynl mechanism, asin Fig. 10.7.
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dend[3]

cell[20] axon 3
O >@ cell[5]

Figure 10.7. Schematic of a synaptic connection between two cells.

This could be done with the following hoc code, which aso illustrates the use of aLi st
of Net Con objects as a means for keeping track of the synaptic connections in a network.

/] keep connectivity in a list of NetCon objects
objref ncl
ncl = new List()

/] attach an ExpSynl point process called syn
I to the 0.3 location on dend[3] of cell[5]
objref syn

cell[5].dend[3] syn = new ExpSynl1(0.3)

/1 presynaptic v is cell[20].axon.v(1)

/1 connect this to syn via a new Net Con object
I and add the NetCon to the |ist ncl
ce

[1[20].axon ncl.append(new Net Con(&v(1), \
syn, threshold, delay, weight)

precell[0] 1 L1 11
precell[1] 1 L 111
ExpSyn1[0].g
0.002
0.001
0
0 50 100 150
—-68 — postcell.soma.v(0.5)

I
0 50 100 150

Figure 10.8. Simulation results from the moded shown in Fig. 10.6. Note stream-specific synaptic
weights and temporal summation of synaptic conductance and membrane potential.

Figure 10.8 shows results of a smulation of two input streams that converge onto a
single ExpSyn1 attached to a postsynaptic cell, asin the diagram at the top of Fig. 10.6.
The presynaptic firing times are indicated by the rasterslabeled pr ecel | [ 0] and
precel | [ 1] . The synaptic conductance and postsynaptic membrane potential (middie
and bottom graphs) display stream-specific synaptic weights, and also show tempora
summation of inputs within an individual stream and between inputs on multiple streams.
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Example 10.4: alpha function synapse

With afew small changes, we can extend ExpSyn1 to implement an alphafunction
synapse. We only need to replace the differential equation with the two state kinetic

scheme
STATE { a (m crosienens) g (mcrosienens) }
KINETI C state {
~a<->g (1/tau, 0)
~g->(1l/tau)
}

and change the NET_RECEI VE block to

NET_RECEI VE(wei ght (m crosi enens)) {

} a = a + weight*exp(1)
The factor exp( 1) = eisincluded so that an isolated event produces a peak conductance
of magnitude wei ght , which occurs at timet au after the event. Since this mechanism
involvesaKl NETI C block instead of a DERI VAT VE block, we must also change the
integration method specified by the SOLVE statement from cnexp to spar se.

The extracomputational complexity of using a kinetic scheme is offset by the fact
that, no matter how many Net Con streams connect to this model, the computation time
required to integrate STATE g remains constant. Some increase of efficiency can be
gained by recasting the kinetic scheme astwo linear differential equations

DERI VATI VE state {

.a' = -altaul
..b" = -b/tau
..g =b - a

}

which are solved by the cnexp method (thisis what NEURON's built in Exp2Syn
mechanism does). Ast aul approachest au, g approaches an apha function (although
the factor by which wei ght must be multiplied approaches infinity; see f act or inthe
next example). Also, there are now two state discontinuities in the NET_RECEI VE block
NET_RECEI VE(wei ght (m crosi enens)) {
a = a + weight*factor
b =Db + weight*factor

}

Example 10.5: use-dependent synaptic plasticity

Here the alpha function synapse is extended to implement a form of use-dependent
synaptic plasticity. Each presynaptic event initiates two distinct processes: direct
activation of ligand-gated channels, which causes a transient conductance change, and
activation of a mechanism that in turn modulates the conductance change produced by
successive synaptic activations. In this example we presume that modulation depends on
the postsynaptic increase of a second messenger, which we will call "G protein” for
illustrative purposes. We must point out that this example is entirely hypothetical, and
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that it is quite different from models described by others (Destexhe and Sejnowski 1995)
in which the G protein itself gates the ionic channels.

For this mechanism it is essential to distinguish each stream into the generalized
synapse, since each stream has to maintain its own [G] (concentration of activated G
protein). That is, streams are independent of each other in terms of the effect on [G], but
their effects on synaptic conductance show linear superposition.

gsyn. nod

NEURON {
PO NT_PROCESS GSyn
RANGE t aul, tau2, e, i
RANGE Gt aul, Gtau2, G nc
NONSPECI FI C_CURRENT i

RANGE ¢
}
UNI TS {
(nA) = (‘nanoanp)
(MV) = (mllivolt)
(umho) = (m cromho)
PARAMETER {
taul =1 (ms)
tau2 = 1.05 (rs)
Gaul = 20 (ns)
Gau2 =21 (ns)
d nc =1
e =0 (mv)
}
ASSI GNED {
vo(mV)
i (nA)
g (umho)
factor
G act or
STATE {
A (unho)
B (unho)
I NITIAL {
LOCAL tp
A=0
B=20
tp = (taul*tauZ)/;tauZ - taul) * log(tau2/taul)
factor = -exp(-tp/taul) + exp(-tp/tau2)
factor = 1/factor
tp = (Gaul*Gau2)/(Gau2 - Gaul) * log(Gau2/ G aul)
G actor = -exp(-tp/Gaul) + exp(-tp/&au2)
G actor = 1/ & actor
}
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BREAKPO NT ({
SOLVE state METHOD cnexp
g=B- A
i =g*(v - e)
DERI VATI VE state {
A = -Altaul
B = -B/tau2

}

NET_RECEI VE(wei ght (umho), w, Gl, &, t0 (ms)) {
Gl = Gl*exp(-(t-t0)/ G aul)
& = @*exp(-(t-t0)/ X au2)
Gl = GL + Gnc*E act or
@ =& + Gnc*G act or
t0 =t
w=weight*(1 + & - Gl)
A=A+ wfactor
B =B + wfactor

}

Listing 10.4. gsyn. nod

The NET_RECEI VE block

The conductance of the ligand-gated ion channel uses the differential equation
approximation for an apha function synapse. The peak synaptic conductance depends on
the value of [G] at the moment of synaptic activation. A similar, albeit much dower,

a pha function approximation describes the time course of [G]. These processes peak
approximately t aul and G aul after delivery of an event, respectively.

The peak synaptic conductance elicited by an individual event is specified in the
NET_RECEI VE block, wherew = wei ght *( 1+G2- GL) describes how the effective
weight of the synapse is modified by [G]. Even though conductance is integrated, [G] is
needed only at discrete event times so it can be computed analytically from the elapsed
time since the prior synaptic activation. The | NI TI AL block sets up the factors that are
needed to make the peak changes equal to the values of wand G nc.

Notethat GL and & are not STATES in this mechanism. They are not even variables
in this mechanism, but instead are "owned" by the particular Net Con instance that
delivered the event. Each Net Con object instance
keeps an array (the weight vector) whose size equals On initialization, all elements of the
the number of argumentsto NET_RECE! VE, and the weight vector other than the first one
arguments to NET_RECE! VE are really referencesto | e automatically set to 0. However,
the elements of this array. Unlike the argumentstoa | 3MET_RECE VE g(':ﬁd;nrg‘i{“ga(‘;’aen' ts
PROCEDURE or FUNCTI ONblock, which are"call by | conain statements that assign
value," the arguments to a NET_RECEI VE block are nonzero values to Net Con "states."
"call by reference." Therefore assgnment statements | Suchan | NI TI AL block is executed

ingsyn. nod's NET_RECEI VE block can changethe | whenfinitialize() iscaled.
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values of variables that belong to the Net Con object, and this means that the Net Con's
weight vector can be used to hold stream-specific state information. In the context of this
particular example, each connection hasits own [G], so gsyn uses "stream-specific
plasticity" to represent "synapse-specific plasticity."

S1_1 1

S2 1

L1
le-4~ GSyn[0].g9
uS
5e-5 l\
0 ] ]
20 40 60 80
ms

0

Figure 10.9. Simulation results from the model shown in Fig. 10.6 when the
synaptic mechanism is GSyn. Note stream-specific use-dependent plasticity.

To illustrate the operation of this mechanism, imagine the network of Fig. 10.6 with a
single GSyn driven by the two spike trains shown in Fig. 10.9. This emulates two
synapses that are electrotonically close to each other, but with separate pools of [G]. The
train with spikes at 5 and 45 ms (S1) shows some potentiation of the second conductance
transient, but the train that starts at 15 ms with a200 Hz burst of three spikes displays a
large initial potentiation that is even larger when tested after a 40 msinterval.

Example 10.6: saturating synapses

Several authors (e.g. (Destexhe et al. 1994a; Lytton 1996)) have used synaptic
transmission mechanisms based on a simple conceptual model of transmitter-receptor
interaction:

[0

C+T O Eqg. 10.2

—

B

where transmitter T binds to a closed receptor channel C to produce an open channel O.
In this conceptual model, spike-triggered transmitter release produces a transmitter
concentration in the synaptic cleft that is approximated by a rectangular pulse with a
fixed duration and magnitude (Fig. 10.10). A "large excess of transmitter" is assumed, so
that while transmitter is present (the "onset" state, "ligand binding to channel") the
postsynaptic conductance increases toward a maximum value with a single time constant
U(a T + ). After the end of the transmitter pulse (the "offset" state, "ligand-channel
complex dissociating"), the conductance decays with time constant 1/p3. Further details of
saturating mechanisms are covered by (Destexhe et a. 1994a and b) and (Lytton 1996).
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Figure 10.10. A saturating synapse model. A single presynaptic spike (top
trace) causes a pulse of transmitter in the synaptic cleft with fixed duration
(Cdur) and concentration (middle trace). This elicits arapid increase of
postsynaptic conductance followed by a dower decay (bottom trace). A high
frequency burst of spikes produces a sustained elevation of transmitter that

persists until Cdur after the last spike and causes saturation of the postsynaptic
conductance.

There is an ambiguity when one or more spikes arrive on a single stream during the
onset state triggered by an earlier spike: should the mechanism ignore the "extra' spikes,
concatenate onset states to make the transmitter pulse longer without increasing its
concentration, or increase (summate) the transmitter concentration? Summation of
transmitter requires the onset time constant to vary with transmitter concentration. This
places transmitter summation outside the scope of the Destexhe/L ytton model, which
assumes a fixed time constant for the onset state. We resolve this ambiguity by choosing
concatenation, so that repetitive impulses on one stream produce a saturating conductance
change (Fig. 10.10). However, conductance changes elicited by separate streams will
summate.

A mode of the form used in Examples 10.4 and 10.5 can capture the idea of
saturation, but the separate onset/offset formulation requires keeping track of how much
"material” isin the onset or offset state. The mechanismin Listing 10.5 implements an
effective strategy for doing this. A noteworthy feature of this model is that the event
delivery system serves as more than a conduit for receiving inputs from other cells:
discrete events are used to govern the duration of synaptic activation, and are thus an
integral part of the mechanism itself.

anpa. nod

NEURON {
PO NT_PROCESS AMPA S
RANGE ¢
NONSPECI FI C_CURRENT i
G.CBAL Cdur, Al pha, Beta, Erev, Rinf, Rtau

}

UNI TS {
(nA) = (‘nanoanp)
(V) = (mllivolt)
(umho) = (m cromnho)
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PARAMETER {
Cdur = 1.0 (ns) transmtter duration (rising phase)
Al pha = 1.1 (/ms) forward (binding) rate
Beta = 0.19 (/ns) backward (di ssociation) rate
Erev =0 (V) equi l i brium potenti al
ASSI GNED ({
v (V) : postsynaptic voltage
[ (nA) : current = g*(v - Erev)
g (umho) : conductance
Rtau (ns) . tinme constant of channel binding
Rinf : fraction of open channels if xmr is present "forever"

synon : sumof weights of all synapses in the "onset" state

STATE { Ron Roff } : initialized to O by default

: Ron and Roff are the total conductances of all synapses
that are in the "onset"” (transmtter pulse ON)
and "offset” (transmtter pulse OFF) states, respectively

INITIAL {
synon = 0
Rt au 1/ (Al pha + Beta)
Ri nf Al pha / (Al pha + Beta)

}

BREAKPO NT {
SCLVE rel ease METHOD cnexp
g = (Ron + Rof f)*1(umho)
i = g*(v - Erev)

DERI VATI VE r el ease {
Ron' = (synon*Rinf - Ron)/Rtau
Roff' = -Beta*Roff

}
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NET_RECEI VE(wei ght, on, r0, t0 (ns)) {
: flag is an inplicit argunment of NET_RECEIVE, normally O
if (flag == 0)
. a spike arrived, start onset state if not already on
if ('on) {
: this synapse joins the set of synapses in onset state
synon = synon + wei ght
roO = rO*exp(-Beta*(t - t0)) : rO at start of onset state
Ron = Ron + r0
Roff = Roff - rO
t0 =t
on =1
: cone again in Cdur with flag =1
net _send( Cdur, 1)
} else {
already in onset state, so nove offset tine
net _nove(t + Cdur)

}

}
if (flag ==
: "turn off transmtter”
i.e. this synapse enters the offset state
synon = synon - wei ght
: r0 at start of offset state
ro = weight*Rinf + (r0 - weight*R nf)*exp(-(t - t0)/Rtau)
Ron = Ron - r0
Rof f Roff + r0
to =
on =

o1l

Listing 10.5. anpa. nod

The PARAMETER block

The actual value of the transmitter concentration in the synaptic cleft during the onset
state is unimportant to this model, aslong as it remains constant. To simplify the
mechanism, we assume transmitter concentration to be dimensionless, with a numeric
value of 1. This allows us to specify the forward rate constant Al pha in units of 1/ms.

The STATE block

This mechanism has two STATES. Ron isthe total conductance of all synapses that are
in the onset state, and Rof f isthetotal conductance of all synapsesthat are in the offset
state. These are declared without units, so a units factor will have to be applied elsewhere
(in this example, thisis done in the BREAKPO NT block).

The | NI TI AL block

At the start of a simulation, we assume that all channels are closed and no transmitter
is present at any synapse. Theinitial values of Ron, Rof f , and synon must therefore
be 0. Thisinitialization happens automatically for STATES and does not require explicit
specification in the | NI TI AL block, but synon needs an assignment statement.
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Thel NI TI AL block aso calculates Rt au and Ri nf . Rt au is the time constant for
equilibration of the closed (free) and open (ligand-bound) forms of the postsynaptic
receptors when transmitter is present in the synaptic cleft. Ri nf isthe open channel
fraction if transmitter is present forever.

The BREAKPO NT and DERI VATI VE blocks

The total conductance is numerically equal to Ron+Rof f . The* 1(umho) factor is
included for dimensional consistency.

The DERI VATI VE block specifies the first order differential equations that govern
these STATES. The meaning of each termin

Roff' = - Bet a*Rof f
isobvious, andin
Ron' = (synon*Rinf - Ron)/Rtau
the product synon* Ri nf isthe value that Ron approaches with increasing time.

The NET_RECEI VE block

The NET_RECE!I VE block performs the task of switching each synapse between its
onset and offset states. In broad outline, if an external event (an event generated by the
Net Con's source passing threshold) arrives at timet to start an onset, the NET_RECEI VE
block generates an event that it sendsto itself. This self-event will be delivered at time
t +Cdur , where Cdur isthe duration of the transmitter
pulse. Arrival of the self-event is the signal to switch "External event” and "input event”
the synapse back to the offset state. If another external | &€ Synonyms. Wewill use the
event arrives from the same Net Con before the self- fcgrnrzlttﬁ:m as clarity dictates when

. . g them with self-events.
event does, the self-event is moved to a new time that
isCdur inthe future. Thus resetting to the offset state
can happen only if an interval of Cdur passes without new external events arriving.

To accomplish this strategy, the NET_RECEI VE block must distinguish an external
event from a self-event. It does this by " e is"call by value" unfike th
i e event flag is"call by value," unlike the
_expl (.)I FI ng the fact that every event has an explicit arguments that are declared inside
|mpl icit argument caledf | ag, the value of the parentheses of the NET_RECEI VE()
Wh| Ch IS automatlcal Iy O fOI’ an eXtema| a/ent statement, which are"call By reference.”

Handling of external events

Arrival of an external event causes execution of the statements inside the
if (flag==0){} clause. These beginwithif (! on), which testswhether this
synapse should switch to the onset state.

Switching to the onset state involves keeping track of how much "material™ isin the
onset and offset states. This requires moving the synapse's channels into the pool of
channels that are exposed to transmitter, which simply means adding the synapse's
wei ght to synon. Also, the conductance of this synapse, which had been decaying with
rate constant 1/ Bet a, must now start to grow with rate constant Rt au. Thisis done by
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computing r 0, the synaptic conductance at the present timet , and then adding r 0 to Ron
and subtracting it from Rof f . Next the value of t 0 is updated for future use, and on is set
to 1 to signify that the synapse is in the onset state. The last statement insidei f (! on){}
isnet _send( Cdur, nspi ke) , which generates a self-event with delay given by the first
argument and flag value given by the second argument. All the explicit arguments of this
self-event will have the values of this particular Net Con, so when this self-event returns
we will know how much "material" to switch from the onset to the offset state.

Theel se {} clausetakes care of what happensif another external event arrives
while the synapse is still in the onset state. The net _nove(t +Cdur) statement moves
the self-event to anew time that is Cdur in the future (relative to the arrival time of the
new external event). In other words, this prolongs synaptic activation until Cdur after the
most recent external event.

Handling of self-events

When the self-event isfinally delivered, it triggers an offset. We know it is a self-
event becauseitsf | ag is 1. Once again we keep track of how much "material” isin the
onset and offset states, but now we subtract the synapse's wei ght from synon to remove
the synapse's channels from the pool of channels that are exposed to transmitter.
Likewise, the conductance of this synapse, which was growing with rate constant Rt au,
must now begin to decay with rate constant 1/ Bet a. Finally, the value of t 0 is updated
and on isreset to 0.

Artificial spiking cells

NEURON's event delivery system was created with the primary aim of making it
easier to represent synaptic connections between biophysical model neurons. However,
the event delivery system turns out to be quite useful for implementing a wide range of
mechanisms that require actions to be taken after a delay. The saturating synapse model
presented above is just one example of this.

The previous section aso showed how spike-triggered synaptic transmission makes
extensive use of the network connection class to define connections between cells. The
typical Net Con object watches a source cell for the occurrence of a spike, and then, after
some delay, delivers aweighted event to atarget synaptic mechanism, i.e. itisa
metaphor for axonal spike propagation. More generally, a Net Con object can be regarded
as achannel on which a stream of events generated at a source istransmitted to a target.
The target can be a point process, a distributed mechanism, or an artificial neuron (e.g. an
integrate and fire model). The effect of events on atarget is specified in NMODL by
statementsin a NET_RECEI VE block, which is called only when an event has been
delivered.

The event delivery system also opens up alarge domain of ssimulationsin which
certain types of artificial spiking cells, and networks of them, can be simulated hundreds
of times faster than with numerical integration methods. Discrete event simulation is
possible when al the state variables of amodel cell can be computed analytically from a
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new set of initial conditions. That is, if an event occurs at time t,, all state variables must
be computable from the state values and time t, of the previous event. Since

computations are performed only when an event occurs, total computationtimeis
proportional to the number of events delivered and independent of the number of cells,
number of connections, or problem time. Thus handling 100,000 spikesin one hour for
100 cells takes the same time as handling 100,000 spikesin 1 second for 1 cell.

Artificial spiking cells are implemented in NEURON as point processes, but unlike
ordinary point processes, they can serve as targets and sources for Net Con objects. They
can be targets because they have a NET_RECEI VE block, which specifies how incoming
events from one or more Net Con objects are handled, and details the calculations
necessary to generate outgoing events. They can aso be sources because the same
NET_RECE! VE block generates discrete output events which are delivered through one or
more Net Con objects to targets.

The following examples analyze the three broad classes of integrate and fire cells that
are built into NEURON. In order to emphasize how the event delivery system is used to
implement the dynamics of these mechanisms, we have omitted many details from the
NMODL listings. Ellipsesindicate elisions, and listings include italicized pseudocode
where necessary for clarity. Complete source code for all three of these cell classesis
provided with NEURON.

Example 10.7: I nt Fi r el, a basic integrate and fire model

The simplest integrate and fire mechanism built into NEURON is| nt Fi rel, which
has a membrane state variable m (anal ogous to membrane potential) which decays toward
0 with time constant T.

T%—T+m=0 Eqg. 10.3

Aninput event of weight w adds instantaneously to m, and if mreaches or exceeds the
threshold value of 1, the cell "fires,” producing an output event and returning mto O.
Negative weights are inhibitory while positive weights are excitatory. Thisis analogous
to acell with amembrane time constant T that is very long compared to the time course
of individual synaptic conductance changes. Every synaptic input to such a cell shifts
membrane potential to anew level in atime that is much shorter than t, and each cell
firing erases al traces of prior inputs. Listing 10.6 presents an initial implementation of
IntFirel.

NEURON {

ARTI FICIAL_CELL IntFirel
RANGE tau, m

}
PARAMVETER { tau = 10 (ns) }
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ASSI GNED {
m
t0 (ns)
I NI TIAL {

m=20
t0 =0

—

(w) {
(-(t - t0)/tau)

Listing 10.6. A basic implementation of I nt Fi rel.

The NEURON block

As the introduction to this section mentions, artificial spiking cells are implemented
in NEURON as point processes. The keyword ARTI FI Cl AL_CELL isin fact asynonym
for PO NT_PROCESS, but we use it as a deliberate reminder to ourselves that this model
has a NET_RECEI VE block, lacks a BREAKPO NT block, and does not have to be
associated with a section location or numerical integrator. Unlike other point processes,
an artificial cell isisolated from the usual things that link mechanisms to each other: it
does not refer to membrane potential v or any ions, and it does not use PO NTER
variables. Instead, the "outside" can affect it only by sending it discrete events, and it can
only affect the "outside”" by sending discrete events.

The NET_RECEI VE block

The mechanisms we have seen so far use BREAKPO NT and KI NETI C or
DERI VATI VE blocks to specify the calculations that are performed during atime step dt ,
but an artificial cell model does not have these blocks. Instead, calculations only take
place when a new event arrives, and these are performed in the NET_RECEI VE block.

When aNet Con deliversanew eventto an | nt Fi r el cell, the present value of mis
computed analytically and then mis incremented by the weight w of the event. According
to the NET_RECEI VE block, the present value of mis found by applying an exponential
decay to the value it had immediately after the previous event; therefore the code contains
variable t 0 which keeps track of the last event time.

If an input event drives mto or above threshold, thenet _event (t) statement
notifies all Net Cons, for which this point processis the source, that it fired a spike at
timet (theargument tonet _event () can beany time at or later than the current
timet ). Then the cell resets mto 0. The code in Listing 10.6 imposes no limit on firing
frequency--if aNet Con with del ay of O and awei ght of 1.1 has such an artificial cell
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as both its source and target, the system will behave "properly,” in the sense that events
will be generated and delivered without time ever advancing. It is easy to prevent the
occurrence of such arunaway stream of events (see Adding a refractory period below).

There is no threshold test overhead at every dt because | nt Fi r el has no variable
for Net Consto watch. That is, this artificial spiking cell does not need the usual test for
local membrane potential v to cross Net Con. t hr eshol d, whichis essential at every
time step for event generation with biophysical neuron models. Furthermore the event
delivery system only places the earliest event to be delivered on the event queue. When
that timefinally arrives, all targets whose Net Cons have the same source and delay get
the event delivery, and longer delay streams are put back on the event queue to await
their specific delivery time.

Enhancements to the basic mechanism

Visualizing the membrane state variable

The membrane state variable mis difficult to plot in an understandable manner, since
it is represented in the computer by a variable mthat remains unchanged over the interval
between input events regardless of how many numerical integration steps were performed
in that interval. Consequently malways has the value that was calculated after the last
event was received, and plots of it ook like astaircase (Fig. 10.11 left), with no apparent
decay or indication of what the value of mwas just before the event.

r IntFire1[0].m r IntFire1[0].M 1 IntFire1[0].M
0.8 - —I 0.8 0.8
0.6 — 0.6 — 0.6 —
0.4 0.4 0.4
0.2 0.2 0.2
0 | | | 0 | | J 0 J
0 10 20 30 0 10 20 30 0 30
ms ms ms

Figure 10.11. Response of an I nt Fi r el cell with T = 10 msto input events with weight
=0.8arrivingatt =5, 22, and 25 ms (arrows). The third input initiates a "spike." Left:
The variable mis evaluated only when anew event arrives, so its plot looks like a
staircase. A function can beincluded in | nt Fi r el's mod file (see text) to better indicate
the time course of the membrane state variable m. Center: Plotting thisfunction during a
simulation with fixed dt (0.025 ms here) demonstrates the decay of m between events.
Right: In avariable time step simulation, m appearsto follow a sequence of linear ramps.
This artifact is a consequence of the efficiency of adaptive integration, which computed
analytical solutions at only afew instants, so the Graph tool could only draw lines from
instant to instant.

This can be partially repaired by adding a function

FUNCTI ON M)
M= ntexp(-(t - t0)/tau)
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that returns the present value of the membrane state variable m. This gives nice
trajectories when fixed time step integration is used (Fig. 10.11 center). However, the
natural step with the variable step method is the interspike interval itself, unless
intervening events occur in other cells (e.g. 1 ms before the second input event in

Fig. 10.11 right). At least the integration step function f advance() returns 10° ms
before and after the event to properly indicate the discontinuity in M

Adding arefractory period

It is easy to add arelative refractory period by initializing mto a negative value after
the cell fires (alternatively, adepolarizing afterpotential can be emulated by initializing m
to avaluein therange (0,1)). However, incorporating an absol ute refractory period
requires self-events.

Suppose we want to limit the maximum firing rate to 200 spikes per second, which
corresponds to an absolute refractory period of 5 ms. To specify the duration of the
refractory period, we use avariable named r ef r ac, which is declared and assigned a
value of 5 msin the PARAMETER block. Adding the statement RANGE r ef r ac to the
NEURON block alows usto adjust this parameter from the interpreter and graphical
interface. We also use avariable to keep track of whether the point processisin the
refractory period or not. The name we choose for this variable is the egponymous
refractory, anditisdeclared in the ASSI GNED block and initialized to a value of O
("false”) inthe | NI TI AL block.

The NET_RECEI VE implementation is then

NET_RECEI VE (w) {
if (refractory == 0) {
m = nmrexp(-(t - t0)/tau)
m=m+ w
t0 =t
if (m>1) {
net _event (t)
refractoryfz
[ e

net _send( refractory)

}
} elseif (flag == 1)
: self-event arrived, so term nate refractory period
refractory = 0
m=20
t0 =t
} : else ignore the external event

}
If refract ory equalsO, the cell accepts external events (i.e. events delivered by a
Net Con) and calculates the state variable mand whether to fire the cell. When the cell
firesaspike, ref ract ory is set to 1 and further externa events are ignored until the end
of therefractory period (Fig. 10.12).

Recall from the saturating synapse example that the f | ag variable that accompanies
an external event is 0. If this mechanism receives an event with anonzero f | ag, it must
be a self-event, i.e. an event generated by acall tonet _send() when the cell fired. The
net _send(interval, flag) statement placesan event into the delivery system asan
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"echo" of the current event, i.e. it will come back to the sender after the specified
i nt erval withthe specified f | ag. In this case we aren't interested in the weight but
only thef | ag. Arriva of this self-event means that the refractory period is over.

The top of Fig. 10.12 shows the response of thismodel to atrain of input stimuli.
Tempora summation triggers a spike on the fourth input. The fifth input arrives during
the refractory interval and has no effect.

1
refractory I/
0 ! ! | J
0 5 10 15 20
ms
2r IntFire1[0].M
15+
1=
0.5
0 | 1 1 11 J
0 5 10 15 20
ms
2~ )
IntFire1[0].M
1
) | | | J
5 10 15 20
ms
-1

Figure 10.12. Response of an | nt Fi r el cell with a5 msrefractory interva to a
run of inputs a 3 msintervals (arrows), each with weight = 0.4. Top: The cell
accepts inputs when r ef r act ory == 0. The fourth input (at 11 ms) drives the
cell above threshold. Thistriggers an output event, increasesr ef ract ory to 1
(top trace), and function M which reflects the membrane state variable m, jumps
to 2. During the 5 ms refractory period, Mdecays gradually, but the cell is
unresponsive to further inputs (note that the input at 14 ms produces no change
in the membrane state variable). At 16 msr ef r act or y fallsto 0, making the
cell once again responsive to inputs, and Malso returns to O until the next
external event arrives. Bottom: After modifying the function Mto generate
rectangular pulses that emulate a spike followed by postspike hyperpolarization.

I mproved presentation of the membrane state variable

The performance in the top of Fig. 10.12 is satisfactory, but the model could be
further improved by one relatively minor change. Asit stands the Mfunction shows an
exponential decay during the refractory period, whichis at best distracting and irrelevant
to the operation of the model, and potentially misleading at worst. It would be better for M
to follow a stereotyped time course, e.g. a brief positive pulse followed by alonger
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negative pulse. Thiswould not be confused with the subthreshold operation of the model,
and it might be more suggestive of an action potential.

The most direct way to do thisisto make Mtake different actions depending on
whether or not the model is"spiking." One possibility is
FUNCTI ON M) {
if (refractory == 0)
M= nrtexp(-(t - t0)/tau)
} else if (refractory == 1) {
if (t -t0<0.5 {

2
} else {
-1
}
}
}

which is exactly what the built-in | nt Fi r el model does. The bottom of Fig. 10.12
shows the time course of this revised function.

This demonstrates how visualization of cell operation can be enhanced by ssimple
calculations of patterns for the spiking and refractory trajectories, with no overhead for
cellsthat are not plotted. We must emphasize that the simulation calculations are analytic
and performed only at event arrival, regardless of the refinements we introduced for the
purpose of esthetics.

EG LIS
o

Sending an event to oneself to trigger deferred computation involves very little
overhead, yet it alows elaborate cal culations to be performed much more efficiently than
if they were executed on aper dt basis. Self-events are heavily exploited in the
implementation of | nt Fi re2 and | nt Fi r e4, which both offer greater kinetic
complexity than I nt Fi rel.

Example 10.8: | nt Fi re2, firing rate proportional to input

Thel nt Fi re2 model, likel nt Fi r e1, has a membrane state variable m that follows
first order kinetics with time constant 1. However, an input event to | nt Fi r e2 does not

affect mdirectly. Instead it produces a discontinuous change in a synaptic current state
variable i. Between events, i decays with its own time constant T, toward a steady "bias’

value specified by the parameter i,. That is,
d . .
Tsa+|=|b Eq 10.4

where an input event causesi to change abruptly by w (Fig. 10.13 top). Thiscurrent i
drivesm, i.e.

Tm%—T+m=i Eqg. 10.5
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where 1, < T.. Thus an input event produces a gradual change in mthat is described by
two time constants and approximates an alpha function if T, = 1. When mcrosses a

threshold of 1 in a positive direction, the cell fires, misreset to O, and integration
resumes immediately, as shown in the bottom of Fig. 10.13. Note that i is not reset to 0,
i.e.unlikel nt Firel, firing of an | nt Fi r e2 cell does not obliterate all traces of prior

synaptic activation.

2 — IntFire2[0].! ib=0.2
w=14

15+

1

0.5

0 | | ]

0 50 100 150

ms
1 — IntFire2[0].M

0.8 —

0.6 —

0.4

0.2

0 I I J
0 50 100 150
ms

Figure 10.13. Top: Time course of synaptic current i inan | nt Fi re2 cell with
T,=20msand 1,,= 10 ms. This cell has bias current i,, = 0.2 and receives

inputs with weight w= 1.4 at t = 50 and 100 ms. Bottom: The membrane state
variable mof thiscell isinitially 0 and approaches the value of i, (0.2 in this

example) with time constant 1, The first synaptic input produces a
subthreshold response, but temporal summation drives m abovethreshold at t =
109.94 ms. This resets mto 0 and integration resumes.
Depending on its parameters, | nt Fi r e2 can emulate awide range of relationships
between input pattern and firing rate. Itsfiring rateis~i/ 1, if i is>> 1 and changes

sowly comparedto T,

The parameter i, is analogous to the combined effect of a baseline level of synaptic
drive plus abias current injected through an electrode. The requirement that T, <T_is

equivaent to asserting that the membrane time constant is faster than the decay of the
current produced by an individual synaptic activation. Thisis plausible for slow
inhibitory inputs, but where fast excitatory inputs are concerned an alternative
interpretation can be applied: each input event signals an abrupt increase (followed by an
exponential decline) in the mean firing rate of one or more afferents that produce brief
but temporally overlapping postsynaptic currents. The resulting change of i isthe moving
average of these currents.
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The nt Fi r e2 mechanism is amenable to discrete event simulation because
Egns. 10.4 and 10.5 have anaytic solutions. If the last input event was at time t, and the

valuesof i and mimmediately after that event werei(ty) and m(t,), then their subsequent
time course is given by

—(t=t )/t
(O =iy+iltg)-iyle O Eq. 106
and
T —(t—t )/t
m(t)=ib+[i(to)—ib] ° e (=1l
TS_ Tm
. e Eq. 10.7
E)—i =it —i S 0o/ Tm
+im(ty) — i, [I(o) |b] p—— e

Implementation in NMODL

The core of the NMODL implementation of | nt Fi re2 isthefunctionfireti me(),
which is discussed below. This function projects when mwill equal 1 based on the
present values of i, i, and m, assuming that no new input events arrive. The value

returned by firetime() is 10° if the cell will never fire with no additional input. Note
that if i, > 1 the cell fires spontaneously even if no input events occur.

INITIAL {

nét;sénd(firetine(args), 1)

NET_RECEI VE (w) {

if (flag==1) { : time to fire
net _event(t)
m=20

net _send(firetinme(args), 1)
} else {
update m
if (m>=1)
net_nove(t) : the time to fire i s now
} else {

nét;nbve(firetine(args) + 1)

update t0 and
}

Listing 10.7. Key excerptsfromint fi re2. nod
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Thel NI TI AL block inI nt Fi re2 callsfiretime() and usesthe returned value to
put a self-event into the delivery system. The strategy, which is spelled out in the
NET_RECE! VE block, isto respond to external events by moving the delivery time of the
self-event back and forth with the net _nmove() function. When the self-event isfinally
delivered (potentially never), net _event () iscalled to signal that this cell isfiring.
Notice that externa events always have an effect on the value of i, and are never
ignored--and shouldn't be, even if we introduced a refractory period in which we refused
to integrate m.

Thefunctionfiretime() returnsthefirstt= 0 for which

—t/Tm

—t/
a+be TS+(c—a—b)e =1 Eqg. 10.8

where the parameters a, b and ¢ are defined by the coefficientsin Eq. 10.7. If thereisno

such t the function returns 10°. This represents the time of the next cell firing, relative to
the time t, of the most recent synaptic event.

Sincefiretime() must be executed on every input event, it isimportant to
minimize the number of Newton iterations needed to calculate the next firing time. For
this we use a strategy that depends on the behavior of the function

f(x)=a+bx"+(c—a-b)x Eq. 10.9a

—t/'rm
where X =€ Eq. 10.9b
r=v./7g
over thedomain 0<x< 1. Notethat c< listhevalueof f, at x=0(i.e. a t = »). The
function f, is either linear in x (if b = 0) or convex up (b > 0) or down (b < 0) with no
inflection points. Sincer < 1, f; istangent to the y axis for any nonzero b (i.e. f,"(0) is
infinite).

15— a=0.2
b=4 c=09
r=0.5
1
f,()

0.5

1.5 a=15
c=03
r=05

b=-2.4

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 10.14. Plots of f; and f, computed for r = 0.5. See text for details.

The left panel of Fig. 10.14 illustrates the qualitative behavior of f, fora< 1. Itis

easy to analytically compute the maximum in order to determine if thereis a solution to
f,(x) = 1. If asolution exists, f; will be concave downward so Newton iterations starting

at x = 1 will underestimate the firing time.
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For a> 1, asolution is guaranteed (Fig. 10.14 middle). However, starting Newton
iterations at X = 1 isinappropriate if the slope there is more negative than ¢ - 1 (straight

—t/
dashed linein Fig. 10.14 middle). In that case, the transformation X = € s isused,

giving the function
f2(x)=a+bx+(c—a—b)x1/r Eq. 10.9c

and the Newton iterations begin at x = 0 (Fig. 10.14 right).

These computations are performed over regionsin which f, and f,, are relatively

linear, sothefiretinme() function usualy requires only two or three Newton iterations
to converge to the next firing time. The only exception is when f; has a maximum that is

just slightly larger than 1, in which case it may be agood idea to stop after a couple of
iterations and issue a self-event. The advantage of this would be the deferral of a costly
series of iterations, allowing an interval in which another externa event might arrive that
would force computation of a new projected firing time. Such an event, whether
excitatory or inhibitory, would likely make it easier to compute the next firing time.

Example 10.9: | nt Fi r e4, different synaptic time constants

I nt Fi r e2 can emulate an input-output relationship with more complex dynamics
than | nt Fi r el does, but it is somewhat restricted because its response to every external
event, whether excitatory or inhibitory, has the same kinetics. As we pointed out in the
discussion of | nt Fi r e2, it is possible to interpret excitatory eventsin away that
partially sidesteps thisissue. However, experimentally observed synaptic excitation tends
to be faster than inhibition (e.g. (Destexhe et a. 1998)) so a more flexible integrate and
fire mechanism is needed.

Thel nt Fi r e4 mechanism addresses this need. Its dynamics are specified by four

time constants: 1, for afast excitatory current, T, and 1, for aslower inhibitory current,
1 2

and 1,,, for the even slower leaky "membrane” which integrates these currents. When the

membrane state variable mreaches 1, the cell "fires," producing an output event and
returning mto 0. This does not affect the other states of the model.

The differential equationsthat govern| nt Fi r e4 are

% = —k_e Eq. 10.10
ﬁ =—K. i Eg. 10.11
dt 1
d,
= = _ki2|2+ ail'1 Eg. 10.12
%—Tz—kmm+aee+ai2i2 Eqg. 10.13
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where each k is arate constant that equals the reciprocal of the corresponding time
congtant, and itisassumed that k, >k >k >k (i.e 1,<T1, <T; <T,). Aninput event
1 2 1 2
with weight w> 0 (i.e. an excitatory event) adds instantaneously to the excitatory current
e. Equations 10.11 and 12, which define the inhibitory current i,,, are based on the
reaction scheme
ki ki
Lo Eq. 10.14

Pl P bath

in which an input event with weight w < O (i.e. an inhibitory event) adds instantaneously

toi,;. The constants a, & , and a, are chosen to normalize the response of the states e, i,
1 2

i,, and mto input events (Fig. 10.15). Therefore an input with weight w, > 0 (an

"excitatory” input) produces apeak e of w, and amaximum "membrane potential” m of

w,. Likewise, an input with weight w; < 0 (an "inhibitory" input) produces an inhibitory

current i, with aminimum of w; and drives mto aminimum of w.. Details of the analytic

solution to these equations are presented in Appendix Al: Mathematical analysis of
IntFire4.

-0.5-

Figure 10.15. Left: Current generated by a single input event with weight 0.5
(e) or -0.5 (i,). Right: The corresponding response of m. Parameters were

T,=3, ril =5, Tiz =10, andrm=30ms.

I nt Fired4,likel nt Fi re2, finds the next firing time through successive
approximation. However, | nt Fi r e2 generally iteratesto convergence every time an
input event isreceived, whereas | nt Fi r e4'salgorithm implement a series of deferred
Newton iterations by exploiting the downward convexity of the membrane potential
trajectory and using NEURON's event delivery system. The result is an alternating
sequence of self-events and single Newton iterations that converges to the correct firing
time, yet remains computationally efficient in the face of heavy input event traffic.

Thisisillustrated in Fig. 10.16. If an event arrives at time t,, values of e(ty), i,(ty), i,
(tp), and m(t)) are calculated analytically. Should m(t,) be subthreshold, the self-event is
moved to anew approximate firing time t, that is based on the slope approximation to m
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te=t,+ (L-m(ty) / m(ty) if m(ty)>0 Eq. 10.15
or
o if M (ty)<0

(Fig. 10.16 left and middle). If instead m(t;) reaches threshold, the cell "fires" so that

net _event () iscaled (producing an output event that is picked up by all Net Consfor
which this cell isa source) and misreset to 0. The self-event is then moved to an
approximate firing time that is computed from Eq. 10.15 using the values assigned to m
and m" immediately after the "spike" (Fig. 10.16 right).

Page 34

Figure 10.16. Excerpts from simulations of | nt Fi r e4 cells showing time
course of m. Arrival of an event (arrow = external event, vertical dotted line =
self-event) triggers a Newton iteration. Slanted dashed lines are slope
approximations to mimmediately after an event. Left: Although Eq. 10.15
yieldsafinitet;, thisinput istoo weak for the cell to fire. Middle: Herem' <0

immediately after an input event, so both t; and the true firing time are infinite.

Right: The slope approximation following the excitatory input is not shown, but
it obvioudly crosses threshold before the actual firing time (asterisk). Following
the "spike" misreset to 0 but bounces back up because of persistent excitatory

current. This dies away without eliciting a second spike, even though t; is finite

(dashed line).

/ 0.99 — y

06 0.975

!

Figure 10.17. These magnified views of the trajectory from the right panel of
Fig. 10.16 indicate how rapidly the event-driven Newton iterations converge to
the next firing time. In this simulation, spike threshold was reached in four
iterations after the excitatory input (arrow). The first two iterations are evident
in the left panel, and additional magnification of the circled region revea s the
last two iterations (right panel).
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The justification for this approach stems from several considerations. The first of
these isthat t; is never later than the true firing time. This assertion, which we provein

Appendix A1, isof central importance because the ssimulation would otherwise bein
error.

Another consideration is that successive approximations must converge rapidly to the
true firing time, in order to avoid the overhead of alarge number of self-events. Using the
dope approximation to mis equivalent to the Newton method for solving m(t) =1, so
convergence is slow only when the maximum value of miscloseto 1. The codein
I nt Fi r e4 guards against missing "real” firings when mis asymptotic to 1, because it
actualy testsform > 1 - eps, wherethe default value of eps is 10°. This
convergence tolerance eps Is a user-settable GLOBAL parameter, so one can easily
augment or override this protection.

Finally, the use of a series of self-eventsis superior to carrying out a complete
Newton method solution because it is most likely that external events will arrive in the
interval between firing times. Each externa event would invalidate the previous
computation of firing time and force arecalculation. This might be acceptable for the
I nt Fi r e2 mechanism with its efficient convergence, but the complicated dynamics of
I nt Fi r e4 suggest that the cost would be too high. How many iterations should be
carried out per self-event is an experimental question, since the self-event overhead
depends partly on the number of outstanding events in the event queue.

Other comments regarding artificial spiking cells

NEURON's event delivery system has been used to create many more kinds of
artificial spiking neurons than the three classes that we have just examined. Specific
examples include pacemakers, bursting cells, models with various forms of use-
dependent synaptic plasticity, continuous or quantal stochastic variation of synaptic
weight, and an "IntFire3" with a bias current and time constants T, > T, > T,.
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local vs. nonlocal 1,2
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Chapter 11

Modeling networks

NEURON was initialy developed to handle models of individual cells or parts of
cells, in which complex membrane properties and extended geometry play important
roles (Hines 1989; 1993; 1995). However, as the research interests of experimental and
theoretical neuroscientists evolved, NEURON has been revised to meet their changing
needs. Since the early 1990s it has been used to model networks of biological neurons
(e.g. (Destexhe et al. 1993; Lytton et a. 1997; Sohal et a. 2000)). Thiswork stimulated
the development of powerful strategies that increase the convenience and efficiency of
creating, managing, and exercising such models (Destexhe et al. 1994; Lytton 1996;
Hines and Carnevale 2000). Increasing research activity on networks of spiking neurons
(e.g. (Riecke et al. 1997; Maass and Bishop 1999)) prompted further enhancements to
NEURON, such asinclusion of an event delivery system and development of the Net Con
(network connection) class (see Chapter 10).

Consequently, since the latter 1990s, NEURON has been capable of efficient
simulations of networks that may include biophysical neuron models and/or artificial
spiking neurons. biophysical neuron models are built around
representations of the biophysical mechanisms that are involved What could be more
in neuronal function, so they have sections, density mechanisms, | @y/moronicthan

d . real model neuron”?
and synapses (see Chapter 5). A synapse onto a biophysical
neuron model is a point process with a NET_RECEI VE block that
affects membrane current (e.g. ExpSyn) or a second messenger (see Chapter 10). The
membrane potential of abiophysical neuron model is governed by complex, interacting
nonlinear mechanisms, and spatial nonuniformities may also be present, so numerical
integration is required to advance the solution in time.

Aswediscussed in Chapter 10, artificial spiking neurons are really point processes
with aNET_RECE! VE block that callsnet _event () (eg. | nt Fi r el). The"membrane
state variable" of an artificial neuron has very simple dynamics, and space is not a factor,
so the time course of the membrane state is known analytically and it isrelatively easy to
compute when the next spike will occur. Since artificial neurons do not need numerical
integration, they can be used in discrete event smulations that run several orders of
magnitude faster than simulations involving biophysical neuron models. Their simplicity
also makesit very easy to work with them. Consequently, artificial spiking neurons are
particularly useful for prototyping network models.

In this chapter we present an example of how to build network models by combining
the strengths of the GUI and hoc programming. The GUI tools for creating and
managing network models are most appropriate for exploratory simulations of small nets.
Once you have set up and tested a small network with the GUI, aclick of abutton creates
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ahoc file that contains reusable cell class definitions and procedures. This eliminates the
laborious, error-prone task of writing "boilerplate” code. Instead, you can just combine
NEURON's automatically generated code with your own hoc programming to quickly
construct large scale nets with complex architectures. Of course, network models can be
constructed entirely by writing hoc code, and NEURON's WWW site contains linksto a
tutorial for doing just that (Gillies and Sterratt, 2004). However, by taking advantage of
GUI shortcuts, you'll save valuable time that can be used to do more research with your
models.

Building a simple network with the GUI

Regardless of whether you use the GUI or write hoc code, creating and using a
network model involves these basic steps:

1. Definethetypes of célls.
Create each cell in the network.
Connect the cells.

A w D

Set up instrumentation for adjusting model parameters and recording and/or
displaying simulation results.

5. Set up controls for running simulations.

We will demonstrate this process by constructing a network model that can be used to
examine the contributions of synaptic, cellular, and network properties to the emergence
of synchronous and/or correlated firing patterns.

Conceptual model

The conceptual model isafully connected network, i.e. each cell projects to al other
cells, but not to itself (Fig. 11.1 left). All conduction delays and synaptic latencies are
identical.

The cells are spontaneously active integrate and fire neurons, similar to those that we
discussed in Chapter 10. All cells have the same time constant and firing threshold, but
in isolation each has its own natural interspike interval (1SlI), and the I SIs of the
population are distributed uniformly over afixed range (Fig. 11.1 right).

Figure 11.2 illustrates the dynamics of these cells. Each spike is followed by a " post-
spike" hyperpolarization of the membrane state variable m, which then decays
monoexponentially toward a suprathreshold level. When m reaches threshold (1), it
triggers another spike and the cycle repeats. A synaptic input hyperpolarizes the cell and
prolongs the ISl in which it occurred, shifting subsequent spikes to later times. Each input
produces the same hyperpolarization of m, regardless of wherein the ISl it falls. Even so,
the shift of the spike train depends on the timing of the input. If it arrives shortly after a
spike, the additional hyperpolarization decays quickly and the spike train shifts by only a
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small amount (Fig. 11.2 left). Aninput that arrives latein the ISl can cause a much larger
shift in the subsequent spike train (Fig. 11.2 right).

Our task isto create amodel that will allow usto examine how synaptic weight,
membrane time constant and natural firing frequency, number of cells and conduction
latency interact to produce synchronized or correlated spiking in this network.

C
5
4
S8 i O N T I I
2
1
0

0 20 40 60 80 100
ms

Figure 11.1. Left: An example of afully connected net. Thin lines indicate reciprocal connections
between each pair of cells, and thick lines mark projections from one cell to its targets. Right:
When disconnected from each other, every cell hasits own natural firing frequency.

IntervalFire[0].M IntervalFire[0].M

1 ! 1 Y
08 08 [
0.6 0.6
0.4 0.4
0.2 0.2
0 0
0 10 20 30 40 50 0 10 20 30 40 50
ms ms

Figure 11.2. Time course of the membrane state variable min the absence (thin traces) and
presence (thick traces) of an inhibitory input. Notice that m follows a monoexponential
"depolarizing” time course which carriesit toward a suprathreshold level. When mreaches 1, a
spikeistriggered and misreset to O ("post-spike hyperpolarization™). An inhibitory synaptic
event causes the same hyperpolarizing shift of m no matter wherein the ISl it arrives, but its
effect on later spike times depends on its relative positionin the [SI. Left: Inhibitory events that
occur early in the ISl decay quickly, so following spikes are shifted to dightly later times. Right:
An inhibitory event that occurs late in the S| has alonger lasting effect and causes a greater
delay of the subsequent spike train.

Adding a new artificial spiking cell to NEURON

Before we start to build this network, we need to add anew kind of artificial spiking
cell to NEURON. Our model will use cells whose membrane state variable mis governed
by the equation

dm _
Ta+m—moo Eqg. 11.3
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wherem_ > 1and is set to avaue that produces spontaneous firing with the desired ISl

Aninput event with weight w adds instantaneously to m, and if mreaches or exceeds the
threshold value of 1, the cell "fires,” producing an output event and returning mto 0. We
will call thisthe | nt er val Fi r e model, and the NMODL code for it isshownin
Listing 11.1. I nt er val Fi r e has essentialy the same dynamicsas| nt Fi r el, but
because its membrane state relaxes toward a suprathreshold value, it usesafireti me()
function to compute the time of the next spike (see discussionsof I nt Fi rel and

I nt Fi re2 inChapter 10).

NEURCON {
ARTIFIQ AL CELL Interval Fire
RANGE tau, m i nvl

}

PARAMETER {
tau = 5 (ns) <le-9, 1e9>
invl = 10 (ns) <le-9, 1e9>

ASS| G\ED {
m

m nf
tO( ns)

INITIAL {
mnf = 1/(1 - exp(-invl/tau)) : so natural spike interval is invl
m=20
t0 =t
net _send(firetine(), 1)

NET_RECEI VE (W) {
m=
t0 =t
if (flag == 0) {
m=m+ w
if (m>1) {
m=20

net _event (t)

net _nove(t+firetime())
} else {
net _event (t)
m=20
} net _send(firetine(), 1)
}

FUNCTION firetime()(ns) { : m< 1 and mnf > 1
firetime = tau*log((mnf-m/(mnf - 1))
}
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FUNCTI ON M

N M) {
}M=mnf+(

m- mnf)*exp(-(t - t0)/tau)

Listing 11.1. NMODL implementation of | nt er val Fi re. Figures 11.1 (right)
and 11.3 illustrate its operation.

Creating a prototype net with the GUI

After we compile the codein Listing 11.1 (see Chapter 9), when we launch nr ngui
these lines should appear at the end of NEURON's startup message
Addi ti onal mechanisnms fromfiles
invlfire. nmod

to reassure us that what was defined ini nvl fi re. nod--i.e. thel nt erval Fi re cell
class-is now available. We are ready to use the GUI to build and test a prototype net.

1. Define the types of cells

Thisinvolves using the existing cell classes to create the types of cells that we will
employ in our network. Our network contains artificial spiking cells, so we need an
ArtCellGUI tool, which we get by clicking on Build / NetWork Cell / Artificial Cell in the
NEURON Main Menu toolbar (Fig. 11.3).

Buitd I fools Graph Vector Windowl

single compartment

Cell Builder

IetvoidGLl From Cell Builder
MetWaork Builder Artificial Cell
Linear Circuit

Channel Builder

[ Fite Ectit

Figure 11.3. Using the NEURON Main Menu to bring up an ArtCellGUI tool.

The gray areain the lower left corner of the ArtCellGUI tool displays alist of the
types of artificial spiking cells that will be available to the NetwWork Builder. It starts out
empty because we haven't done anything yet (Fig. 11.4). To remedy this, click on New
and scroll down to select IntervalFire (Fig. 11.5 left), and then rel ease the mouse button.
The Artificial Cell types list now contains a new item called IntervalFire, and the right
panel of the ArtCellGUI tool shows the user-settable parametersfor this cell type
(Fig. 11.5 right). These default values are fine for our initial exploratory simulations, so
well leave them asis.

However, thereis one small change that will make it easier to use the NetWork
Builder: IntervalFire is abig word, and the NetWork Builder's canvasisrelatively small.
To avoid clutter, let's give our cell type a short, unigue name, like IF (see Figs. 11.6 and
11.7).
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Close Hide

November 23, 2004

Using Current Selection...

Rename

Clone

Remove
Artificial Cell types

MNew | “ariables for selected Cell type appear here

Figure 11.4. The ArtCellGUI tool starts with an empty Avrtificial Cell types list.

E HCellGUID) [ ——
| Mew IntervalFire -- IntervalFire
NetStim election... Using Current Selection.., || tau (ms) IE—E
| IntFire1 Rename inyl (ms) D lm—E
IntFirez Clone
Remave
el types Artificial Cell types
i nervalFie | &
hd hd

Figure 11.5. Click on New / IntervalFire to add it to the Artificial Cell types list.

Figure 11.6. Changing the name of one of the Artificial Cell types.

To change the name of one of the Artificial Cell types, select it (if it isn't
already selected) and then click on the Rename button.

This pops up awindow with astring editor field. Click in thefield . . .

Using Current Selection...

Fename
|

Y
Clone

Remove
Artificial Cell types

IntervalFire E

Rename the artificial cell type

Imk

|Accept4—'|| Cancel I
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Rename the artificial cell type

... change the name to IF, and then click the Accept button. [F

|Accept4:'|| Cancel I
X

Close Hide

Mew | IF -- IntervalFire

Using Current Selection.., || tau (ms) 5 ;i
Renarne invl {ms) J . [10 31

Clone

Remove
Artificial Cell types

I”:— Y

Figure 11.7. The ArtCellGUI tool after renaming the cell type. The right panel
shows that IF is based on the IntervalFire class.

Now that we have configured the ArtCellGUI tool, it would be a good ideato save
everything to a session file with NEURON Main Menu / File / save session (also see
Fig. 1.23 and Save the model cell in Chapter 1). If you like, you may hide the
ArtCellGUI tool by clicking on Hide just above the drag bar, but don't close it--the
NetWork Builder will need it to exist.

2. Create each cell in the network

Having specified the cell typesthat will be used in the network, we are ready to use
the NetWork Builder to create each cell in the network and connect them to each other. In
truth, well just be creating the specification of each cell in the net; no cells are really
created and there is no network until the Create button in the NetWork Builder is ON.

To get aNetWork Builder, click on NEURON Main Menu / Build / NetWork Builder
(Fig. 11.8).

[ NEURON Main Menu
|canify
[ Fite  Ectit

Buitd I fools Graph Vector Windowl

single compartment
Cell Builder
MNetWork Cell

etiork Builder
Linear Circuit
Channel Builder

Figure 11.8. Bringing up a NetWork Builder.
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The NetWork Builder'sdrag bar reveals that thistool is an instance of the Net GUI class
(seeFig. 11.9).

The right panel of a NetWork Builder is a canvas for laying out the network. The
"palette” for this canvasisamenu of the cell types that were created with the ArtCellGUI
tool. These names appear along the upper left edge of the canvas (for this example, a
limited palette indeed: IF isthe only cell type). Context-dependent hints are displayed at
the top of the canvas.

The left panel of a NetWork Builder contains a set of buttons that control its operation.
When aNetWork Builder isfirst created, its Locate radio button is automatically ON.
This means that the NetWork Builder isready for usto create new cells. We do this by
merely following the hint (Fig. 11.10). Notice that the cell names are generated by
concatenating the base name (name of the cell type) with a number that starts at O and
increases by 1 for each new cell. We'll say more about cell namesin A word about cell
names under 7. Caveats and other comments below.

X

Close Hide

# Locate Create a new cell by dragging from the list on the left

~ Sre-> Tar IF Place & new cell over another to replace the old one

~ Source tove a cell to a new location

~s _Targets Cells dragged of the view are discarded

~ larget
Sources

Show all edges

Weights

Delays

Haoc File
Create
SpikePlot

Show Cell Map

Figure 11.9. A new NetWork Builder.

Figure 11.10. Creating new cells in the NetWork Builder.

= EE0

Close Hide
To create a new cdll, click on one of theitemsin * éocateT
. . . . Fc-= |ar
the palette (in this example, the only item is IF) ¥ Source I Create IF at (-154,121)
and hold the mouse button down . . . s _Targets
~ larget
Sources
E’Show all edges

| etGLI[]

Close Hide

while dragging the new cell to a convenient # Locate
~ Src-> Tar IF

location on the canvas. Release the mouse & Source Move IF0 to (-148,73)

button, and you will see anew cell labeled IFO. ~ _Targets
~ larget

Sources
E’Show all edges 1
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After you create a second IF cell, the NetWork
Builder should look like this.

The NEURON Book: Chapter 11

Close Hide

& Locate
~ Src-> Tar IF
~ Source
~s largets
~ larget
Sources
Show all edges

IFO IF1

If the mouse button is released while the cursor is close to one of the palette items, the
new cell will be hard to select since pal ette item sel ection takes precedence over
selection of acell. If this happens, just select Translate in the canvas's secondary menu
(the canvasisjust amodified graph!) and then left click on the canvas and drag it to the
right (if you have a three button mouse, or a mouse with a scroll wheel, don't bother with
the canvas's menu--just click on the middle button or scroll wheel and drag the canvas).
Thiswill pull the cell out from under the pal ette items, which never move from their
position along the left edge of the canvas. Finally, click on one of the radio buttons
(Locate, Src -> Tar, etc.) and continue working with the NetWork Builder.

3. Connect the cells

Connecting the cells entails two closely related tasks: setting up the network's
architecture, and specifying the delays and weights of these connections.

Setting up network architecture

To set up the architecture, we click on the Src -> Tar radio button, read the new hint
in the canvas, and do what it says (Fig. 11.11).

Figure 11.11. Setting up network architecture.

Clicking on the Src -> Tar button brings out a
new hint.

So we click on IFO and hold the mouse button

down while dragging the cursor toward IF1. A
thin "rubber band" line will stretch from IFO to
the cursor.

When the cursor is on top of IF1, the rubber
band becomes a thick black line, and the hint
changes to the message shown here.
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MEtGUI[D]
Close Hide

~ Locate
Sre-= Tar
~rSource
~s largets
~ larget
Sources
Show all edges

Select Source and drag mouse to Target

IFO IF1

| NetGLI[]

Close Hide

~ Locate
& Src->Tar

~ Source
~s largets

~ larget
Sources
Show all edges ”:ﬂ

Source IF0 selected

IF1

| NetGLI[]

Close Hide

~ Locate

& Src->Tar

~ Source

~s largets

~ larget
Sources

Attach Target IF1 to Source IFD

IF‘D\L@

Show all edges
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S MatGLI[]
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Hide

To complete the attachment, we just release the Close
mouse button. The projection ("edge") from IFO v Locate
to IF1 will appear as athin line with a dight S
bend near its midpoint. The O marks the target ~ _Targets
end of this connection. > G

Show all edges

| MetGLI[D)

Attached Target IF1 to Source IFO

[

Hide

~ Locate
& Src->Tar
~ Source
~s largets
~ larget
Sources
Show all edges

Making the reciprocal connection requiresonly
that we click on IF1, drag to IFO, and release the
mouse button.

Thisisagood time to save everything to a session file.

Specifying delays and weights

Attached Target IFO to Source IF1

|FEF= =5

The default initial value of all synaptic weightsisO0, i.e. a presynaptic cell will have
no effect on its postsynaptic targets. The NetWork Builder has a specia tool that we can

use to change the weights to what we want (Fig. 11.12).

Figure 11.12. Setting the synaptic weights.

Clicking on the Weights button in the NetWork Builder . . .

... brings up atool for specifying synaptic weights. The top of this
tool has anumeric field with its associated spinner and button
(labeled Weight). The value in the numeric field can be set in the
usua ways (direct entry, using the spinner, etc.), but note the
arrows, which suggest other possibilities.

The bottom of the weights tool contains two panels that list the
weights of all synaptic connections (aka "edges" in graph theory).
Clicking on a connection in the I eft list copies from the connection
to the numeric field, and clicking on a connection in the right list
copies from the numeric field to the connection.

= [REENE)]
Close Hide

. Locate
& Src-» Tar
< source
. largets
. larget

Sources
Show all edges
Weights

Attached Te

IFoe————=5F -

IFO-=IF1 0
IF1-=IF0 0

IFO-=IF1 0
IF1-=IF0 O
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Close Hide

----- QTN [

Let's give both synapses aweight of -0.1 (mild inhibition). First we IF0-=IF1 0 IFo-=IF1 D
change Weight to -0.1. . . Iz IFU: 5.0 IR IR0

... and then we click on IFO->IF1 and IF1->IFO intheright panel. || " |_weight [T =
We're finished when the weights tool looks like this. IFo-=IF1 0.1 IF0-=IF1 -0.1

. . . . S IF1-=IF -0, IF1-=IF -0,
Now we can close this window. If we need it again, clicking on the o R

NetWork Builder's Weights button will bring it back.

All delays are 1 ms by default, which isfine for our purposes. If we wanted to change
this to something else, we would click on the NetWork Builder's Delays button (see
Fig. 11.9) to bring up atool for setting delays. The delay tool works just like the weight
tool.

At this point, the ArtCellGUI tool plus the NetWork Builder together constitute a
complete specification of our network model. We should definitely save another session
file before doing anything el se!

Now we have a decision to make. We could use the NetWork Builder to create ahoc
file that, when executed, would create an instance of our network model. A better choice
isto use the GUI to test our model. If there are any problems with what we have done so
far, thisisagood time to find out and make the necessary corrections.

However, before we can run tests, there must first be something to test. We have a
network specification, but no network. Aswe pointed out earlier in 2. Create each cell
in the network, the network doesn't really exist yet. Clicking on the Create button in the
NetWork Builder fixes that (Fig. 11.13).

4. Set up instrumentation

We want to see what our network does, and to explore how its behavior is affected by
model parameters. Clicking on the SpikePlot button in the NetWork Builder brings up a
tool that will show the input and output spike trains (Fig. 11.14).

We already know how to adjust model parameters. With the NetWork Builder we can
change synaptic weights and delays, and the IF cells' properties can be changed with the
ArtCellGUI tool. Suddenly, we realize that both IF cells will have the same time constant
and firing rate. No problem--our goal is to combine the strengths of the GUI and hoc. We
will take care of thislater, by combining the hoc code that the NetWork Builder generates
with our own hoc code. Using afew linesof hoc, we can easily assign unique firing
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rates across the entire population of IF cells. And if we insisted on sticking with GUI
tools to the bitter end, we could just bring up a PointProcessGroupManager (NEURON
Main Menu / Tools / Point Processes / Managers / Point Group), which would allow us
to control the attributes of each cell in our network individually.

| MetGLIO] = [x]
Close Hide
~~ Locate ~ Locate
: ggcu;:eTar : g[rj%;:eTar Attached Target IFD to Source IF1
~ largets ~s largets
~ larget ~ larget
Sources Sources e
Show all edges Show all edges I !
Weights Weights
Delays Delays
Haoc File Haoc File
Create Create
SpikePlot SpikePlot
Show Cell hap Show Cell Map

Figure 11.13. Left: Toggling the Create button ON causes the network
specification to be executed. Right: Once Create is ON, the representation of
the network is available for NEURON's computational engineto usein a

simulation.
| MetGLI[D]
Close
~~ Locate Piot
& Src-> Tar | .0 |
s Source Spikes
s _Targets Freq YWindow (ms) [T00 ;i
~ larget
Sources Hist Bin (ms) IN—E
Show all edges ID_ =
Weights ar ”:;
Delays
Hoc File 2
Create
SpikePlot 1k
Show Cell hap
0 | | | | |
n 1 2 a2 A c

Figure 11.14. The NetWork Builder's SpikePlot button (left) brings up atool for
displaying and analyzing spike trains (right).
5. Set up controls for running simulations

At aminimum, we need a RunControl panel (NEURON Main Menu / Tools /
RunControl, as shown in 5. Set up controls for running the simulation in Chapter 1).
Also, since our network contains only artificial spiking neurons, we can use adaptive
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integration to achieve extremely fast, discrete event smulations. We'll need a
VariableTimeStep panel (NEURON Main Menu / Tools / VariableStepControl
(Fig. 11.15)), which makes it easy to choose between fixed time step or adaptive
integration (Fig. 11.16).

[ NEURON Main Menu
|canify
| Fite Fdit Buitd

?'oof.sl Graph Vector andowl

RunControl
RunButtan
’}VariabIeStepCmtroI
Point Processes
Distributed hMechanisms
Fitting
Impedance
kodel View

Figure 11.15. Bringing up a VariableTimeStep pandl.

Figure 11.16. Toggling adaptive integration ON and OFF.

& variableTimestep

The VariableTimeStep panel's Use variable dt checkbox is empty, [ Use variable dt
which means that adaptive integration is off. |/Absolute Tolerance [ 0001 (3

To turn adaptive integration ON, we click on the Use variable dt [yl Use variable dt
checkbox. .’ [o.007 |

| Atol Scale Tnoll Detalls I

The check mark in the Use variable dt checkbox tells us that

|8 Use variable dt

adaptive integration is ON. Clicking on this checkbox again will [AbsaueTakranee]m oo (3l

turn it back OFF so that fixed time steps are used.

I| Atol Scale Tnoll Detalls I

Adaptive integration can use either global or local time steps, each of which hasits
own particular strengths and weaknesses (see Adaptive integrators in Chapter 7). The
VariableTimeStep panel's default setting isto use global time steps, which is best for
models of single cells or perfectly synchronous networks. Our toy network has two
identical cells connected by identical synapses, so we would expect them to fire
synchronously. However, when we build our net with hoc code, the cellswill all have
different natura firing frequencies, and who can tell in advance that they will achieve
perfect synchrony? Besides, thisisatutorial, so let's use local time steps (Fig. 11.17).
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Figure 11.17. Toggling between global and local time st

To specify whether to use global or local time steps,
wefirst click on the VariableTimeStep pandl's Details

(8 Use variable dt

Absolute Tolerance [ _] [0.001 F |

November 23, 2004

DS.

iableTimestep

button.

We are concerned with the Local step checkbox,
which is empty. To activate the use of local variable

time steps. . .

current model type: <*ODE*> DAE
ODE model allows any method
DAE model allows implicit fixed step or daspk

Implicit Fixed Step
C-M Fixed Step
Cvode

Daspk

Local step

DAE and daspk require sparse solver, cvode requires tree solver

znd order threshold (for variable step)

hle=b tree solver
Ix=h sparse solver

... wejust click on the Local step checkbox . . .

current model type: <*ODE*> DAE

ODE model allows any method

DAE model allows implicit fixed step or daspk
Implicit Fixed Step
C-M Fixed Step
Cvode

Daspk
Local step
DAE and daspk require sparse solver, cvode requires tree solver

hle=b tree solver
Ix=h sparse solver

D znd order threshold (for variable step)

... and now each cdl in our network will advance
with its own time step. If we want to restore global
time steps, we can just click on the Cvode button.
Now we can close this panel; should we need it again,
we only haveto click on the VariableTimeStep panel's
Details button.

current model type: <*ODE*> DAE
ODE model allows any method
DAE model allows implicit fixed step or daspk

Implicit Fixed Step
C-M Fixed Step
Cvode

Daspk

Local step

DAE and daspk require sparse solver, cvode requires tree solver
hle=b tree solver
Ix=h sparse solver

znd order threshold (for variable step)
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After rearrangement, the various windows we have created should look something
like Fig. 11.18. The tools we used to specify the network are on the left, smulation
controls are in the middle, and the display of smulation resultsis on the right. Quick,

saveit to asession file!l
EECEE || =] spikePioio] for NetDatalo] E
Close Hide Close Hide Close Hide
New IF -- IntervalFire Init (m\fjd—'lj Fes &l | Plot |
Using Current Selection...|| tau (ms) [5 =it & Run Spikes
Rename il (ms) | |1D |ﬁ| Stop Freg Window (ms) |1DD ;i
Clone S E 6l (i) = |5—|§ Hist Bin (ms]) 0.1 ;i
Remove | IF1
! . IFn
Artificial Cell types
IF A
-
|5 ;i
0.0z5 2l =
> Puoints plotted/ms |4D ;i
SEETG Quiet 0 | | | | |
Close Hide Real Time (s) 0 0 1 2 2 A L
Locate =
~ —
& Src-> Tar = | variahleTimestep LE
« Source Attached Target IF0O to Close ide
~ largets
- Target (4 Use variable dt
Sources IFas———=5F1 Absolute Tolerance [ [0.007 |
Show all edges
Weights I| Atol Scale Tooll Details I
Delays -
Heoc File
Create
SpikePlot
Show Cell Map

Figure 11.18. The completed model with controls for running simulations and
displaying results.

6. Run a simulation

Thisisamost too easy. Clicking on Init & Run in the RunControl panel, we see--
nothing! Well, ailmost nothing. Thet field in the RunControl panel shows us that time
advanced from 0 to 5 ms, but there were no spikes. A glance at the ArtCellGUI tool tells
uswhy: invl is5 ms, which meansthat our cellswon't fire their first spikes for another

5 ms. Let's change Tstop to 200 ms so we'll get alot of spikes, and try again. Thistime
we're successful (Fig. 11.19).
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SpikeFPlot[0] for MetDatafn]

Freq Window (ms) |1DD ;i
Hist Bin (ms] |D.1 ;i
u IF1

ar IFo

1

n cn 100 1Cn 200

0

Figure 11.19. The SpikePlot shows the spike trains generated by the cellsin our
network model. Note that rasters correspond to cell names from top to bottom,
and that the raster for cell i is plotted along theliney =i + 1.

7. Caveats and other comments

Changing the properties of an existing network

Aswe have seen, the ArtCellGUI tool is used to specify what artificia spiking cell
types are available to a NetWork Builder. The same ArtCellGUI tool can be used to adjust
the parameters of those cells, and such changes take effect immediately, even if the
network already exists (i.e. even if the NetWork Builder's Create button is ON).

The NetReadyCellGUI tool (NEURON Main Menu / Build / NetWork Cell / From Cell
Builder) is used to configure biophysical neuron model types for use with a NetWork
Builder. In fact, we would use a separate NetReadyCellGUI instance for each different
type of biophysical neuron model we wanted to use in the net. The NetReadyCellGUI tool
has its own CellBuilder for specifying topology, geometry, and biophysical properties,
plus a SynapseTypes tool for adding synaptic mechanismsto the cell (seethe tutorial at
htt p: / / waw. neur on. yal e. edu/ neur on/ docs/ net bui | d/ mai n. ht m ). However,
changes made with a NetReadyCellGUI tool do not affect an existing network; instead, it
IS necessary to save a session file, exit NEURON, restart and reload the session file.

What about changes to the network itself? Any changes whatsoever can be madein
the NetWork Builder, aslong as its Create button is OFF. Onceit is ON, some changes
are possible (e.g. adding new cells and synaptic connections to an existing network), but
additional actions may be required (a pre-existing SpikePlot will not show spike trains
from new cells), and thereis arisk of introducing a mismatch between one's conceptual
model and what is actually in the computer. The best policy isto toggle Create OFF (see
Fig. 11.20), make whatever changes are needed, save everything to a session file, exit
NEURON, and then restart and load the new session file.
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"Create” cannot be turned back on without exiting MEURGN

| Stay on | | Turn offl

Figure 11.20. Trying to turn Create OFF brings up this window, which offers
the opportunity to change one's mind. Select Turn off if it is necessary to make
substantial changesto an existing network in the NetWork Builder.

A word about cell names

Aswe mentioned abovein 2. Create each cell in the network, the cell names that
appear in the NetWork Builder are generated automatically by concatenating the name of
the cell type with a sequence of numbers that starts at O and increases by 1 for each
additional cell. But that's only part of the story. These are realy only short "nicknames,"”
astratagem for preventing the NetWork Builder and its associated tools from being
cluttered with long character strings.

Thisisfine aslong as the NetWork Builder does everything we want. But suppose we
need to use one of NEURON's other GUI tools, or we have to write some hoc code that
refersto one of our model's cells? For example, we might have a network that includes a
biophysical neuron model, and we want to see the time course of somatic membrane
potential. In that case, it is absolutely necessary to know the actual cell names.

That's where the NetWork Builder's Cell Map comes in. Clicking on Show Cell Map
brings up asmall window that often needs to be widened by clicking and dragging on its
left or right margin (Fig. 11.21). Now we realize that, when we used the ArtCellGUI tool
to create an IF cell "type," we were actually specifying anew cell class whose nameisa
concatenation of our "type" (IF), an underscore character, and the name of the root class
(the name of the class that we based IF on, which was IntervalFire).

IFO IF_IntervalFire[0] A
IF1 IF_IntervalFire[1]

Figure 11.21. The Cell Map for our toy network. See text for details.

Combining the GUI and programming

Creating a hoc file from the NetWork Builder

Having tested our prototype model, we are now ready to write ahoc file that can be
mined for reusable code. Clicking on the Hoc File button in the NetWork Builder brings
up atool that looks much like what we used to specify file name and location when
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saving asession file. Once we're satisfied with our choices, clicking on thistool's "Open"
button writes the hoc file (yes, the button should say Close). Thisfile, which we will call
pr ot ot ype. hoc, ispresented in Listing 11.2, and executing it would recreate the toy
network that we just built with the NetWork Builder.

[/l NetGJ default section. Artificial cells, if any, are located here.
create acell _hone_
access acel |l _hone

/I Network cel |l tenpl ates
[IAtificial cells
/l 1FIntervalFre

begintenpl ate IF IntervalFre
public pp, connect2target, x, y, z, position, is_art
external acell hone
objref pp
proc init() {
acell _hone_ pp = newliInterval Fre(.5)

func is_art() { return 1}

proc connect 2target () { $02 = new Net Con(pp, $ol) }
proc position(){x=$1 y=$2 z=$3}

endtenpl ate IF IntervalFre

/I Network specification interface

objref cells, nclist, netcon
{cells = newlList() nclist = newlList()}

func cel | _append() {cells.append($0l) $ol.position($2, $3, $4)
} return cells.count - 1

func n%_append() {//srcindex, tarcelindex, synindex

if ($3>=0) {

cel | s. obj ect ($1) . connect 2t ar get (cel | s. obj ect ($2). synl i st. obj ect ($3), \
net con)

net con. wei ght = $4  netcon. del ay = $5

}el se{
cel I's. obj ect ($1) . connect 2t ar get (cel | s. obj ect ($2) . pp, net con)
netcon. wei ght = $4  netcon. del ay = $5

ncl i st. append( net con)
return nclist.count - 1

}

/I Network instantiation

FO */ cell_append(new I F Interval Fire

/* | , -149, 73, 0)
/[* IFL */ cell_append(new | F_Interval Fire
/[* 1F

/* 1

. -67, 73, 0)

—~

1->1F0 */  nc_append(1, O, -1,
FO ->1F1 */  nc_append(0, 1, -1,

Listing 11.2. Clicking on the Hoc File button in the NetwWork Builder produces a
file which we have called pr ot ot ype. hoc.
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A quick glance over the entire listing reveal s that pr ot ot ype. hoc isorganized into
severa parts, which are introduced by one or more lines of descriptive comments. Let us
consider each of these in turn, to see how it works and think about what we might reuse
to make a network of any size we like.

NetGUI default section

Thefirst part of the file createsacel | _home_ and make this the default section.
What is a section doing in amodel that contains artificial spiking cells? Remember that
artificial spiking cells are basically point processes (see Artificial spiking cells in
Chapter 10), and just like other point processes, they must be attached to a section.
Suddenly the meaning of thecomment Artificial cells, if any, are
| ocat ed her e becomesclear: acel | _home_ ismerely a"host" for artificia spiking
cells. It has no biophysical mechanisms of its own, so it introduces negligible
computational overhead.

Network cell templates

The NetWork Builder and its associated tools make extensive use of object-oriented
programming. Each cell in the network is an instance of acell class, and thisis where the
templates that declare these classes are |ocated (templates and other aspects of object-
oriented programming in NEURON are discussed in Chapter 13).

The comments that precede the templates contain alist of the cell class names. Our
toy network uses only one cell class, so pr ot ot ype. hoc contains only one template,
which definesthe | F_I nt er val Fi r e class. When biophysical neuron models are
present, they are declared first. Thus, if we had a NetWork Builder whose palette
contained a biophysical neuron model type called pyr, and an artificial spiking cell type S
that was derived from the Net St i mclass, the corresponding cell classes would be called
pyr _Cel | andS_Net St i m and the header in the exported hoc file would read

/I Network cell tenplates
/1 pyr_Cel |
[ITArtificial cells

/1 S NetStim

Functions and procedures with the same names as those contained in the
| F_I nt erval Fi r e template will be found in every cell class used by a NetWork Builder
(although some of their internal details may differ). Thefirst of theseisi ni t (), whichis
executed automatically whenever anew instance of thel F_| nterval Fi re classis
created. Thisin turn creates a new instance of the | nt er val Fi r e class that will be
associated withtheacel | _hone_ section. As an aside, we should mention that thisis an
example of how the functionality of abasic object class can be enhanced by wrapping it
inside atemplate in order to define a new class with additional features, i.e. an example
of emulating inheritance in hoc (see Polymorphism and inheritance in Chapter 13).

The remaining f uncsand pr ocsare public so they can be called from outside the
template. If we ever need to determine which elementsin a network are artificial spiking
cells and which are biophysical neuron models, i s_ar t () isclearly theway todoit.
The nextisconnect 2t ar get (), which looks useful for setting up network connections,
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but it turns out that the hoc code we write ourselves won't call this directly (see Network
specification interface below). Thelastisposi t i on() which can be used to specify
unique xyz coordinates for each instance of this cell. The coordinates themselves are
public (accessible from outside the template--see Chapter 13 for more about accessing
variables, f uncsand pr ocsdeclared in atemplate). Position may seem an arcane
attribute for an artificial spiking neuron, but it is helpful for algorithmically creating
networks in which connectivity or synaptic weight are functions of location or distance
between cells.

Network specification interface

These are the variables and functions that we will actually call from our own hoc
code. These are intended to offer us a uniform, compact and convenient syntax for setting
up our own network. That is, they serve as a"programming interface” between the code
we write and the lower level code that accomplishes our ultimate aims.

The purpose of the first two linesin this part of pr ot ot ype. hoc isevident if we
keep in mind that the NetWork Builder implements a network model with objects, some
of which represent cells while others represent the connections between them. The Li st
classisthe programmer's workhorse for managing collections of objects, soitis
reasonabl e that the cells and connections of our network model will be packaged into two
Li st scalledcel | s and ncl i st, respectively.

The functions that add new elementsto these Li st sarecel | _append() and
nc_append() , respectively. Thefirst argument tocel | _append() isanobj r ef that
points to anew cell that isto be added to the list, and the remaining arguments are the
Xyz coordinates that are to be assigned to that cell. Thenc_append() function uses an
if . . . elsetodea properly with either biophysical neuron models or artificial
spiking cells. In either case, itsfirst two arguments are integers that indicate which
elementsincel | s arethe obj r ef sthat correspond to the pre- and postsynaptic cells,
and the last two arguments are the synaptic weight and delay. If the postsynaptic cell isa
biophysical neuron model, one or more synaptic mechanisms will be attached to it (see
the tutorial at ht t p: / / wwwv. neur on. yal e. edu/ neur on/ docs/ net bui | d/ mai n. ht ni ).
In this case, the third argument to nc_append() isanonnegative integer that specifies
which synaptic mechanism isto be the target of the new Net Con. If instead the
postsynaptic cell isan artificial spiking cell, the argument isjust -1.

Network instantiation

So far everything has been quite generic, in the sense that we can use it to create cells
and assembl e them into whatever network architecture we desire. In other words, the
code up to this point is exactly the reusable code that we needed. The statementsin the
"network instantiation" group are just a concrete demonstation of how to use it to spawn
aparticular number of cellsand link them with a specific network of connections. Let's
make a copy of pr ot ot ype. hoc, cal it net def s. hoc, andtheninsert// at the
beginning of each of last four lines of net def s. hoc so they persist as areminder of
how to call cel I _append() and nc_append() but won't be executed. We are now
ready to use net def s. hoc to help us build our own networks.
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Exploiting the reusable code

Where should we begin? A good way to start is by imagining the overall organization
of the entire program at the "big picture” level. We'll need the GUI library, the class
definitions and other code in net def s. hoc, code to specify the network model itself,
and code that sets up controls for adjusting model parameters, running s mulations, and
displaying simulation results. Following our recommended practices of modular
programming and separating model specification from user interface (see Elementary
project management in Chapter 6), we turn thisinformal outlineintoani ni t. hoc
file that pulls al these pieces together (Listing 11.3).
| oad_file("nrngui.hoc")
| oad file("netdefs.hoc") // code fromNetVérk Buil der-generated hoc file

| oad file("makenet.hoc") // specifies network
load file("rig.hoc") // for adjusting nodel parans and running siml ations

Listing 11.3. Thei ni t . hoc for our own network program.

For now, we can comment out the last two lineswith// so we can test
net def s. hoc by usng NEURON to executei ni t . hoc. and then typing afew
commands at the oc> prompt (user entriesare Cour i er bol d while theinterpreter's
output isplain Cour i er).
Addi ti onal mechanisns fromfil es
invlfire.nod
1
1
oc>objref foo
oc>foo = new I F_Interval Fire()
oc>f oo

I F_Interval Fire[O]
oc>

So far so good. We are ready to apply the strategy of iterative program development (see
Iterative program development in Chapter 6) to fill in the details.

Thefirst detail is how to create a network of a specific size. If we call the number of
cellsncel |, then thisloop

for i=0, ncell-1 {
cell _append(new IF_Interval Fire(), i, 0, 0)

will make them for us, and this nested |oop
for i=0, ncell-1 for j=0, ncell-1if (i !'=7j) {
nc_append(i, j, -1, 0, 1)

will attach them to each other. Aninitia stab at embedding both of thesein a procedure
which takes a single argument that specifies the size of the net is

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 21



The NEURON Book: Chapter 11 November 23, 2004

proc createnet() { local i, |

ncell = $1
for i=0, $1-1
cell _append(new IF_Interval Fire(), i, 0, 0)
}
for i=0, $1-1 for j=0, $1-1 if (i !'=7j) {

nc_append(i, j, -1, 0, 1)
}

and that's what we put in the first version of nakenet . hoc.

We can test this by uncommenting thel oad_fi | e( " makenet. hoc") linein
i nit.hoc,using NEURON to executei ni t . hoc, and then typing a few commands at
the oc> prompt.

oc>cr eat enet ( 2)
oc>ncel
2
oc>print cells, nclist
List[8] List[9]
oc>print cells.count, nclist.count
22
oc>for i=0,1 print cells.object(i), nclist.object(i)
I F_Interval Fire[ 0] Net Con[O0]
IF_Interval Fire[1] Net Con[1]
oc>

So it works. But almost immediately awish list of improvements comes to mind. In
order to try networks of different sizes, welll be calling cr eat enet () more than once
during asingle session. Asit stands, repeated callsto cr eat enet () just tack more and
more new cells and connections onto the ends of thecel | s and ncl i st lists. Also,
cr eat enet () should be protected from nonsense arguments (a network should have at

least two cells).
We can add these fixes by changingncel | = $1 to
if ($1<2) { $1 =2}
ncell = $1

nclist.renmove_all ()
cells.remove_all ()

The first line ensures our net will have two or more cells. The last two linesuse the Li st
classsrenove_al | () topurgecel | s andncl i st . Of course we check this

oc>cr eat enet (1)
oc>ncel

2
oc>cr eat enet ( 2)
oc>ncel

2
oc>cr eat enet ( 3)
oc>ncel

3
oc>

which is exactly what should happen.
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What else should go into makenet . hoc? How about procedures that make it easy to
change the properties of the cells and connections? Asacase in point, this

proc delay() { local i
del = $1

for i=0, nclist.count-1 {
nclist.object(i).delay = $1
}
}
lets us set all synaptic delays to the same value by calling del ay() with an appropriate
argument. Similar pr ocs can take care of weights and cellular time constants. Setting
|Sl's seems more complicated at first, but after a few fal se starts we come up with
proc interval () { local i, x, dx
low = $1
high = $2
X = | ow
dx = (high - low/(cells.count-1)
for i=0, cells.count-1 {
cells.object(i).pp.invl = x
X += dx

}
}

Thisassignsthel owISl tothefirst cell incel | s, thehi gh ISl tothelast cell incel | s,
and evenly spaced intermediate values to the other cells.

Does that mean the first cell isthe fastest spiker, and the last is the Slowest? Only if
we are careful about the argument sequence when we call i nt er val () . For that matter,
what prevents us from calling i nt er val () with one or both arguments < 0? Come to
think of it, some of our other pr ocs might also benefit by being protected from nonsense
arguments. We might protect against negative delays by changing

del = $1
inproc delay() to

if ($1<0) $1=0
del = $1

and we could insert similar argument-trapping code into other pr oc s as necessary.

However, it makes more sense to try to identify a common task that can be split out
into a separate function that can be called by any pr oc that needsit. It may help to
tabulate the vulnerabl e variables and the constraints we want to enforce.

Variable Constraint

ncel | >2
tau >0
| owlSl >0
hi gh 1Sl > | owlS
del >0

Most of these constraints are "greater than or equal to," the two holdouts being t au and
| owISl. After amoment we realize that there are practical lower limits to these
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variables--say 0.1 msfor t au and 1 msfor | ow|Sl--so "greater than or equal to"
constraints can be applied to all.

The final version of makenet . hoc (Listing 11.4) contains all of these refinements.
The statements at the very end create a network by calling our revised pr ocs.

/-k

returns value >= $2

for bulletproofing procs agai nst nonsense argumnents
*/

f
T 5iked) ¢
$1=$2

return $1

(11111111 create a network /111111111
/] argument is desired nunber of cells

proc createnet() 5 | ocal i,
$1 = ge($1,2) // force net to have at |east two cells
ncell = $1
/1l so we can nmake a new net wi thout having to exit and restart
nclist.renmove_all ()
cells.remove_all ()
for i=0, $1-1 {

cell _append(new IF_Interval Fire(), i, 0, 0)

for i=0, $1-1 for j=0, $1-1 if (i !=17j)
/1 let weight be O; we'll give it a nonzero val ue el sewhere
nc_append(i, j, -1, 0, 1)

objref netcon // |eave no | oose ends (see nc_append())

}
(11111111 specify paraneters [/1111111]

[/l call this settau() to avoid conflict wth scalar tau

proc settau() { local i
$1 = ge($1,0.1) // mntauis 0.1 ns
tau = $1

for i=0, cells.count-1 {
cells.object(i).pp.tau = $1
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/] args are low and hi gh

proc interval () { local i, x, dx
$1 = ge($1,1) // minlowlISl is 1 ns
$2 = ge($2, $1)

low = $1
hi gh = $2
X = | ow

dx = (high - low/(cells.count-1)
for i=0, cells.count-1 {

cells.object(i).pp.invl = x
X += dXx
}
}
proc weight() { local i
w = $1
for i=0, nclist.count-1 {
nclist.object(i).weight = $1
}
}

proc delay() { local i
$1 = ge($1,0) // min del is O ns
del = $1
for i=0, nclist.count-1 {
} nclist.object(i).delay = $1
}

(111117111 actually make net and set paraneters /////1/1]]

creat enet ( 2)
settau(10)

i nterval (10, 11)
wei ght (0)

del ay(1)

Listing 11.4. Fina implementation of nakenet . hoc.
Time for more tests!

oc>del

0

oc>{del ay(-1) print del}
0

oc>{del ay(3) print del}
3

oc>cr eat enet (4)
oc>ncel
4
oc>del
3
oc>

Of course we can and should test the other pr ocs, especidly i nt er val () . Ascertain
mathematics texts say, "thisis |eft as an exercise to the reader.”
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Our attention now shifts to creating the user interface for adjusting model parameters,
controlling simulations, and displaying results. To evoke the metaphor of an experimental
rig, thisisplaced inafilecalledri g. hoc.

Aninitial implementation of ri g. hoc might look like this
load_file("runctl.ses") // RunControl and Variabl eTi neStep

xpanel (" Model paramneters")

xval ue("Veight","w', 1,"weight(w", 0, 0)

xval ue("Delay (ns)","del", 1,"delay(del)", 0, 0)

xval ue("Cell tinme constant (ns)","tau”, 1,"settau(tau)", 0, O
xval ue(" Shortest natural 1S","low', 1,"interval (low high)",
xval ue("Longest natural ISI","high", 1,"interval (low high)",
xpanel (500, 400)

In the spirit of taking advantage of every shortcut the GUI offers, the first statement loads
asession file that recreates a RunControl and a VariableTimeStep panel configured for
the desired ssimulation duration (Tstop = 500 ms) and integration method (adaptive
integration with local time steps). The other statements set up a panel with numeric fields
and controls for displaying and adjusting model parameters. This implementation of

ri g. hoc lacks two important features: a graph that displays spike trains, and the ability
to change the number of cellsin the network.

b, o)
0, 0)

What about plots of spike trains? There is away to create a graph that provides all the
functionality of the NetWork Builder's own SpikePlot, but analyzing the necessary code
would lead usinto details that really belong in a chapter on advanced GUI programming.
For didactic purposes it is better if we make our own raster plot, if only because thiswill
draw our attention to topics that are likely to be more widely useful.

To prepare to record and plot spike trains, we can insert the following code right after
thel oad_file() statement:

objref netcon, vec, spikes, nil, graster

proc preprasterplot() {
spi kes = new List()
for i=0,cells.count()-1 {
vec = new Vector ()
netcon = new Net Con(cel |l s.object(i).pp, nil)
net con. r ecor d(vec)
spi kes. append(vec)

objref netcon, vec

graster = new QG aph(0)
graster.view(0, O, tstop, cells.count(), 300, 105, 300.48, 200.32)

}

preprast erpl ot ()

For each cell in the net, this creates anew Vect or , usesthe Net Con classsrecor d()
method to record the time of that cell's spikesinto the Vect or , and appends the Vect or
to aLi st . After the end of thef or loop that iterates over the cells, thenet con and vec
obj r ef spoint to the last Net Con and Vect or that were created, exposing them to
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possible interference if we ever do anything that reuses these obj r ef names. The
obj ref netcon, vec statement breaks the link between them and the objects, thereby
preventing such undesirable effects.

The last two statementsin pr epr ast er pl ot () create aG aph and placeitat a
desired location on the screen. How can we tell what the numeric values should be for the
argumentsinthegr ast er. vi ew() statement? By creating agraph (NEURON Main
Menu / Graph / Voltage axis will do), dragging it to the desired location, saving it to a
session file al by itself, and then stealing the argument list from that session file's
save_w ndow_. vi ew() statement--being careful to change the third and fourth
arguments so that the x and y axes span the correct range of values. No cut and try
guesswork for usl While we're at it, we might as well use the same strategy to fix the
location for our model parameter panel, but now we only need the fifth and sixth
argumentsto vi ew( ) , which are the screen coordinates where the G aph is positioned.
For my monitor, this means the second xpanel statement becomes xpanel ( 300, 370) .

Running a new test, we find that our user interface looks like Fig. 11.22. Everything
isin theright place, and time advances when we click on Init & Run, but no rasters are

plotted.
%ﬁ{hnmntml |_|X %Fﬁaph[ﬂ] %-50:550 y-02:22 (%]
Close Hide Close Hidle
nitmv) <l 55 (2l .
Init & Run
Stop e

Continue til (ms) « |5 ;] -
Continue for (ms) 4 |1 ;]

Single Step

Close
weight (1[0 &l

Delay (ms) |1—|3

Cell time constant (ms) IW—E

=Close o Shortest natural |51 o 3l
[ Use variable o Longest natural 15l ||j IH—E
Absolts Tersnce] o o7 T3l

I| Atol Scale Tooll Details I

Figure 11.22. The user interface after thefirst revisiontori g. hoc, in which
we added pr epr ast er pl ot ().

For each cell we need to draw a sequence of short vertical lineson gr ast er whose x
coordinates are the times at which that cell fired. To help ustell one cell's spikes from
another's, the vertical placement of their rasters should correspond to their ordinal
positionincel | s. We can do this by inserting the following codeintori g. hoc, right
after the call to pr epr ast er pl ot () . Thefirst thing that pr oc showr ast er () doesis
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to clear any previous rasters off the G aph. Then, for each cell in turn, it uses three

Vect or class methodsin succession: c¢() to createaVect or that has as many elements
as the number of spikesthat the cell fired, fi Il () tofill those elements with an integer
that is one more than the ordinal position of that cell incel | s, and mar k() to mark the
firing times.

objref spikey

proc showraster() {
graster.erase_all ()
for i = 0,cells.count()-1 {
spi key = spi kes.object(i).c
spi key. fill(i+1)
spi key. mark(graster, spikes.object(i), "|", 6)

}
objref spikey

Testing once again, we run a simulation and then type showr ast er () a theoc>
prompt, and sure enough, there are the spikes. We change the longest natural 1Sl to
20 ms, run another simulation, and type showr ast er () once more, and it works again.

All thistyping is tedious. Why not customize ther un() procedure so that it
automatically calls showr ast er () after each simulation? Adding this

proc run() {
stdinit()
conti nuerun(tstop)
showr aster ()

}

totheend of ri g. hoc doesthejob (see An outline of the standard run system in
Chapter 7: How to control simulations).

Another test and we are overcome with satisfaction--it works. Then we change Tstop
to 200 ms, run asimulation, and are disappointed that the raster plot's x axis does not
rescal e to match the new Tstop. One simple fix for thisisto writeacustomi ni t ()
procedure that uses the Graph classssi ze() method to adjust the size of the raster plot
during initialization (see Default initialization in the standard run system: stdinit()
and init() in Chapter 8). Soweinsert this

proc init() {
finitialize(v_ini
graster.erase_all
graster.size(0O,ts
if (cvode. active(
cvode.re_init()
el se {
fcurrent ()

t)
R)p, 0,cells.count())
)) A

frecord_init()

}

right after our custom r un() . Notice that this also rescales the y axis, which will be
helpful when we finally add the ability to change the number of cellsin the network.

Success upon success! It works!
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We can finally get around to changing the number of cells. Let's think this out
carefully before doing anything. We'll need a new control in the xpanel , to show how
many cellsthere are and let us specify a new number. That's easy--just put thisline

xval ue(" Nunber of cells","ncell"”, 1,"recreate(ncell)", 0, 0)

right after xpanel (" Mbodel paraneters") sothat when we change the value of
ncel | , weautomatically call anew procedure called r ecr eat e() that will throw away
the old cells and their connections, and create a new set of each.

But what goesinr ecr eat e() ? We'll want the new cells and connections to have the
same properties as the old ones. And we'll have to replace the old raster plot with anew
one, complete with all the Net Cons and Vect or s that it uses to record spikes. So
recr eat e() should be

proc recreate()
creat enet ($1)
settau(tau)
i nterval (1 ow, high)

wei ght (w)
del ay(del)
preprasterplot()

}

A good place for thisis right before the xpanel 's code.

So now we have completed ri g. hoc (seeListing 11.5). The parameter panel has all
the right buttons (Fig. 11.23) so it is easy to explore the effects of parameter changes
(Fig. 11.24). How to develop an understanding of what accounts for these effectsis
beyond the scope of this chapter, but we can offer one hint: run some simulations of a net
containing only 2 or 3 cells, using fixed time steps, and plot their membrane state
variables (well, their Mfunctions).

[11111TT] user interface /111111111
load_file("runctl.ses") // RunControl and Variabl eTi neStep

/1l prepare to record and display spi ke trains
objref netcon, vec, spikes, nil, graster

proc preprasterplot() {
spi kes = new List()
for i=0,cells.count()-1 {
vec = new Vector ()
netcon = new Net Con(cel |l s.object(i).pp, nil)
net con. r ecor d(vec)
spi kes. append(vec)

objref netcon, vec

graster = new G aph(0)
graster.view(0, O, tstop, cells.count(), 300, 105, 300.48, 200.32)

}
preprast erpl ot ()
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objref spi key

proc show aster() {
graster.erase all ()
for i =0,cells.count()-1 {
spi key = spi kes.object(i).c
spi key. fill (i+1)
spi key. mar k(graster, spikes.object(i), "|", 6)

objref spi key

}
/1 destroys existing net and makes a new one
/1 also spawns a new spi ke train raster plot
/1l called only if we need a different nunber of cells
proc recreate() {

creat enet ($1)

settau(tau)

i nterval (I ow, high)

wei ght (w)
del ay(del)
preprast erpl ot ()
}
xpanel (" Model paramneters")
xval ue(" Nunber of cells","ncell”, 1, "recreate(ncell)", 0, 0)

xval ue("Veight","w', 1,"weight(w", 0, 0)

xval ue("Delay (ns)","del", 1,"delay(del)", 0, 0)

xval ue("Cell tinme constant (ns)","tau”, 1,"settau(tau)”, 0, 0)

xval ue(" Shortest natural 1S9","low', 1 "interval(low high)", 0, 0)
xval ue("Longest natural 1SI","high", 1,"interval (low, high)", 0, 0)

xpanel (300, 370)
[HTT1TEETT customrun() and init() / /11111111

proc run() {
stdinit()
cont i nuer un('t st op)
showaster() // showresults at the end of each sinmulation

proc init() {
finitialize(v_in
graster.erase_all
graster.size(0,ts
if (cvode. acti ve(
cvode.re_init()
} else {
fcurrent ()

p,0,cells.count()) // rescale x and y axes

t)
()
top,
)) |

frecord_init()

Listing 11.5. Complete implementation of ri g. hoc.
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Figure 11.23. The parameter panel after addition of a control for changing the

number of cells.

Figure 11.24. Simulations of afully connected network with 10 cells whose natural 1Sls are spaced

uniformly over the range 10-15 ms. The rasters are arranged with 1SIsin descending order from top to

bottom.
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Survey

We'd appreciate your frank opinions and suggestions to help us refine this course and design future
offerings on related subjects.

Please scoretheseitems ... .. accordingtothisscale
Overall impression noopinion 0O
Relevance to my research T poor, not helpful 1
Didactic presentations - far 2
Written handouts T good 3
Overhead transparencies T excellent, very helpful 4
Computer projection T

Classroom T

Food T

Best feature

Wesakest feature

Additional topics that should be covered, topics that should receive more or less coverage, or other
suggestions for improvement.

Circleone
Y N I would recommend this course to others who are interested in neural modeling.

Y N | have developed my own modeling software using a high-level language (FORTRAN,
CIC++ etc.).

Y N | have created my own models using modeling software.
Which software?

My area of primary research interest is

To help us better meet the needs of NEURON users, please circle all platforms that you plan to use for
modeling.

Hardware Mac Intel Other
oS MacOS X WinNT | 2K | XP
UNIX | Linux | OSX | BSD

If Linux, which distribution?
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