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Schedule of Presentations
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Morning session
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9:00 AM MLH Welcome 3

9:05 NTC The basics: creating and using models 5

10:30 Coffee Break

10:45 NTC The Channel Builder 49

11:15 MLH Using NMODL to add new 
biophysical mechanisms

59

11:45 NTC The Linear Circuit Builder 67
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Afternoon session

1:00 PM MLH Numerical methods: accuracy, stability, speed 75

1:15 NTC Networks: spike-triggered synaptic transmission,
events, and artificial spiking neurons

81

2:30 MLH Numerical methods: adaptive integration, 
and events

91

2:45 Coffee Break

3:00 MLH Parallelizing network simulations 97

3:30 GMS Databases for computational neuroscience 107

4:00 MLH Optimizing models with the Multiple Run Fitter 111

4:45 MLH Future directions 119

5:00 End of afternoon session
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Appendices  start after p. 120. 
These are drafts of selected chapters of the NEURON book, as submitted to the publisher in late 2004;
as such, they do not include revisions that were made during subsequent proofreading of the book.

Chapter 6: How to build and use models of individual cells. 30 pages

Chapter 8: How to initialize simulations 28 pages

Chapter 10: Synaptic transmission and artificial spiking cells 41 pages

Chapter 11: Modeling networks 36 pages

Survey last page

We value your opinions and suggestions for improving this course. Please take a moment to fill out and
hand in the survey. 
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The What and the Why
of Neural Modeling

The moment-to-moment processing of information 
in the nervous system involves the propagation 
and interaction of electrical and chemical signals 
that are distributed in space and time.

Empirically-based modeling is needed to test 
hypotheses about the mechanisms that govern 
these signals and how nervous system function 
emerges from the operation of these mechanisms.

Topics

1. How to create and use models of neurons 
and networks of neurons

� How to specify anatomical and biophysical 
properties

� How to control, display, and analyze models 
and simulation results

2. How NEURON works

3. How to add user-defined biophysical 
mechanisms
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From Physical System
to Computational Model

Conceptual model
a simplified representation of the physical system

Computational model
an accurate representation of the conceptual model

Computational
Model

Conceptual
Model

Physical
System

From Physical System
to Computational Model

dendrite

soma

Conceptual
model

ball
and
stick

Physical
system

Ca1
pyramidal

cell

Computational
model

hoc
code

create soma, dendrite
connect dendrite(0), soma(1)v
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Hierarchies of Complexity
Structure

Single compartment

Stylized

Network

Anatomically detailed v

Hierarchies of Complexity

Passive and Active currents
HH-style
kinetic scheme

Synaptic transmission
continuous
spike-triggered

Gap junctions
Extracellular fields, Linear circuits
Diffusion, buffers, transport & exchange
Artificial spiking cells ("integrate & fire")

Mechanism
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Fundamental Concepts in NEURON

Signals

Electrical

Chemical

Flux

current

solute

Driving
force

voltage
gradient

concentration
gradient

What is
conserved

charge

mass

Conservation of Charge
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The Model Equations

c
j

d v
j

d t � i
ion j

���
k

v
k � v

j

r
jk

v
j membrane potential in compartment j

i
ion j

net transmembrane ionic current in compartment j

c
j membrane capacitance of compartment j

r
j k axial resistance between the centers of

compartment j
and

adjacent compartment k

Separating Anatomy and Biophysics
from Purely Numerical Issues
section

a continuous length of unbranched cable

Anatomical data from A.I. Gulyás

Copyright © 1998-2005 N.T. Carnevale and M.L. Hines, all rights reserved Page 9



Using the NEURON Simulation Environment November 2005

Range Variables

Name Meaning Units

diam diameter [µm]

cm specific membrane [µf/cm2]
capacitance

g_pas specific conductance [siemens/cm2]
of the pas mechanism

v membrane potential [mV]

range
normalized position along the length of a section

0 �  range �  1

any variable name can be used for range, e.g. x

0 1
distance

normalized

0
distance
physical

length
physical
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Syntax:
sectionname.rangevar(range)

returns or sets the value of rangevar
at the location corresponding to range

Examples:
dend.v(0.5)

returns membrane potential at the middle of dend
Shortcut: dend.v

dend for (x) print x*L, v(x)
prints physical distance and v 
at each point in dend where v was calculated

nseg
the number of points in a section section where
membrane current and potential are computed

nseg=1

nseg=2

nseg=3

Example:  axon nseg = 3

To test spatial resolution
forall nseg = nseg*3

and repeat the simulation

nseg
the number of points in a section section where
membrane current and potential are computed

nseg=1

nseg=2

nseg=3

Example:  axon nseg = 3

To test spatial resolution
forall nseg = nseg*3

and repeat the simulation

nseg
the number of points in a section section where
membrane current and potential are computed

nseg=1

nseg=2

nseg=3

Example:  axon nseg = 3

To test spatial resolution
forall nseg = nseg*3

and repeat the simulation
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Units
Category Variable Units
Time t [ms]
Voltage v [mV]

Current i [mA/cm2] (distributed)
[nA] (point process)

Concentration nai etc. [mM]

Specific cm [µf/cm2] (distributed)
capacitance [µS] (point process)

Length diam, L [µm]

Conductance g [S/cm2] (distributed)
[µS] (point process)

Cytoplasmic Ra [ �  cm]
resistivity

Resistance ri [106 � ]
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Construction and Use of Models

1. Specify the model ("virtual organism").

2. Specify the user interface ("virtual lab rig").

3. Tests
� structural integrity
� spatial grid
� time steps

Example: using the GUI to build 
and exercise a stylized model

1. How to use the CellBuilder to create and 
manage a model cell.

2. How to use NEURON's graphical tools 
to make an interface for running 
simulations.
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Step 1: using the CellBuilder 
to make a stylized model

Section L diam Biophysics
soma 20 µm 20 µm hh
ap[0] 400 2
ap[1] 300 1
ap[2] 500 1
bas 200 3

axon 800 1 hh

reduced hh *
reduced hh *
reduced hh *

pas §

* - gnabar_hh and gkbar_hh reduced to 10%, el_hh = - 64 mV

§ - e_pas = - 65 mV

Throughout the cell Ra = 160 Ω cm, cm = 1 µf / cm2

Launch NEURON with its 
library of graphical tools

UNIX/Linux nrngui

MSWin or OS X
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Bring up a CellBuilder

NEURON Main Menu / Build / Cell Builder

The CellBuilder

Use buttons from left to right.
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Topology

CB starts with a "soma" section.
We want to create new sections.

Specifying the "Basename"
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Making a new section

Place cursor near end
of existing section

Click to start new section

Drag to desired length

Release mouse button

Save your work as you make progress!

NEURON Main Menu / File / save session
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Subsets

"all" includes all sections.
We want to make an "apicals" subset.

Making a new subset

Click "Select Subtree"

 . . . then "New SectionList"

Click root of apical tree . . . 
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Making a new subset continued

Subsets finished

Note "apicals".
Time to save a new session file.
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Geometry

"Specify Strategy" is ON.
Make an efficient plan.

Geometry strategy

Each section has a different L and diam.
Use d_lambda rule to automatically adjust nseg.
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Implementing geometry strategy

When strategy is complete, turn "Specify Strategy" OFF
and start assigning values to parameters.

0.1 at 100 Hz is generally OK for d_lambda.

Implementing geometry continued

Set L and diam for all sections.
Time to save to a session file!
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Biophysics

"Specify Strategy" is ON.
Make another efficient plan.

Biophysics strategy

Ra and cm are homogeneous

bas has pas

apicals, soma and axon have hh
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Implementing biophysics strategy

Double Ra

Fix apicals hh params

Shift e_pas in bas

Save another session file!!
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Management

Option 1: save as a Cell Type
for use in a network

Management continued

Option 2: save as hoc file
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Management continued

Option 3: export to interpreter

Toggle Continuous Create ON and OFF

or just leave it ON all the time.
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Step 2: creating and using an interface 
for running simulations

We want to
� attach a stimulating electrode
� evoke an action potential
� show time course of Vm at soma
� show Vm along a path from one end of the cell

to the other

We need
� a "Run" button
� graphs to plot results
� a stimulator

Get a "Run" button

NEURON Main Menu / Tools / RunControl
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RunControl panel

Init & Run does an Init, 
then starts a simulation

Init sets time to 0, 
Vm to displayed value, and 
conductances to steady-state

Stop interrupts the simulation
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Continue til runs until displayed time

Continue for runs for displayed 
interval

Single step advances by 
1/(Points plotted/ms)

t numeric field shows model time

Tstop specifies when simulation ends
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Single step advances by 
1/(Points plotted/ms)

dt is integration time step; 
must be integer fraction of 
1/(Points plotted/ms)

Points plotted/ms is plotting interval

We need to plot Vm(t) at soma

NEURON Main Menu / Graph / Voltage axis
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Graph window

v(.5) is Vm at middle of default section
(soma in this example)

We need to plot Vm along a path

NEURON Main Menu / Graph / Shape plot
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Bringing up a space plot

Use this "shape plot" to create a "space plot".

Click on its "menu box" . . .

Bringing up a space plot continued

. . . and scroll down to "Space Plot".
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Click just left of the shape

Bringing up a space plot continued

Hold button down while dragging
from left . . .

. . . to right . . .

. . . then release button.

This pops up a . . .

Space plot

A plot of Vm vs. distance along a path.

Better save a session file.
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We need a stimulator

NEURON Main Menu / Tools / Point Processes
/ Managers / Point Manager

PointProcessManager window

To make this an IClamp . . .
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Creating an IClamp

. . . click on SelectPointProcess
and scroll down to IClamp.

IClamp parameter panel

Next: set parameter values.
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Entering values into numeric fields

Direct entry

Note yellow highlight on button

Spinner

Red check means value has been
changed from default

Mathematical expression

Our user interface

Time to save to a new session file!
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It works!

How to get nice space plot "movies"

NEURON Main Menu / Tools / Movie Run
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Space plot "movies" continued

Movie Run / Init & Run
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What if hh is nonuniform
over the apicals?

Suppose gnabar_hh, gkbar_hh, and el_hh
all derease linearly with distance
from the origin of the apical tree?

Details:
1. All have full density at origin of apical tree.
2. Density falls to 0% at most the most distant termination.
3. For uniform -65 mV resting potential, e_pas = -54.3 mV.

This example:

gnabar_hh = 0.12 * (1 - p) where p = L01/Lmax 

(normalized path distance from origin of apical tree)

The general task: param = f(p), where p is one of the following:
� path length from a reference point
� radial distance from a reference point
� distance from a plane ("3D projection onto a line")

An equivalent hoc idiom:

forsec subset for (x,0) { rangevar_suffix(x) = f(p(x)) }
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Setting up a SubsetDomainIterator

Select a subset, then click on
"Parameterized Domain Page"

SubsetDomainIterator continued

Click on "Create a SubsetDomainIterator"
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SubsetDomainIterator continued

Note "apicals_x" in middle panel.
Click on it . . .

SubsetDomainIterator continued

. . . to see controls for specifying the distance metric.

Page 40 Copyright © 1998-2005 N.T. Carnevale and M.L. Hines, all rights reserved



November 2005 Using the NEURON Simulation Environment

SubsetDomainIterator continued

"metric" offers the three basic choices

SubsetDomainIterator continued

proximal / Most proximal at 0
makes distance start at root of apical tree
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SubsetDomainIterator continued

distal / Most distal at 1
finishes "normalization" of distance

Back to Biophysics Strategy

Click on apicals_x, 
then select the parameters it will control.
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Biophysics Strategy continued

We want gnabar_hh, gkbar_hh, and gl_hh 
to be inhomogeneous.

Implement the strategy

Click on one of the inhomogeneous parameters.
Note that default f( ) is Boltzmann.
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Implement the strategy continued

f(p) / Ramp
selects linear function

Implement the strategy continued

After setting intercept b and slope m for gnabar_hh
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Verify the implementation

show / graph
show / Show f(p) on shape

Verify the implementation continued

"show / graph" results:
x axis: normalized distance from origin of apicals

y axis: gnabar_hh
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Verify the implementation continued

1. show / Show f(p) on shape
2. Click next to shape and drag . . .

. . . from left . . . . . . to right . . .

. . . while watching the values of p and f(p)

Save another session file!!
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A simulation with the revised model
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The Channel Builder

Voltage- and ligand-gated channels

Kinetic schemes, HH-style differential equations

Optional stochastic gating mode for point processes

Faster than equivalent NMODL mechanisms

Much easier to use than writing NMODL code

Limited to channels
NMODL needed for pumps, buffers, diffusion, event-driven 
synaptic mechanisms, artificial spiking cells

Tutorial: see Documentation at NEURON's home page 
http://www.neuron.yale.edu/

Implementing the HH iNa
with the Channel Builder

iNa = gNa (V - ENa) where

gNa = gbarNa m3h

gbarNa = 0.12 S/cm2

m and h are described by DEs of the form

dx/dt = ax (1 - x) - bx x
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General strategy

1. Bring up a Channel Builder

2. Specify channel's basic properties

3. Specify channel gating
� states
� transitions (if a kinetic scheme)
� effects of voltage and ligands

1. Bring up a Channel Builder

NEURON Main Menu / Build
/ Channel Builder / Density
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The Channel Builder

We need to change its name,
ion,
default conductance,
and equilibrium potential

2. Specify channel's basic properties

Click on Properties,
then select item to change
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Name

Properties / Channel Name

Then change leak to myna

Ion

Properties
/ Selective for Ion... / na
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Default conductance
and equilibrium potential

Properties / Default gmax

Specify 0.12 S/cm2

Equilibrium potential:
na has its own ena,
so nothing to do!

3. Specify channel gating

"Select here to construct gates"
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"GateGUI": States page

Spawn states

Click and drag O ("open")
from palette . . .

. . . to canvas.

Repeat for C ("closed")
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Rename states

Click O without dragging

Change to m

Change C to h

"GateGUI": Properties page

. . . to see all this
Select m . . .
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Set m exponent

Change Power to 3

Specify voltage dependence
of am and bm

Do same for bm

Choose functional form
for am

Set parameter values
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m properties
after configuring am and bm

h properties
after configuring ah and bh
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Testing
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NMODL 
NEURON Model Description Language 

Add new membrane mechanisms to NEURON

Density mechanisms       

Distributed Channels 
Ion accumulation 

Point Processes

Electrodes 
Synapses 

Described by

Differential equations 
Kinetic schemes 
Algebraic equations 

Benefits 

Specification only -- independent of solution method. 
Efficient -- translated into C. 
Compact 

One NMODL statement -> many C statements. 
Interface code automatically generated. 

Consistent ion current/concentration interactions. 
Consistent Units 
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NMODL general block structure 

What the model looks like from outside
NEURON {
        SUFFIX kchan
        USEION k  READ ek WRITE ik
        RANGE gbar, ...
}

What names are manipulated by this model 
UNITS { (mV) = (millivolt) ... }

PARAMETER { gbar = .036 (mho/cm2) <0, 1e9>... }

STATE { n ... }

ASSIGNED { ik (mA/cm2) ... }

Initial default values for states
INITIAL {
        rates(v)
        n = ninf
}

Calculate currents (if any) as function of v, t, states

(and specify how states are to be integrated) 

BREAKPOINT {
        SOLVE deriv METHOD cnexp
        ik = gbar * n^4 * (v - ek)
}

State equations
DERIVATIVE deriv {
        rates(v)
        n’ = (ninf - n)/ntau
}

Functions and procedures 
PROCEDURE rates(v(mV)) {
        ...
}
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UNIX
nrnivmodl
nrngui

MSWIN

Select NEURON Main Menu / Build / single compartment
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Density mechanism Point Process
NMODL

NEURON {
    SUFFIX leak
    NONSPECIFIC_CURRENT i
    RANGE i, e, g
}

PARAMETER {
    g = .001 (mho/cm2) <0, 1e9>    
    e = -65  (millivolt)
}

ASSIGNED {
    i (milliamp/cm2)
    v (millivolt)
}

BREAKPOINT {
    i = g*(v - e)
}

NEURON {
    POINT_PROCESS Shunt
    NONSPECIFIC_CURRENT i
    RANGE i, e, r
}

PARAMETER {
    r = 1 (gigaohm) <1e-9,1e9>
    e = 0 (millivolt)
}

ASSIGNED {
    i (nanoamp)
    v (millivolt)
}

BREAKPOINT {
    i = (.001)*(v - e)/r
}

GUI

Interpreter

soma {
    insert leak
    g_leak = .0001
}
print soma.i_leak(.5)

objref s
soma s = new Shunt(.5)
s.r = 2

soma
pas
hh
leak

SelectPointProcess

Show

Shunt[0]

at: soma(0.5)
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Ion Channel

NEURON {
  USEION k READ ek WRITE ik
}
BREAKPOINT {
  SOLVE states METHOD cnexp
  ik = gbar*n*n*n*n*(v - ek)  
}
DERIVATIVE states {
  rate(v*1(/mV))
  n’ = (inf - n)/tau
}

Ion Accumulation

NEURON {
  USEION k READ ik WRITE ko
}
BREAKPOINT {
  SOLVE state METHOD cnexp

}
DERIVATIVE state {
  ko’ = ik/fhspace/F*(1e8)
        + k*(kbath - ko)
}

v(.5)

soma.ek( 0.5 )

0 2 4 6 8 10

 -80 

 -40 

 0 

 40 

soma.ik( 0.5 )

0 2 4 6 8 10
 0.0 

 1.0 

 2.0 

 3.0 

soma.ko( 0.5 )

0 2 4 6 8 10
 0 

 5 

 10 

 15 

 20 
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Vesicle

Internal Free Calcium

Saturable Calcium Buffer

ica

Ach

Achase

STATE {
Vesicle Ach Achase Ach2ase X Buffer[N] CaBuffer[N] Ca[N]
}

KINETIC calcium_evoked_release {
    : release
 ~  Vesicle + 3Ca[0] <−> Ach   (Agen, Arev)
 ~  Ach + Achase <−> Ach2ase   (Aase2, 0)  :idiom for enzyme reaction
 ~  Ach2ase <−> X + Achase     (Aase2, 0)  : requires two reactions
 
   : Buffering
   FROM i = 0 TO N−1 {
    ~  Ca[i] + Buffer[i] <−> CaBuffer[i]   (kCaBuffer, kmCaBuffer)
   }
 
   :Diffusion
   FROM i = 1 TO N−1 {
    ~  Ca[i−1] <−> Ca[i]      (Dca*a[i−1], Dca*b[i])
   }
 
    : inward flux
 ~  Ca[0] <<     (ica)
}
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UNITS Checking

NEURON { POINT_PROCESS Shunt ... }

PARAMETER {
        e = 0 (millivolt)
        r = 1 (gigaohm) <1e-9,1e9>
}

ASSIGNED {
        i (nanoamp)
        v (millivolt)
}

BREAKPOINT {
        i = (v - e)/r
}

Units are incorrect in the "i = ..." current assignment.
The output from 

modlunit shunt

is: 

Checking units of shunt.mod
The previous primary expression with units: 1-12 coul/sec
is missing a conversion factor and should read:
  (0.001)*()
 at line 14 in file shunt.mod
        i = (v - e)/r<>

To fix the problem replace the line with: 

        i = (.001)*(v - e)/r

What conversion factor will make the following consistent?

  nai’  =   ina    /    FARADAY  * (c/radius)
(uM/ms)   (mA/cm2) / (coulomb/mole) / (um)
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The Linear Circuit Builder

For building models that have linear circuit elements 
and may also involve neurons

Circuit elements include ground, current & voltage 
source, R, C, op amp

Potential applications include
� effects and compensation of electrode R & C
� two-electrode voltage clamp
� ohmic and nonlinear gap junctions

1. Bring up a Linear Circuit Builder

NEURON Main Menu / Build / Linear Circuit
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The Linear Circuit Builder

wire
resistor
capacitor
voltage source
current source
ground

operational amplifier
intracellular node
intra- and extracellular nodes

Arrange: spawn components
Click on palette and drag onto canvas
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Arrange: connect components

Click and drag to
overlap red circles

Black square is
"solder joint"

Pull apart to break connection

Label: move labels

Click and drag
to new location
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Label: change labels 1

Click on a label . . .

. . . to change its name

Label: change labels 2

Click on a node . . .

. . . to label a voltage
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Parameters: non-source elements

Click on
"Parameters"

Parameters: signal sources

Source f(t) / B
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Parameters: signal sources continued

Configured

Simulate: creating a graph

New Graph
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Simulate: specifying what to plot

PlotWhat? / variable_label

Simulate: simulation results

After minor cosmetic changes
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Patch clamp with electrode R and C

NEURON demo: dynamic clamp
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Compartmental Modeling

Not much mathematics required.

Good judgment essential!

y =  exp(−t)

y’ = −y
y(0) = 1

y’ = f(y)

0 1 2 3

−1

0

1

2
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Forward Euler

0 1 2 3
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 0.80 

 1.00 

t

dt = .5

y(t + dt) = y(t) + dt *f(y(t))

y’ = f(y)

=
y(t+dt) − y(t)

dt
f(y(t))
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1/20
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Backward Euler

y(t + dt) = y(t) + dt *f(y(t + dt))
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Page 78 Copyright © 1998-2005 N.T. Carnevale and M.L. Hines, all rights reserved



November 2005 Using the NEURON Simulation Environment

_

na
2g   = .12 S/cm

.15 nA

.061 nA

mV

ms0 1 2 3 4 5

−80

−40

0

40

− 1%

.15 nA

.061 nA

mV

ms

Implicit dt=.025 ms

0 1 2 3 4 5

−80

−40

0

40 CN dt=.001 ms
CN dt=.025 ms
CVode atol = 1e−2
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Networks:
spike-triggered synaptic transmission,

events, and artificial spiking cells

1. Define the types of cells

2. Create each cell in the network

3. Connect the cells

Communication between cells

Gap junctions

Synaptic transmission
graded
spike-triggered
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Graded synaptic transmission

Physical system:

A presynaptic variable governs
continuous transmitter release

Transmitter modulates
a postsynaptic property

Problem: how does postsynaptic cell know Vpre?

Vpre

gsynpost

gsynpost = f(Vpre)

Graded synaptic transmission continued

Answer: use POINTER to link postsynaptic variable
to the presynaptic variable

NMODL specification of synaptic mechanism:
NEURON {

POINT_PROCESS Syn
POINTER v_pre

}

hoc usage
objref syn
dend syn = new Syn(0.5)
setpointer syn.v_pre, precell.axon.v(1)
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Spike-triggered synaptic transmission

Physical system:
Presynaptic neuron with axon

that projects to synapse on target cell

Conceptual model:
Spike in presynaptic terminal

triggers transmitter release;
presynaptic details unimportant

Postsynaptic effect described by
DE or kinetic scheme that is perturbed by
occurrence of a presynaptic spike

Spike-triggered transmission:
computational implementation

Basic idea

More efficient: "virtual spike propagation"
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The NetCon class

hoc usage
netcon = new NetCon(source, target)
presection netcon = new NetCon(&v(x), \
    target, threshold, delay, weight)

Defaults
threshold = 10
delay = 1 // must be > 0
weight = 0

NMODL specification of synaptic mechanism
NET_RECEIVE(weight(microsiemens)) {
    . . .
}

Efficient divergence

Multiple NetCons with a common source
share a single threshold detector
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Efficient convergence

Multiple NetCons can share
a single target (many inputs,
but only one equation)

Example: gs with fast rise

and exponential decay

NEURON {
  POINT_PROCESS ExpSyn
  RANGE tau, e, i
  NONSPECIFIC_CURRENT i
}

  . . . declarations . . .

INITIAL { g = 0 }

CHANNEL {
  SOLVE state METHOD cnexp
  i = g*(v-e)
}

DERIVATIVE state { g' = -g/tau }

NET_RECEIVE(w) { g = g + w }
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gs with fast rise and exponential decay
continued

CHANNEL {
  SOLVE state METHOD cnexp
  i = g*(v-e)
}

DERIVATIVE state { g' = -g/tau }

NET_RECEIVE(w) { g = g + w }

Example: use-dependent synaptic plasticity
CHANNEL {
  SOLVE state METHOD cnexp
  g = B - A
  i = g*(v-e)
}

DERIVATIVE state {
  A' = -A/tau1
  B' = -B/tau2
}

NET_RECEIVE(weight, w, G1, G2, t0) {
  INITIAL {w=0 G1=0 G2=0 t0=t}
  G1 = G1*exp(-(t-t0)/Gtau1)
  G2 = G2*exp(-(t-t0)/Gtau2)
  G1 = G1 + Ginc*Gfactor
  G2 = G2 + Ginc*Gfactor
  t0 = t
  w = weight*(1 + G2 - G1)
  g = g + w
  A = A + w*factor
  B = B + w*factor
}

Page 86 Copyright © 1998-2005 N.T. Carnevale and M.L. Hines, all rights reserved



November 2005 Using the NEURON Simulation Environment

Use-dependent synaptic plasticity continued

NET_RECEIVE(weight, w, G1, G2, t0) {
  INITIAL {w=0 G1=0 G2=0 t0=t}
  G1 = G1*exp(-(t-t0)/Gtau1)
  G2 = G2*exp(-(t-t0)/Gtau2)
  G1 = G1 + Ginc*Gfactor
  G2 = G2 + Ginc*Gfactor
  t0 = t
  w = weight*(1 + G2 - G1)
  g = g + w
  A = A + w*factor
  B = B + w*factor
}

Artificial spiking cells

"Integrate and fire" cells

Prerequisite: all state variables must be
analytically computable from a new initial condition

Orders of magnitude faster than numerical integration

Event-driven simulation run time is
proportional to # of received events
independent of # of cells, # of connections,

and problem time

Hybrid networks
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Example: leaky integrate and fire model

Leaky integrate and fire model continued

NEURON {
  ARTIFICIAL_CELL IntFire
  RANGE tau, m
}
  . . . declarations . . .

INITIAL { m = 0   t0 = t }

NET_RECEIVE (w) {
  m = m*exp(-(t-t0)/tau)
  t0 = t
  m = m + w
  if (m > 1) {
    net_event(t)
    m = 0
  }
}
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IntFire1

IntFire2

IntFire4

Defining the types of cells

Artificial spiking cells
Point Processes with a NET_RECEIVE block

that calls net_event
NetStim, IntFire1, IntFire2, IntFire4

Biophysical model cells
"Real" model cells
Sections and density mechanisms
Synapses are Point Proceses

that affect membrane current
and have a NET_RECEIVE block,
e.g. ExpSyn, Exp2Syn
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Defining types of biophysical model cells
Encapsulate in a class

begintemplate Cell
  public soma, E, I
  create soma
  objref E, I
  proc init() {
    soma {
      insert hh
      E = new ExpSyn(0.5)
      I = new Exp2Syn(0.5)
      I.e = -80
    }
  }
endtemplate Cell

objref bag_of_cells
bag_of_cells = new List()
for i = 1,1000 bag_of_cells.append(new Cell())
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76 advance
1 interpolate
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138 f(y)

(177*8)/(138*4 + 115*4) = 1.4
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68 advance
2 interpolate
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115 f(y)

Local Step

113 points
107 advance
5 interpolate
4 init

177 f(y)

Global Step

advance

interpolate

init

ta t tb

One integrator instance per cell

<_ta i tbj∀i, j :
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1

2

2 2

1

2

2

1

2

2

Copyright © 1998-2005 N.T. Carnevale and M.L. Hines, all rights reserved Page 95



Using the NEURON Simulation Environment November 2005

Page 96 Copyright © 1998-2005 N.T. Carnevale and M.L. Hines, all rights reserved



November 2005 Using the NEURON Simulation Environment

PostCell

PostSyn

PreCell

PreSyn

PostCell

PostSyn

PreCell

PreSyn

NetCon

nc = new NetCon(PreSyn, PostSyn)
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PostCell

PostSyn

PreCell

PreSyn

NetCon

CPU 2
CPU 4

PostCell

PostSyn

PreCell

PreSyn

CPU 2
CPU 4

pc = new ParallelContext()
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PostCell

PostSyn

PreCell

PreSyn

CPU 2
CPU 4

Every spike source (cell) must have a global id number.

gid = 7
gid = 9

for (gid = pc.id; gid < ncell; gid += pc.nhost) {
    pc.set_gid2node(gid, pc.id)
    ...
}

An efficient way to distribute:

body executed only ncell/nhost times, not ncell.

gid
0
5
10

CPU 0
pc.id
pc.nhost
ncell

0
5

pc.id
pc.nhost
ncell

5
pc.id
pc.nhost
ncell

5...
3 4

CPU 4CPU 3

gid
3
8
13

gid
4
9

14 1414
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PostCell

PostSyn

PreCell

PreSyn

CPU 2
CPU 4

gid = 7
gid = 9

Create cell only where the gid exists.

if (pc.gid_exists(7)) {
    PreCell = new Cell()
}

PostCell

PostSyn

PreCell

PreSyn

CPU 2
CPU 4

gid = 7

Associate gid with spike source.

nc = new NetCon(PreSyn, nil)
pc.cell(7, nc)
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PostCell

PostSyn

PreCell

PreSyn

NetCon

CPU 2
CPU 4

gid = 7

Create NetCon on CPU where target exists.

7

nc = pc.gid_connect(7, PostSyn)

Run using the idiom

pc.set_maxstep(10)
stdinit()
pc.psolve(tstop)

pc.set_maxstep() uses
MPI_Allreduce
to determine minimum delay.
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PostCell

PostSyn

PreCell

PreSyn

NetCon

gid = 7
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PostCell

PostSyn

PreCell

PreSyn

NetCon
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sec
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8

32
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Dendrite
Soma

20 mV

2 ms

Multiple Run Fitter

Goal:  Adjust  model parameters to fit data
from multiple experiments.

See: Shen et. al. (1999), J. Neurophysiol. 82:3006
Computational analysis of action potential initiation
in mitral cell soma and dendrites based on dual patch
recordings.

Copyright © 1998-2005 N.T. Carnevale and M.L. Hines, all rights reserved Page 111



Using the NEURON Simulation Environment November 2005

Optimizing over multiple experimental protocols

For each protocol:

Parameters:

Which model parameters are you allowed
to vary to obtain a fit.

Which model variables are to be compared
to the data?

What is the data?

What is the error function?

What  is the stimulus protocol?
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example.ses.ft1
---------------
ParmFitness:   Mitral cell 2 electrode model
    FitnessGenerator: Somatic high current
         RunConstant:    sestim.amp 0.3 0
         RunStatement:   1, set_rest(iv1)
         RegionFitness:  se.electrode.v(.5)
         RegionFitness:  pe.electrode.v(.5)

    FitnessGenerator: Primary high current
        RunConstant:    pestim.amp 0.4 0
        RunStatement:   1, set_rest(iv3)
        RegionFitness:  se.electrode.v(.5)
        RegionFitness:  pe.electrode.v(.5)

    FitnessGenerator: Primary current, hyperpolarize soma
        RunConstant:    pestim.amp 0 0
                        sestim.amp 0 0
                        sestim.del 0 1
                        sestim.dur 0 10
        APFitness:      se.electrode.v(.5)
        APFitness:      pe.electrode.v(.5)

    Parameters:
        "mcen_na",            -31.2258, -100,    20, 0, 0
        "nahigh($1)",          1.52812, 1e-9, 1e+09, 1, 1
        "kdhigh($1)",        0.0704842, 1e-9, 1e+09, 1, 1
        "nalow($1)",           49.7024, 1e-9, 1e+09, 1, 1
        "kdlow($1)",          0.230715, 1e-9, 1e+09, 1, 1
        "forsec alls Ra=70*$1",  1.716,  0.1, 1e+06, 0, 1
        "forsec axon g_pas=$1/1000", 1, 0.01,   100, 0, 0
        "iv1",                -57.9528,  -67,   -50, 0, 0
        "iv4",                -58.3375,  -67,   -50, 0, 0
        "pe.electrode.Ra=$1",  11.3141,  0.5,   100, 0, 0
        "pe.electrode.cm=$1",  10.5573, 0.01,    50, 0, 0
End ParmFitness
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Single neuron parallel

GUI tool for ionic accumulation models.

    with Gwendal LeMasson.

Read/Write NeuroML.

In the future...

    with Maciej Lazarewicz.

Real−time Linux Dynamic Clamp

Re−vectorization.

In the future...

NEURON Users’ Group meeting TBA

WWW site:  code from NEURON book,
    new tutorials, documentation wiki
Courses:  hands−on at UCSD, UMN
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Chapter 6
How to build and use models of individual cells

In Chapter 2 we remarked that a conceptual model is an absolute prerequisite for the
scientific application of computational modeling. But if a computational model is to be a
fair test of our conceptual model, we must take special care to establish a direct 
correspondence between concept and implementation. To this end, the research use of
NEURON involves all of these steps: 

1. Implement a computational model of the biological system

2. Instrument the model

3. Set up controls for running simulations

4. Save the model with instrumentation and run controls

5. Run simulation experiments

6. Analyze results

These steps are often applied iteratively. We first encountered them in Chapter 1, and we
will return to each of them repeatedly in the remainder of this book.

GUI vs. hoc code: which to use, and when?
At the core of NEURON is an interpreter which is based on the hoc programming

language (Kernighan and Pike 1984). In NEURON, hoc  has been extended by the
addition of many new features, some of which improve its general utility as a
programming language, while others are specific to the construction and use of models of
neurons and neural circuits in particular. One of these features is a graphical user
interface (GUI) which provides graphical tools for performing most common tasks. We
have already seen that many of these tools are especially useful for model development
and exploratory simulations (Chapter 1). 

Prior to the advent of the GUI, the only way to use NEURON was by writing
programs in hoc. For many users, convenience is probably reason enough to use the
GUI. We should also mention that several of the GUI tools are quite powerful in their
own right, with functionality that would require significant effort for users to recreate by
writing their own hoc code. This is particularly true of the tools for optimization and
electrotonic analysis.

But sooner or later, even the most inveterate GUI user may encounter situations that
call for augmenting or replacing the default implementations provided by the GUI.
Traditional programming allows maximum control over model specification, simulation
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control, and display and analysis of results. It is also appropriate for noninteractive
simulations, such as "production" runs that generate large amounts of data for later
analysis.

So the answer to our question is: use the GUI and write hoc  code, in whatever
combination gets the job done with the greatest conceptual clarity and the least human
effort. Each has its own advantages, and the most productive strategy for working with
NEURON is to combine them in a way that exploits their respective strengths. One
purpose of this book is to help you learn what these strengths are.

Hidden secrets of the GUI
There aren't any, really. All but one of the GUI tools are implemented in hoc , and all

of the hoc code is provided with NEURON (see nr n- x. x/ shar e/ nr n/ l i b/ hoc/  under
UNIX/Linux, c: \ nr nxx\ l i b\ hoc\  in
MSWindows). Thus the CellBuilder, the
Network Builder, and the Linear Circuit
Builder are all implemented in hoc, and
each of them works by executing hoc
statements in a way that amounts to 
creating hoc programs "on the fly." It can be instructive to examine the source code for
these and NEURON's other GUI tools. A recurring theme in many of them is a sequence
of hoc  statements that construct a string, followed by a hoc  statement that executes this
string (if it is a valid hoc  statement) or uses it as an argument to some other hoc  function
or procedure. We will return to this idea in Chapter 14: How to modify NEURON itself,
which shows how to create new GUI tools and add new functions to NEURON.

Anything that can be done with a GUI tool can be done directly with hoc . To
underscore this point, we will now use hoc  statements to replicate the example that we
built with the GUI in Chapter 1. Our code follows the same broad outline as before,
specifying the model first, then
instrumenting it, and finally setting up
controls for running simulations. For
clarity of presentation, we will consider
this code in the same sequence: model
implementation, instrumentation, and
simulation control.

Implementing a model with hoc
The properties of our conceptual model neuron are summarized in Fig. 6.1 and Tables

6.1 and 6.2. For the most part, the steps required to implement a computational model of
this cell with hoc  statements parallel what we did to build the model with NEURON's
GUI; differences will be noted and discussed as they arise. In the following program
listings, single line comments begin with a pair of forward slashes / /  and multiple line
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comments begin with / *  and are terminated by * / . For a discussion of hoc  syntax, see
Chapter 12.

Fig. 6.1. The model neuron. The conductance change synapse can be located
anywhere on the cell.

Table 6.1. Model cell parameters

Length
µm

Diameter
µm

Biophysics

soma 30 30 HH gNa, gK, and gleak

apical dendr ite 600 1 passive with Rm = 5,000 Ω cm2, Epas = -65 mV

basilar dendr ite 200 2 same as apical dendrite

axon 1000 1 same as soma

Cm = 1 µf / cm2

cytoplasmic resistivity = 100 Ω cm

Temperature = 6.3 oC

Table 6.2. Synaptic mechanism parameters

gmax 0.05 µS

τs 0.1 ms

Es 0 mV

Topology
Our first task is to map the branched architecture of this conceptual model onto the 

topology of the computational model. We want each unbranched neurite in the
conceptual model to be represented by a corresponding section in the computational
model, and this is done with a cr eat e statement (top of Listing 6.1). The connect
statements attach these sections to each other so that the conceptual and computational
models have the same shape. As we noted in Chapter 5, each section has a normalized
position parameter which ranges from 0 at one end to 1 at the other. The basi l ar  and
axon sections arise from one end of the cell body while the api cal  section arises from
the other, so they are attached by connect  statements to the 0 and 1 ends of the soma,
respectively.

This model is simple enough that its geometry and biophysical properties can be
specified directly in hoc without having to resort to sophisticated strategies. Therefore
we will not bother with subsets of sections, but proceed immediately to geometry.
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/ / / / / / / / / / / / / / / / / / / / / / / / /
/ *  model  speci f i cat i on * /
/ / / / / / / / / / / / / / / / / / / / / / / / /

/ / / / / / /  t opol ogy / / / / / / / /

cr eat e soma,  api cal ,  bas i l ar ,  axon
connect  api cal ( 0) ,  soma( 1)
connect  basi l ar ( 0) ,  soma( 0)
connect  axon( 0) ,  soma( 0)

/ / / / / / /  geomet r y / / / / / / / /

soma {
  L = 30
  di am = 30
  nseg = 1
}

api cal  {
  L = 600
  di am = 1
  nseg = 23
}

basi l ar  {
  L = 200
  di am = 2
  nseg = 5
}

axon {
  L = 1000
  di am = 1
  nseg = 37
}

/ / / / / / /  bi ophysi cs / / / / / /

f or al l  {
  Ra = 100
  cm = 1
}

soma {
  i nser t  hh
}

api cal  {
  i nser t  pas
  g_pas = 0. 0002
  e_pas = - 65
}
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basi l ar  {
  i nser t  pas
  g_pas = 0. 0002
  e_pas = - 65
}

axon {
  i nser t  hh
}

Listing 6.1. The first part of exampl e. hoc  specifies the anatomical and
biophysical attributes of our model.

Geometry
Each section of the model has its own length L, diameter di am, and discretization

parameter nseg. The statements inside the block soma {  }  pertain to the soma section,
etc. (the "stack of sections" syntax--see Which section do we mean? in Chapter 5).
Since the emphasis here is on elementary aspects of model specification with hoc , we
have assigned specific numeric values to nseg according to what we learned from prior
use of the CellBuilder (see Chapter 1). A more general approach would be to wait until L,
di am, and biophysical properties (Ra and cm) have been assigned, and then compute
values for nseg based on a fraction of the AC length constant at 100 Hz (see The
d_lambda rule in Chapter 5). 

Biophysics
The biophysical properties of each section must be set up individually because we

have not defined subsets of sections. Cytoplasmic resistivity Ra and specific membrane
capacitance cm are supposed to be uniform throughout the model, so we use a f or al l
statement to assign these values to each section.

The Hodgkin-Huxley mechanism hh and the passive mechanism pas  are distributed
mechanisms and are specified with i nser t  statements (see Distributed mechanisms in
Chapter 5). No further qualification is necessary for hh because our model cell uses its
default ionic equilibrium potentials and conductance densities. However, the parameters
of the pas mechanism in the basi l ar  and api cal  sections differ from their default
values, and so require explicit assignment statements.

Testing the model implementation
Testing is always important, especially when project development involves writing

code. If you are working along with this example, this would be an excellent time to save
what you have written to exampl e. hoc and use NEURON to test it. Then, if you're
using a Mac, just drag and drop exampl e. hoc  onto nr ngui . Under MSWindows use
Windows Explorer (the file manager, not Internet Explorer) to go to the directory where
you saved exampl e. hoc and double click on the name of the file. Under UNIX or
Linux, type the command nr ni v  exampl e. hoc -  at the system prompt (we're
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deliberately not typing nr ngui  exampl e. hoc , to avoid having NEURON load its GUI
library).

This will launch NEURON, and NEURON's interpreter will then process the contents
of exampl e. hoc  and generate a message that looks something like this:

NEURON - -  Ver s i on 5. 6 2004- 5- 19 23: 5: 24 Mai n ( 81)
by John W.  Moor e,  Mi chael  Hi nes,  and Ted Car neval e
Duke and Yal e Uni ver si t y  - -  Copyr i ght  2001

oc>

The NEURON Main Menu toolbar will not appear under MSWindows, UNIX, or Linux.
This happens because NEURON did not load its GUI library, which contains the code
that implements the NEURON Main Menu. We're roughing it, remember? We trust that
Mac users will pretend they don't see the toolbar, because dropping a hoc  file on the
nr ngui  icon automatically loads the GUI library.

Since we aren't using the CellBuilder, there isn't see a nice graphical summary of the
model's properties. However a couple of hoc  commands will quickly help you verify that
the model has been properly specified.

We can check the branched architecture of our model by typing t opol ogy( )  at the
oc> prompt (see Checking the tree structure with topology() in Chapter 5). This
confirms that soma is the root section (i.e. the section that has no parent; note that this is
not the same as the default section). It also shows that api cal  is attached to the 1 end of
soma, and basi l ar  and axon are connected to its 0 end.

oc>t opol ogy( )

| - |        soma( 0- 1)
   ` - - - - - - - - - - - - - - - - - - - - - - |        api cal ( 0- 1)
 ` - - - - |        basi l ar ( 0- 1)
 ` - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |        axon( 0- 1)

1 
oc>

The command f or al l  psect i on( )  generates a printout of the geometry and
biophysical properties of each section. The printout is in the form of hoc  statements that,
if executed, will recreate the model. 
oc>f or al l  psect i on( )
soma {  nseg=1  L=30  Ra=100

/ * l ocat i on 0 at t ached t o cel l  0* /
/ *  Fi r st  segment  onl y * /
i nser t  mor phol ogy {  di am=30}
i nser t  capaci t ance {  cm=1}
i nser t  hh {  gnabar _hh=0. 12 gkbar _hh=0. 036 gl _hh=0. 0003 el _hh=- 54. 3}
i nser t  na_i on {  ena=50}
i nser t  k_i on {  ek=- 77}

}
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api cal  {  nseg=23  L=600  Ra=100
soma connect  api cal  ( 0) ,  1
/ *  Fi r st  segment  onl y * /
i nser t  capaci t ance {  cm=1}
i nser t  mor phol ogy {  di am=1}
i nser t  pas  {  g_pas=0. 0002 e_pas=- 65}

}
basi l ar  {  nseg=5  L=200  Ra=100

soma connect  basi l ar  ( 0) ,  0
/ *  Fi r st  segment  onl y * /
i nser t  capaci t ance {  cm=1}
i nser t  mor phol ogy {  di am=2}
i nser t  pas  {  g_pas=0. 0002 e_pas=- 65}

}
axon {  nseg=37  L=1000  Ra=100

soma connect  axon ( 0) ,  0
/ *  Fi r st  segment  onl y * /
i nser t  capaci t ance {  cm=1}
i nser t  mor phol ogy {  di am=1}
i nser t  hh {  gnabar _hh=0. 12 gkbar _hh=0. 036 gl _hh=0. 0003 el _hh=- 54. 3}
i nser t  na_i on {  ena=50}
i nser t  k_i on {  ek=- 77}

}
oc>

After verifying that the model specification is correct, exit NEURON by typing 
qui t ( )  in the interpreter window.

An aside: how does our model implementation in hoc 
compare with the output of the CellBuilder?

The hoc  code we have just written is supposed to set up a model that has the same
anatomical and biophysical properties as the model that we created in Chapter 1 with the
CellBuilder. We can confirm that this is indeed the case by starting a fresh instance of
NEURON, using it to load the session file that we saved in Chapter 1, and then typing
t opol ogy( )  and f or al l  psect i on( ) . But the CellBuilder can also create a file
containing hoc statements that, when executed, recreate the model cell. How do the
statements in this computer-generated file compare with the hoc  code that we wrote for
the purpose of specifying this model? 

To find out, let us retrieve the session file from Chapter 1, and then select the
Management page of the CellBuilder. Next we click on the Export button (Fig. 6.2), and
save all the topology, subsets, geometry, and membrane information to a file called
cel l . hoc . Executing the hoc  statements in this file will recreate the model cell that we
specified with the CellBuilder. 

It is instructive to briefly review the contents of cel l . hoc , which are presented in
Listing 6.2. At first glance this looks quite complicated, and its organization may seem a
bit strange--after all, cel l . hoc  is a computer-generated file, and this might account for
its peculiarities. But let him who has never written an idiosyncratic line of code cast the
first stone! Actually, cel l . hoc is fairly easy to understand if, instead of attempting a
line-by-line analysis from top to bottom, we focus on the flow of program execution. 
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Figure 6.2. The Management page of the CellBuilder. We have clicked on the
Export radio button, and are about to export the model's topology, subsets,
geometry, and membrane information to a hoc  file that can be executed to
recreate the model cell. 

pr oc cel l def ( )  {
  t opol ( )
  subset s( )
  geom( )
  bi ophys( )
  geom_nseg( )
}

cr eat e soma,  api cal ,  basi l ar ,  axon

pr oc t opol ( )  {  l ocal  i
  connect  api cal ( 0) ,  soma( 1)
  connect  basi l ar ( 0) ,  soma( 0)
  connect  axon( 0) ,  soma( 0)
  basi c_shape( )
}

pr oc basi c_shape( )  {
  soma { pt 3dcl ear ( )  pt 3dadd( 0,  0,  0,  1)  pt 3dadd( 15,  0,  0,  1) }
  api cal  { pt 3dcl ear ( )  pt 3dadd( 15,  0,  0,  1)  pt 3dadd( 75,  0,  0,  1) }
  basi l ar  { pt 3dcl ear ( )  pt 3dadd( 0,  0,  0,  1)  pt 3dadd( - 29,  30,  0,  1) }
  axon { pt 3dcl ear ( )  pt 3dadd( 0,  0,  0,  1)  pt 3dadd( - 74,  0,  0,  1) }
}

obj r ef  al l ,  has_HH,  no_HH

pr oc subset s( )  {  l ocal  i
  obj r ef  al l ,  has_HH,  no_HH
  al l  = new Sect i onLi st ( )
    soma al l . append( )
    api cal  al l . append( )
    basi l ar  al l . append( )
    axon al l . append( )

  has_HH = new Sect i onLi st ( )
    soma has_HH. append( )
    axon has_HH. append( )
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  no_HH = new Sect i onLi st ( )
    api cal  no_HH. append( )
    basi l ar  no_HH. append( )
}

pr oc geom( )  {
  f or sec al l  {   }
  soma {   L = 30  di am = 30  }
  api cal  {   L = 600  di am = 1  }
  basi l ar  {   L = 200  di am = 2  }
  axon {   L = 1000  di am = 1  }
}

pr oc geom_nseg( )  {
  soma ar ea( . 5)  / /  make sur e di am r ef l ect s 3d poi nt s
  f or sec al l  {  nseg = i nt ( ( L/ ( 0. 1* l ambda_f ( 100) ) +. 9) / 2) *2 + 1  }
}

pr oc bi ophys( )  {
  f or sec al l  {
    Ra = 100
    cm = 1
  }
  f or sec has_HH {
    i nser t  hh
      gnabar _hh = 0. 12
      gkbar _hh = 0. 036
      gl _hh = 0. 0003
      el _hh = - 54. 3
  }
  f or sec no_HH {
    i nser t  pas
      g_pas = 0. 0002
      e_pas = - 65
  }
}

access soma

cel l def ( )

Listing 6.2. The contents of cel l . hoc , a file generated by exporting data from
the CellBuilder that was used in Chapter 1 to implement the model specified in
Table 6.1 and 2 and shown in Fig. 6.1. 

So we skip over the definition of pr oc cel l def ( )  to find the first statement that is
executed: 

cr eat e soma,  api cal ,  basi l ar ,  axon

Nothing too obscure about this. Next we jump over the definitions of two more pr ocs
(the temptingly simple t opol ( )  and the slightly puzzling basi c_shape( ) ) before
encountering a declaration of three obj r ef s (see Chapter 13: Object oriented
programming)

obj r ef  al l ,  has_HH,  no_HH
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that are clearly used by the immediately following pr oc subset s( )  (what does it do?
patience, all will be revealed . . . ). 

Finally at the end of the file we find a declaration of the default section, and then the
procedure cel l def ( )  is called.

pr oc cel l def ( )  {
  t opol ( )
  subset s( )
  geom( )
  bi ophys( )
  geom_nseg( )
}

This is the master procedure of this file. It invokes other procedures whose names remind
us of that familiar sequence "topology, subsets, geometry, biophysics" before it ends with
the eponymic geom_nseg( ) . Using cel l def ( )  as our guide, we can skim through the
rest of the procedures. 

�
t opol ( )  first connects the sections to form the branched architecture of our model,
and then it calls basi c_shape( ) . The latter uses pt 3dadd statements that are based
on the shape of the stick figure that we saw in the CellBuilder itself. This establishes
the orientations (angles) of sections, but the lengths and diameters will be superseded
by statements in geom( ) , which is executed later. 

�
subset s( )  uses Sect i onLi s t s to implement the three subsets that we defined in
the CellBuilder (al l , has_HH, no_HH). 

�
geom( )  specifies the actual physical dimensions of each of the sections.

�
bi ophys( )  establishes the biophysical properties of the sections.

�
geom_nseg( )  applies the discretization strategy we specified, which in this case is to
ensure that no segment is longer than 0.1 times the length constant at 100 Hz (see The
d_lambda rule in Chapter 5). This procedure is last to be executed because it needs
to have the geometry and biophysical properties of the sections.

Instrumenting a model with hoc
The next part of exampl e. hoc  contains

statements that set up a synaptic input and
create a graphical display of simulation results
(Listing 6.3). The synapse and the graph are
specific instances of the Al phaSynapse and
Gr aph classes, and are managed with object
syntax (see Chapter 13). The synapse is placed
at the middle of the soma and is assigned the
desired time constant, peak conductance, and
reversal potential. The graph will be used to
show the time course of soma. v( 0. 5) , the
somatic membrane potential.
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/ / / / / / / / / / / / / / / / / / / / / / / / /
/ *    i nst r ument at i on   * /
/ / / / / / / / / / / / / / / / / / / / / / / / /

/ / / / /  synapt i c  i nput  / / / /

obj r ef  syn
soma syn = new Al phaSynapse( 0. 5)
syn. onset  = 0. 5
syn. t au = 0. 1
syn. gmax = 0. 05
syn. e = 0

/ / /  gr aphi cal  di spl ay / / /

obj r ef  g
g = new Gr aph( )
g. si ze( 0, 5, - 80, 40)
g. addvar ( " soma. v( 0. 5) " ,  1,  1,  0. 6,  0. 9,  2)

Listing 6.3. The second part of exampl e. hoc  specifies the instrumentation
used to stimulate and monitor our model.

Setting up simulation control with hoc
The code in the last part of exampl e. hoc  controls

the execution of simulations. This code must
accomplish many tasks. It must define the size of the
time step and the duration of a simulation. It also has
to initialize the simulation, which means setting time
to 0, making membrane potential assume its proper
initial value(s) throughout the model, and ensuring that
all gating variables and ionic currents are consistent
with these conditions. Furthermore, it has to advance
the solution from beginning to end and plot the
simulation results on the graph. Finally, if interactive
use is important, initializing and running simulations
should be as easy as possible.

The code in Listing 6.4 accomplishes these goals for our simple example. Simulation
initialization and execution are generally performed by separate procedures, as shown
here; the sole purpose of the final procedure is to provide the minor convenience that
simulations can be initialized and executed by merely typing the command go( )  at the
oc> prompt. 

The first three statements in Listing 6.4 specify the default values for the time step,
simulation duration, and initial membrane potential. However, initialization doesn't
actually happen until you invoke the i ni t i al i ze( )  procedure, which contains
statements that set time, membrane potential, gating variables and ionic currents to their
proper initial values. The main computational loop that executes the simulation ( whi l e
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( t <t s t op)  {  }  ) is in the i nt egr at e( )  procedure, with additional statements that
make the plot of somatic membrane potential appear in the graph. 

/ / / / / / / / / / / / / / / / / / / / / / / / /
/ *  s i mul at i on cont r ol   * /
/ / / / / / / / / / / / / / / / / / / / / / / / /

dt  = 0. 025
t st op = 5
v_i ni t  = - 65

pr oc i ni t i al i ze( )  {
t  = 0
f i ni t i al i ze( v_i ni t )
f cur r ent ( )

}

pr oc i nt egr at e( )  {
g. begi n( )
whi l e ( t <t st op)  {

f advance( )
g. pl ot ( t )

}
g. f l ush( )

}

pr oc go( )  {
i ni t i al i ze( )
i nt egr at e( )

}

Listing 6.4. The final part of exampl e. hoc  provides for initialization and
execution of simulations.

Testing simulation control
Use NEURON to execute exampl e. hoc (a graph should appear) and then type the

command go( )  (this should launch a simulation, and a trace will appear in the graph).
Change the value of v_i ni t  to -60mV and repeat the simulation (at the oc> prompt type
v_i ni t =- 60, then type go( ) ). When you are finished, type qui t ( )  in the interpreter
window to exit NEURON. 

Evaluating and using the model
Now that we have a working model, we are almost ready to put it to practical use. We

have already checked that its sections are properly connected, and that we have correctly
specified their biophysical properties. Although we based the number of segments on
nseg generated by the CellBuilder using the d_lambda rule, we have not really tested
discretization in space or time, so some exploratory simulations to evaluate the spatial
and temporal grid are advisable (see Chapter 4 and Choosing a spatial grid in
Chapter 5). Once we are satisfied with its accuracy, we may be interested in improving
simulation speed, saving graphical and numerical results, automating simulations and
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data collection, curve fitting and model optimization. These are somewhat advanced
topics that we will examine later in this book. The remainder of this chapter is concerned
with practical strategies for working with models and fixing common problems. 

Combining hoc and the GUI
The GUI tools are a relatively "recent" addition to NEURON (recent is a relative term

in a fast-moving field--would you believe 1995?) so many published models have been
implemented entirely in hoc . Also, many long-time NEURON users continue to work
quite productively by developing their models, instrumentation, and simulation control
exclusively with hoc . Often the resulting software is elegantly designed and implemented
and serves its original purpose quite well, but applying it to new research questions can
be quite difficult if significant revision is required. 

Some of this difficulty can be avoided by generic good programming practices such
as modular design, in particular striving to keep the specifications of the model,
instrumentation, and simulation control separate from each other (see Elementary
project management below). There is also a large class of problems that would require
significant programming effort if one starts from scratch, but which can be solved with a
few clicks of the mouse by taking advantage of existing GUI tools. But what if you don't
see the NEURON Main Menu toolbar, or (as often happens when you first start to work
with a "legacy" model) you do see it but many of the GUI tools don't seem to work?

No NEURON Main Menu toolbar?
This is actually the easiest problem to solve. At the oc>

prompt, type the command l oad_f i l e( " nr ngui . hoc" )  and
the toolbar should quickly appear. If you add this statement to
the very beginning of the hoc  file, you'll never have to bother with it again. 

The toolbar will always appear if you use nr ngui  to load a hoc  file. On the Mac this
is what happens when you drag and drop a hoc  file onto the nr ngui  icon. Under
MSWindows you would have to start NEURON by clicking on its desktop nr ngui  icon
(or on the nr ngui  item in the Start menu's NEURON program group), and then use
NEURON Main Menu / File / load hoc to open the the hoc  file. UNIX/Linux users can
just type nr ngui  filename at the system prompt.

However, even if you see the toolbar, many of the GUI tools will not work if the hoc
code didn't define a default section.

Default section? We ain't got no default section!
No badges, either. But to make full use of the GUI tools, you do need a default

section. To see what happens if there isn't one, let's add a second synapse to the
instrumentation of our example as if we were modeling feedforward inhibition. We could
do this by writing hoc statements that define another point process, but this time let's use
the GUI (see 4. Instrument the model. Signal sources in Chapter 1).
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First, change exampl e. hoc by adding the statement 

l oad_f i l e( " nr ngui . hoc" )

at the very beginning of the file. Now when NEURON executes the commands in
exampl e. hoc , the first thing that happens is the GUI
library is loaded and the NEURON Main Menu toolbar
appears. 

But NEURON Main Menu / Tools / Point Processes / Managers / Point Manager
doesn't work. Instead of a PointProcessManager we get an error message that there is
"no accessed section" (Fig. 6.2). What went wrong, and how do we fix it?

Fig. 6.2. A useful error message.

Many of the GUI tools, such as voltage graphs, shape plots, and point processes, must
refer to a particular section at the moment they are spawned. This is because sections
share property names, such as L and v . Remember the statement we used to create a point
process in exampl e. hoc:

soma syn = new Al phaSynapse( 0. 5)

This placed the newly created synapse at the 0.5 location on a particular section: the
soma. But we're not writing hoc  statements now; we're using a graphical tool (the
NEURON Main Menu) to create another graphical tool that we will use to attach a point
process to a section, and the NEURON Main Menu has no way to guess which section
we're thinking about.

The way to fix this problem is to add the statement 

access soma

to our model description, right after the cr eat e
statement. The access statement defines the default
section (see Which section do we mean? in
Chapter 5). If we assign membrane properties or attach
a point process to a model, the default section is
affected unless we specify otherwise. And if we use the
GUI to create a plot of voltage vs. time, v at the middle
of the default section is automatically included in the list of things that are plotted. 

So click on the "Continue" button to dismiss the error message,
quit NEURON, add the access soma statement to
exampl e. hoc , and try again. This time it works. Configure the
PointProcessManager to be an AlphaSynapse with onset =
0.5 ms, tau = 0.3 ms, gmax = 0.04 µS, and e = -70 mV and type 
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go( )  to run a simulation. Run a couple more simulations with tau = 1 ms and 3 ms. Then
exit NEURON.

Strange Shapes?

The barbed wire model

In Chapter 1 we mentioned that the 3-D method for specifying geometry can be used
to control the appearance of a model in a Shape plot. The benefits of the 3-D method for
models based on detailed morphometric data are readily appreciated: the direct
correspondence between the anatomy of the cell as seen under a microscope, and its
representation in a Shape plot, can assist conceptual clarity when specifying model
properties and understanding simulation results. Perhaps less obvious, but no less real, is
the utility of the 3-D method for dealing with more abstract models, whose geometry is
easy enough to specify in terms of L and di am. We hinted at this in the walkthrough of
the hoc code exported by the CellBuilder, but a few examples will prove its value and at
the same time help prevent misapplication and misunderstanding of this approach.

Suppose our conceptual model is a cell with an apical dendrite that gives rise to 10
oblique branches along its length. For the sake of visual variety, we will have the lengths
of the obliques increase systematically with distance from the soma. Listing 6.5 presents
an implementation of such a model using L and di am to specify geometry. The apical
trunk is represented by the proximal section api cal  and the sequence of progressively
more distal sections ap[ 0]  - ap[ NDEND- 1] . With our mind's eye, aided perhaps by dim
recollection of Ramon y Cajal's marvelous drawings, we can visualize the apical trunk
stretching away from the soma in a more or less straight line, with the obliques coming
off at an angle to one side. 

/ / / / / / /  t opol ogy / / / / / / / /

NDEND = 10

cr eat e soma,  api cal ,  dend[ NDEND] ,  obl i que[ NDEND]
access soma

connect  api cal ( 0) ,  soma( 1)
connect  ap[ 0] ( 0) ,  api cal ( 1)
connect  obl i que[ 0] ( 0) ,  api cal ( 1)

f or  i =1, NDEND- 1 {
  connect  ap[ i ] ( 0) ,  ap[ i - 1] ( 1)
  connect  obl i que[ i ] ( 0) ,  dend[ i - 1] ( 1)
}

/ / / / / / /  geomet r y / / / / / / / /

soma {  L = 30 di am = 30 }

api cal  {  L = 3 di am = 5 }
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f or  i =0, NDEND- 1 {
  ap[ i ]  {  L = 15 di am = 2 }
  obl i que[ i ]  {  L = 15+5* i  di am = 1 }
}

Listing 6.5. Implementation of an abstract model that has a moderate degree of
dendritic branching using L and di am to specify geometry.

But executing this code and bringing up a Shape plot (e.g. by NEURON Main Menu /
Graph / Shape plot) produces the results shown in Figure 6.3. So much for our mind's
eye. Where did all the curvature of the apical trunk come from? 

This violence to our imagination stems from the fact that stylized specification of
model geometry says nothing about the orientation of sections. At every branch point,
NEURON's internal routine for rendering shapes makes its own decision, and in doing so
it follows a simple rule: make a fork with one child pointing to the left and the other to
the right by the same amount relative to the orientation of the parent. Models with more
complex branching patterns can look even stranger; if the detailed architecture of a real
neuron is translated to simple hoc  statements that assert nothing more than connectivity,
length, and diameter, the resulting Shape may resemble a tangle of barbed wire. 

Fig. 6.3. Shape plot rendering of the model produced by the code in Listing 6.5.
To help indicate the location of the soma section, Shape Style: Show Diam was
enabled.

To gain control of the graphical appearance of our model, we must specify its
geometry with the 3-D method. This is illustrated in Listing 6.6, where we have
meticulously used absolute (x,y,z) coordinates, based on the actual location of each
section, as arguments for the pt3dadd() statements. Now when we bring up a Shape plot,
we get what we wanted: a nice, straight apical trunk with oblique branches coming off to
one side (Fig. 6.4). 

/ / / / / / /  geomet r y / / / / / / / /

f or al l  pt 3dc l ear ( )

soma {
  pt 3dadd( 0,  0,  0,  30)
  pt 3dadd( 30,  0,  0,  30)
}

api cal  {
  pt 3dadd( 30,  0,  0,  5)
  pt 3dadd( 60,  0,  0,  5)
}
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f or  i =0, NDEND- 1 {
  ap[ i ]  {
    pt 3dadd( 60+i * 15,  0,  0,  2)
    pt 3dadd( 60+( i +1) * 15,  0,  0,  2)
  }
  obl i que[ i ]  {
    pt 3dadd( 60+i * 15,  0,  0,  1)
    pt 3dadd( 60+i * 15,  - 15- 5* i ,  0,  1)
  }
}

Listing 6.6. Specification of model geometry using the 3-D method. This
assumes the same model topology as shown in Listing 6.5. 

Fig. 6.4. Shape plot rendering of the model when the geometry is specified
using the 3-D method shown in Listing 6.6.

Although we scrupulously used absolute (x,y,z) coordinates for each of the sections,
we could have saved some effort by taking advantage of the fact that the root section is
treated as the origin of the cell with respect to 3-D position. When any section's 3-D
shape or length changes, the 3-D information of all child sections is translated to
correspond to the new position. Thus, if the soma is the root section, we can move an
entire cell to another location just by changing the location of the soma. Another useful
implication of this feature allows us to simplify our model specification: the only
pt 3dadd( )  statements that must use absolute coordinates are those that belong to the
root section. We can use relative coordinates for all child sections, instead of absolute
(x,y,z) coordinates, as long as they result in proper length and orientation (see
Listing 6.7). 

/ / / / / / /  geomet r y / / / / / / / /

f or al l  pt 3dc l ear ( )

soma {
  pt 3dadd( 0,  0,  0,  30)
  pt 3dadd( 30,  0,  0,  30)
}

api cal  {
  pt 3dadd( 0,  0,  0,  5)
  pt 3dadd( 30,  0,  0,  5)
}
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f or  i =0, NDEND- 1 {
  ap[ i ]  {
    pt 3dadd( 0,  0,  0,  2)
    pt 3dadd( 15,  0,  0,  2)
  }
  obl i que[ i ]  {
    pt 3dadd( 0,  0,  0,  1)
    pt 3dadd( 0,  - 15- 5* i ,  0,  1)
  }
}

Listing 6.7. A simpler 3-D specification of model geometry that relies on the
absolute coordinates of the root section and relative coordinates of all child
sections. Compare the (x,y,z) coordinates in the pt 3dadd( )  statements for
api cal , ap, and obl i que with those in Listing 6.6. 

The case of the disappearing section

In Chapter 5 we mentioned that it is generally a good idea to attach the 0 end of a
child section to its parent, in order to avoid confusion. For an example of one particularly
vexing problem that can arise when this recommendation is ignored, consider Listing 6.8.
The access dend[ 0]  statement and the arguments to the pt 3dadd( )  statements
suggest that the programmer's conceptual model had the sections arranged in the left to
right sequence dend[ 0]  - dend[ 1]  - dend[ 2] . Note that the 1 end of dend[ 0]  is
connected to the 0 end of dend[ 1] , and the 1 end of dend[ 1]  is connected to the 0 end
of dend[ 2] . This means that dend[ 2] , which is not connected to anything, is the root
section. From a purely computational standpoint this is perfectly fine, and if we simulate
the effect of a current step applied to the 0 end of dend[ 0] , there will be an orderly
spread of charge and potential along each section from its 0 end to its 1 end, with the
largest membrane potential shift in dend[ 0]  and the smallest in dend[ 2] . 

/ / / / / / /  t opol ogy / / / / / / / /

NDEND = 3

cr eat e dend[ NDEND]
access dend[ 0]

connect  dend[ 0] ( 1) ,  dend[ 1] ( 0)
connect  dend[ 1] ( 1) ,  dend[ 2] ( 0)

/ / / / / / /  geomet r y / / / / / / / /

f or al l  pt 3dc l ear ( )

dend[ 0]  {
  pt 3dadd( 0,  0,  0,  1)
  pt 3dadd( 100,  0,  0,  1)
}

dend[ 1]  {
  pt 3dadd( 100,  0,  0,  1)
  pt 3dadd( 200,  0,  0,  1)
}
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dend[ 2]  {
  pt 3dadd( 200,  0,  0,  1)
  pt 3dadd( 300,  0,  0,  1)
}

Listing 6.8. The programmer's intent seems to be for dend[ 0] , dend[ 1] , and
dend[ 2]  to line up from left to right. However, the connect statements make
dend[ 2]  the root section, and thereby hangs a tale. 

However, we're in for a surprise when we bring up a PointProcessManager
(NEURON Main Menu / Tools / Point Processes / Managers / Point Manager) and try to
place an I Cl amp at different locations in this model. No matter where we click, we can
only put the I Cl amp on dend[ 0]  or dend[ 2]  (Fig. 6.5). Try as we might to find it,
there just doesn't seem to be any dend[ 1] !

But dend[ 1]  really does exist, and we can easily prove this by invoking the
t opol ogy( )  function, which generates this diagram:

| - |        dend[ 2] ( 0- 1)
 ` |        dend[ 1] ( 1- 0)
   ` |        dend[ 0] ( 1- 0)

This not only confirms the existence of dend[ 1] , but also shows that dend[ 2]  is the
root section, with the 1 end of dend[ 1]  connected to its to the 0 end, and the 1 end of
dend[ 0]  connected to the 0 end of dend[ 1] . Exactly as we expected, and just as
specified by the code in Listing 6.8. 

SelectPointProcess

Show

IClamp[0]

at: dend[0](0.5)

PointProcessManager

SelectPointProcess

Show

IClamp[0]

at: dend[2](0.5)

PointProcessManager

Fig. 6.5. The code in Listing 6.8 produces a model that seems not to have a
dend[ 1] --or at least, we can't find dend[ 1]  when we try to use a
PointProcessManager to attach an I Cl amp to it. 

But isn't something terribly wrong with the appearance of our model in the Shape
plot? Not at all. Although we might not like it, the model looks exactly as it should, given
the statements in Listing 6.8. 
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Here's why. As we mentioned above in The barbed wire model, the location of the 
root section determines the placement of all other sections. The root section is dend[ 2] ,
and the pt 3dadd( )  statements in Listing 6.8 place its 0 end at (200, 0, 0) and its 1 end at
(300, 0, 0) (Fig. 6.6). 

Since dend[ 1]  is attached to the 0 end of dend[ 2] , the first 3-D data point of dend[ 1]
is mapped to (200, 0, 0) (see 3-D specification in Chapter 5). According to the
pt 3dadd( )  statements for dend[ 1] , its last 3-D data point lies 100 µm to the right of its
first 3-D point. This means that the 1 end of dend[ 1]  is at (200, 0, 0) and its 0 end is at
(300, 0, 0) (Fig. 6.6)--precisely the locations of the left and right ends of dend[ 2] ! So
dend[ 1]  and dend[ 2]  will appear as the same line in the Shape plot. When we try to
select one of these sections by clicking on this line, the section we get will depend on the
inner workings of NEURON's GUI library. It just happens that, for the particular hoc
statements in Listing 6.8, we can only select points on dend[ 2] . This is as if dend[ 1]  is
hidden from view and shielded from our mouse cursor. 

Finally we consider dend[ 0] , whose 1 end is connected to the 0 end of dend[ 1] .
Thus its first 3-D data point is drawn at (300, 0, 0), and, following its pt 3dadd( )
statements, its last 3-D data point lies 100 µm to the right, i.e. at (400, 0, 0). Thus 
dend[ 0]  runs from (400, 0, 0) (its 0 end) to (300, 0, 0) (its 1 end), which is just to the
right of dend[ 2]  and the hidden dend[ 1]  (Fig. 6.6).

So the mystery is solved. All three sections are present, but two are on top of each
other.

The first lesson to take from this sad tale is the usefulness of t opol ogy( )  as a
means for diagnosing problems with model architecture. The second lesson is the
importance of following our recommendation to avoid confusion by connecting the 0 end
of a child section to its parent. The strange appearance of the model in the Shape plot
happened entirely because this advice was not followed. There are probably occasions in
which it makes excellent sense to violate this simple rule; please be sure to let us know if
you find one.

(200,0,0) (300,0,0) (400,0,0)

dend[2] runs
from here

(its 0 end)

from here
dend[1] runs

(its 1 end)

to here
(its 1 end)

to here
(its 0 end)

to here
(its 0 end)

from here
(its 1 end)

dend[0] runs

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . .

Fig. 6.6. Deciphering the pt 3dadd( )  statements in Listing 6.8 leads us to
realize that we only see two sections in the Shape plot because two of them
(dend[ 1]  and dend[ 2] ) are drawn in the same place. This figure shows the
(x,y,z) coordinates of the sections and indicates their 0 and 1 ends. 
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Graphs don't work?
If there is no default section, new graphs created with the GUI won't work properly.

You've already seen how to declare the default section, so everything should be OK,
right? Let's see for ourselves.

Make sure that exampl e. hoc starts with l oad_f i l e( " nr ngui . hoc" )  and
contains an access soma statement, and then use NEURON to execute it. Then follow
the steps shown in Fig. 1.27 (see Signal monitors in Chapter 1) to create a space plot
that will show membrane potential along the length of the cell. Now type go( ) . What
happens?

The graph of soma. v( 0. 5)  shows an action potential, but the trace in the space plot
remains a flat line. Is there something wrong with the space plot, or does the problem lie
elsewhere?

To find out, use NEURON Main Menu / Tools / RunControl to bring up a RunControl
window. Click on the RunControl's Init & Run button. Result: this time it's the space plot
that works, and the graph of soma. v( 0. 5)  that doesn't (Init & Run should have erased
the trace in the latter and drawn a new one).

So there are actually two problems. The simulation control code in our hoc  file can't
update new graphs that we create with the GUI, and the GUI's own simulation control
code can't update the "old" graph that is created by our hoc  file. Of the many possible
ways to deal with these problems, one is ridiculously easy and another requires a little
effort (but only a very little).

The ridiculously easy solution is to use the GUI to make a new graph that shows the
same variables, and ignore or throw away the old graph. In this example, resorting to
NEURON Main Menu / Graph / Voltage axis gets us a new graph. Since the soma is the
default section, the v( . 5)  that appears automatically in our new graph is really 
soma. v( 0. 5) .

What if a lot of programming went into one or more of the old graphs, so the GUI
tools offer nothing equivalent? This calls for the solution that requires a little effort:
specifically, we add a single line of hoc  code for each old graph that needs to be fixed. In
this example we would revise the code that defines the old graph by adding the line
shown here in bold:

/ / /  gr aphi cal  di spl ay / / /

obj r ef  g
g = new Gr aph( )
addplot(g, 0)
g. si ze( 0, 5, - 80, 40)
g. addvar ( " soma. v( 0. 5) " ,  1,  1,  0. 6,  0. 9,  2)

Listing 6.9. Fixing an old graph so it works with NEURON's standard run
system.

This takes advantage of NEURON's standard run system, a set of functions and
procedures that orchestrate the execution of simulations (see Chapter 7). The statement 
addpl ot ( g,  0)  adds g to a list of graphs that the standard run system automatically
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updates during the course of a simulation.
Also, the x-axis of our graph will be adjusted
automatically when we change t s t op (Tstop
in the RunControl panel). NEURON's GUI
relies heavily on the standard run system, and
every time we click on the RunControl's 
Init & Run button we are actually invoking
routines that are built into the standard run system.

Does this mean that we have to abandon the simulation control code in our hoc
program, and does it matter if we do? The control code in exampl e. hoc  performs a
"plain vanilla" initialization and simulation execution, so abandoning it in favor of the
standard run system only makes things better by providing additional functionality. But
what if we want a customized initialization or some unusual flow of simulation
execution? As we shall see in Chapter 7, the standard run system was designed and
implemented so that only minor changes are required to accommodate most special
needs.

Conflicts between hoc code and GUI tools
Many of the GUI tools specify properties of the model or the interface, and this leads

to the possibility of conflicts that cause a mismatch between what you think is in the
computer, and what actually is in the computer. For example, suppose you use the
CellBuilder to construct a model cell with a section called dend that has di am = 1 µm,
L = 300 µm, and passive membrane, and you turn Continuous create ON. Then typing
dend psect i on( )  at the oc> prompt will produce something like this 

oc>dend psect i on( )
dend {  nseg=11  L=300  Ra=80

.  .  .
i nser t  pas {  g_pas=0. 001 e_pas=- 70}

}

(a few lines were omitted for clarity), which confirms the presence of the pas
mechanism.

A bit later, you decide to make dend active and get rid of its pas  mechanism. You
could do this with the CellBuilder, but let's say you find it quicker just to type 

oc>dend { uni nser t  pas i nser t  hh}

and then confirm the result of your action with another psect i on( )  

oc>dend psect i on( )
dend {  nseg=11  L=300  Ra=80

.  .  .
i nser t  hh {  gnabar _hh=0. 12 gkbar _hh=0. 036 gl _hh=0. 0003 el _hh=- 54. 3}
i nser t  na_i on {  ena=50}
i nser t  k_i on {  ek=- 77}

}

So far, so good.
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But check the Biophysics page of the CellBuilder, and you will see that the change
you accomplished with hoc  did not track back into the GUI tool, which still shows dend
as having pas but not hh. This is particularly treacherous, because it is all too easy to
become confused about what is the actual specification of the model. If these new
biophysical properties lead to particularly interesting simulation results, you might save
"everything" to a session file, thinking that you would be able to reproduce those results
in the future--but the session file would only contain the state of the GUI tools.
Completely absent would be any reflection of the fact that you had executed your own
hoc  statement to override the CellBuilder's model specification. 

And still more surprises are in store. Using the CellBuilder, with Continuous create
still ON, change dendritic diameter to 2 µm. Now use psect i on( )  to check the
properties of dend 

oc>dend psect i on( )
dend {  nseg=7  L=300  Ra=80

.  .  .
i nser t  hh {  gnabar _hh=0. 12 gkbar _hh=0. 036 gl _hh=0. 0003 el _hh=- 54. 3}
i nser t  na_i on {  ena=50}
i nser t  k_i on {  ek=- 77}
i nser t  pas {  g_pas=0. 001 e_pas=- 70}

}

and you see that both pas  and hh are present, despite the previous use of uni nser t  to
get rid of the pas  mechanism. 

Similar conflicts can arise between hoc  statements and other GUI tools (e.g. the
PointProcessManager) All of these problems have a common source: changes you make
at the hoc  level are not propagated to the GUI tools, so if you then make any changes
with the GUI tools, it is likely that all the changes you
made with hoc  statements will be lost. The lesson
here is to exercise great caution when combining GUI
tools and hoc  statements, in order to avoid
introducing potentially confusing conflicts. 

Elementary project management
The example used in this chapter is simple so all of its code fits in a single, small file

that can be quickly understood. Nonetheless, we were careful to organize exampl e. hoc
in a way that separates specification of the model per se from the specification of the 
interface, i.e. the instrumentation and control procedures for running simulations. This
separation maximizes clarity and reduces effort, and it should begin while the model is
still in the conceptual stage. 

Designing a model starts by answering the questions: what anatomical features are
necessary, and what biophysical properties should be included? The answers to these
questions govern key decisions about what what kinds of stimuli to apply, what kinds of
measurements to make, and how to display, record, and analyze these measurements.
When it is finally time to implement the computational model, it is a good idea to try to
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keep these questions separate. This is the way NEURON's graphical tools are organized,
and this is the way models specified with hoc  should be organized. 

� First you create a model, specifying its topology, geometry, and biophysics, either
with the CellBuilder or with hoc  code. This is a representation of selected aspects of a
biological system, and you might think of it as a virtual experimental preparation.

� Then you instrument that model. This is analogous to applying stimulating and
recording electrodes and other apparatus to a real neuron or neural circuit in the
laboratory.

� Finally, you set up controls for running simulations.

Instrumentation and simulation controls are the user interface for exercising the
model. Metaphorically speaking, they amount to a virtual experimental rig. In a wet lab,
noone would ever confuse a brain slice with the microscope or instrumentation rack. The
physical and conceptual distinction between biological preparation and experimental rig
them is an inescapable fact and has a strong bearing on the  and execution of
experiments. NEURON lets you carry this separation over into modeling. Why confound
the code that defines the properties of a model cell with the code that generates a stimulus
or governs the sequence of events in a simulation?

One way to help separate model specification from user interface is to put the code
that defines them into separate files. One file, which we might call cel l . hoc , would
contain the statements that specify the properties of the model: its topology, geometry,
and biophysics. The code that defines point processes, graphs, other instrumentation, and
simulation controls would go into a second file that we might call r i g. hoc . Finally, we
would use a third file for purely administrative purposes, so that a single command will
make NEURON execute the other files in proper sequence. This file, which we might call
i ni t . hoc , would contain only the statements shown in Listing 6.10. Executing
i ni t . hoc  with NEURON will make NEURON load its GUI and standard run libraries, 
bring up a NEURON Main Menu toolbar, execute the statements in cel l . hoc to
reconstitute the model cell, and finally execute the statements in r i g. hoc  to reconstitute
our user interface for exercising the model. 

l oad_f i l e( " nr ngui . hoc" )
l oad_f i l e( " cel l . hoc" )
l oad_f i l e( " r i g. hoc" )

Listing 6.10. Contents of i ni t . hoc .

For instance, we could recast exampl e. hoc  in this manner by putting its model
specification component into cel l . hoc , while the instrumentation and simulation
control components would become r i g. hoc . This would allow us to reuse the same
model specification with different instrumentation configurations r i g1. hoc , r i g2. hoc,
etc.. To make it easy to select which rig is used, we could create a corresponding series of
i ni t  files (i ni t 1. hoc , i ni t 2. hoc , etc.) that differ only in the argument to the third
l oad_f i l e( )  statement. This strategy is not limited to hoc files, but can also be used to
retrieve cells and/or interfaces that have been constructed with the GUI and saved to
session (ses) files. 
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Iterative program development
A productive strategy for program development in NEURON is to revise and

reinterpret hoc code and/or GUI tools repeatedly during the same session. Bugs afflict all
nontrivial programs, and the process of making incremental changes, saving them to
intermediate hoc  or ses  files, and testing at each step, reduces the difficulty of trying to
diagnose and eliminate them. In this way it is possible begin with a program skeleton that
consists of one or two hoc  files with a handful of l oad_f i l e( )  statements and function
stubs, and quickly refine it until everything works properly. However, two caveats do
apply.

First, a variable cannot be declared with a new type during the same session. In other
words, "once a scalar, always a scalar" (or double, or string, or object reference).
Attempting to redeclare a variable will produce an error message, e.g.

oc>x = 3
f i r st  i nst ance of  x
oc>obj r ef  x
/ usr / l ocal / nr n/ i 686/ bi n/ nr ni v:  x  al r eady decl ar ed near  l i ne 2
obj r ef  x
        ^
oc>

Trying to redefine a double, string, or object reference as something else will likewise
fail. This is generally of little consequence, since it is rarely absolutely necessary to
change the type assigned to a particular variable name. When this does happen, you just
have to exit NEURON, make your changes to the hoc code, and restart.

The second caveat is that, once the hoc  interpreter has parsed the code in a template
(see Chapter 13: Object-oriented programming), the class that it defines is fixed for
that session. This means that any changes to a template require exiting NEURON and
restarting. The result is some inconvenience when developing and testing new classes,
but this is still easier than having to recompile and link a program in C or C++. 

References
Kernighan, B.W. and Pike, R. Appendix 2: Hoc manual. In: The UNIX Programming
Environment. Englewood Cliffs, NJ: Prentice-Hall, 1984, p. 329-333.
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Chapter 8
How to initialize simulations

In most cases, initialization basically means the assignment of values at time t = 0 for
membrane potential, gating states, and ionic concentrations at every spatial position in the
model. A model is properly initialized when clicking on the Init & Run button produces
exactly the same results, regardless of previous simulation history. Of course we assume
that model parameters have not changed between runs, and that any random number
generator has been re-initialized with the same seed so that it produces the same sequence
of "random" numbers. Models described by kinetic schemes require that each of the
reactant states be initialized to some concentration. If linear circuits are involved, initial
values must be assigned to voltages across capacitors and the internal states of
operational amplifiers. For networks and other models that use the event delivery system,
initialization also includes specifying which events are in transit to their destinations at
time 0 (i.e. events generated, at least conceptually, at t ≤ 0 for delivery at t ≥ 0). Complex
models often have complex recording and analysis methods, perhaps involving counters
and vectors, and these may also need to be initialized. 

State variables and STATE variables
In rough mathematical terms, if a system consists of n first order differential

equations, then initialization consists in specifying the starting values of n variables. For
the Hodgkin-Huxley membrane patch (only one compartment), these equations have the
form 

dv
dt

� f 1

�
m,h ,n ,v � Eq. 8.1a-d

dm
dt

� f 2

�
m,v �

dh
dt

� f 3

�
h ,v �

dn
dt

� f 4

�
n ,v �

so that, knowing the value of each variable at time t, we can specify the slope of each
variable at time t. We have already seen (Chapter 7) that integration of these equations is
an iterative process in which the purpose of an individual integration step (f advance( ) )
is to carry the system from time t to time t + ∆t using more or less sophisticated equations
of the form
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v
�
t ��� t � � v

�
t ����� t

dv
�
t * �

dt
Eq. 8.2

m
�
t ��� t � � m

�
t ����� t

dm
�
t * �

dt

. . .

where the sophistication is in the choice of a value of t*  somewhere between t and t + ∆t.
However, regardless of the integration method, the iterative process cannot begin without
choosing starting values for v, m, h, and n. This choice is arbitrary over the domain of the
variables (-∞ < v < ∞ , 0 ≤ m ≤ 1, . . . ), but once the initial v, m, h, and n are chosen, all
auxiliary variables (e.g. conductances, currents, d/dt terms) at that instant of time are
determined, and the equations determine the trajectories of each variable forever after.
The actual evaluation of these auxiliary variables is normally done with assignment
statements, such as

gna = gnabar * m* m* m* h
i na = gna* ( v -  ena)

This is why the model description language NMODL designates gna and i na as
ASSI GNED variables, as opposed to the gating variables m, h, and n, which are the
dependent variables in differential equations and are therefore termed STATE variables.

Unfortunately, over time an abuse of notation has evolved so that STATE refers to any
variable that is an unknown quantity in a set of equations, and ASSI GNED refers to any
variable that is not a STATE or a PARAMETER (PARAMETERs can be meaningfully set by
the user as constants throughout the simulation, e.g. gnabar ). Currently, within a single
model description, STATE just specifies which variables are the dependent variables of
KI NETI C schemes, algebraic equations in LI NEAR and NONLI NEAR blocks, or
differential equations in DERI VATI VE blocks. Generally the number of STATEs in a
model description is equal to the number of equations. Thus, locally in a model
description, the membrane potential v is never a dependent variable (the model
description contains no equation that solves for its value) and it cannot be regarded as a
user-specified value. Instead, it is declared in model descriptions as an ASSI GNED
variable, even though it is obviously a state variable at the level of the entire simulation.
This abuse of terminology also occurs in linear circuits, where the potential at every node
is an unknown to be solved and therefore a STATE. However, a resistive network does
not add any differential equation to the system (although it adds algebraic equations), so
those additional dependent variables do not strictly need to be initialized.

While STATE variables may be assigned any values whatever during initialization, in
practice only a few general categories of custom initialization are used. Some of these are
analogous to experimental methods for preparing a system for stimulation, e.g. letting the
system rest without experimental perturbation, or using a voltage clamp or constant
injected current to hold the system at a defined membrane potential--the idea is that the
system should reach an unchanging steady state independent of previous history. It is
from this steady state that the simulation begins at time t  = 0. When there is no steady
state, as for oscillating or chaotic systems, whatever initialization is ultimately chosen
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will need to be saved in order to be able to reproduce the simulation. More complicated
initializations involve finding parameters that meet certain conditions, such as what value
of some parameter or set of parameters yields a steady state with a desired potential.
Some initial conditions may not be physically realizable by any possible manipulations of
membrane potential. For example, with the hh model the h gating state has a steady state
of 1 at large hyperpolarized potentials and the n gating state has a steady state of 1 at
large depolarized potentials. It would therefore be impossible to reach a condition of h =
1 and n = 1 by controlling only voltage.

Basic initialization in NEURON: finitialize()
Basic initialization in NEURON is accomplished with the f i ni t i al i ze( )  function,

which is defined in nr n- x. x / sr c/ nr noc/ f advance. c  (UNIX/Linux). This carries
out several actions.

1. t  is set to 0 and the event queue is cleared (undelivered events from the previous run
are thrown away).

2. Variables that receive a random stream (the list defined by Random. pl ay( )
statements) are set to values picked from the appropriate random distributions. 

3. All internal structures that depend on topology and geometry are updated, and chosen
solvers are made ready.

4. The controller for Vect or . pl ay( )  variables is initialized. The controller makes use
of the event delivery system for Vect or . pl ay( )  specifications that define transfer
times for a step function in terms of dt  or a time Vect or . 

Events at time t  = 0 (e.g. appropriate Vect or . pl ay( )  events) are delivered.

5. If f i ni t i al i ze( )  was called with an argument v_i ni t , the membrane potential v
in every compartment is set to the value v_i ni t  with a statement equivalent to

f or al l  f or  ( x)  v( x)  = v_i ni t

6. The I NI TI AL block of every inserted mechanism in every segment of every section is
called. This includes point processes as well as distributed mechanisms (see INITIAL
blocks in NMODL later in this chapter). The order in which mechanisms are
initialized depends on whether any mechanism has a USEI ON statement or WRI TEs an
ion concentration.

Ion initialization is performed first, including calculation of equilibrium potentials.
Then mechanisms that WRI TE an ion concentration are initialized; this necessitates
recalculation of the equilibrium potentials for any affected ions. Finally, all other
mechanism I NI TI AL blocks are called.

Apart from these constraints, the call order of user-defined mechanisms is currently
defined by the alphabetic list of mod file names or the order of the mod file arguments
to nr ni vmodl  (or mknr ndl l ). However one should avoid sequence-dependent
I NI TI AL blocks. Thus if the I NI TI AL block of one mechanism needs the values of
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variables another mechanism, the latter should be assigned before f i ni t i al i ze( )  is
executed.

If extracellular mechanisms exist, their vext  states are initialized to 0 before any other
mechanism is initialized. Therefore, for every mechanism that computes an
ELECTRODE_CURRENT, v_i ni t  refers to both the internal potential and the 
membrane potential. 

I NI TI AL blocks are discussed in further detail below.

7. Li near Mechani sm states, if any, are initialized.

8. Network connections are initialized. This means that the I NI TI AL block inside any
NET_RECEI VE block that is a target of a Net Con object is called to initialize the states
of the Net Con object. 

9. The I NI TI AL blocks may have initiated net _send events whose delay is 0. These 
events are delivered to the corresponding NET_RECEI VE blocks.

10. If fixed step integration is being used, all mechanism BREAKPOINT blocks are
called (essentially equivalent to a call to f cur r ent ( ) ) in order to initialize all 
assigned variables (conductances and currents) based on the initial STATE and
membrane voltage.

If any variable time step method is active, then those integrators are initialized. In this
case, if you desire to change any state variable (here "state variable" means variables
associated with differential equations, such as gating states, membrane potential,
chemical kinetic states, or ion concentrations in accumulation models) after
f i ni t i al i ze( )  is called, you must then call cvode. r e_i ni t ( )  to notify the
variable step methods that their copy of the initial states needs to be updated. Note that
initialization of the differential algebraic solver IDA consists of two very short (dt  =
10-6 ms) backward Euler time steps in order to ensure the validity of f � y ' , y ��� 0 .

11. Vect or  recording of variables using the list defined by cvode. r ecor d( &st at e,
vect or )  statements is initialized. As discussed in Chapter 7 under The fixed step
methods: backward Euler and Crank-Nicholson, cvode. r ecor d( )  is the only
good way of keeping the proper association between local step state value and local t . 

12. Vect or s that record a variable, and are in the list defined by Vect or . r ecor d( )
statements, record the value in Vect or . x[ 0] , if t  = 0 is a requested time for
recording.

Default initialization in the standard run system:
stdinit() and init()

The standard run system's default initialization takes effect when you enter a new
value for v_i ni t  into the field editor next to the RunControl panel's Init button, or when
you press either RunControl panel's Init or Init & Run button. These buttons do not call the
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i ni t ( )  procedure directly but instead execute a procedure called st di ni t ( )  which has
the implementation

pr oc st di ni t ( )  {
  r eal t i me=0  / /  " r un t i me"  i n seconds
  st ar t sw( )    / /  i ni t i al i ze r un t i me st opwat ch
  set dt ( )
  i ni t ( )
  i ni t Pl ot ( )
}

set dt ( )  ensures (by reducing dt , if necessary) that the points plotted fall on time step
boundaries, i.e. that 1/ ( s t eps_per _ms* dt )  is an integer. The i ni t Pl ot ( )  procedure
begins each plotted line at t  = 0 with the proper y value. 

The default i ni t ( )  procedure itself is 

pr oc i ni t ( )  {
  f i ni t i al i ze( v_i ni t )
  / /  User - speci f i ed cust omi zat i ons go her e.
  / /  I f  t hi s  i nval i dat es t he i ni t i al i zat i on of  
  / /  var i abl e t i me st ep i nt egr at i on and vect or  r ecor di ng,
  / /  uncomment  t he f ol l owi ng code.
  / *
  i f  ( cvode. act i ve( ) )  {  
    cvode. r e_i ni t ( )
  }  el se {
    f cur r ent ( )
  }
  f r ecor d_i ni t ( )
  * /
}

Custom initialization is generally accomplished by inserting additional statements after
the call to f i ni t i al i ze( ) . These statements often have the effect of changing one or
more state variables, i.e. variables associated with differential equations, such as gating
states, membrane potential, chemical kinetic states, or ion concentrations in accumulation
models. This invalidates the initialization of the variable time step integrator, making it
necessary to call cvode. r e_i ni t ( )  to notify the variable step integrator that its copy of
the initial states needs to be updated. If instead fixed step integration is being used, 
f cur r ent ( )  should be called to make the values of conductances and currents
consistent with the new states. Changing state variables after calling f i ni t i al i ze( )
can also cause incorrect values to be stored as the first element of recorded vectors.
Adding f r ecor d_i ni t ( )  to the end of i ni t ( )  prevents this. 

INITIAL blocks in NMODL
I NI TI AL blocks for channel models generally set the gating states to their steady

state values with respect to the present value of v. Hodgkin-Huxley style models do this
easily and explicitly by calculating the voltage sensitive alpha and beta rates for each
gating state and using the two state formula for the steady state, e.g.
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PROCEDURE r at es( v( mv) )  {
  mi nf  = al pha( v) / ( al pha( v)  + bet a( v) )
  .  .  .
}

and then

I NI TI AL {
  r at es( v)
  m = mi nf
  .  .  .
}

When channel models are described by kinetic schemes, it is common to calculate the
steady states with the idiom

I NI TI AL {
  SOLVE scheme STEADYSTATE spar se
}

where scheme is the name of a KI NETI C block. To place this in an almost complete
setting, consider this implementation of a three state potassium channel with two closed
states and an open state:

NEURON {
  USEI ON k READ ek WRI TE i k
}

STATE {  c1 c2 o }

I NI TI AL {
  SOLVE scheme STEADYSTATE spar se
}

BREAKPOI NT {
  SOLVE scheme METHOD spar se
  i k  = gbar * o* ( v  -  ek)
}

KI NETI C scheme {
  r at es( v)  :  cal cul at e t he 4 k r at es.
  ~ c1 <- > c2 ( k12,  k21)
  ~ c2 <- > o (  k2o,  ko2)
}

(the r at es( )  procedure and some minor variable declarations are omitted for clarity).
As mentioned earlier in Default initialization in the standard run system: stdinit()
and init(), when initialization has been customized so that states are changed after
f i ni t i al i ze( )  has been called, it is generally useful to call the f cur r ent ( )  function
to make the values of all conductances and currents consistent with the newly initialized
states. In particular this will call the BREAKPOI NT block (twice, in order to compute the
Jacobian (di/dv) elements for the voltage matrix equation) for all mechanisms in all
segments, and on return the ionic currents such as i na, i k , and i ca will equal the
corresponding net ionic currents through each segment.
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Default vs. explicit initialization of STATEs

In model descriptions, a default initialization of the STATEs of the model occurs just
prior to the execution of the I NI TI AL block. However, this default initialization is rarely
useful, and one should always explicitly implement an I NI TI AL block. If the name of a
STATE variable is st at e, then there is also an implicitly declared parameter called
st at e0. The default value of st at e0 is specified either in the PARAMETER block

PARAMETER {
  st at e0 = 1
}

or implicitly in the STATE declaration with the syntax

STATE {
  st at e START 1
}

If a specific value for st at e0 is not declared by the user, st at e0 will be assigned a
default value of 0. st at e0 is not accessible from the interpreter unless it is explicitly
mentioned in the GLOBAL or RANGE list of the NEURON block. For example, 

NEURON {
  GLOBAL m0
  RANGE h0
}

specifies that every m will be set to the single global m0 value during initialization, while
h will be set to the possibly spatially-varying h0 values. Clarity will be served if, in using
the st at e0 idiom, you explicitly use an I NI TI AL block of the form

I NI TI AL {
  m = m0
  h = h0
  n = n0
}

Ion concentrations and equilibrium potentials

Each ion type is managed by its own separate ion mechanism, which keeps track of
the total membrane current carried by the ion, its internal and external concentrations,
and its equilibrium potential. The name of this mechanism is formed by appending the
suffix _i on to the name of the ion specified in the USEI ON statement. Thus if cai  and
cao are integrated by a model that declares

USEI ON ca READ i ca WRI TE cai ,  cao

there would also be an automatically created mechanism called ca_i on, with associated
variables i ca, cai , cao, and eca. The initial values of cai  and cao are set globally to
the values of cai 0_ca_i on and cao0_ca_i on, respectively (see Initializing
concentrations in hoc below). 
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Prior to version 4.1, model descriptions
could not initialize concentrations, or at
least it was very cumbersome to do so.
Instead, the automatically created ion
mechanism would initialize the ionic
concentration adjacent to the membrane
according to global variables. The reason
that model mechanisms were not allowed to
specify ion variables (or other potentially
shared variables such as cel s i us ) was that
confusion could result if more that one mechanism at the same location tried to assign
different values to the same variable. The unintended consequence of this policy is
confusion of a different kind, which happens when a model declares an ion variable, such
as ena, to be a PARAMETER and attempts to assign a value to it. The attempted
assignment has no effect, other than to generate a warning message. Consider the
mechanism

NEURON {
  SUFFI X t est
  USEI ON na READ ena
}

PARAMETER {
  ena = 25 ( mV)
}

When this model is translated by nr ni vmodl  (or mknr ndl l ) we see 
$ nr ni vmodl  t es t . mod
Tr ans l at i ng t es t . mod i nt o t est . c
War ni ng:  Def aul t  25 of  PARAMETER ena wi l l  be i gnor ed and set  by NEURON.

and use of the model in NEURON shows that the value of ena is that defined by the
na_i on mechanism itself, instead of what was asserted in the t est  model.

$ nr ngui
 .  .  .
Addi t i onal  mechani sms f r om f i l es
 t est . mod
 .  .  .
oc>cr eat e soma
oc>access soma
oc>i nser t  t est
oc>ena
        50

If we add the initialization

I NI TI AL {
  pr i nt f ( " ena was %g\ n" ,  ena)
  ena = 30
  pr i nt f ( " we t hi nk we changed i t  t o %g\ n" ,  ena)
}

to t est . mod, we quickly discover that ena remains unchanged. 
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oc>f i ni t i al i ze( - 65)
ena was 50
we t hi nk we changed i t  t o 30
        1
oc>ena
        50

It is perhaps not a good idea to invite diners into the kitchen, but the reason for this
can be seen from the careful hiding of the ion variables by making local copies of them in
the C code generated by the nocmodl  translator. Translation of the I NI TI AL block into a
model-specific i ni t model  function is an almost verbatim copy, except for some trivial
boiler plate. However, f i ni t i al i ze( )  calls this indirectly via the model-generic
nr n_i ni t  function, which can be seen in all its gory detail in the C file output from
nocmodl  t est . mod :
/ * * * * * * * * * * * * * * * * * * * * * * * * * * * /
st at i c nr n_i ni t ( _count ,  _nodes,  _dat a,  _pdat a,  _t ype_i gnor e)
        i nt  _count ,  _t ype_i gnor e;  Node* *  _nodes;  doubl e* *  _dat a;  Dat um* *  _pdat a;
{  i nt  _i x;  doubl e _v;
 _p = _dat a;  _ppvar  = _pdat a;
   
#i f  _CRAY
#pr agma _CRI  i vdep
#endi f
        f or  ( _i x = 0;  _i x < _count ;  ++_i x)  {
 _v = _nodes[ _i x] - >_v;
                v = _v;
  ena = _i on_ena;
                i ni t model ( _i x) ;
        }
}
/ * * * * * * * * * * * * * * * * * * * * * * * * * * * /

It suffices merely to call attention to the statement

ena = _i on_ena;

which shows the difference between the local copy of ena and the pointer to the ion
variable itself. The model description can touch only the local copy and is unable to
change the value referenced by _i on_ena. Some old model descriptions circumvented
this hiding by using the actual reference to the ion mechanism variables in the I NI TI AL
block (from a knowledge of the translation implementation), but that was always
considered an absolutely last resort.

This hands-off policy for ion variables has recently been relaxed for the case of
models that WRI TE ion concentrations, but only if the concentration is declared to be a
STATE and the concentration is initialized explicitly in an I NI TI AL block. It is
meaningless for more than one model at the same location to specify the same
concentrations, and an error is generated if multiple models WRI TE the same
concentration variable at the same location.

If we try this mechanism

NEURON {
  SUFFI X t est 2
  USEI ON na WRI TE nai
  RANGE nai 0
}
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PARAMETER {
  nai 0 = 20 ( mi l l i / l i t er )
}

STATE {
  nai  ( mi l l i / l i t er )
}

I NI TI AL {
  nai  = nai 0
}

we get this result

oc>cr eat e soma
oc>access soma
oc>i nser t  t est 2
oc>nai
        10
oc>f i ni t i al i ze( - 65)
        1
oc>nai
        20
oc>nai 0_t est 2 = 30
oc>f i ni t i al i ze( - 65)
        1
oc>nai
        30

If the I NI TI AL block is not present, the nai 0_t est 2 starting value will have no effect.

Initializing concentrations in hoc

The best way to initialize concentrations depends on the design and intended use of
the model. One must ask whether the concentration is supposed to start at the same value
in all sections where the mechanism has been inserted, or should it be nonuniform from
the outset?

Take the case of a mechanism that WRI TEs an ion concentration. Such a mechanism
has an associated global variable that can be used to initialize the concentration to the
same value in each section where the mechanism exists. These global variables have
default values for [Na], [K] and [Ca] that are broadly "reasonable" but probably incorrect
for any particular case. The default concentrations for ion names created by the user are
1 mM; these should be assigned correct values in hoc . A subsequent call to
f i ni t i al i ze( )  will use this to initialize ionic concentrations.

The name of the global variable is formed from the name of the ion that the
mechanism uses and the concentration that it WRI TEs. For example, suppose we have a
mechanism kext  that implements extracellular potassium accumulation as described by
Frankenhaeuser and Hodgkin (Frankenhaeuser and Hodgkin 1956). The kext
mechanism WRI TEs ko, so the corresponding global variable is ko0_k_i on. The
sequence of instructions

ko0_k_i on = 10      / /  seawat er ,  4 x def aul t  val ue ( 2. 5)
ki 0_k_i on = 4* 54. 4  / /  4 x def aul t  val ue,  pr eser ves ek
f i ni t i al i ze( v_i ni t )  / /  v_i ni t  i s  t he st ar t i ng Vm
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will set ko to 10 mM and ki  to 217.6 mM in every segment that has the kext
mechanism.

What if one or more sections of the model are supposed to have different initial
concentrations? For these particular sections we can use the i on_st y l e( )  function to
assert that the global variable is not to be used to initialize the concentration for this
particular ion. A complete discussion of i on_st y l e( ) , its arguments, and its actions is
contained in NEURON's help system, but we will consider one specific example here.
Let's say we have inserted kext  into section dend. Then the numeric arguments in the
statement 

dend i on_st y l e( " k_i on" , 3, 2, 1, 1, 0)

would have the following effects on the kext  mechanism in the dend section (in
sequence): treat ko as a STATE variable; treat ek  as an ASSI GNED variable; on call to
f i ni t i al i ze( )  use the Nernst equation to compute ek  from the concentrations;
compute ek  from the concentrations on every call to f advance( ) ; do not use
ko0_k_i on or ki 0_k_i on to set the initial values of ko and ki . The proper
initialization is to set ko and ki  explicitly for this section, e.g. 

ko0_k_i on = 10  / /  al l  sect i ons st ar t  wi t h ko = 10 mM
dend { ko = 5  k i  = 2* 54. 4}   / /   .  .  .  except  dend
f i ni t i al i ze( v_i ni t )

Examples of custom initializations

Initializing to a particular resting potential
Perhaps the most trivial custom initialization is to force the initialized voltage to be

the resting potential. Returning our consideration to initialization of the HH membrane
compartment,

f i ni t i al i ze( - 65)

will indeed set the voltage to -65 mV, and m, h, and n will be in steady state relative to
that voltage. However, this must be considered analogous to a voltage clamp initialization
since the sum of all the currents may not be 0 at this potential, i.e. -65 mV may not be the
resting potential. For this reason it is common to adjust the equilibrium potential of the
leak current so that the resting potential is precisely -65 mV.

This can be done with a user-defined i ni t ( )
procedure based on the idea that total membrane
current at steady state must be 0. For our single
compartment HH model, this means that 

0 = i na + i k  + gl _hh* ( v -  el _hh)

so our custom i ni t ( )  is 
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pr oc i ni t ( )  {
  f i ni t i al i ze( - 65)
  el _hh = ( i na + i k  + gl _hh* v) / gl _hh
  i f  ( cvode. act i ve( ) )  {
    cvode. r e_i ni t ( )
  }  el se {
    f cur r ent ( )
  }
  f r ecor d_i ni t ( )
}

The cvode. r e_i ni t ( )  call is not essential here since states have not been changed, but
it is still good practice since it will update the calculation of all the dstate/dt (note that
now dv/dt should be 0 as a consequence of the change in el _hh) as well as internally
make a call to f cur r ent ( )  (necessary because changing el _hh requires recalculation
of i l _hh).

Calculating the value of leak equilibrium potential in order to realize a specific
resting potential is not fail-safe in the sense that the resultant value of el _hh may be very
large and out of its physiological range--after all, gl _hh may be a very small quantity. It
may sometimes be better to introduce a constant current mechanism and set its value so
that

0 = i na + i k  + i ca + i _const ant

holds at the desired resting potential. An example of such a mechanism is 

:  const ant  cur r ent  f or  cust om i ni t i al i zat i on

NEURON {
  SUFFI X const ant
  NONSPECI FI C_CURRENT i
  RANGE i ,  i c
}

UNI TS {
  ( mA)  = ( mi l l i amp)
}

PARAMETER {
  i c  = 0 ( mA/ cm2)
}

ASSI GNED {
  i  ( mA/ cm2)
}

BREAKPOI NT {
  i  = i c
}

and the corresponding custom i ni t ( )  would be 
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pr oc i ni t ( )  {
  f i ni t i al i ze( - 65)
  i c_const ant  = - ( i na + i k  + i l _hh)
  i f  ( cvode. act i ve( ) )  {
    cvode. r e_i ni t ( )
  }  el se {
    f cur r ent ( )
  }
  f r ecor d_i ni t ( )
}

Before moving on to the next example, we should mention that testing is required to
verify that the system is stable at the desired v_i ni t , i.e. that the system returns to
v_i ni t  after small perturbations.

Initializing to steady state
In Chapter 4 we mentioned that NEURON's default integrator uses the backward

Euler method, which can find the steady state of a linear system in a single step if the
integration step size is large compared to the longest system time constant. Backward
Euler can also find the steady state of many nonlinear systems, but it may be necessary to
perform several iterations with large dt . An i ni t ( )  that takes advantage of this fact is

pr oc i ni t ( )  {  l ocal  dt sav,  t emp
  f i ni t i al i ze( v_i ni t )
  t  = - 1e10
  dt sav = dt
  dt  = 1e9
  / /  i f  cvode i s  on,  t ur n i t  of f  t o do l ar ge f i xed st ep
  t emp = cvode. act i ve( )
  i f  ( t emp! =0)  {  cvode. act i ve( 0)  }
  whi l e ( t <- 1e9)  {
    f advance( )
  }
  / /  r est or e cvode i f  necessar y
  i f  ( t emp! =0)  {  cvode. act i ve( 1)  }
  dt  = dt sav
  t  = 0
  i f  ( cvode. act i ve( ) )  {
    cvode. r e_i ni t ( )
  }  el se {
    f cur r ent ( )
  }
  f r ecor d_i ni t ( )
}

This first performs a preliminary "voltage clamp" initialization to v_i ni t . Then it sets
time to a very large negative value (to prevent triggering point processes and other
events) and integrates over several steps with a large fixed dt  so that the system can
reach steady state. The procedure wraps up by returning dt  to its original value, setting t
back to 0, and, if necessary, reactivating the variable step integrator. The last few
statements are the familiar re-initialization of cvode or invocation of f cur r ent ( ) ,
followed by initialization of vector recording.
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This initialization strategy generally works well, but there are circumstances in which
it may fail. Active transport mechanisms can be troublesome with fixed time step
integration if dt  is large, because even a small pump rate may produce a negative
concentration. To see a more mundane example of instability with large dt , construct a
single compartment model that has the hh mechanism. With the default hh parameters,
and in the absence of any injected current, this is quite stable even for huge values of dt

(e.g. 105 ms). Now reduce gnabar _hh to 0, increase dt  to 100 ms, and watch what
happens over the course of 5000 ms. The result is an oscillation whose peak-to-peak
amplitude gradually increases to ~ 10 mV. It would be all to easy to miss such
oscillations when using steady state initialization with large steps. This underscores the
need for careful testing of any initialization strategy, since in a sense all of them work
"behind the scenes."

Initializing to a desired state
Suppose the end of some run is to serve as the initial condition for subsequent runs;

this is a particularly useful strategy for dealing with models that oscillate or otherwise
lack a "resting" state. We can save all the states with

obj r ef  svst at e,  f
svst at e = new SaveSt at e( )
svst at e. save( )

The binary state information can be saved for use in later neuron sessions with

f  = new Fi l e( " s t at es. dat " )
svst at e. f wr i t e( f )

and future sessions can read the file into the SaveSt at e object with

obj r ef  svst at e,  f
svst at e = new SaveSt at e( )
f  = new Fi l e( " s t at es. dat " )
svst at e. f r ead( f )

Whether or not the state information comes from a svst at e. save( )  in this session
or was read from a file, we only have to make a minor change to i ni t ( )  in order to use
that information to initialize the system.

pr oc i ni t ( )  {
  f i ni t i al i ze( v_i ni t )
  svst at e. r est or e( )
  t  = 0 / /  t  i s one of  t he " s t at es"
  i f  ( cvode. act i ve( ) )  {
    cvode. r e_i ni t ( )
  }  el se {
    f cur r ent ( )
  }
  f r ecor d_i ni t ( )
}

Now every simulation will start from the state that we saved earlier.
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Initializing by changing model parameters
Occasionally the aim is to bring a model to an initial condition that it would never

reach on its own. This can be a particular challenge if the model involves several
interacting nonlinear processes, making it difficult or impossible to know in advance
what values the states should have. Such problems can sometimes be circumvented by 
changing the parameters of the model so that initialization reaches the desired state, and
then restoring the original parameters of the model.

As a specific example, consider a conceptual model of the regulation of the calcium
concentration in a thin intracellular compartment ("shell") adjacent to the cell membrane
(Fig. 8.1). Calcium (Ca+2) can enter or leave the shell in one of three ways: by diffusion
between the shell and the core of the cell, by active transport via a membrane-bound
pump, or as a result of non-pump calcium current ICa (i.e. transmembrane calcium flux

not produced by the pump). For the sake of simplicity, we will assume that Cacore and

Cao ([Ca+2] in the core and extracellular solution) are constant. However, the problems

that we encounter, and the manner in which we solve them, would be the same even if
Cacore and Cao were allowed to vary.

ICa

Pump

Diffusion

core

shell

Fig. 8.1. Schematic diagram of a model of regulation of [Ca+2] in a thin shell
just inside the cell membrane.

Our goals are to:

1. initialize the internal calcium concentration next to the membrane [Ca+2]shell
(hereafter called Cashell) to a desired value and then plot Cashell and the pump

current ICa
pump

 as functions of time

2. plot the starting value of ICa
pump

 as a function of the initial Cashell 

To achieve these goals, we must be able to set the initial value of Cashell to whatever level

we want and ensure that the pump reaches its corresponding steady state. 

Details of the mechanism

The kinetic scheme that describes this mechanism of calcium regulation is 

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 15



The NEURON Book: Chapter 8 November 28, 2004
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�
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ICa Eq. 8.3d

where τ is the time constant for equilibration of Ca+2 between the shell and the core, F is
Faraday's constant, and vol is the volume of the shell. 

The NMODL code that implements this mechanism is 

NEURON {
  SUFFI X capmp
  USEI ON ca READ cao,  i ca,  cai  WRI TE cai ,  i ca
  RANGE t au,  wi dt h,  cacor e,  i ca,  pump0
}

UNI TS {
  ( um)      =  ( mi cr on)
  ( mol ar )   =  ( 1/ l i t er )
  ( mM)      =  ( mi l l i mol ar )
  ( uM)      =  ( mi cr omol ar )
  ( mA)      =  ( mi l l i amp)
  ( mol )     =  ( 1)
  FARADAY  =  ( f ar aday)   ( coul omb)
}

PARAMETER {
  wi dt h = 0. 1    ( um)
  t au = 1        ( ms)  :  cor r esponds t o D = 2e- 7 cm2/ s
  :  D f or  Ca i n wat er  i s  6e- 6 cm2/ s,  i . e.  30x f ast er
  k1 = 5e8       ( / mM- s)
  k2 = 0. 25e6    ( / s)
  k3 = 0. 5e3     ( / s)
  k4 = 5e0       ( / mM- s)
  cacor e = 0. 1   ( uM)
  pump0 = 3e- 14  ( mol / cm2)
}
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ASSI GNED {
  cao     ( mM)  :  on t he or der  of  10 mM
  cai      ( mM)  :  on t he or der  of  0. 001 mM
  i ca     ( mA/ cm2)
  i ca_pmp ( mA/ cm2)
  i ca_pmp_l ast  ( mA/ cm2)
}

STATE {
  cashel l   ( uM)        <1e- 6>
  pump     ( mol / cm2)   <1e- 16>
  capump   ( mol / cm2)   <1e- 16>
}

I NI TI AL {
  i ca = 0
  i ca_pmp = 0
  i ca_pmp_l ast  = 0
  SOLVE pmp STEADYSTATE spar se
}

BREAKPOI NT {
  SOLVE pmp METHOD spar se
  i ca_pmp_l ast  = i ca_pmp
  i ca = i ca_pmp
}

KI NETI C pmp {
  :  vol ume/ uni t  sur f ace ar ea has di mensi ons of  um
  :  ar ea/ uni t  sur f ace ar ea i s  di mensi onl ess
  COMPARTMENT wi dt h { cashel l }  
  COMPARTMENT ( 1e13)  { pump capump}
  COMPARTMENT 1( um)  { cacor e}
  COMPARTMENT ( 1e3) * 1( um)  { cao}
  CONSERVE pump + capump = ( 1e13) * pump0
  ~ cacor e <- > cashel l  ( wi dt h/ t au,  wi dt h/ t au)
  ~ cashel l  + pump <- > capump ( ( 1e7) * k1,  ( 1e10) * k2)
  ~ capump <- > cao + pump ( ( 1e10) * k3,  ( 1e10) * k4)
  i ca_pmp = ( 1e- 7) * 2* FARADAY* ( f _f l ux -  b_f l ux)

  :  i ca_pmp i s  t he " new"  val ue,  but  cashel l  must  be
  :  comput ed usi ng t he " ol d"  val ue,  i . e.  i ca_pmp_l ast
  ~ cashel l  << ( - ( i ca -  i ca_pmp_l ast ) / ( 2* FARADAY) * ( 1e7) )

  cai  = ( 0. 001) * cashel l
}

Initializing the mechanism

For the sake of convenience we will assume that our model cell has only one section
called soma, and that soma is the default section. Also suppose that we have already
assigned the desired value of Cashell to a parameter we will call ca_i ni t , e.g. with a

statement of the form ca_i ni t  = somevalue. Our problem is how to ensure that
initialization makes cashel l _capmp take on the value of ca_i ni t .
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As a naive first stab at this problem, we might try changing the i ni t ( )  procedure
like this 

pr oc i ni t ( )  {
  cashel l _capmp = ca_i ni t
  f i ni t i al i ze( v_i ni t )
}

i.e. inserting a line that sets the desired value of Cashell before calling f i ni t i al i ze( ) .

To see whether this has the desired effect, we need only to run a simulation and examine
the time course of Cashell and the pump current ICapump

. This quickly shows that, no

matter what value we first assign to cashel l _capmp, f i ni t i al i ze( )  drives Cashell
and ICapump

 to the same steady state levels (Fig. 8.2). We might have anticipated this

result, because it is what steady state initialization is supposed to do. If Cashell is too high,

the excess calcium will diffuse into the core or be pumped out of the cell until Cashell
returns to the steady state value. On the other hand, if Cashell is too low, calcium will

diffuse into the shell from the core, and the pump will slow or may even reverse, until
Cashell comes back to the steady state value. Thus, regardless of how we perturb Cashell,

steady state initialization always brings the model back to the same condition. 

0

0.02

0.04

0.06

0.08

0.1

0 5 10 15 20
ms

cashell_capmp
Mµ

0

5e−05

1e−04

0.00015

0.0002

0 5 10 15 20
ms

ica

mA/cm2

Fig. 8.2. Default initialization after setting cashel l _capmp to 0.1 µM leaves
Cashell (left) and ICapump

 (right) at their steady state levels of ~ 0.034 µM and

~ 1.3 × 10-4 mA/cm2, respectively.
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For our second attempt we try calling f i ni t i al i ze( )  first, and then setting the
desired value of Cashell. 

pr oc i ni t ( )  {
  f i ni t i al i ze( v_i ni t )
  cashel l _capmp = ca_i ni t
  / /  we' ve changed a s t at e,  so t he f ol l owi ng ar e needed
  i f  ( cvode. act i ve( ) )  {
    cvode. r e_i ni t ( )
  }  el se {
    f cur r ent ( )
  }
  f r ecor d_i ni t ( )
}

This is partly successful, in that it does affect Cashell and ICa
pump

, but plots of these

variables seem to start from the wrong initial conditions. For example, if we try
ca_i ni t  = 0.1 µM, the plot of cashel l _capmp appears to start with a value of
~ 0.044 µM instead. Using the Graph menu's Color/Brush to change the color and
thickness of the plots of cashel l _capmp and i ca, we discover the presence of early,
fast transients that overlie the y axis (Fig. 8.3 top). Thus cashel l _capmp really does
start at the right initial value, but in less than 5 microseconds it drops by ~ 56%. So we
have solved one mystery only to uncover another: what causes these fast transients?

Some reflection brings the realization that, although we changed the concentration in
the shell, we did not properly initialize the pump. Consequently, as soon as we launch a
simulation, Ca+2 starts binding to the pump, and this is responsible for the precipitous
drop of Cashell. At the same time, the rate of active transport begins to rise, which is

reflected in the increase of ICa
pump

. These changes produce the "pump transients" in

Cashell and ICa
pump

, which can be quite large as Fig. 8.3 shows. 
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Fig. 8.3. Time course of Cashell (left) and ICa
pump

 (right) following an

initialization that increased Cashell abruptly after calling i ni t ( ) . The traces in

the top figures were thickened to make the early fast transients easier to see.
The time scale of the bottom figures has been expanded to reveal the details of
these fast transients. The final steady state levels of Cashell and ICapump

 are the

same as in Fig. 8.2. 

A strategy that does what we want is to change the value of cacor e_capmp to
ca_i ni t  and make τ very fast before calling f i ni t i al i ze( ) , then wrap up by
restoring the values of cacor e_capmp and τ. This amounts to changing the model in
order to achieve the desired initialization. One example of such a custom i ni t ( )  is

pr oc i ni t ( )  {  l ocal  savcor e,  savt au
  / /  make cacor e equal  t o ca_i ni t
  savcor e = cacor e_capmp
  cacor e_capmp = ca_i ni t
  / /  i ni t i al i ze cashel l  t o cacor e
  savt au = t au_capmp
  t au_capmp = 1e- 6  / /  so cashel l  t r acks cacor e c l osel y
  f i ni t i al i ze( v_i ni t )
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  / /  r est or e cacor e and t au
  cacor e_capmp = savcor e
  t au_capmp = savt au
  i f  ( cvode. act i ve( ) )  {
    cvode. r e_i ni t ( )
  }  el se {
    f cur r ent ( )
  }
  f r ecor d_i ni t ( )
}

This code ensures that the difference between Cashell and Cacore becomes vanishingly

small, and at the same time allows the pump to initialize properly (Fig. 8.4).
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Fig. 8.4. Following proper initialization, plots of Cashell (left) and ICa
pump

 (right)

begin at the correct values and do not display the early fast transient that
appeared in Fig. 8.3. 

Now we can plot the starting value of ICa
pump

 as a function of the initial Cashell.

Figure 8.5 shows a Grapher configured to do this. To make this a semilog plot, we used
an independent variable x  to sweep ca_i ni t  from 10-4 to 102 µM in 30 logarithmically
equally spaced intervals. For each value of x  the Grapher calculated the corresponding
value of ca_i ni t  as 10x, called our custom i ni t ( ) , and plotted the resulting i ca_capmp
vs. l og10( cashel l _capmp) , i.e. log10(Cashell). Note that l og10( cashel l _capmp)

ranges from -4 to 2, which means that Cashell ranges from 10-4 to 102 µM, i.e. exactly the

same range of concentrations as ca_i ni t . This confirms the ability of our custom i ni t ( )  to
set cashel l _capmp to the desired values. 
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Plot Erase All

Indep Begin -4

Indep End 2

Steps 30

Independent Var x

X-expr log10(cashell_capmp)

Generator ca_init=10^x init()
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Fig. 8.5. A Grapher used to plot of ICa
pump

 vs. initial Cashell. The Graph menu's

Change Text was used to add the mA/ cm2 label.
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vs. state variable 2
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initialization 4
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Chapter 10
Synaptic transmission and artificial spiking cells

In NEURON, a cell model is a set of differential equations. Network models consist
of cell models and the connections between them. Some forms of communication
between cells, e.g. graded synapses, gap junctions, and ephaptic interactions, require
more or less complete representations of the underlying biophysical mechanisms. In these
cases, coupling between cells is achieved by adding terms that refer to one cell's variables
into equations that belong to a different cell. The first part of this chapter describes the
POI NTER syntax that makes this possible in NEURON.

The same approach can be used for detailed mechanistic models of spike-triggered
transmission, which entails spike initiation and propagation to the presynaptic terminal,
transmitter release, ligand-receptor interactions on the postsynaptic cell, and
somatodendritic integration. However, it is far more efficient to use the widespread
practice of treating spike propagation from the trigger zone to the synapse as a delayed
logical event. The second part of this chapter tells how the Net Con (network connection)
class supports this event-based style of communication.

In the last part of this chapter, we use event-based communication to simplify
representation of the neurons themselves, creating highly efficient implementations of 
artificial spiking cells, e.g. integrate and fire "neurons." Artificial spiking cells are very
convenient sources of spike trains for driving synaptic mechanisms attached to
biophysical neuron models. Networks that consist entirely of artificial spiking cells run
hundreds of times faster than their biophysical counterparts, so they are particularly
suitable for prototyping network models. They are also excellent tools in their own right
for studying the functional consequences of network architectures and synaptic plasticity
rules. In Chapter 11 we demonstrate network models that involve various combinations
of biophysical and artificial neuron models.

Modeling communication between cells
Experiments have demonstrated many kinds of interactions between neurons, but for

most cells the principal avenues of communication are gap junctions and synapses. Gap
junctions and synapses generate localized ionic currents, so in NEURON they are
represented by point processes (see Point processes in Chapter 5, and Example 9.2: a
localized shunt and Example 9.3: an intracellular stimulating electrode in
Chapter 9).

The point processes used to represent gap junctions and synapses must produce a
change at one location in the model that depends on information (membrane potential,
calcium concentration, the occurrence of a spike) from some other location. This is in
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sharp contrast to the examples we discussed in
Chapter 9, all of which are "local" in the sense
that an instance of a mechanism at a particular
location on the cell depends only on the
STATEs and PARAMETERs of that model at that
location. They may also depend on voltage and
ionic variables, but these also are at that location and automatically available to the
model. To see how to do this, we will examine models of graded synaptic transmission,
gap junctions, and spike-triggered synaptic transmission.

Example 10.1: graded synaptic transmission
A minimal conceptual model of graded synaptic transmission is that neurotransmitter

is released continuously at a rate that depends on something in the presynaptic terminal,
and that this causes some change in the postsynaptic cell. For the sake of discussion, let's
say this something is [Ca2+]pre, the concentration of free calcium in the presynaptic

terminal. We will also assume that the transmitter changes an ionic conductance in the
postsynaptic cell.

Cm

Ic I ion

m
V

Is

gs

sE

Ia

Figure 10.1. Membrane potential in the immediate neighborhood of a
postsynaptic conductance depends on the synaptic current (Is), the currents

through the local membrane capacitance and ionic conductances (Ic and I ion),

and the axial current arriving from adjacent regions of the cell (Ia).

From the standpoint of the postsynaptic cell, a conductance-change synapse might
look like Fig. 10.1, where gs, Es, and Is are the synaptic conductance, equilibrium

potential, and current, respectively. The effect of graded synaptic transmission on the
postsynaptic cell is expressed in Equation 10.1. 

Cm

d V m

dt
�

I ion
� I a �

�
V m � Es ��� gs

���
Ca2+ 	

pre � Eq. 10.1

This is the charge balance equation for the electrical vicinity of the postsynaptic region.
The terms on the left hand side are the usual local capacitive and ionic transmembrane
currents. The first term on the right hand side is the current that enters the postsynaptic

Page 2 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

Models with LONGI TUDI NAL_DI FFUSI ON
might also be considered "nonlocal," but
their dependence on concentration in
adjacent segments is handled automatically
by the NMODL translator.



November 28, 2004 The NEURON Book: Chapter 10

region from adjacent parts of the cell, which NEURON takes care of automatically. The
second term on the right hand side expresses the effect of the ligand-gated channels. The
current through these channels is the product of two factors. The first factor is merely the
local electrochemical gradient for ion flow. The second factor is a conductance term that
depends on the calcium concentration at some other location.

We already know that a localized conductance is implemented in NEURON with a
point process, and that such a mechanism is automatically able to access all the local
variables that it needs (in this case, the local membrane potential and the synapse's
equilibrium potential). But the calcium concentration in the presynaptic terminal is
nonlocal, and that poses a problem; furthermore, it is likely to change with every
f advance( ) .

We could try inserting a hoc statement like this into the main computational loop

somedendr i t e. syn. capr e = pr ecel l . bout on. cai ( 1)

At each time step, this would update the variable capr e in the synaptic mechanism syn
attached to the postsynaptic section somedendr i t e, making it equal to the free calcium
concentration cai  at the 1 end of the bout on section in the presynaptic cell pr ecel l .
However, this statement would have to be reinterpreted at each f advance( ) , which
might slow down the simulation considerably. 

If what happens to the postsynaptic cell depends on the
moment-to-moment details of what is going on in the
presynaptic terminal, it is far more efficient to use a
POI NTER variable (see Listing 10.1). In NMODL, a
POI NTER variable holds a reference to another variable.
The specific reference is defined by a hoc  statement, as we
shall see below. 

:  Gr aded synapt i c  t r ansmi ss i on

NEURON {
  POI NT_PROCESS Gr adSyn
  POI NTER capr e
  RANGE e,  k ,  g,  i
  NONSPECI FI C_CURRENT i
}

UNI TS {
  ( nA)  = ( nanoamp)
  ( mV)  = ( mi l l i vol t )
  ( uS)  = ( mi cr os i emens)
  ( mol ar )  = ( 1/ l i t er )
  ( mM)  = ( mi l l i mol ar )
}

PARAMETER {
  e = 0  ( mV)  :  r ever sal  pot ent i al
  k = 0. 02  ( uS/ mM3)
}
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ASSI GNED {
  v  ( mV)
  capr e ( mM)   :  pr esynapt i c  [ Ca]
  g  ( uS)
  i   ( nA)
}

BREAKPOI NT {
  g = k* capr e^ 3
  i  = g* ( v -  e)
}

Listing 10.1. gr adsyn. mod

The NEURON block

The POI NTER statement in the NEURON block declares that capr e refers to some
other variable that may belong to a noncontiguous segment, possibly even in a different
section; below we show how to attach this to the free calcium concentration in a
presynaptic terminal. The synaptic strength is not specified by a peak conductance, but in
terms of a "transfer function scale factor" k, which has units of (µS/mM3).

The BREAKPOINT block

The synaptic conductance g is proportional to the cube of capr e and does not
saturate. This is similar to the calcium dependence of synaptic conductance in a model
described by De Schutter et al. (1993). 

Usage

After creating a new instance of the Gr adSyn point process, we link its POI NTER
variable to the variable at some other location we want it to follow with hoc  statements,
e.g.

obj r ef  syn
somedendr i t e syn = new Gr adSyn( 0. 8)
set poi nt er  syn. cp,  pr ecel l . bout on. cai ( 0. 5)

The second statement attaches an instance of the Gr adSyn mechanism, called syn, to
somedendr i t e. The third statement uses set poi nt er  to assert that the synaptic
conductance of syn will be governed by cai  in the middle of a section called bout on
that is part of cell pr ecel l . Of course this assumes that the presynaptic section
pr ecel l . bout on contains a calcium accumulation mechanism.

Figure 10.2 shows simulation results from a model of graded synaptic transmission.
In this model, the presynaptic terminal pr ecel l  is a 1 µm diameter hemisphere with
voltage-gated calcium current cachan (cachan. mod in c: nr nxx\ exampl es\ nr ni v\ nmodl
under MSWindows or nr n- x. x/ shar e/ exampl es/ nr ni v/ nmodl  under UNIX) and a
calcium accumulation mechanism that includes diffusion, buffering, and a pump (cdp,
discussed in Example 9.9: a calcium pump). The postsynaptic cell is a passive single
compartment with surface area 100 µm2, Cm = 1 µf/cm2, and τm = 30 ms. A Gr adSyn
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synapse with transfer function scale factor k = 0.2 µS/mM3 is attached to the postsynaptic
cell, and presynaptic membrane potential is driven between -70 and -30 mV by a sinusoid
with a period of 400 ms. The time course of presynaptic [Ca] i and synaptic conductance

show clipping of the negative phases of the sine wave; the postsynaptic membrane
potential shows less clipping because of filtering by membrane capacitance. 

−70

−50

−30
mV

preterm.v(0.5)

0 400 800 1200
ms

0

0.03

0.06
mM

preterm.cai(0.5)

0 400 800 1200
ms

0 400 800 1200
ms

0

5e−5
µS

GradSyn[0].g

−70

−50

−30
mV

postcell.v(0.5)

0 400 800 1200
ms

Figure 10.2. Graded synaptic transmission. Top two graphs: Presynaptic
membrane potential pr et er m. v  was "clamped" to -70-20cos(2πt/400) mV,
producing a periodic increase of [Ca] i (pr et er m. cai  is the concentration just

inside the cell membrane) with clipping of the negative peaks. Bottom two
graphs: The synaptic conductance GradSyn[0].g shows even more clipping of
the negative phases of the sinusoid, but membrane capacitance smoothes the
time course of postsynaptic membrane potential.

Example 10.2: a gap junction
The current that passes through a gap junction depends on the moment-to-moment

fluctuations of voltage on both sides of the junction. This can be handled by a pair of
point processes on the two sides that use POI NTERs to monitor each other's voltage, as in 
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sect i on1 gap1 = new Gap( x1)
sect i on2 gap2 = new Gap( x2)
set poi nt er  gap1. vpr e,  sect i on2. v( x2)
set poi nt er  gap2. vpr e,  sect i on1. v( x1)

Conservation of charge requires the use of two point processes: one drains current from
one side of the gap junction, and the other delivers an equal current to the other side.

Listing 10.2 presents the NMODL specification of a point process that can be used to
implement ohmic gap junctions.

NEURON {
  POI NT_PROCESS Gap
  POI NTER vgap
  RANGE r ,  i
  NONSPECI FI C_CURRENT i
}

PARAMETER {  r  = 1e10 ( megohm)  }

ASSI GNED {
  v ( mi l l i vol t )
  vgap ( mi l l i vol t )
  i  ( nanoamp)
}

BREAKPOI NT {  i  = ( v  -  vgap) / r  }

Listing 10.2. gap. mod

This implementation can cause spurious oscillations if the coupling between the two
voltages is too tight (i.e. if the resistance r  is too low) because it degrades the Jacobian
matrix of the system equations. While it does introduce off-diagonal terms to couple the
nodes on either side of the gap junction, it fails to add the conductance of the gap junction
to the terms on the main diagonal. The result is an approximate Jacobian, which makes
numeric integration effectively a modified Euler method, instead of the fully implicit or
Crank-Nicholson methods which are numerically more robust. Consequently, results are
satisfactory only if coupling is loose (i.e. if r  is large compared to the total conductance
of the other ohmic paths connected to the affected nodes). If oscillations do occur, their
amplitude can be reduced by decreasing dt , and they can be eliminated by using
CVODE. In such cases, it may be preferable to implement gap junctions is with the
Li near Mechani sm class (e.g. by using the LinearCircuitBuilder), which sets up the
diagonal and off-diagonal terms of the Jacobian properly so that simulations are
completely stable.

Usage

The following hoc  code use this mechanism to set up a model of a gap junction
between two cells. The Gap mechanisms allow current to flow between the internal node
at the 1 end of a and the internal node at the 0 end of b.

cr eat e a, b
access a

f or al l  { nseg=10 L=1000 di am=10 i nser t  hh}
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obj r ef  g[ 2]
f or  i =0, 1 {
  g[ i ]  = new Gap( )
  g[ i ] . r  = 3
}

a g[ 0] . l oc( 0. 9999)   / /  j ust  i nsi de " di s t al "  end of  a
b g[ 1] . l oc( 0. 0001)   / /  j ust  i nsi de " pr ox i mal "  end of  b
set poi nt er  g[ 0] . vgap,  b. v( 0. 0001)
set poi nt er  g[ 1] . vgap,  a. v( 0. 9999)

Modeling spike-triggered synaptic transmission:
an event-based strategy
Prior to NEURON 4.1, model descriptions of synaptic transmission could only use

POI NTER variables to obtain their presynaptic information. This required a detailed
piecing together of individual components that was acceptable for models with only a
few synapses. Models of larger networks required users to exert considerable
administrative effort to create mechanisms that handle synaptic delay, exploit potentially
great simulation efficiencies offered by simplified models of synapses, and maintain
information about network connectivity.

The experience of NEURON users in creating special strategies for managing
network simulations (e.g. (Destexhe et al. 1994a; Lytton 1996)) stimulated the
development of NEURON's network connection (Net Con) class and event delivery
system. Instances of the Net Con class manage the delivery of presynaptic "spike" events
to synaptic point processes via the event delivery system. This works for all of
NEURON's integrators, including the local variable time step method in which each cell
is integrated with a time step appropriate to its own state changes. Model descriptions of
synapses never need to queue events, and there is no need for heroic efforts to make them
work properly with adaptive integration. These features offer enormous convenience to
users who are interested in models that involve synaptic transmission at any level of
complexity from single cell to large networks. 

Conceptual model

In its most basic form, the physical system that we want to represent consists of a
presynaptic neuron with a spike initiation zone that gives rise to an axon, which leads to a
terminal that makes a synaptic connection onto a postsynaptic cell (Fig. 10.3). Our
conceptual model of spike-triggered transmission is that arrival of a spike at the
presynaptic terminal has some effect (e.g. a conductance change) in the postsynaptic cell
that is described by a differential equation or kinetic scheme. Details of what goes on at
the spike initiation zone are assumed to be unimportant--all that matters is whether a
spike has, or has not, reached the presynaptic terminal. This conceptual model lets us take
advantage of special features of NEURON that allow extremely efficient computation. 
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pre

post

Figure 10.3. Cartoon of a synaptic connection (filled circle) between a
presynaptic cell pre and a postsynaptic cell post.

A first approach to implementing a computational representation of our conceptual
model might be something like the top of Fig. 10.4. We would monitor membrane
potential at the presynaptic terminal for spikes (watch for threshold crossing). When a
spike is detected, we wait for an appropriate delay (latency of transmitter release plus
diffusion time) and then notify the synaptic mechanism that it's time to go into action. For
this simple example, we have assumed that synaptic transmission simply causes a
conductance change in the postsynaptic cell. It is also possible to implement more
complex mechanisms that include representations of processes in the presynaptic terminal
(e.g. processes involved in use-dependent plasticity).

We can speed things up a lot by leaving out the axon and presynaptic terminal
entirely, i.e. instead of computing the propagation of the action potential along the axon,
just monitor the spike initiation zone. Once a spike occurs, we wait for a total delay equal
to the sum of the conduction latency and the synaptic latency, and then activate the
postsynaptic conductance change (Fig. 10.4 bottom).

Spike
detector

Postsynaptic
region

gs
Synaptic
latency

Complete
representation
of propagation 
from spike init.
zone through 
axon to terminal

Spike
initiation
zone

Spike
detector

Postsynaptic
region

gs

Delay
   =
conduction
latency
   +
synaptic
latency

Figure 10.4. Computational implementation of a model of spike-triggered
synaptic transmission. Top: The basic idea is that a presynaptic spike causes
some change in the postsynaptic cell. Bottom: A more efficient version doesn't
bother computing conduction in the presynaptic axon.
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The NetCon class

Let's step back from this problem for a moment and think about the bottom diagram
in Fig. 10.4. The "spike detector" and "delay" in the middle of this diagram are the seed
of an idea for a general strategy for dealing with synaptic connections. In fact, the
Net Con object class is used to apply this strategy in defining the synaptic connection
between a source and a target. 

A Net Con object connects a presynaptic variable, such as voltage, to a target point
process (here a synapse) with arbitrary delay and weight. If the presynaptic variable
crosses t hr eshol d in a positive direction at time t , then at time t +del ay  a special
NET_RECEI VE procedure in the target point process is called and receives the wei ght
information. Each Net Con can have its own t hr eshol d, del ay , and wei ght , i.e. these
parameters are stream-specific. The only constraint on del ay  is that it be nonnegative.
There is no limit on the number of events that can be "in the pipeline," and there is no
loss of events under any circumstances. Events always arrive at the target at the interval
del ay  after the time they were generated.

When you create a Net Con object, at a minimum you must specify the source
variable and the target. The source variable is generally the membrane potential of the
currently accessed section, as shown here. The target is a point process that contains a
NET_RECEI VE block (see Listing 10.3 below). 

section netcon = new Net Con( &v( x) ,  target,  thresh,  del,  wt)

Threshold, delay, and weight are optional; their defaults are shown here, and they can be
specified after the Net Con object has been constructed. 

netcon. t hr eshol d = 10 / /  mV
netcon. del ay = 1      / /  ms
netcon. wei ght  = 0     / /  uS

The weight associated with a Net Con object is actually the first element of a weight
vector. The number of elements in the weight vector depends on the number of
arguments in the NET_RECEI VE statement of the NMODL source code that defines the
point process. We will return to this in Example 10.5: use-dependent synaptic
plasticity and Example 10.6: saturating synapses.

NEURON's event-based approach to implementing communication between cells
reduces the computational burden of network simulations tremendously, because it
supports efficient, unlimited divergence and convergence (fan-out and fan-in). To
understand why, first consider divergence. What if a presynaptic cell projects to multiple
postsynaptic targets (Fig. 10.5 top)? Easy enough--just add a Net Con object for each
target (Fig. 10.5 bottom). This is computationally efficient because threshold detection is
done on a "per source" basis, rather than a "per Net Con" basis. That is, if multiple
Net Cons have the same source with the same t hr eshol d, they all share a single
threshold detector. The source variable is checked only once per time step and, when it
crosses t hr eshol d in the positive direction, events are generated for each connecting
Net Con object. Each of these Net Cons can have its own weight and delay, and the target
mechanisms can belong to different classes.
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Now consider convergence. Suppose a neuron receives multiple inputs that are
anatomically close to each other and of the same type (Fig. 10.6 top). In other words,
we're assuming that each synapse has its postsynaptic action through the same kind of
mechanism (i.e. it has identical kinetics, and (in the case of conductance-change
synapses) the same equilibrium potential). We can represent this by connecting multiple
Net Con objects to the same postsynaptic point process (Fig. 10.6 bottom). This yields
large efficiency improvements because a single set of synaptic equations can be shared
by many input streams (one input stream per connecting Net Con instance). Of course,
these synapses can have different strengths and latencies, because each Net Con object
has its own weight and delay.

Path 0

Path 1

Spike
initiation
zone

Spike
detector Delay 0 gs

Postsynaptic
region 0

Delay 1 gs
Postsynaptic
region 1

Figure 10.5. Efficient divergence. Top: A single presynaptic neuron projects to two
different target synapses. Bottom: Computational model of this circuit uses multiple
Net Cons with a single threshold detector that monitors a common source.

Path 0

Path 1

Delay 0Spike
detector 0

Spike
initiation
zone 0

gs
Postsynaptic
region

Delay 1
Spike
initiation
zone 1

Spike
detector 1

Figure 10.6. Efficient convergence. Top: Two different presynaptic cells make synaptic
connections of the same class that are electrically close to each other. Bottom:
Computational model of this circuit uses multiple Net Cons that share a single
postsynaptic mechanism (single equation handles multiple input streams).
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Having seen the rationale for using events to implement models of synaptic
transmission, we are ready to examine some point processes that include a
NET_RECEI VE block and can be used as synaptic mechanisms in network models.

Example 10.3: synapse with exponential decay
Many kinds of synapses produce a synaptic conductance that increases rapidly and

then declines gradually with first order kinetics, e.g. AMPAergic excitatory synapses.
This can be modeled by an abrupt change of conductance, which is triggered by arrival of
an event, and then decays with a single time constant. 

The NMODL code that implements such a mechanism is shown in Listing 10.3. This
mechanism is similar to NEURON's built in ExpSyn. Calling it ExpSyn1 allows us to
test and modify it without conflicting with NEURON's built-in ExpSyn.

The synaptic conductance of this mechanism summates not only when events arrive
from a single presynaptic source, but also when they arrive from different places
(multiple input streams). This mechanism handles both situations by defining a single
conductance state g which is governed by a differential equation whose solution is

g
�
t ��� g

�
t0 � e

�
t � t0

�����
, where g

�
t0 �  is the conductance at the time of the most recent

event.

:  expsyn1. mod

NEURON {
  POI NT_PROCESS ExpSyn1
  RANGE t au,  e,  i
  NONSPECI FI C_CURRENT i
}

PARAMETER {
  t au = 0. 1  ( ms)
  e   = 0    ( mi l l i vol t )
}

ASSI GNED {  
  v  ( mi l l i vol t )
  i   ( nanoamp)
}

STATE {  g ( mi cr os i emens)  }

I NI TI AL {  g = 0 }

BREAKPOI NT {
  SOLVE st at e METHOD cnexp
  i  = g* ( v -  e)
}
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DERI VATI VE st at e {  g'  = - g/ t au }

NET_RECEI VE( wei ght  ( mi cr osi emens) )  {
  g = g + wei ght
}

Listing 10.3. expsyn1. mod

The BREAKPOINT block

The BREAKPOI NT block of this mechanism is its main computational block. This
contains the SOLVE statement that tells how states will be integrated. The cnexp method
is used because the kinetics of ExpSyn1 are described by a differential equation of the
form y´ = f(y), where f(y) is linear in y (see also The DERIVATIVE block in Example
9.4: a voltage-gated current in Chapter 9). The BREAKPOI NT block ends with an
assignment statement that sets the value of the synaptic current.

The DERIVATIVE block

The DERI VATI VE block contains the differential equation that describes the time
course of the synaptic conductance g: a first order decay with time constant t au.

The NET_RECEIVE block

The NET_RECEI VE block contains the code that specifies what happens in response
to presynaptic activation. This is called by the Net Con event delivery system when an
event arrives at this point process. 

So suppose we have a model with an ExpSyn1 point process that is the target of a
Net Con. Imagine that the Net Con detects a presynaptic spike at time t . What happens
next?

ExpSyn1's conductance g continues to follow
a smooth exponential decay with time constant
t au until time t +del ay , where del ay  is the delay
associated with the Net Con object. At this point,
an event is delivered to the ExpSyn1. Just before
entry to the NET_RECEI VE block, NEURON makes all STATEs, v , and values assigned in
the BREAKPOI NT block consistent at t +del ay . Then the code in the NET_RECEI VE
block is executed, making the synaptic conductance suddenly jump up by the amount
specified by the Net Con's weight. 

Usage

Suppose we wanted to set up a synaptic connection between two cells using an
ExpSyn1 mechanism, as in Fig. 10.7. 
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Figure 10.7. Schematic of a synaptic connection between two cells.

This could be done with the following hoc  code, which also illustrates the use of a Li st
of Net Con objects as a means for keeping track of the synaptic connections in a network.

/ /  keep connect i v i t y  i n a l i s t  of  Net Con obj ect s
obj r ef  nc l
nc l  = new Li st ( )

/ /  at t ach an ExpSyn1 poi nt  pr ocess cal l ed syn
/ /    t o t he 0. 3 l ocat i on on dend[ 3]  of  cel l [ 5]
obj r ef  syn
cel l [ 5] . dend[ 3]  syn = new ExpSyn1( 0. 3)

/ /  pr esynapt i c  v i s  cel l [ 20] . axon. v( 1)
/ /  connect  t hi s  t o syn v i a a new Net Con obj ect
/ /    and add t he Net Con t o t he l i s t  ncl
cel l [ 20] . axon ncl . append( new Net Con( &v( 1) ,  \
         syn,  t hr eshol d,  del ay,  wei ght )

precell[0]

precell[1]

0 50 100 150
−70

−69

−68 postcell.soma.v(0.5)

0 50 100 150

0.001

0.002

0

ExpSyn1[0].g

Figure 10.8. Simulation results from the model shown in Fig. 10.6. Note stream-specific synaptic
weights and temporal summation of synaptic conductance and membrane potential.

Figure 10.8 shows results of a simulation of two input streams that converge onto a
single ExpSyn1 attached to a postsynaptic cell, as in the diagram at the top of Fig. 10.6.
The presynaptic firing times are indicated by the rasters labeled pr ecel l [ 0]  and
pr ecel l [ 1] . The synaptic conductance and postsynaptic membrane potential (middle
and bottom graphs) display stream-specific synaptic weights, and also show temporal
summation of inputs within an individual stream and between inputs on multiple streams.
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Example 10.4: alpha function synapse
With a few small changes, we can extend ExpSyn1 to implement an alpha function

synapse. We only need to replace the differential equation with the two state kinetic
scheme

STATE {  a ( mi cr os i emens)  g ( mi cr os i emens)  }
KI NETI C st at e {
  ~ a <- > g ( 1/ t au,  0)
  ~ g - > ( 1/ t au)
}

and change the NET_RECEI VE block to 

NET_RECEI VE( wei ght  ( mi cr osi emens) )  {
  a = a + wei ght * exp( 1)
}

The factor exp( 1)  = e is included so that an isolated event produces a peak conductance
of magnitude wei ght , which occurs at time t au after the event. Since this mechanism
involves a KI NETI C block instead of a DERI VATI VE block, we must also change the
integration method specified by the SOLVE statement from cnexp to spar se.

The extra computational complexity of using a kinetic scheme is offset by the fact
that, no matter how many Net Con streams connect to this model, the computation time
required to integrate STATE g remains constant. Some increase of efficiency can be
gained by recasting the kinetic scheme as two linear differential equations

DERI VATI VE st at e {
. . a'  = - a/ t au1
. . b'  = - b/ t au
. . g = b -  a
}

which are solved by the cnexp method (this is what NEURON's built in Exp2Syn
mechanism does). As t au1 approaches t au, g approaches an alpha function (although
the factor by which wei ght  must be multiplied approaches infinity; see f act or  in the
next example). Also, there are now two state discontinuities in the NET_RECEI VE block

NET_RECEI VE( wei ght  ( mi cr osi emens) )  {
  a = a + wei ght * f act or
  b = b + wei ght * f act or
}

Example 10.5: use-dependent synaptic plasticity
Here the alpha function synapse is extended to implement a form of use-dependent

synaptic plasticity. Each presynaptic event initiates two distinct processes: direct
activation of ligand-gated channels, which causes a transient conductance change, and
activation of a mechanism that in turn modulates the conductance change produced by
successive synaptic activations. In this example we presume that modulation depends on
the postsynaptic increase of a second messenger, which we will call "G protein" for
illustrative purposes. We must point out that this example is entirely hypothetical, and
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that it is quite different from models described by others (Destexhe and Sejnowski 1995)
in which the G protein itself gates the ionic channels.

For this mechanism it is essential to distinguish each stream into the generalized
synapse, since each stream has to maintain its own [G] (concentration of activated G
protein). That is, streams are independent of each other in terms of the effect on [G], but
their effects on synaptic conductance show linear superposition.

:  gsyn. mod

NEURON {
  POI NT_PROCESS GSyn
  RANGE t au1,  t au2,  e,  i
  RANGE Gt au1,  Gt au2,  Gi nc
  NONSPECI FI C_CURRENT i
  RANGE g
}

UNI TS {
  ( nA)    = ( nanoamp)
  ( mV)    = ( mi l l i vol t )
  ( umho)  = ( mi cr omho)
}

PARAMETER {
  t au1   = 1  ( ms)
  t au2   = 1. 05    ( ms)
  Gt au1  = 20   ( ms)
  Gt au2  = 21   ( ms)
  Gi nc   = 1
  e      = 0    ( mV)
}

ASSI GNED {
  v  ( mV)
  i   ( nA)
  g  ( umho)
  f act or
  Gf act or
}

STATE {
  A  ( umho)
  B  ( umho)
}

I NI TI AL {
  LOCAL t p
  A = 0
  B = 0
  t p = ( t au1* t au2) / ( t au2 -  t au1)  *  l og( t au2/ t au1)
  f act or  = - exp( - t p/ t au1)  + exp( - t p/ t au2)
  f act or  = 1/ f act or
  t p = ( Gt au1* Gt au2) / ( Gt au2 -  Gt au1)  *  l og( Gt au2/ Gt au1)
  Gf act or  = - exp( - t p/ Gt au1)  + exp( - t p/ Gt au2)
  Gf act or  = 1/ Gf act or
}
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BREAKPOI NT {
  SOLVE st at e METHOD cnexp
  g = B -  A
  i  = g* ( v -  e)
}

DERI VATI VE st at e {
  A'  = - A/ t au1
  B'  = - B/ t au2
}

NET_RECEI VE( wei ght  ( umho) ,  w,  G1,  G2,  t 0 ( ms) )  {
  G1 = G1* exp( - ( t - t 0) / Gt au1)
  G2 = G2* exp( - ( t - t 0) / Gt au2)
  G1 = G1 + Gi nc* Gf act or
  G2 = G2 + Gi nc* Gf act or
  t 0 = t

  w = wei ght * ( 1 + G2 -  G1)
  A = A + w* f act or
  B = B + w* f act or
}

Listing 10.4. gsyn. mod

The NET_RECEIVE block

The conductance of the ligand-gated ion channel uses the differential equation
approximation for an alpha function synapse. The peak synaptic conductance depends on
the value of [G] at the moment of synaptic activation. A similar, albeit much slower,
alpha function approximation describes the time course of [G]. These processes peak
approximately t au1 and Gt au1 after delivery of an event, respectively.

The peak synaptic conductance elicited by an individual event is specified in the
NET_RECEI VE block, where w = wei ght * ( 1+G2- G1)  describes how the effective
weight of the synapse is modified by [G]. Even though conductance is integrated, [G] is
needed only at discrete event times so it can be computed analytically from the elapsed
time since the prior synaptic activation. The I NI TI AL block sets up the factors that are
needed to make the peak changes equal to the values of w and Gi nc .

Note that G1 and G2 are not STATEs in this mechanism. They are not even variables
in this mechanism, but instead are "owned" by the particular Net Con instance that
delivered the event. Each Net Con object instance
keeps an array (the weight vector) whose size equals
the number of arguments to NET_RECEI VE, and the
arguments to NET_RECEI VE are really references to
the elements of this array. Unlike the arguments to a 
PROCEDURE or FUNCTI ON block, which are "call by
value," the arguments to a NET_RECEI VE block are
"call by reference." Therefore assignment statements
in gsyn. mod's NET_RECEI VE block can change the
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values of variables that belong to the Net Con object, and this means that the Net Con's
weight vector can be used to hold stream-specific state information. In the context of this
particular example, each connection has its own [G], so gsyn uses "stream-specific
plasticity" to represent "synapse-specific plasticity." 

0 20 40 60
0

Sµ
1e−4

80
ms

5e−5

GSyn[0].g

S1

S2

Figure 10.9. Simulation results from the model shown in Fig. 10.6 when the
synaptic mechanism is GSyn. Note stream-specific use-dependent plasticity.

To illustrate the operation of this mechanism, imagine the network of Fig. 10.6 with a
single GSyn driven by the two spike trains shown in Fig. 10.9. This emulates two
synapses that are electrotonically close to each other, but with separate pools of [G]. The
train with spikes at 5 and 45 ms (S1) shows some potentiation of the second conductance
transient, but the train that starts at 15 ms with a 200 Hz burst of three spikes displays a
large initial potentiation that is even larger when tested after a 40 ms interval.

Example 10.6: saturating synapses
Several authors (e.g. (Destexhe et al. 1994a; Lytton 1996)) have used synaptic

transmission mechanisms based on a simple conceptual model of transmitter-receptor
interaction:

C � T
�
�

�

�

O Eq. 10.2

where transmitter T binds to a closed receptor channel C to produce an open channel O.
In this conceptual model, spike-triggered transmitter release produces a transmitter
concentration in the synaptic cleft that is approximated by a rectangular pulse with a
fixed duration and magnitude (Fig. 10.10). A "large excess of transmitter" is assumed, so
that while transmitter is present (the "onset" state, "ligand binding to channel") the
postsynaptic conductance increases toward a maximum value with a single time constant
1/(α T + β). After the end of the transmitter pulse (the "offset" state, "ligand·channel
complex dissociating"), the conductance decays with time constant 1/β. Further details of
saturating mechanisms are covered by (Destexhe et al. 1994a and b) and (Lytton 1996).
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g

xmtr

Cdur Cdur

Figure 10.10. A saturating synapse model. A single presynaptic spike (top
trace) causes a pulse of transmitter in the synaptic cleft with fixed duration
(Cdur) and concentration (middle trace). This elicits a rapid increase of
postsynaptic conductance followed by a slower decay (bottom trace). A high
frequency burst of spikes produces a sustained elevation of transmitter that
persists until Cdur after the last spike and causes saturation of the postsynaptic
conductance.

There is an ambiguity when one or more spikes arrive on a single stream during the
onset state triggered by an earlier spike: should the mechanism ignore the "extra" spikes,
concatenate onset states to make the transmitter pulse longer without increasing its
concentration, or increase (summate) the transmitter concentration? Summation of
transmitter requires the onset time constant to vary with transmitter concentration. This
places transmitter summation outside the scope of the Destexhe/Lytton model, which
assumes a fixed time constant for the onset state. We resolve this ambiguity by choosing
concatenation, so that repetitive impulses on one stream produce a saturating conductance
change (Fig. 10.10). However, conductance changes elicited by separate streams will
summate.

A model of the form used in Examples 10.4 and 10.5 can capture the idea of
saturation, but the separate onset/offset formulation requires keeping track of how much
"material" is in the onset or offset state. The mechanism in Listing 10.5 implements an
effective strategy for doing this. A noteworthy feature of this model is that the event
delivery system serves as more than a conduit for receiving inputs from other cells:
discrete events are used to govern the duration of synaptic activation, and are thus an
integral part of the mechanism itself.

:  ampa. mod

NEURON {
  POI NT_PROCESS AMPA_S
  RANGE g
  NONSPECI FI C_CURRENT i
  GLOBAL Cdur ,  Al pha,  Bet a,  Er ev,  Ri nf ,  Rt au
}

UNI TS {
  ( nA)    = ( nanoamp)
  ( mV)    = ( mi l l i vol t )
  ( umho)  = ( mi cr omho)
}
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PARAMETER {
  Cdur   = 1. 0   ( ms)   :  t r ansmi t t er  dur at i on ( r i s i ng phase)
  Al pha = 1. 1   ( / ms)  :  f or war d ( bi ndi ng)  r at e
  Bet a  = 0. 19  ( / ms)  :  backwar d ( di ssoci at i on)  r at e
  Er ev  = 0     ( mV)   :  equi l i br i um pot ent i al
}

ASSI GNED {
  v     ( mV)    :  post synapt i c  vol t age
  i      ( nA)    :  cur r ent  = g* ( v  -  Er ev)
  g     ( umho)  :  conduct ance
  Rt au  ( ms)    :  t i me const ant  of  channel  bi ndi ng
  Ri nf   :  f r act i on of  open channel s i f  xmt r  i s  pr esent  " f or ever "
  synon :  sum of  wei ght s of  al l  synapses i n t he " onset "  s t at e
}

STATE {  Ron Rof f  }   :  i ni t i al i zed t o 0 by def aul t
:  Ron and Rof f  ar e t he t ot al  conduct ances of  al l  synapses 
:    t hat  ar e i n t he " onset "  ( t r ansmi t t er  pul se ON)
:    and " of f set "  ( t r ansmi t t er  pul se OFF)  s t at es,  r espect i vel y

I NI TI AL {
  synon = 0
  Rt au = 1 /  ( Al pha + Bet a)
  Ri nf  = Al pha /  ( Al pha + Bet a)
}

BREAKPOI NT {
  SOLVE r el ease METHOD cnexp
  g = ( Ron + Rof f ) * 1( umho)
  i  = g* ( v -  Er ev)
}

DERI VATI VE r el ease {
  Ron'  = ( synon* Ri nf  -  Ron) / Rt au
  Rof f '  = - Bet a* Rof f
}
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NET_RECEI VE( wei ght ,  on,  r 0,  t 0 ( ms) )  {
  :  f l ag i s  an i mpl i c i t  ar gument  of  NET_RECEI VE,  nor mal l y  0
  i f  ( f l ag == 0)  {
    :  a spi ke ar r i ved,  s t ar t  onset  s t at e i f  not  al r eady on
    i f  ( ! on)  {
      :  t hi s synapse j oi ns t he set  of  synapses i n onset  st at e
      synon = synon + wei ght
      r 0 = r 0* exp( - Bet a* ( t  -  t 0) )  :  r 0 at  s t ar t  of  onset  s t at e
      Ron = Ron + r 0
      Rof f  = Rof f  -  r 0
      t 0 = t
      on = 1
      :  come agai n i n Cdur  wi t h f l ag = 1
      net _send( Cdur ,  1)
    }  el se {
      :  al r eady i n onset  s t at e,  so move of f set  t i me
      net _move( t  + Cdur )
    }
  }
  i f  ( f l ag == 1)  {
    :  " t ur n of f  t r ansmi t t er "
    :  i . e.  t hi s synapse ent er s t he of f set  s t at e
    synon = synon -  wei ght
    :  r 0 at  s t ar t  of  of f set  s t at e
    r 0 = wei ght * Ri nf  + ( r 0 -  wei ght * Ri nf ) * exp( - ( t  -  t 0) / Rt au)
    Ron = Ron -  r 0
    Rof f  = Rof f  + r 0
    t 0 = t
    on = 0
  }
}

Listing 10.5. ampa. mod

The PARAMETER block

The actual value of the transmitter concentration in the synaptic cleft during the onset
state is unimportant to this model, as long as it remains constant. To simplify the
mechanism, we assume transmitter concentration to be dimensionless, with a numeric
value of 1. This allows us to specify the forward rate constant Al pha in units of 1/ms.

The STATE block

This mechanism has two STATEs. Ron is the total conductance of all synapses that are
in the onset state, and Rof f  is the total conductance of all synapses that are in the offset
state. These are declared without units, so a units factor will have to be applied elsewhere
(in this example, this is done in the BREAKPOI NT block).

The INITIAL block

At the start of a simulation, we assume that all channels are closed and no transmitter
is present at any synapse. The initial values of Ron, Rof f , and synon must therefore
be 0. This initialization happens automatically for STATEs and does not require explicit
specification in the I NI TI AL block, but synon needs an assignment statement.

Page 20 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 28, 2004 The NEURON Book: Chapter 10

The I NI TI AL block also calculates Rt au and Ri nf . Rt au is the time constant for
equilibration of the closed (free) and open (ligand-bound) forms of the postsynaptic
receptors when transmitter is present in the synaptic cleft. Ri nf  is the open channel
fraction if transmitter is present forever.

The BREAKPOINT and DERIVATIVE blocks

The total conductance is numerically equal to Ron+Rof f . The * 1( umho)  factor is
included for dimensional consistency. 

The DERI VATI VE block specifies the first order differential equations that govern
these STATEs. The meaning of each term in 

Rof f '  = - Bet a* Rof f

is obvious, and in 

Ron'  = ( synon* Ri nf  -  Ron) / Rt au

the product synon* Ri nf  is the value that Ron approaches with increasing time. 

The NET_RECEIVE block

The NET_RECEI VE block performs the task of switching each synapse between its
onset and offset states. In broad outline, if an external event (an event generated by the
Net Con's source passing threshold) arrives at time t  to start an onset, the NET_RECEI VE
block generates an event that it sends to itself. This self-event will be delivered at time
t +Cdur , where Cdur  is the duration of the transmitter
pulse. Arrival of the self-event is the signal to switch
the synapse back to the offset state. If another external
event arrives from the same Net Con before the self-
event does, the self-event is moved to a new time that
is Cdur  in the future. Thus resetting to the offset state
can happen only if an interval of Cdur  passes without new external events arriving.

To accomplish this strategy, the NET_RECEI VE block must distinguish an external
event from a self-event. It does this by
exploiting the fact that every event has an
implicit argument called f l ag, the value of
which is automatically 0 for an external event. 

Handling of external events

Arrival of an external event causes execution of the statements inside the
i f  ( f l ag==0) { }  clause. These begin with i f  ( ! on) , which tests whether this
synapse should switch to the onset state.

Switching to the onset state involves keeping track of how much "material" is in the
onset and offset states. This requires moving the synapse's channels into the pool of
channels that are exposed to transmitter, which simply means adding the synapse's
wei ght  to synon. Also, the conductance of this synapse, which had been decaying with
rate constant 1/ Bet a, must now start to grow with rate constant Rt au. This is done by
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computing r 0, the synaptic conductance at the present time t , and then adding r 0 to Ron
and subtracting it from Rof f . Next the value of t 0 is updated for future use, and on is set
to 1 to signify that the synapse is in the onset state. The last statement inside i f  ( ! on) { }
is net _send( Cdur , nspi ke) , which generates a self-event with delay given by the first
argument and flag value given by the second argument. All the explicit arguments of this
self-event will have the values of this particular Net Con, so when this self-event returns
we will know how much "material" to switch from the onset to the offset state.

The el se { }  clause takes care of what happens if another external event arrives
while the synapse is still in the onset state. The net _move( t +Cdur )  statement moves
the self-event to a new time that is Cdur  in the future (relative to the arrival time of the
new external event). In other words, this prolongs synaptic activation until Cdur  after the
most recent external event.

Handling of self-events

When the self-event is finally delivered, it triggers an offset. We know it is a self-
event because its f l ag is 1. Once again we keep track of how much "material" is in the
onset and offset states, but now we subtract the synapse's wei ght  from synon to remove
the synapse's channels from the pool of channels that are exposed to transmitter.
Likewise, the conductance of this synapse, which was growing with rate constant Rt au,
must now begin to decay with rate constant 1/ Bet a. Finally, the value of t 0 is updated
and on is reset to 0.

Artificial spiking cells
NEURON's event delivery system was created with the primary aim of making it

easier to represent synaptic connections between biophysical model neurons. However,
the event delivery system turns out to be quite useful for implementing a wide range of
mechanisms that require actions to be taken after a delay. The saturating synapse model
presented above is just one example of this. 

The previous section also showed how spike-triggered synaptic transmission makes
extensive use of the network connection class to define connections between cells. The
typical Net Con object watches a source cell for the occurrence of a spike, and then, after
some delay, delivers a weighted event to a target synaptic mechanism, i.e. it is a
metaphor for axonal spike propagation. More generally, a Net Con object can be regarded
as a channel on which a stream of events generated at a source is transmitted to a target.
The target can be a point process, a distributed mechanism, or an artificial neuron (e.g. an
integrate and fire model). The effect of events on a target is specified in NMODL by
statements in a NET_RECEI VE block, which is called only when an event has been
delivered.

The event delivery system also opens up a large domain of simulations in which
certain types of artificial spiking cells, and networks of them, can be simulated hundreds
of times faster than with numerical integration methods. Discrete event simulation is
possible when all the state variables of a model cell can be computed analytically from a
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new set of initial conditions. That is, if an event occurs at time t1, all state variables must

be computable from the state values and time t0 of the previous event. Since

computations are performed only when an event occurs, total computation time is
proportional to the number of events delivered and independent of the number of cells,
number of connections, or problem time. Thus handling 100,000 spikes in one hour for
100 cells takes the same time as handling 100,000 spikes in 1 second for 1 cell.

Artificial spiking cells are implemented in NEURON as point processes, but unlike
ordinary point processes, they can serve as targets and sources for Net Con objects. They
can be targets because they have a NET_RECEI VE block, which specifies how incoming
events from one or more Net Con objects are handled, and details the calculations
necessary to generate outgoing events. They can also be sources because the same
NET_RECEI VE block generates discrete output events which are delivered through one or
more Net Con objects to targets.

The following examples analyze the three broad classes of integrate and fire cells that
are built into NEURON. In order to emphasize how the event delivery system is used to
implement the dynamics of these mechanisms, we have omitted many details from the
NMODL listings. Ellipses indicate elisions, and listings include italicized pseudocode
where necessary for clarity. Complete source code for all three of these cell classes is
provided with NEURON.

Example 10.7: IntFire1, a basic integrate and fire model
The simplest integrate and fire mechanism built into NEURON is I nt Fi r e1, which

has a membrane state variable m (analogous to membrane potential) which decays toward
0 with time constant τ. 

� dm
dt

�
m � 0 Eq. 10.3

An input event of weight w adds instantaneously to m, and if m reaches or exceeds the
threshold value of 1, the cell "fires," producing an output event and returning m to 0.
Negative weights are inhibitory while positive weights are excitatory. This is analogous
to a cell with a membrane time constant τ that is very long compared to the time course
of individual synaptic conductance changes. Every synaptic input to such a cell shifts
membrane potential to a new level in a time that is much shorter than τ, and each cell
firing erases all traces of prior inputs. Listing 10.6 presents an initial implementation of
I nt Fi r e1.

NEURON {
  ARTI FI CI AL_CELL I nt Fi r e1
  RANGE t au,  m
}

PARAMETER {  t au = 10 ( ms)  }
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ASSI GNED {
  m
  t 0 ( ms)
}

I NI TI AL {
  m = 0
  t 0 = 0
}

NET_RECEI VE ( w)  {
  m = m* exp( - ( t  -  t 0) / t au)
  m = m + w
  t 0 = t
  i f  ( m > 1)  {
    net _event ( t )
    m = 0
  }
}

Listing 10.6. A basic implementation of I nt Fi r e1.

The NEURON block

As the introduction to this section mentions, artificial spiking cells are implemented
in NEURON as point processes. The keyword ARTI FI CI AL_CELL is in fact a synonym
for POI NT_PROCESS, but we use it as a deliberate reminder to ourselves that this model
has a NET_RECEI VE block, lacks a BREAKPOI NT block, and does not have to be
associated with a section location or numerical integrator. Unlike other point processes,
an artificial cell is isolated from the usual things that link mechanisms to each other: it
does not refer to membrane potential v or any ions, and it does not use POI NTER
variables. Instead, the "outside" can affect it only by sending it discrete events, and it can
only affect the "outside" by sending discrete events.

The NET_RECEIVE block

The mechanisms we have seen so far use BREAKPOI NT and KI NETI C or
DERI VATI VE blocks to specify the calculations that are performed during a time step dt ,
but an artificial cell model does not have these blocks. Instead, calculations only take
place when a new event arrives, and these are performed in the NET_RECEI VE block.

When a Net Con delivers a new event to an I nt Fi r e1 cell, the present value of m is
computed analytically and then m is incremented by the weight w of the event. According
to the NET_RECEI VE block, the present value of m is found by applying an exponential
decay to the value it had immediately after the previous event; therefore the code contains
variable t 0 which keeps track of the last event time.

If an input event drives m to or above threshold, the net _event ( t )  statement
notifies all Net Cons, for which this point process is the source, that it fired a spike at
time t  (the argument to net _event ( )  can be any time at or later than the current
time t ). Then the cell resets m to 0. The code in Listing 10.6 imposes no limit on firing
frequency--if a Net Con with del ay  of 0 and a wei ght  of 1.1 has such an artificial cell
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as both its source and target, the system will behave "properly," in the sense that events
will be generated and delivered without time ever advancing. It is easy to prevent the
occurrence of such a runaway stream of events (see Adding a refractory period below). 

There is no threshold test overhead at every dt  because I nt Fi r e1 has no variable
for Net Cons to watch. That is, this artificial spiking cell does not need the usual test for
local membrane potential v to cross Net Con. t hr eshol d, which is essential at every
time step for event generation with biophysical neuron models. Furthermore the event
delivery system only places the earliest event to be delivered on the event queue. When
that time finally arrives, all targets whose Net Cons have the same source and delay get
the event delivery, and longer delay streams are put back on the event queue to await
their specific delivery time.

Enhancements to the basic mechanism

Visualizing the membrane state variable

The membrane state variable m is difficult to plot in an understandable manner, since
it is represented in the computer by a variable m that remains unchanged over the interval
between input events regardless of how many numerical integration steps were performed
in that interval. Consequently m always has the value that was calculated after the last
event was received, and plots of it look like a staircase (Fig. 10.11 left), with no apparent
decay or indication of what the value of m was just before the event. 
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Figure 10.11. Response of an I nt Fi r e1 cell with τ = 10 ms to input events with weight
= 0.8 arriving at t = 5, 22, and 25 ms (arrows). The third input initiates a "spike." Left:
The variable m is evaluated only when a new event arrives, so its plot looks like a
staircase. A function can be included in I nt Fi r e1's mod file (see text) to better indicate
the time course of the membrane state variable m. Center: Plotting this function during a
simulation with fixed dt  (0.025 ms here) demonstrates the decay of m between events.
Right: In a variable time step simulation, m appears to follow a sequence of linear ramps.
This artifact is a consequence of the efficiency of adaptive integration, which computed
analytical solutions at only a few instants, so the Graph tool could only draw lines from
instant to instant.

This can be partially repaired by adding a function 

FUNCTI ON M( )  {
  M = m* exp( - ( t  -  t 0) / t au)
}
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that returns the present value of the membrane state variable m. This gives nice
trajectories when fixed time step integration is used (Fig. 10.11 center). However, the
natural step with the variable step method is the interspike interval itself, unless
intervening events occur in other cells (e.g. 1 ms before the second input event in
Fig. 10.11 right). At least the integration step function f advance( )  returns 10-9 ms
before and after the event to properly indicate the discontinuity in M.

Adding a refractory period

It is easy to add a relative refractory period by initializing m to a negative value after
the cell fires (alternatively, a depolarizing afterpotential can be emulated by initializing m
to a value in the range (0,1)). However, incorporating an absolute refractory period
requires self-events.

Suppose we want to limit the maximum firing rate to 200 spikes per second, which
corresponds to an absolute refractory period of 5 ms. To specify the duration of the
refractory period, we use a variable named r ef r ac , which is declared and assigned a
value of 5 ms in the PARAMETER block. Adding the statement RANGE r ef r ac  to the
NEURON block allows us to adjust this parameter from the interpreter and graphical
interface. We also use a variable to keep track of whether the point process is in the
refractory period or not. The name we choose for this variable is the eponymous
r ef r act or y , and it is declared in the ASSI GNED block and initialized to a value of 0
("false") in the I NI TI AL block. 

The NET_RECEI VE implementation is then

NET_RECEI VE ( w)  {
  i f  ( r ef r act or y == 0)  {
    m = m* exp( - ( t  -  t 0) / t au)
    m = m + w
    t 0 = t
    i f  ( m > 1)  {
      net _event ( t )
      r ef r act or y = 1
      net _send( r ef r ac,  r ef r act or y)
    }
  }  el se i f  ( f l ag == 1)  {  
    :  sel f - event  ar r i ved,  so t er mi nat e r ef r act or y per i od
    r ef r act or y = 0
    m = 0
    t 0 = t
  }  :  el se i gnor e t he ext er nal  event
}

If r ef r act or y equals 0, the cell accepts external events (i.e. events delivered by a
Net Con) and calculates the state variable m and whether to fire the cell. When the cell
fires a spike, r ef r act or y  is set to 1 and further external events are ignored until the end
of the refractory period (Fig. 10.12).

Recall from the saturating synapse example that the f l ag variable that accompanies
an external event is 0. If this mechanism receives an event with a nonzero f l ag, it must
be a self-event, i.e. an event generated by a call to net _send( )  when the cell fired. The
net _send( i nt er val ,  f l ag)  statement places an event into the delivery system as an
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"echo" of the current event, i.e. it will come back to the sender after the specified
i nt er val  with the specified f l ag. In this case we aren't interested in the weight but
only the f l ag. Arrival of this self-event means that the refractory period is over.

The top of Fig. 10.12 shows the response of this model to a train of input stimuli.
Temporal summation triggers a spike on the fourth input. The fifth input arrives during
the refractory interval and has no effect.
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Figure 10.12. Response of an I nt Fi r e1 cell with a 5 ms refractory interval to a
run of inputs at 3 ms intervals (arrows), each with weight = 0.4. Top: The cell
accepts inputs when r ef r act or y  == 0. The fourth input (at 11 ms) drives the
cell above threshold. This triggers an output event, increases r ef r act or y to 1
(top trace), and function M, which reflects the membrane state variable m, jumps
to 2. During the 5 ms refractory period, M decays gradually, but the cell is
unresponsive to further inputs (note that the input at 14 ms produces no change
in the membrane state variable). At 16 ms r ef r act or y  falls to 0, making the
cell once again responsive to inputs, and M also returns to 0 until the next
external event arrives. Bottom: After modifying the function M to generate
rectangular pulses that emulate a spike followed by postspike hyperpolarization.

Improved presentation of the membrane state variable

The performance in the top of Fig. 10.12 is satisfactory, but the model could be
further improved by one relatively minor change. As it stands the M function shows an
exponential decay during the refractory period, which is at best distracting and irrelevant
to the operation of the model, and potentially misleading at worst. It would be better for M
to follow a stereotyped time course, e.g. a brief positive pulse followed by a longer
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negative pulse. This would not be confused with the subthreshold operation of the model,
and it might be more suggestive of an action potential. 

The most direct way to do this is to make M take different actions depending on
whether or not the model is "spiking." One possibility is 

FUNCTI ON M( )  {
  i f  ( r ef r act or y == 0)  {
    M = m* exp( - ( t  -  t 0) / t au)
  }  el se i f  ( r ef r act or y == 1)  {
    i f  ( t  -  t 0 < 0. 5)  {
      M = 2
    }  el se {
      M = - 1
    }
  }
}

which is exactly what the built-in I nt Fi r e1 model does. The bottom of Fig. 10.12
shows the time course of this revised function.

This demonstrates how visualization of cell operation can be enhanced by simple
calculations of patterns for the spiking and refractory trajectories, with no overhead for
cells that are not plotted. We must emphasize that the simulation calculations are analytic
and performed only at event arrival, regardless of the refinements we introduced for the
purpose of esthetics.

Sending an event to oneself to trigger deferred computation involves very little
overhead, yet it allows elaborate calculations to be performed much more efficiently than
if they were executed on a per dt  basis. Self-events are heavily exploited in the
implementation of I nt Fi r e2 and I nt Fi r e4, which both offer greater kinetic
complexity than I nt Fi r e1.

Example 10.8: IntFire2, firing rate proportional to input
The I nt Fi r e2 model, like I nt Fi r e1, has a membrane state variable m that follows

first order kinetics with time constant τm. However, an input event to I nt Fi r e2 does not

affect m directly. Instead it produces a discontinuous change in a synaptic current state
variable i. Between events, i decays with its own time constant τs toward a steady "bias"

value specified by the parameter ib. That is, 

�

s
di
dt

�
i � ib Eq. 10.4

where an input event causes i to change abruptly by w (Fig. 10.13 top). This current i
drives m, i.e. 

�

m
dm
dt

�
m � i Eq. 10.5
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where τm < τs. Thus an input event produces a gradual change in m that is described by

two time constants and approximates an alpha function if τm ≈ τs. When m crosses a

threshold of 1 in a positive direction, the cell fires, m is reset to 0, and integration
resumes immediately, as shown in the bottom of Fig. 10.13. Note that i is not reset to 0,
i.e. unlike I nt Fi r e1, firing of an I nt Fi r e2 cell does not obliterate all traces of prior
synaptic activation.
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Figure 10.13. Top: Time course of synaptic current i in an I nt Fi r e2 cell with
τs = 20 ms and τm = 10 ms. This cell has bias current ib = 0.2 and receives

inputs with weight w = 1.4 at t = 50 and 100 ms. Bottom: The membrane state
variable m of this cell is initially 0 and approaches the value of ib (0.2 in this

example) with time constant τm. The first synaptic input produces a

subthreshold response, but temporal summation drives m above threshold at t =
109.94 ms. This resets m to 0 and integration resumes.

Depending on its parameters, I nt Fi r e2 can emulate a wide range of relationships
between input pattern and firing rate. Its firing rate is ~ i / τm if i is >> 1 and changes

slowly compared to τm. 

The parameter ib is analogous to the combined effect of a baseline level of synaptic

drive plus a bias current injected through an electrode. The requirement that τm < τs is

equivalent to asserting that the membrane time constant is faster than the decay of the
current produced by an individual synaptic activation. This is plausible for slow
inhibitory inputs, but where fast excitatory inputs are concerned an alternative
interpretation can be applied: each input event signals an abrupt increase (followed by an
exponential decline) in the mean firing rate of one or more afferents that produce brief
but temporally overlapping postsynaptic currents. The resulting change of i is the moving
average of these currents.
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The I nt Fi r e2 mechanism is amenable to discrete event simulation because
Eqns. 10.4 and 10.5 have analytic solutions. If the last input event was at time t0 and the

values of i and m immediately after that event were i(t0) and m(t0), then their subsequent

time course is given by 

i
�
t � � i b

� �
i
�
t0 � � i b

	 e
� � t � t0

��� �
s Eq. 10.6

and 

m
�
t � � ib

���
i
�
t0 � � i b � �

s
�

s � �

m

e
� � t � t0

��� �
s           

���
m
�
t0 � � i b � �

i
�
t0 � � ib � �

s
�

s � �

m � e
� � t � t0

�	� �
m

Eq. 10.7

Implementation in NMODL

The core of the NMODL implementation of I nt Fi r e2 is the function f i r et i me( ) ,
which is discussed below. This function projects when m will equal 1 based on the
present values of ib, i, and m, assuming that no new input events arrive. The value

returned by f i r et i me( )  is 109 if the cell will never fire with no additional input. Note
that if ib > 1 the cell fires spontaneously even if no input events occur.

I NI TI AL {
   .  .  .
  net _send( f i r et i me( args) ,  1)
}

NET_RECEI VE ( w)  {
   .  .  .
  i f  ( f l ag == 1)  {  :  t i me t o f i r e
    net _event ( t )
    m = 0
     .  .  .
    net _send( f i r et i me( args) ,  1)
  }  el se {
     .  .  .
    update m
    i f  ( m >= 1)  {
      net _move( t )  :  t he t i me t o f i r e i s now
    }  el se {
       .  .  .
      net _move( f i r et i me( args)  + t )
    }
  }
  update t0 and i
}

Listing 10.7. Key excerpts from i nt f i r e2. mod
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The I NI TI AL block in I nt Fi r e2 calls f i r et i me( )  and uses the returned value to
put a self-event into the delivery system. The strategy, which is spelled out in the
NET_RECEI VE block, is to respond to external events by moving the delivery time of the
self-event back and forth with the net _move( )  function. When the self-event is finally
delivered (potentially never), net _event ( )  is called to signal that this cell is firing.
Notice that external events always have an effect on the value of i, and are never
ignored--and shouldn't be, even if we introduced a refractory period in which we refused
to integrate m. 

The function f i r et i me( )  returns the first t ≥ 0 for which 

a
�

b e
� t
� �

s � �
c � a � b � e

� t
� �

m � 1 Eq. 10.8

where the parameters a, b and c are defined by the coefficients in Eq. 10.7. If there is no
such t the function returns 109. This represents the time of the next cell firing, relative to
the time t0 of the most recent synaptic event. 

Since f i r et i me( )  must be executed on every input event, it is important to 
minimize the number of Newton iterations needed to calculate the next firing time. For
this we use a strategy that depends on the behavior of the function 

f 1

�
x � � a

�
b x r � �

c � a � b � x Eq. 10.9a

where x � e�
t
���

m

r � �

m

�
�

s

Eq. 10.9b

over the domain 0 < x ≤ 1. Note that c < 1 is the value of f1 at x = 0 (i.e. at t = ∞). The

function f1 is either linear in x (if b = 0) or convex up (b > 0) or down (b < 0) with no

inflection points. Since r < 1, f1 is tangent to the y axis for any nonzero b (i.e. f1´(0) is

infinite). 
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Figure 10.14. Plots of f1 and f2 computed for r = 0.5. See text for details.

The left panel of Fig. 10.14 illustrates the qualitative behavior of f1 for a ≤ 1. It is

easy to analytically compute the maximum in order to determine if there is a solution to
f1(x) = 1. If a solution exists, f1 will be concave downward so Newton iterations starting

at x = 1 will underestimate the firing time.
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For a > 1, a solution is guaranteed (Fig. 10.14 middle). However, starting Newton
iterations at x = 1 is inappropriate if the slope there is more negative than c - 1 (straight

dashed line in Fig. 10.14 middle). In that case, the transformation x � e
� t
� �

s  is used,
giving the function 

f 2

�
x � � a

�
b x

� �
c � a � b � x 1

�
r Eq. 10.9c

and the Newton iterations begin at x = 0 (Fig. 10.14 right).

These computations are performed over regions in which f1 and f2 are relatively

linear, so the f i r et i me( )  function usually requires only two or three Newton iterations
to converge to the next firing time. The only exception is when f1 has a maximum that is

just slightly larger than 1, in which case it may be a good idea to stop after a couple of
iterations and issue a self-event. The advantage of this would be the deferral of a costly
series of iterations, allowing an interval in which another external event might arrive that
would force computation of a new projected firing time. Such an event, whether
excitatory or inhibitory, would likely make it easier to compute the next firing time.

Example 10.9: IntFire4, different synaptic time constants
I nt Fi r e2 can emulate an input-output relationship with more complex dynamics

than I nt Fi r e1 does, but it is somewhat restricted because its response to every external
event, whether excitatory or inhibitory, has the same kinetics. As we pointed out in the
discussion of I nt Fi r e2, it is possible to interpret excitatory events in a way that
partially sidesteps this issue. However, experimentally observed synaptic excitation tends
to be faster than inhibition (e.g. (Destexhe et al. 1998)) so a more flexible integrate and
fire mechanism is needed. 

The I nt Fi r e4 mechanism addresses this need. Its dynamics are specified by four
time constants: τe for a fast excitatory current, τi

1
 and τi

2
 for a slower inhibitory current,

and τm for the even slower leaky "membrane" which integrates these currents. When the

membrane state variable m reaches 1, the cell "fires," producing an output event and
returning m to 0. This does not affect the other states of the model.

The differential equations that govern I nt Fi r e4 are 

de
dt

� � kee Eq. 10.10

di1
dt

� � k i1
i1

Eq. 10.11

di2
dt

� � k i 2
i 2
�

ai1
i1

Eq. 10.12

dm
dt

� � kmm
�

aee
�

ai 2
i2 Eq. 10.13
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where each k is a rate constant that equals the reciprocal of the corresponding time
constant, and it is assumed that ke > ki

1
 > ki

2
 > km (i.e. τe < τi

1
 < τi

2
 < τm). An input event

with weight w > 0 (i.e. an excitatory event) adds instantaneously to the excitatory current
e. Equations 10.11 and 12, which define the inhibitory current i2, are based on the

reaction scheme 

i1
�

ki 1

i2
�

ki 2

bath Eq. 10.14

in which an input event with weight w < 0 (i.e. an inhibitory event) adds instantaneously
to i1. The constants ae, ai

1
, and ai

2
 are chosen to normalize the response of the states e, i1,

i2, and m to input events (Fig. 10.15). Therefore an input with weight we > 0 (an

"excitatory" input) produces a peak e of we and a maximum "membrane potential" m of

we. Likewise, an input with weight wi < 0 (an "inhibitory" input) produces an inhibitory

current i2 with a minimum of wi and drives m to a minimum of wi. Details of the analytic

solution to these equations are presented in Appendix A1: Mathematical analysis of
IntFire4.
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Figure 10.15. Left: Current generated by a single input event with weight 0.5
(e) or -0.5 (i2). Right: The corresponding response of m. Parameters were

τe = 3, τi
1
 = 5, τi

2
 = 10, and τm = 30 ms.

I nt Fi r e4, like I nt Fi r e2, finds the next firing time through successive
approximation. However, I nt Fi r e2 generally iterates to convergence every time an
input event is received, whereas I nt Fi r e4's algorithm implement a series of deferred
Newton iterations by exploiting the downward convexity of the membrane potential
trajectory and using NEURON's event delivery system. The result is an alternating
sequence of self-events and single Newton iterations that converges to the correct firing
time, yet remains computationally efficient in the face of heavy input event traffic.

This is illustrated in Fig. 10.16. If an event arrives at time t0, values of e(t0), i1(t0), i2
(t0), and m(t0) are calculated analytically. Should m(t0) be subthreshold, the self-event is

moved to a new approximate firing time tf that is based on the slope approximation to m 
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tf = t0 + (1 - m(t0)) / m´(t0)  if  m´(t0) > 0 Eq. 10.15

or
∞  if  m´(t0) ≤ 0                           

(Fig. 10.16 left and middle). If instead m(t0) reaches threshold, the cell "fires" so that

net _event ( )  is called (producing an output event that is picked up by all Net Cons for
which this cell is a source) and m is reset to 0. The self-event is then moved to an
approximate firing time that is computed from Eq. 10.15 using the values assigned to m
and m´ immediately after the "spike" (Fig. 10.16 right).

1 1

0

Figure 10.16. Excerpts from simulations of I nt Fi r e4 cells showing time
course of m. Arrival of an event (arrow = external event, vertical dotted line =
self-event) triggers a Newton iteration. Slanted dashed lines are slope
approximations to m immediately after an event. Left: Although Eq. 10.15
yields a finite tf , this input is too weak for the cell to fire. Middle: Here m´ < 0

immediately after an input event, so both tf and the true firing time are infinite.

Right: The slope approximation following the excitatory input is not shown, but
it obviously crosses threshold before the actual firing time (asterisk). Following
the "spike" m is reset to 0 but bounces back up because of persistent excitatory
current. This dies away without eliciting a second spike, even though tf is finite

(dashed line).
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Figure 10.17. These magnified views of the trajectory from the right panel of
Fig. 10.16 indicate how rapidly the event-driven Newton iterations converge to
the next firing time. In this simulation, spike threshold was reached in four
iterations after the excitatory input (arrow). The first two iterations are evident
in the left panel, and additional magnification of the circled region reveals the
last two iterations (right panel). 

Page 34 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 28, 2004 The NEURON Book: Chapter 10

The justification for this approach stems from several considerations. The first of
these is that tf is never later than the true firing time. This assertion, which we prove in

Appendix A1, is of central importance because the simulation would otherwise be in
error.

Another consideration is that successive approximations must converge rapidly to the
true firing time, in order to avoid the overhead of a large number of self-events. Using the
slope approximation to m is equivalent to the Newton method for solving m(t) = 1, so
convergence is slow only when the maximum value of m is close to 1. The code in
I nt Fi r e4 guards against missing "real" firings when m is asymptotic to 1, because it
actually tests for m > 1 -  eps , where the default value of eps  is 10-6. This
convergence tolerance eps  is a user-settable GLOBAL parameter, so one can easily
augment or override this protection.

Finally, the use of a series of self-events is superior to carrying out a complete
Newton method solution because it is most likely that external events will arrive in the
interval between firing times. Each external event would invalidate the previous
computation of firing time and force a recalculation. This might be acceptable for the
I nt Fi r e2 mechanism with its efficient convergence, but the complicated dynamics of
I nt Fi r e4 suggest that the cost would be too high. How many iterations should be
carried out per self-event is an experimental question, since the self-event overhead
depends partly on the number of outstanding events in the event queue.

Other comments regarding artificial spiking cells
NEURON's event delivery system has been used to create many more kinds of

artificial spiking neurons than the three classes that we have just examined. Specific
examples include pacemakers, bursting cells, models with various forms of use-
dependent synaptic plasticity, continuous or quantal stochastic variation of synaptic
weight, and an "IntFire3" with a bias current and time constants τm > τi > τe. 
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Chapter 11
Modeling networks

NEURON was initially developed to handle models of individual cells or parts of
cells, in which complex membrane properties and extended geometry play important
roles (Hines 1989; 1993; 1995). However, as the research interests of experimental and
theoretical neuroscientists evolved, NEURON has been revised to meet their changing
needs. Since the early 1990s it has been used to model networks of biological neurons
(e.g. (Destexhe et al. 1993; Lytton et al. 1997; Sohal et al. 2000)). This work stimulated
the development of powerful strategies that increase the convenience and efficiency of
creating, managing, and exercising such models (Destexhe et al. 1994; Lytton 1996;
Hines and Carnevale 2000). Increasing research activity on networks of spiking neurons
(e.g. (Riecke et al. 1997; Maass and Bishop 1999)) prompted further enhancements to
NEURON, such as inclusion of an event delivery system and development of the Net Con
(network connection) class (see Chapter 10).

Consequently, since the latter 1990s, NEURON has been capable of efficient
simulations of networks that may include biophysical neuron models and/or artificial
spiking neurons. biophysical neuron models are built around
representations of the biophysical mechanisms that are involved
in neuronal function, so they have sections, density mechanisms,
and synapses (see Chapter 5). A synapse onto a biophysical
neuron model is a point process with a NET_RECEI VE block that
affects membrane current (e.g. ExpSyn) or a second messenger (see Chapter 10). The
membrane potential of a biophysical neuron model is governed by complex, interacting
nonlinear mechanisms, and spatial nonuniformities may also be present, so numerical
integration is required to advance the solution in time. 

As we discussed in Chapter 10, artificial spiking neurons are really point processes
with a NET_RECEI VE block that calls net _event ( )  (e.g. I nt Fi r e1). The "membrane
state variable" of an artificial neuron has very simple dynamics, and space is not a factor,
so the time course of the membrane state is known analytically and it is relatively easy to
compute when the next spike will occur. Since artificial neurons do not need numerical
integration, they can be used in discrete event simulations that run several orders of
magnitude faster than simulations involving biophysical neuron models. Their simplicity
also makes it very easy to work with them. Consequently, artificial spiking neurons are
particularly useful for prototyping network models.

In this chapter we present an example of how to build network models by combining
the strengths of the GUI and hoc  programming. The GUI tools for creating and
managing network models are most appropriate for exploratory simulations of small nets.
Once you have set up and tested a small network with the GUI, a click of a button creates
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a hoc file that contains reusable cell class definitions and procedures. This eliminates the
laborious, error-prone task of writing "boilerplate" code. Instead, you can just combine
NEURON's automatically generated code with your own hoc programming to quickly
construct large scale nets with complex architectures. Of course, network models can be
constructed entirely by writing hoc code, and NEURON's WWW site contains links to a
tutorial for doing just that (Gillies and Sterratt, 2004). However, by taking advantage of
GUI shortcuts, you'll save valuable time that can be used to do more research with your
models. 

Building a simple network with the GUI
Regardless of whether you use the GUI or write hoc  code, creating and using a

network model involves these basic steps:

1. Define the types of cells.

2. Create each cell in the network.

3. Connect the cells.

4. Set up instrumentation for adjusting model parameters and recording and/or
displaying simulation results.

5. Set up controls for running simulations.

We will demonstrate this process by constructing a network model that can be used to
examine the contributions of synaptic, cellular, and network properties to the emergence
of synchronous and/or correlated firing patterns.

Conceptual model
The conceptual model is a fully connected network, i.e. each cell projects to all other

cells, but not to itself (Fig. 11.1 left). All conduction delays and synaptic latencies are
identical.

The cells are spontaneously active integrate and fire neurons, similar to those that we
discussed in Chapter 10. All cells have the same time constant and firing threshold, but
in isolation each has its own natural interspike interval (ISI), and the ISIs of the
population are distributed uniformly over a fixed range (Fig. 11.1 right).

Figure 11.2 illustrates the dynamics of these cells. Each spike is followed by a "post-
spike" hyperpolarization of the membrane state variable m, which then decays
monoexponentially toward a suprathreshold level. When m reaches threshold (1), it
triggers another spike and the cycle repeats. A synaptic input hyperpolarizes the cell and
prolongs the ISI in which it occurred, shifting subsequent spikes to later times. Each input
produces the same hyperpolarization of m, regardless of where in the ISI it falls. Even so,
the shift of the spike train depends on the timing of the input. If it arrives shortly after a
spike, the additional hyperpolarization decays quickly and the spike train shifts by only a
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small amount (Fig. 11.2 left). An input that arrives late in the ISI can cause a much larger
shift in the subsequent spike train (Fig. 11.2 right). 

Our task is to create a model that will allow us to examine how synaptic weight,
membrane time constant and natural firing frequency, number of cells and conduction
latency interact to produce synchronized or correlated spiking in this network. 

0 20 40 60 80 100
ms

Cell

1

3

5

0

2

4

Figure 11.1. Left: An example of a fully connected net. Thin lines indicate reciprocal connections
between each pair of cells, and thick lines mark projections from one cell to its targets. Right:
When disconnected from each other, every cell has its own natural firing frequency.
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Figure 11.2. Time course of the membrane state variable m in the absence (thin traces) and
presence (thick traces) of an inhibitory input. Notice that m follows a monoexponential
"depolarizing" time course which carries it toward a suprathreshold level. When m reaches 1, a
spike is triggered and m is reset to 0 ("post-spike hyperpolarization"). An inhibitory synaptic
event causes the same hyperpolarizing shift of m no matter where in the ISI it arrives, but its
effect on later spike times depends on its relative position in the ISI. Left: Inhibitory events that
occur early in the ISI decay quickly, so following spikes are shifted to slightly later times. Right:
An inhibitory event that occurs late in the ISI has a longer lasting effect and causes a greater
delay of the subsequent spike train.

Adding a new artificial spiking cell to NEURON
Before we start to build this network, we need to add a new kind of artificial spiking

cell to NEURON. Our model will use cells whose membrane state variable m is governed
by the equation 

� dm
dt

�
m � m � Eq. 11.3

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3



The NEURON Book: Chapter 11 November 23, 2004

where m �  > 1 and is set to a value that produces spontaneous firing with the desired ISI.

An input event with weight w adds instantaneously to m, and if m reaches or exceeds the
threshold value of 1, the cell "fires," producing an output event and returning m to 0. We
will call this the I nt er val Fi r e model, and the NMODL code for it is shown in
Listing 11.1. I nt er val Fi r e has essentially the same dynamics as I nt Fi r e1, but
because its membrane state relaxes toward a suprathreshold value, it uses a f i r et i me( )
function to compute the time of the next spike (see discussions of I nt Fi r e1 and
I nt Fi r e2 in Chapter 10).

NEURON {
  ARTI FI CI AL_CELL I nt er val Fi r e
  RANGE t au,  m,  i nvl
}

PARAMETER {
  t au = 5 ( ms)    <1e- 9, 1e9>
  i nvl  = 10 ( ms)  <1e- 9, 1e9>
}

ASSI GNED {
  m
  mi nf
  t 0( ms)
}

I NI TI AL {
  mi nf  = 1/ ( 1 -  exp( - i nvl / t au) )  :  so nat ur al  spi ke i nt er val  i s i nvl
  m = 0
  t 0 = t
  net _send( f i r et i me( ) ,  1)
}

NET_RECEI VE ( w)  {
  m = M( )
  t 0 = t
  i f  ( f l ag == 0)  {
    m = m + w
    i f  ( m > 1)  {
      m = 0
      net _event ( t )
    }
    net _move( t +f i r et i me( ) )
  }  el se {
    net _event ( t )
    m = 0
    net _send( f i r et i me( ) ,  1)
  }
}

FUNCTI ON f i r et i me( ) ( ms)  {  :  m < 1 and mi nf  > 1
  f i r et i me = t au* l og( ( mi nf - m) / ( mi nf  -  1) )
}
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FUNCTI ON M( )  {
  M = mi nf  + ( m -  mi nf ) * exp( - ( t  -  t 0) / t au)
}

Listing 11.1. NMODL implementation of I nt er val Fi r e. Figures 11.1 (right)
and 11.3 illustrate its operation. 

Creating a prototype net with the GUI
After we compile the code in Listing 11.1 (see Chapter 9), when we launch nr ngui

these lines should appear at the end of NEURON's startup message 

Addi t i onal  mechani sms f r om f i l es
 i nvl f i r e. mod

to reassure us that what was defined in i nvl f i r e. mod--i.e. the I nt er val Fi r e cell
class--is now available. We are ready to use the GUI to build and test a prototype net.

1. Define the types of cells
This involves using the existing cell classes to create the types of cells that we will

employ in our network. Our network contains artificial spiking cells, so we need an 
ArtCellGUI tool, which we get by clicking on Build / NetWork Cell / Artificial Cell in the
NEURON Main Menu toolbar (Fig. 11.3).

Figure 11.3. Using the NEURON Main Menu to bring up an ArtCellGUI tool.

The gray area in the lower left corner of the ArtCellGUI tool displays a list of the 
types of artificial spiking cells that will be available to the NetWork Builder. It starts out
empty because we haven't done anything yet (Fig. 11.4). To remedy this, click on New
and scroll down to select IntervalFire (Fig. 11.5 left), and then release the mouse button.
The Artificial Cell types list now contains a new item called IntervalFire, and the right
panel of the ArtCellGUI tool shows the user-settable parameters for this cell type
(Fig. 11.5 right). These default values are fine for our initial exploratory simulations, so
we'll leave them as is.

However, there is one small change that will make it easier to use the NetWork
Builder: IntervalFire is a big word, and the NetWork Builder's canvas is relatively small.
To avoid clutter, let's give our cell type a short, unique name, like IF (see Figs. 11.6 and
11.7). 
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Figure 11.4. The ArtCellGUI tool starts with an empty Artificial Cell types list.

Figure 11.5. Click on New / IntervalFire to add it to the Artificial Cell types list.

Figure 11.6. Changing the name of one of the Artificial Cell types.

To change the name of one of the Artificial Cell types, select it (if it isn't
already selected) and then click on the Rename button.

This pops up a window with a string editor field. Click in the field . . . 
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 . . . change the name to IF, and then click the Accept button.

Figure 11.7. The ArtCellGUI tool after renaming the cell type. The right panel
shows that IF is based on the IntervalFire class.

Now that we have configured the ArtCellGUI tool, it would be a good idea to save
everything to a session file with NEURON Main Menu / File / save session (also see
Fig. 1.23 and Save the model cell in Chapter 1). If you like, you may hide the
ArtCellGUI tool by clicking on Hide just above the drag bar, but don't close it--the
NetWork Builder will need it to exist.

2. Create each cell in the network
Having specified the cell types that will be used in the network, we are ready to use

the NetWork Builder to create each cell in the network and connect them to each other. In
truth, we'll just be creating the specification of each cell in the net; no cells are really
created and there is no network until the Create button in the NetWork Builder is ON.

To get a NetWork Builder, click on NEURON Main Menu / Build / NetWork Builder
(Fig. 11.8).

Figure 11.8. Bringing up a NetWork Builder.
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The NetWork Builder's drag bar reveals that this tool is an instance of the Net GUI  class
(see Fig. 11.9).

The right panel of a NetWork Builder is a canvas for laying out the network. The
"palette" for this canvas is a menu of the cell types that were created with the ArtCellGUI
tool. These names appear along the upper left edge of the canvas (for this example, a
limited palette indeed: IF is the only cell type). Context-dependent hints are displayed at
the top of the canvas. 

The left panel of a NetWork Builder contains a set of buttons that control its operation.
When a NetWork Builder is first created, its Locate radio button is automatically ON.
This means that the NetWork Builder is ready for us to create new cells. We do this by
merely following the hint (Fig. 11.10). Notice that the cell names are generated by
concatenating the base name (name of the cell type) with a number that starts at 0 and
increases by 1 for each new cell. We'll say more about cell names in A word about cell
names under 7. Caveats and other comments below.

Figure 11.9. A new NetWork Builder.

Figure 11.10. Creating new cells in the NetWork Builder.

To create a new cell, click on one of the items in
the palette (in this example, the only item is IF)
and hold the mouse button down . . . 

while dragging the new cell to a convenient
location on the canvas. Release the mouse
button, and you will see a new cell labeled IF0.

Page 8 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 23, 2004 The NEURON Book: Chapter 11

After you create a second IF cell, the NetWork
Builder should look like this.

If the mouse button is released while the cursor is close to one of the palette items, the
new cell will be hard to select since palette item selection takes precedence over
selection of a cell. If this happens, just select Translate in the canvas's secondary menu
(the canvas is just a modified graph!) and then left click on the canvas and drag it to the
right (if you have a three button mouse, or a mouse with a scroll wheel, don't bother with
the canvas's menu--just click on the middle button or scroll wheel and drag the canvas).
This will pull the cell out from under the palette items, which never move from their
position along the left edge of the canvas. Finally, click on one of the radio buttons
(Locate, Src -> Tar, etc.) and continue working with the NetWork Builder.

3. Connect the cells
Connecting the cells entails two closely related tasks: setting up the network's

architecture, and specifying the delays and weights of these connections.

Setting up network architecture

To set up the architecture, we click on the Src -> Tar radio button, read the new hint
in the canvas, and do what it says (Fig. 11.11). 

Figure 11.11. Setting up network architecture.

Clicking on the Src -> Tar button brings out a
new hint. 

So we click on IF0 and hold the mouse button
down while dragging the cursor toward IF1. A
thin "rubber band" line will stretch from IF0 to
the cursor.

When the cursor is on top of IF1, the rubber
band becomes a thick black line, and the hint
changes to the message shown here.
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To complete the attachment, we just release the
mouse button. The projection ("edge") from IF0
to IF1 will appear as a thin line with a slight
bend near its midpoint. The O marks the target
end of this connection.

Making the reciprocal connection requires only
that we click on IF1, drag to IF0, and release the
mouse button.

This is a good time to save everything to a session file.

Specifying delays and weights

The default initial value of all synaptic weights is 0, i.e. a presynaptic cell will have
no effect on its postsynaptic targets. The NetWork Builder has a special tool that we can
use to change the weights to what we want (Fig. 11.12).

Figure 11.12. Setting the synaptic weights.

Clicking on the Weights button in the NetWork Builder . . . 

 . . . brings up a tool for specifying synaptic weights. The top of this
tool has a numeric field with its associated spinner and button
(labeled Weight). The value in the numeric field can be set in the
usual ways (direct entry, using the spinner, etc.), but note the
arrows, which suggest other possibilities. 

The bottom of the weights tool contains two panels that list the
weights of all synaptic connections (aka "edges" in graph theory).
Clicking on a connection in the left list copies from the connection
to the numeric field, and clicking on a connection in the right list
copies from the numeric field to the connection.
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Let's give both synapses a weight of -0.1 (mild inhibition). First we
change Weight to -0.1 . . .

 . . . and then we click on IF0->IF1 and IF1->IF0 in the right panel.
We're finished when the weights tool looks like this.

Now we can close this window. If we need it again, clicking on the
NetWork Builder's Weights button will bring it back.

All delays are 1 ms by default, which is fine for our purposes. If we wanted to change
this to something else, we would click on the NetWork Builder's Delays button (see
Fig. 11.9) to bring up a tool for setting delays. The delay tool works just like the weight
tool. 

At this point, the ArtCellGUI tool plus the NetWork Builder together constitute a
complete specification of our network model. We should definitely save another session
file before doing anything else!

Now we have a decision to make. We could use the NetWork Builder to create a hoc
file that, when executed, would create an instance of our network model. A better choice
is to use the GUI to test our model. If there are any problems with what we have done so
far, this is a good time to find out and make the necessary corrections.

However, before we can run tests, there must first be something to test. We have a
network specification, but no network. As we pointed out earlier in 2. Create each cell
in the network, the network doesn't really exist yet. Clicking on the Create button in the
NetWork Builder fixes that (Fig. 11.13).

4. Set up instrumentation
We want to see what our network does, and to explore how its behavior is affected by

model parameters. Clicking on the SpikePlot button in the NetWork Builder brings up a
tool that will show the input and output spike trains (Fig. 11.14).

We already know how to adjust model parameters. With the NetWork Builder we can
change synaptic weights and delays, and the IF cells' properties can be changed with the
ArtCellGUI tool. Suddenly, we realize that both IF cells will have the same time constant
and firing rate. No problem--our goal is to combine the strengths of the GUI and hoc . We
will take care of this later, by combining the hoc  code that the NetWork Builder generates
with our own hoc  code. Using a few lines of hoc, we can easily assign unique firing
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rates across the entire population of IF cells. And if we insisted on sticking with GUI
tools to the bitter end, we could just bring up a PointProcessGroupManager (NEURON
Main Menu / Tools / Point Processes / Managers / Point Group), which would allow us
to control the attributes of each cell in our network individually.

Figure 11.13. Left: Toggling the Create button ON causes the network
specification to be executed. Right: Once Create is ON, the representation of
the network is available for NEURON's computational engine to use in a
simulation.

Figure 11.14. The NetWork Builder's SpikePlot button (left) brings up a tool for
displaying and analyzing spike trains (right).

5. Set up controls for running simulations
At a minimum, we need a RunControl panel (NEURON Main Menu / Tools /

RunControl, as shown in 5. Set up controls for running the simulation in Chapter 1).
Also, since our network contains only artificial spiking neurons, we can use adaptive
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integration to achieve extremely fast, discrete event simulations. We'll need a
VariableTimeStep panel (NEURON Main Menu / Tools / VariableStepControl
(Fig. 11.15)), which makes it easy to choose between fixed time step or adaptive
integration (Fig. 11.16). 

Figure 11.15. Bringing up a VariableTimeStep panel.

Figure 11.16. Toggling adaptive integration ON and OFF.

The VariableTimeStep panel's Use variable dt checkbox is empty,
which means that adaptive integration is off. 

To turn adaptive integration ON, we click on the Use variable dt
checkbox.

The check mark in the Use variable dt checkbox tells us that
adaptive integration is ON. Clicking on this checkbox again will
turn it back OFF so that fixed time steps are used.

Adaptive integration can use either global or local time steps, each of which has its
own particular strengths and weaknesses (see Adaptive integrators in Chapter 7). The
VariableTimeStep panel's default setting is to use global time steps, which is best for
models of single cells or perfectly synchronous networks. Our toy network has two
identical cells connected by identical synapses, so we would expect them to fire
synchronously. However, when we build our net with hoc  code, the cells will all have
different natural firing frequencies, and who can tell in advance that they will achieve
perfect synchrony? Besides, this is a tutorial, so let's use local time steps (Fig. 11.17). 
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Figure 11.17. Toggling between global and local time steps.

To specify whether to use global or local time steps,
we first click on the VariableTimeStep panel's Details
button.

We are concerned with the Local step checkbox,
which is empty. To activate the use of local variable
time steps . . . 

 . . . we just click on the Local step checkbox . . . 

 . . . and now each cell in our network will advance
with its own time step. If we want to restore global
time steps, we can just click on the Cvode button.

Now we can close this panel; should we need it again,
we only have to click on the VariableTimeStep panel's
Details button.
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After rearrangement, the various windows we have created should look something
like Fig. 11.18. The tools we used to specify the network are on the left, simulation
controls are in the middle, and the display of simulation results is on the right. Quick,
save it to a session file!

Figure 11.18. The completed model with controls for running simulations and
displaying results.

6. Run a simulation
This is almost too easy. Clicking on Init & Run in the RunControl panel, we see--

nothing! Well, almost nothing. The t field in the RunControl panel shows us that time
advanced from 0 to 5 ms, but there were no spikes. A glance at the ArtCellGUI tool tells
us why: invl is 5 ms, which means that our cells won't fire their first spikes for another
5 ms. Let's change Tstop to 200 ms so we'll get a lot of spikes, and try again. This time
we're successful (Fig. 11.19). 
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Figure 11.19. The SpikePlot shows the spike trains generated by the cells in our
network model. Note that rasters correspond to cell names from top to bottom,
and that the raster for cell i is plotted along the line y = i + 1. 

7. Caveats and other comments

Changing the properties of an existing network

As we have seen, the ArtCellGUI tool is used to specify what artificial spiking cell
types are available to a NetWork Builder. The same ArtCellGUI tool can be used to adjust
the parameters of those cells, and such changes take effect immediately, even if the
network already exists (i.e. even if the NetWork Builder's Create button is ON). 

The NetReadyCellGUI tool (NEURON Main Menu / Build / NetWork Cell / From Cell
Builder) is used to configure biophysical neuron model types for use with a NetWork
Builder. In fact, we would use a separate NetReadyCellGUI instance for each different
type of biophysical neuron model we wanted to use in the net. The NetReadyCellGUI tool
has its own CellBuilder for specifying topology, geometry, and biophysical properties,
plus a SynapseTypes tool for adding synaptic mechanisms to the cell (see the tutorial at
ht t p: / / www. neur on. yal e. edu/ neur on/ docs/ net bui l d/ mai n. ht ml ). However,
changes made with a NetReadyCellGUI tool do not affect an existing network; instead, it
is necessary to save a session file, exit NEURON, restart and reload the session file.

What about changes to the network itself? Any changes whatsoever can be made in
the NetWork Builder, as long as its Create button is OFF. Once it is ON, some changes
are possible (e.g. adding new cells and synaptic connections to an existing network), but
additional actions may be required (a pre-existing SpikePlot will not show spike trains
from new cells), and there is a risk of introducing a mismatch between one's conceptual
model and what is actually in the computer. The best policy is to toggle Create OFF (see
Fig. 11.20), make whatever changes are needed, save everything to a session file, exit
NEURON, and then restart and load the new session file.
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Figure 11.20. Trying to turn Create OFF brings up this window, which offers
the opportunity to change one's mind. Select Turn off if it is necessary to make
substantial changes to an existing network in the NetWork Builder.

A word about cell names

As we mentioned above in 2. Create each cell in the network, the cell names that
appear in the NetWork Builder are generated automatically by concatenating the name of
the cell type with a sequence of numbers that starts at 0 and increases by 1 for each
additional cell. But that's only part of the story. These are really only short "nicknames,"
a stratagem for preventing the NetWork Builder and its associated tools from being
cluttered with long character strings.

This is fine as long as the NetWork Builder does everything we want. But suppose we
need to use one of NEURON's other GUI tools, or we have to write some hoc  code that
refers to one of our model's cells? For example, we might have a network that includes a
biophysical neuron model, and we want to see the time course of somatic membrane
potential. In that case, it is absolutely necessary to know the actual cell names.

That's where the NetWork Builder's Cell Map comes in. Clicking on Show Cell Map
brings up a small window that often needs to be widened by clicking and dragging on its
left or right margin (Fig. 11.21). Now we realize that, when we used the ArtCellGUI tool
to create an IF cell "type," we were actually specifying a new cell class whose name is a
concatenation of our "type" (IF), an underscore character, and the name of the root class
(the name of the class that we based IF on, which was IntervalFire).

Figure 11.21. The Cell Map for our toy network. See text for details.

Combining the GUI and programming

Creating a hoc file from the NetWork Builder
Having tested our prototype model, we are now ready to write a hoc  file that can be 

mined for reusable code. Clicking on the Hoc File button in the NetWork Builder brings
up a tool that looks much like what we used to specify file name and location when
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saving a session file. Once we're satisfied with our choices, clicking on this tool's "Open"
button writes the hoc file (yes, the button should say Close). This file, which we will call
pr ot ot ype. hoc , is presented in Listing 11.2, and executing it would recreate the toy
network that we just built with the NetWork Builder. 

/ /  Net GUI  def aul t  sect i on.  Ar t i f i ci al  cel l s,  i f  any,  ar e l ocat ed her e.
  cr eat e acel l _home_
  access acel l _home_

/ / Net wor k cel l  t empl at es
/ / Ar t i f i ci al  cel l s
/ /    I F_I nt er val Fi r e

begi nt empl at e I F_I nt er val Fi r e
publ i c pp,  connect 2t ar get ,  x,  y,  z,  posi t i on,  i s_ar t
ext er nal  acel l _home_
obj r ef  pp
pr oc i ni t ( )  {
  acel l _home_ pp = new I nt er val Fi r e( . 5)
}
f unc i s_ar t ( )  {  r et ur n 1 }
pr oc connect 2t ar get ( )  {  $o2 = new Net Con( pp,  $o1)  }
pr oc posi t i on( ) { x=$1  y=$2  z=$3}
endt empl at e I F_I nt er val Fi r e

/ / Net wor k speci f i cat i on i nt er f ace

obj r ef  cel l s,  ncl i st ,  net con
{ cel l s = new Li st ( )   ncl i st  = new Li st ( ) }

f unc cel l _append( )  { cel l s. append( $o1)   $o1. posi t i on( $2, $3, $4)
r et ur n cel l s. count  -  1

}

f unc nc_append( )  { / / sr ci ndex,  t ar cel i ndex,  syni ndex
  i f  ( $3 >= 0)  {
    cel l s. obj ect ( $1) . connect 2t ar get ( cel l s. obj ect ( $2) . synl i st . obj ect ( $3) ,  \
                                      net con)
    net con. wei ght  = $4   net con. del ay = $5
  } el se{
    cel l s. obj ect ( $1) . connect 2t ar get ( cel l s. obj ect ( $2) . pp, net con)
    net con. wei ght  = $4   net con. del ay = $5
  }
  ncl i st . append( net con)
  r et ur n ncl i st . count  -  1
}

/ / Net wor k i nst ant i at i on

  / *  I F0 * /   cel l _append( new I F_I nt er val Fi r e( ) , - 149,  73,  0)
  / *  I F1 * /   cel l _append( new I F_I nt er val Fi r e( ) , - 67,  73,  0)
  / *  I F1 - > I F0    * /   nc_append( 1,  0,  - 1,   - 0. 1, 1)
  / *  I F0 - > I F1    * /   nc_append( 0,  1,  - 1,   - 0. 1, 1)

Listing 11.2. Clicking on the Hoc File button in the NetWork Builder produces a
file which we have called pr ot ot ype. hoc .
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A quick glance over the entire listing reveals that pr ot ot ype. hoc is organized into
several parts, which are introduced by one or more lines of descriptive comments. Let us
consider each of these in turn, to see how it works and think about what we might reuse
to make a network of any size we like.

NetGUI default section

The first part of the file creates acel l _home_ and make this the default section.
What is a section doing in a model that contains artificial spiking cells? Remember that
artificial spiking cells are basically point processes (see Artificial spiking cells in
Chapter 10), and just like other point processes, they must be attached to a section.
Suddenly the meaning of the comment Ar t i f i c i al  cel l s,  i f  any,  ar e
l ocat ed her e becomes clear: acel l _home_ is merely a "host" for artificial spiking
cells. It has no biophysical mechanisms of its own, so it introduces negligible
computational overhead. 

Network cell templates

The NetWork Builder and its associated tools make extensive use of object-oriented
programming. Each cell in the network is an instance of a cell class, and this is where the
templates that declare these classes are located (templates and other aspects of object-
oriented programming in NEURON are discussed in Chapter 13). 

The comments that precede the templates contain a list of the cell class names. Our
toy network uses only one cell class, so pr ot ot ype. hoc  contains only one template,
which defines the I F_I nt er val Fi r e class. When biophysical neuron models are
present, they are declared first. Thus, if we had a NetWork Builder whose palette
contained a biophysical neuron model type called pyr, and an artificial spiking cell type S
that was derived from the Net St i m class, the corresponding cell classes would be called
pyr _Cel l  and S_Net St i m, and the header in the exported hoc file would read

/ / Net wor k cel l  t empl at es
/ /    pyr _Cel l
/ / Ar t i f i c i al  cel l s
/ /    S_Net St i m

Functions and procedures with the same names as those contained in the
I F_I nt er val Fi r e template will be found in every cell class used by a NetWork Builder
(although some of their internal details may differ). The first of these is i ni t ( ) , which is
executed automatically whenever a new instance of the I F_I nt er val Fi r e class is
created. This in turn creates a new instance of the I nt er val Fi r e class that will be
associated with the acel l _home_ section. As an aside, we should mention that this is an
example of how the functionality of a basic object class can be enhanced by wrapping it
inside a template in order to define a new class with additional features, i.e. an example
of emulating inheritance in hoc  (see Polymorphism and inheritance in Chapter 13). 

The remaining f uncs and pr ocs are public so they can be called from outside the
template. If we ever need to determine which elements in a network are artificial spiking
cells and which are biophysical neuron models, i s_ar t ( )  is clearly the way to do it.
The next is connect 2t ar get ( ) , which looks useful for setting up network connections,
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but it turns out that the hoc code we write ourselves won't call this directly (see Network
specification interface below). The last is posi t i on( )  which can be used to specify
unique xyz coordinates for each instance of this cell. The coordinates themselves are
public (accessible from outside the template--see Chapter 13 for more about accessing
variables, f uncs and pr ocs declared in a template). Position may seem an arcane
attribute for an artificial spiking neuron, but it is helpful for algorithmically creating
networks in which connectivity or synaptic weight are functions of location or distance
between cells.

Network specification interface

These are the variables and functions that we will actually call from our own hoc
code. These are intended to offer us a uniform, compact and convenient syntax for setting
up our own network. That is, they serve as a "programming interface" between the code
we write and the lower level code that accomplishes our ultimate aims. 

The purpose of the first two lines in this part of pr ot ot ype. hoc is evident if we
keep in mind that the NetWork Builder implements a network model with objects, some
of which represent cells while others represent the connections between them. The Li st
class is the programmer's workhorse for managing collections of objects, so it is
reasonable that the cells and connections of our network model will be packaged into two
Li st s called cel l s  and ncl i s t , respectively. 

The functions that add new elements to these Li st s are cel l _append( )  and
nc_append( ) , respectively. The first argument to cel l _append( )  is an obj r ef  that
points to a new cell that is to be added to the list, and the remaining arguments are the
xyz coordinates that are to be assigned to that cell. The nc_append( )  function uses an
i f  .  .  .  el se to deal properly with either biophysical neuron models or artificial
spiking cells. In either case, its first two arguments are integers that indicate which
elements in cel l s  are the obj r ef s that correspond to the pre- and postsynaptic cells,
and the last two arguments are the synaptic weight and delay. If the postsynaptic cell is a
biophysical neuron model, one or more synaptic mechanisms will be attached to it (see
the tutorial at ht t p: / / www. neur on. yal e. edu/ neur on/ docs/ net bui l d/ mai n. ht ml ).
In this case, the third argument to nc_append( )  is a nonnegative integer that specifies
which synaptic mechanism is to be the target of the new Net Con. If instead the
postsynaptic cell is an artificial spiking cell, the argument is just -1. 

Network instantiation

So far everything has been quite generic, in the sense that we can use it to create cells
and assemble them into whatever network architecture we desire. In other words, the
code up to this point is exactly the reusable code that we needed. The statements in the
"network instantiation" group are just a concrete demonstation of how to use it to spawn
a particular number of cells and link them with a specific network of connections. Let's
make a copy of pr ot ot ype. hoc , call it net def s. hoc, and then insert / /  at the
beginning of each of last four lines of net def s. hoc so they persist as a reminder of
how to call cel l _append( )  and nc_append( )  but won't be executed. We are now
ready to use net def s. hoc  to help us build our own networks.
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Exploiting the reusable code
Where should we begin? A good way to start is by imagining the overall organization

of the entire program at the "big picture" level. We'll need the GUI library, the class
definitions and other code in net def s. hoc, code to specify the network model itself,
and code that sets up controls for adjusting model parameters, running simulations, and
displaying simulation results. Following our recommended practices of modular
programming and separating model specification from user interface (see Elementary
project management in Chapter 6), we turn this informal outline into an i ni t . hoc
file that pulls all these pieces together (Listing 11.3).

l oad_f i l e( " nr ngui . hoc" )
l oad_f i l e( " net def s. hoc" )   / /  code f r om Net Wor k Bui l der - gener at ed hoc f i l e
l oad_f i l e( " makenet . hoc" )   / /  speci f i es net wor k
l oad_f i l e( " r i g. hoc" )   / /  f or  adj ust i ng model  par ams and r unni ng si mul at i ons

Listing 11.3. The i ni t . hoc  for our own network program.

For now, we can comment out the last two lines with / /  so we can test
net def s. hoc  by using NEURON to execute i ni t . hoc. and then typing a few
commands at the oc> prompt (user entries are Courier bold while the interpreter's
output is plain Cour i er ).

Addi t i onal  mechani sms f r om f i l es
 i nvl f i r e. mod

1 
1 

oc>objref foo
oc>foo = new IF_IntervalFire()
oc>foo

I F_I nt er val Fi r e[ 0]  
oc>

So far so good. We are ready to apply the strategy of iterative program development (see
Iterative program development in Chapter 6) to fill in the details.

The first detail is how to create a network of a specific size. If we call the number of
cells ncel l , then this loop

  f or  i =0,  ncel l - 1 {
    cel l _append( new I F_I nt er val Fi r e( ) ,  i ,  0,  0)
  }

will make them for us, and this nested loop

  f or  i =0,  ncel l - 1 f or  j =0,  ncel l - 1 i f  ( i  ! = j )  {
    nc_append( i ,  j ,  - 1,  0,  1)
  }

will attach them to each other. An initial stab at embedding both of these in a procedure
which takes a single argument that specifies the size of the net is
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pr oc cr eat enet ( )  {  l ocal  i ,  j
  ncel l  = $1
  f or  i =0,  $1- 1 {
    cel l _append( new I F_I nt er val Fi r e( ) ,  i ,  0,  0)
  }
  f or  i =0,  $1- 1 f or  j =0,  $1- 1 i f  ( i  ! = j )  {
    nc_append( i ,  j ,  - 1,  0,  1)
  }
}

and that's what we put in the first version of makenet . hoc .

We can test this by uncommenting the l oad_f i l e( " makenet . hoc" )  line in
i ni t . hoc , using NEURON to execute i ni t . hoc, and then typing a few commands at
the oc> prompt.

oc>createnet(2)
oc>ncell

2 
oc>print cells, nclist

Li st [ 8]  Li st [ 9]
oc>print cells.count, nclist.count

2 2 
oc>for i=0,1 print cells.object(i), nclist.object(i)
I F_I nt er val Fi r e[ 0]  Net Con[ 0]  
I F_I nt er val Fi r e[ 1]  Net Con[ 1]  
oc>

So it works. But almost immediately a wish list of improvements comes to mind. In
order to try networks of different sizes, we'll be calling cr eat enet ( )  more than once
during a single session. As it stands, repeated calls to cr eat enet ( )  just tack more and
more new cells and connections onto the ends of the cel l s  and ncl i s t  lists. Also,
cr eat enet ( )  should be protected from nonsense arguments (a network should have at
least two cells).

We can add these fixes by changing ncel l  = $1 to 

i f  ( $1<2)  {  $1 = 2 }
ncel l  = $1
ncl i s t . r emove_al l ( )
cel l s . r emove_al l ( )

The first line ensures our net will have two or more cells. The last two lines use the Li st
class's r emove_al l ( )  to purge cel l s  and ncl i s t . Of course we check this 

oc>createnet(1)
oc>ncell

2 
oc>createnet(2)
oc>ncell

2 
oc>createnet(3)
oc>ncell

3 
oc>

which is exactly what should happen.
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What else should go into makenet . hoc? How about procedures that make it easy to
change the properties of the cells and connections? As a case in point, this 

pr oc del ay( )  {  l ocal  i
  del  = $1
  f or  i =0,  ncl i s t . count - 1 {
    nc l i s t . obj ect ( i ) . del ay = $1
  }
}

lets us set all synaptic delays to the same value by calling del ay( )  with an appropriate
argument. Similar pr ocs can take care of weights and cellular time constants. Setting
ISIs seems more complicated at first, but after a few false starts we come up with

pr oc i nt er val ( )  {  l ocal  i ,  x,  dx
  l ow = $1
  hi gh = $2
  x = l ow
  dx = ( hi gh -  l ow) / ( cel l s . count - 1)
  f or  i =0,  cel l s . count - 1 {
    cel l s . obj ect ( i ) . pp. i nv l  = x
    x += dx
  }
}

This assigns the l ow ISI to the first cell in cel l s , the hi gh ISI to the last cell in cel l s ,
and evenly spaced intermediate values to the other cells.

Does that mean the first cell is the fastest spiker, and the last is the slowest? Only if
we are careful about the argument sequence when we call i nt er val ( ) . For that matter,
what prevents us from calling i nt er val ( )  with one or both arguments < 0? Come to
think of it, some of our other pr ocs might also benefit by being protected from nonsense
arguments. We might protect against negative delays by changing

del  = $1

in pr oc del ay( )  to

i f  ( $1<0)  $1=0
del  = $1

and we could insert similar argument-trapping code into other pr ocs as necessary.

However, it makes more sense to try to identify a common task that can be split out
into a separate function that can be called by any pr oc  that needs it. It may help to
tabulate the vulnerable variables and the constraints we want to enforce. 

Variable Constraint
ncel l

�
 2

t au > 0
l ow ISI > 0
hi gh ISI

�
 l ow ISI

del
�

 0

Most of these constraints are "greater than or equal to," the two holdouts being t au and
l ow ISI. After a moment we realize that there are practical lower limits to these
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variables--say 0.1 ms for t au and 1 ms for l ow ISI--so "greater than or equal to"
constraints can be applied to all.

The final version of makenet . hoc  (Listing 11.4) contains all of these refinements.
The statements at the very end create a network by calling our revised pr ocs.

/ *
r et ur ns val ue >= $2
f or  bul l et pr oof i ng pr ocs agai nst  nonsense ar gument s
* /

f unc ge( )  {
  i f  ( $1<$2)  {
    $1=$2
  }
  r et ur n $1
}

/ / / / / / / / / /  c r eat e a net wor k / / / / / / / / / /

/ /  ar gument  i s  desi r ed number  of  cel l s

pr oc cr eat enet ( )  {  l ocal  i ,  j
  $1 = ge( $1, 2)  / /  f or ce net  t o have at  l east  t wo cel l s
  ncel l  = $1
  / /  so we can make a new net  wi t hout  hav i ng t o exi t  and r est ar t
  nc l i s t . r emove_al l ( )
  cel l s . r emove_al l ( )
  f or  i =0,  $1- 1 {
    cel l _append( new I F_I nt er val Fi r e( ) ,  i ,  0,  0)
  }
  f or  i =0,  $1- 1 f or  j =0,  $1- 1 i f  ( i  ! = j )  {
    / /  l et  wei ght  be 0;  we' l l  gi ve i t  a nonzer o val ue el sewher e
    nc_append( i ,  j ,  - 1,  0,  1)
  }
  obj r ef  net con  / /  l eave no l oose ends ( see nc_append( ) )
}

/ / / / / / / / / /  speci f y par amet er s / / / / / / / / / /

/ /  cal l  t hi s  set t au( )  t o avoi d conf l i ct  wi t h scal ar  t au

pr oc set t au( )  {  l ocal  i
  $1 = ge( $1, 0. 1)   / /  mi n t au i s  0. 1 ms
  t au = $1
  f or  i =0,  cel l s . count - 1 {
    cel l s . obj ect ( i ) . pp. t au = $1
  }
}
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/ /  ar gs ar e l ow and hi gh

pr oc i nt er val ( )  {  l ocal  i ,  x,  dx
  $1 = ge( $1, 1)   / /  mi n l ow I SI  i s  1 ms
  $2 = ge( $2, $1)
  l ow = $1
  hi gh = $2
  x = l ow
  dx = ( hi gh -  l ow) / ( cel l s . count - 1)
  f or  i =0,  cel l s . count - 1 {
    cel l s . obj ect ( i ) . pp. i nv l  = x
    x += dx
  }
}

pr oc wei ght ( )  {  l ocal  i
  w = $1
  f or  i =0,  ncl i s t . count - 1 {
    nc l i s t . obj ect ( i ) . wei ght  = $1
  }
}

pr oc del ay( )  {  l ocal  i
  $1 = ge( $1, 0)   / /  mi n del  i s 0 ms
  del  = $1
  f or  i =0,  ncl i s t . count - 1 {
    nc l i s t . obj ect ( i ) . del ay = $1
  }
}

/ / / / / / / / / /  act ual l y  make net  and set  par amet er s / / / / / / / / / /

cr eat enet ( 2)
set t au( 10)
i nt er val ( 10,  11)
wei ght ( 0)
del ay( 1)

Listing 11.4. Final implementation of makenet . hoc .

Time for more tests!

oc>del
0 
oc>{delay(-1) print del}
0 
oc>{delay(3) print del}
3 
oc>createnet(4)
oc>ncell

4 
oc>del
3 
oc>

Of course we can and should test the other pr ocs, especially i nt er val ( ) . As certain
mathematics texts say, "this is left as an exercise to the reader."
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Our attention now shifts to creating the user interface for adjusting model parameters,
controlling simulations, and displaying results. To evoke the metaphor of an experimental
rig, this is placed in a file called r i g. hoc .

An initial implementation of r i g. hoc  might look like this

l oad_f i l e( " r unct l . ses" )   / /  RunCont r ol  and Var i abl eTi meSt ep

xpanel ( " Model  par amet er s" )
xval ue( " Wei ght " , " w" ,  1, " wei ght ( w) " ,  0,  0 )
xval ue( " Del ay ( ms) " , " del " ,  1, " del ay( del ) " ,  0,  0 )
xval ue( " Cel l  t i me const ant  ( ms) " , " t au" ,  1, " set t au( t au) " ,  0,  0 )
xval ue( " Shor t est  nat ur al  I SI " , " l ow" ,  1, " i nt er val ( l ow,  hi gh) " ,  0,  0 )
xval ue( " Longest  nat ur al  I SI " , " hi gh" ,  1, " i nt er val ( l ow,  hi gh) " ,  0,  0 )
xpanel ( 500, 400)

In the spirit of taking advantage of every shortcut the GUI offers, the first statement loads
a session file that recreates a RunControl and a VariableTimeStep panel configured for
the desired simulation duration (Tstop = 500 ms) and integration method (adaptive
integration with local time steps). The other statements set up a panel with numeric fields
and controls for displaying and adjusting model parameters. This implementation of
r i g. hoc  lacks two important features: a graph that displays spike trains, and the ability
to change the number of cells in the network.

What about plots of spike trains? There is a way to create a graph that provides all the
functionality of the NetWork Builder's own SpikePlot, but analyzing the necessary code
would lead us into details that really belong in a chapter on advanced GUI programming.
For didactic purposes it is better if we make our own raster plot, if only because this will
draw our attention to topics that are likely to be more widely useful. 

To prepare to record and plot spike trains, we can insert the following code right after
the l oad_f i l e( )  statement:

obj r ef  net con,  vec,  spi kes,  ni l ,  gr ast er

pr oc pr epr ast er pl ot ( )  {
  spi kes = new Li st ( )
  f or  i =0, cel l s. count ( ) - 1 {
    vec = new Vect or ( )
    net con = new Net Con( cel l s. obj ect ( i ) . pp,  ni l )
    net con. r ecor d( vec)
    spi kes. append( vec)
  }
  obj r ef  net con,  vec

  gr ast er  = new Gr aph( 0)
  gr ast er . vi ew( 0,  0,  t st op,  cel l s. count ( ) ,  300,  105,  300. 48,  200. 32)
}

pr epr ast er pl ot ( )

For each cell in the net, this creates a new Vect or , uses the Net Con class's r ecor d( )
method to record the time of that cell's spikes into the Vect or , and appends the Vect or
to a Li st . After the end of the f or  loop that iterates over the cells, the net con and vec
obj r ef s point to the last Net Con and Vect or  that were created, exposing them to
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possible interference if we ever do anything that reuses these obj r ef  names. The
obj r ef  net con,  vec  statement breaks the link between them and the objects, thereby
preventing such undesirable effects.

The last two statements in pr epr ast er pl ot ( )  create a Gr aph and place it at a
desired location on the screen. How can we tell what the numeric values should be for the
arguments in the gr ast er . vi ew( )  statement? By creating a graph (NEURON Main
Menu / Graph / Voltage axis will do), dragging it to the desired location, saving it to a
session file all by itself, and then stealing the argument list from that session file's
save_wi ndow_. v i ew( )  statement--being careful to change the third and fourth
arguments so that the x and y axes span the correct range of values. No cut and try
guesswork for us! While we're at it, we might as well use the same strategy to fix the
location for our model parameter panel, but now we only need the fifth and sixth
arguments to vi ew( ) , which are the screen coordinates where the Gr aph is positioned.
For my monitor, this means the second xpanel  statement becomes xpanel ( 300, 370) .

Running a new test, we find that our user interface looks like Fig. 11.22. Everything
is in the right place, and time advances when we click on Init & Run, but no rasters are
plotted.

Figure 11.22. The user interface after the first revision to r i g. hoc , in which
we added pr epr ast er pl ot ( ) .

For each cell we need to draw a sequence of short vertical lines on gr ast er  whose x
coordinates are the times at which that cell fired. To help us tell one cell's spikes from
another's, the vertical placement of their rasters should correspond to their ordinal
position in cel l s . We can do this by inserting the following code into r i g. hoc , right
after the call to pr epr ast er pl ot ( ) . The first thing that pr oc showr ast er ( )  does is
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to clear any previous rasters off the Gr aph. Then, for each cell in turn, it uses three
Vect or  class methods in succession: c( )  to create a Vect or  that has as many elements
as the number of spikes that the cell fired, f i l l ( )  to fill those elements with an integer
that is one more than the ordinal position of that cell in cel l s , and mar k( )  to mark the
firing times.

obj r ef  spi key

pr oc showr ast er ( )  {
  gr ast er . er ase_al l ( )
  f or  i  = 0, cel l s . count ( ) - 1 {
    spi key = spi kes. obj ect ( i ) . c
    spi key. f i l l ( i +1)
    spi key. mar k( gr ast er ,  spi kes. obj ect ( i ) ,  " | " ,  6)
  }
  obj r ef  spi key
}

Testing once again, we run a simulation and then type showr ast er ( )  at the oc>
prompt, and sure enough, there are the spikes. We change the longest natural ISI to
20 ms, run another simulation, and type showr ast er ( )  once more, and it works again.

All this typing is tedious. Why not customize the r un( )  procedure so that it
automatically calls showr ast er ( )  after each simulation? Adding this 

pr oc r un( )  {
  st di ni t ( )
  cont i nuer un( t s t op)
  showr ast er ( )
}

to the end of r i g. hoc  does the job (see An outline of the standard run system in
Chapter 7: How to control simulations).

Another test and we are overcome with satisfaction--it works. Then we change Tstop
to 200 ms, run a simulation, and are disappointed that the raster plot's x axis does not
rescale to match the new Tstop. One simple fix for this is to write a custom i ni t ( )
procedure that uses the Graph class's si ze( )  method to adjust the size of the raster plot
during initialization (see Default initialization in the standard run system: stdinit()
and init() in Chapter 8). So we insert this 

pr oc i ni t ( )  {
  f i ni t i al i ze( v_i ni t )
  gr ast er . er ase_al l ( )
  gr ast er . s i ze( 0, t s t op, 0, cel l s. count ( ) )
  i f  ( cvode. act i ve( ) )  {
    cvode. r e_i ni t ( )
  }  el se {
    f cur r ent ( )
  }
  f r ecor d_i ni t ( )
}

right after our custom r un( ) . Notice that this also rescales the y axis, which will be
helpful when we finally add the ability to change the number of cells in the network.

Success upon success! It works!

Page 28 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 23, 2004 The NEURON Book: Chapter 11

We can finally get around to changing the number of cells. Let's think this out
carefully before doing anything. We'll need a new control in the xpanel , to show how
many cells there are and let us specify a new number. That's easy--just put this line

xval ue( " Number  of  cel l s" , " ncel l " ,  1, " r ecr eat e( ncel l ) " ,  0,  0 )

right after xpanel ( " Model  par amet er s" )  so that when we change the value of
ncel l , we automatically call a new procedure called r ecr eat e( )  that will throw away
the old cells and their connections, and create a new set of each.

But what goes in r ecr eat e( ) ? We'll want the new cells and connections to have the
same properties as the old ones. And we'll have to replace the old raster plot with a new
one, complete with all the Net Cons  and Vect or s  that it uses to record spikes. So
r ecr eat e( )  should be 

pr oc r ecr eat e( )  {
  cr eat enet ( $1)
  set t au( t au)
  i nt er val ( l ow,  hi gh)
  wei ght ( w)
  del ay( del )
  pr epr ast er pl ot ( )
}

A good place for this is right before the xpanel 's code.

So now we have completed r i g. hoc  (see Listing 11.5). The parameter panel has all
the right buttons (Fig. 11.23) so it is easy to explore the effects of parameter changes
(Fig. 11.24). How to develop an understanding of what accounts for these effects is
beyond the scope of this chapter, but we can offer one hint: run some simulations of a net
containing only 2 or 3 cells, using fixed time steps, and plot their membrane state
variables (well, their M functions).

/ / / / / / / / / /  user  i nt er f ace / / / / / / / / / /

l oad_f i l e( " r unct l . ses" )   / /  RunCont r ol  and Var i abl eTi meSt ep

/ /  pr epar e t o r ecor d and di spl ay spi ke t r ai ns
obj r ef  net con,  vec,  spi kes,  ni l ,  gr ast er

pr oc pr epr ast er pl ot ( )  {
  spi kes = new Li st ( )
  f or  i =0, cel l s. count ( ) - 1 {
    vec = new Vect or ( )
    net con = new Net Con( cel l s. obj ect ( i ) . pp,  ni l )
    net con. r ecor d( vec)
    spi kes. append( vec)
  }
  obj r ef  net con,  vec

  gr ast er  = new Gr aph( 0)
  gr ast er . vi ew( 0,  0,  t st op,  cel l s. count ( ) ,  300,  105,  300. 48,  200. 32)
}

pr epr ast er pl ot ( )
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obj r ef  spi key

pr oc showr ast er ( )  {
  gr ast er . er ase_al l ( )
  f or  i  = 0, cel l s. count ( ) - 1 {
    spi key = spi kes. obj ect ( i ) . c
    spi key. f i l l ( i +1)
    spi key. mar k( gr ast er ,  spi kes. obj ect ( i ) ,  " | " ,  6)
  }
  obj r ef  spi key
}

/ /  dest r oys exi st i ng net  and makes a new one
/ /  al so spawns a new spi ke t r ai n r ast er  pl ot
/ /  cal l ed onl y i f  we need a di f f er ent  number  of  cel l s

pr oc r ecr eat e( )  {
  cr eat enet ( $1)
  set t au( t au)
  i nt er val ( l ow,  hi gh)
  wei ght ( w)
  del ay( del )
  pr epr ast er pl ot ( )
}

xpanel ( " Model  par amet er s" )
xval ue( " Number  of  cel l s" , " ncel l " ,  1, " r ecr eat e( ncel l ) " ,  0,  0 )
xval ue( " Wei ght " , " w" ,  1, " wei ght ( w) " ,  0,  0 )
xval ue( " Del ay ( ms) " , " del " ,  1, " del ay( del ) " ,  0,  0 )
xval ue( " Cel l  t i me const ant  ( ms) " , " t au" ,  1, " set t au( t au) " ,  0,  0 )
xval ue( " Shor t est  nat ur al  I SI " , " l ow" ,  1, " i nt er val ( l ow,  hi gh) " ,  0,  0 )
xval ue( " Longest  nat ur al  I SI " , " hi gh" ,  1, " i nt er val ( l ow,  hi gh) " ,  0,  0 )
xpanel ( 300, 370)

/ / / / / / / / / /  cust om r un( )  and i ni t ( )  / / / / / / / / / /

pr oc r un( )  {
  st di ni t ( )
  cont i nuer un( t st op)
  showr ast er ( )   / /  show r esul t s at  t he end of  each si mul at i on
}

pr oc i ni t ( )  {
  f i ni t i al i ze( v_i ni t )
  gr ast er . er ase_al l ( )
  gr ast er . si ze( 0, t st op, 0, cel l s. count ( ) )   / /  r escal e x and y axes
  i f  ( cvode. act i ve( ) )  {
    cvode. r e_i ni t ( )
  }  el se {
    f cur r ent ( )
  }
  f r ecor d_i ni t ( )
}

Listing 11.5. Complete implementation of r i g. hoc .
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Figure 11.23. The parameter panel after addition of a control for changing the
number of cells.

Figure 11.24. Simulations of a fully connected network with 10 cells whose natural ISIs are spaced
uniformly over the range 10-15 ms. The rasters are arranged with ISIs in descending order from top to
bottom. 

A: With all synaptic weights 0, cell firing is
asynchronous and uncorrelated.

B: Mild inhibitory coupling (weight -0.2) with a delay
of 1 ms silences the slowest cells and reduces the
firing rates of the others. There is a suggestion of
spike clustering, but no obvious synchrony or strong
correlation. 

C: Increasing synaptic delay to 8 ms allows the
slowest cells to escape from inhibition and results in
strong correlation. 
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D: Close examination reveals that spikes are not
synchronous, but lag progressively across the
population with increasing natural ISI.
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Survey
We'd appreciate your frank opinions and suggestions to help us refine this course and design future
offerings on related subjects.

Please score these items ..... according to this scale

Overall impression no opinion 0

Relevance to my research poor, not helpful 1

Didactic presentations fair 2

Written handouts good 3

Overhead transparencies excellent, very helpful 4

Computer projection

Classroom

Food

Best feature

Weakest feature

Additional topics that should be covered, topics that should receive more or less coverage, or other
suggestions for improvement.

Circle one

Y N I would recommend this course to others who are interested in neural modeling.

Y N I have developed my own modeling software using a high-level language (FORTRAN,
C/C++ etc.).

Y N I have created my own models using modeling software.

Which software? _____________________________________________

My area of primary research interest is ________________________________________

To help us better meet the needs of NEURON users, please circle all platforms that you plan to use for
modeling.

Hardware Mac Intel Other __________________________________________

OS MacOS X Win NT | 2K | XP

UNIX | Linux | OS X | BSD

If Linux, which distribution?  __________________________________________

Survey Copyright © 1998-2005 N.T. Carnevale and M.L. Hines, all rights reserved


