Model sharing and knowledge discovery with ModelDB

Ted Carnevale¹, Serena Thaw-Poon², and Robert McDougal³

¹Department of Neuroscience, ²Program in Cognitive Science, and ³Department of Biostatistics, Yale University

modeldb.yale.edu

modeldb.yale.edu

What is ModelDB?

- design goals
- what's in it?

Why use ModelDB?

Finding what you want, and understanding what you found

Sharing your own models

modeldb.yale.edu

A resource for sharing and finding published models and related knowledge in the domain of computational neuroscience

Enables model

- discovery and understanding
- replication and reproduction
- attributed reuse and extension
- Each entry includes
 - citation(s) and concise model description
 - source code
 - metadata to help find entries of interest

Why use ModelDB?

Help others discover and understand your own models Discover:

- and understand models published by others
- how modeling is being used to address a given topic
- models for new computational experiments, or starting points for new models
- reusable model components (channels, cell classes . . .)
- programming examples, e.g. FInitializeHandler usage
- models for regression testing of simulators

You can help by:

- citing ModelDB and model authors when you find something useful
- using ModelDB to share your own published models

ModelDB as a knowledge discovery tool

Every model is a selective review of the literature

Models reflect what researchers judge to be important.

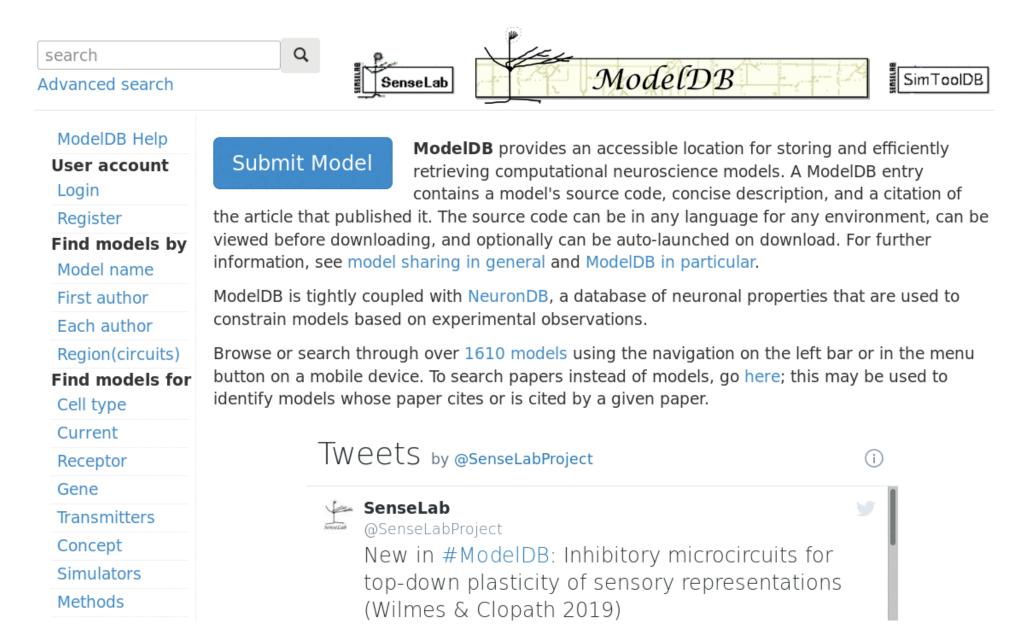
Example:

131 models of Hippocampus Ca1 pyramidal neurons

- I_A 73 models: 2796, 7386, 9769 . . .
- I_{K,Ca} 23 models: 7907, 20212, 87284 . . .
- I_M 31 models: 2937, 7907, 20212 . . .

modeldb.yale.edu

1620 model entries as of 7/21/2020


- 515 network models
- 181 types of neurons, including
 - 9 varieties of artificial spiking cells
 - biological neurons from
 - > 21 animal species
 - > 25 mammalian brain regions

Simulator-agnostic

96 simulators | programming languages

~1500 for NEURON, MATLAB, XPP, Python, or C++

modeldb.yale.edu

Finding models: preconfigured searches

Find models by

Model name

First author

Each author

Region(circuits)

Find models for

Cell type

Current

Receptor

Gene

Transmitters

Concept

Simulators

Methods

Find models of

Realistic Networks

Neurons

Electrical synapses (gap junctions)

Chemical synapses

Ion channels

Neuromuscular junctions

Axons

Pathophysiology

Finding models: search box

magQmagnitudemageemagentamagmagnesium	 Top left corner of each page full text or attribute search word completion, live update as you type 			
Authors	Also available: browse and custom search			
Magee JC >				
Magosso E	View all			
Magalhães BR				
Magalhães B >	Basal Ganglia and Levodopa Pharmacodynamics model			
Magistretti J	for parameter estimation in PD (Ursino et al 2020)			
4 more	A neural mass model for critical assessment of brain			
Concept	connectivity (Ursino et al 2020)			
Magnetoencephalography	Multisensory integration in the superior colliculus: a			
Magnetic stimulation	neural network model (Ursino et al. 2009)			

"Front page" of a model entry

Amyloid beta (IA block) effects on a model CA1 pyramidal cell (Morse et al. 2010)

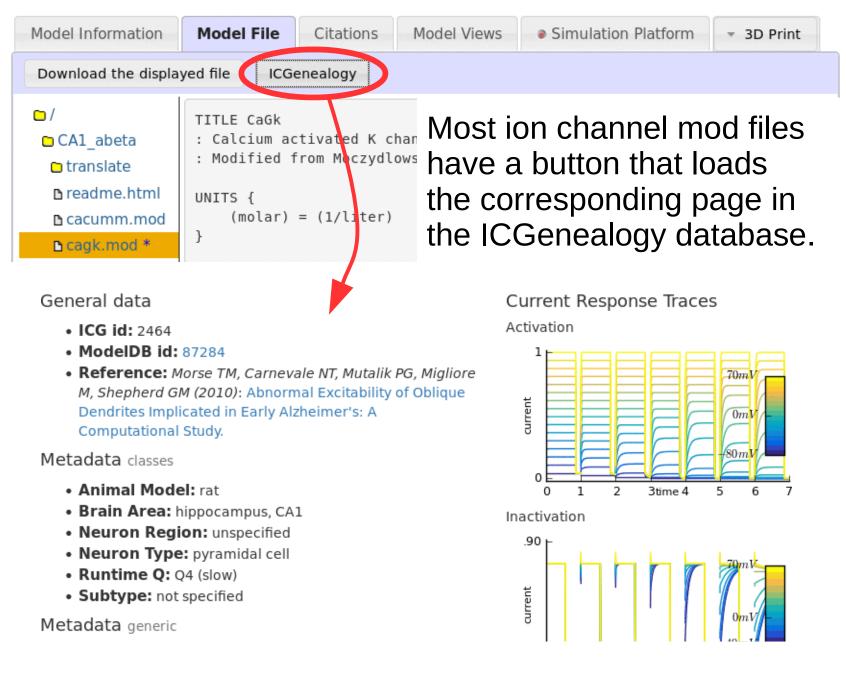
Model Information	Model File	Citations	Model Views	Simulation Platform	▼ 3D Print	
Accession:87284	(3)	(4)	(5)	(6)	(7)	
The model simulations pro excitability by amyloid be Reference: 1 . Morse TM, Carnevale N Dendrites Implicated in Ea	ta block of the IT, Mutalik PG	e transient K+ , Migliore M, S	• channel, IA. See Shepherd GM (20	e paper for details. 10) Abnormal Excitability	of Oblique	()
Model Information (Clic	k on a link to	find other mo	dels with that pr	operty)		
Model Type:	Neuron or ot	her electricall	y excitable cell;			
Brain Region(s)/Organism:						
Cell Type(s):	Hippocampu	s CA1 pyrami	dal GLU cell;			
Channel(s):	l Na,t; l L hig	h threshold;	I N; I T low thresh	nold; I A; I K; I h; I K,Ca;		
Gap Junctions:						
Receptor(s):						(
Gene(s):						
Transmitter(s):						
Simulation	NEURON;					
Environment:				a. Datailad Neuropal Made	ole	
		ion Potentials ogy; Aging/Al		s; Detailed Neuronal Mode	ci5,	

- 1 download link
- 2 autolaunch simulation
- 3 view model files
- 4 cited and citing models and papers
- 5 ModelView: visualize model structure
- 6 Simulation platform (external site)
- 7 printable 3D cells from this model
- 0) 8 description of model
 - 9 papers that describe or use the model
 - 10 searchable metadata
 - 11 links to NeuronDB (properties of biological cell types)

based on McDougal et al., J. Comp. Neurosci. 2017

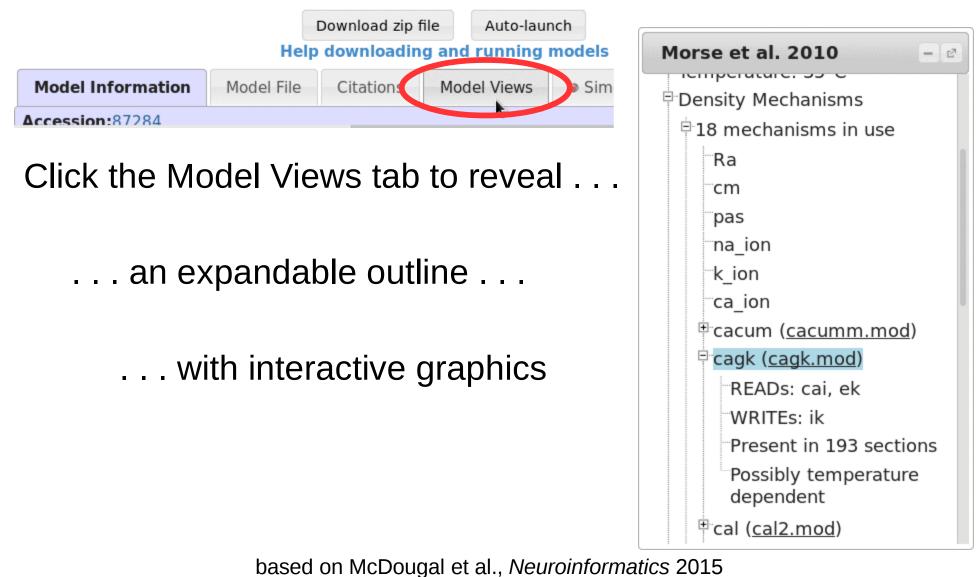
A model entry's "readme" file

Amyloid beta (IA block) effects on a model CA1 pyramidal cell (Morse et al. 2010)

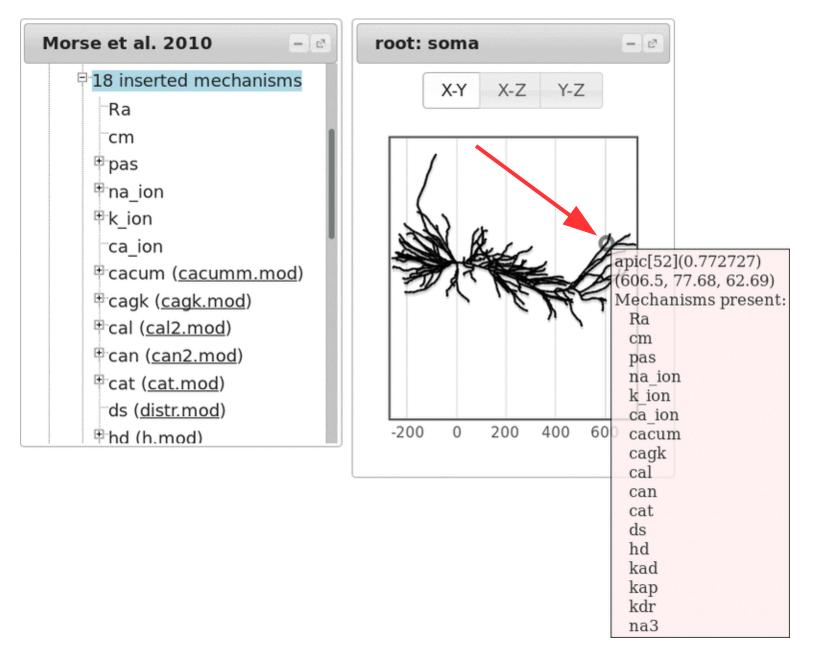

Download zip file Auto-launch Help downloading and running models							
Model Information	Model File	Citations	Model Views	Simulation Platform	⇒ 3D Print		
Download the displa	yed file						
□/ □CA1_abeta			a model used ir				
translate	<u>Morse TM, Carnevale NT, Mutalik PG, Migliore M, Shepherd GM (2010)</u> <u>Abnormal excitability of oblique dendrites implicated in early</u>						
🖪 readme.html	<u>Alzheimer's: a computational study Front. Neural Circuits 4:16</u>						
🗅 cacumm.mod							
🗅 cagk.mod *	The model code was contributed by Tom Morse. It was created (see paper for details) from earlier models (especially Migliore et al. 2005 and calcium channels from Hemond et al. 2008) with modifications and additions by Tom Morse and Ted Carnevale with						
B cal2.mod *							
∎ can2.mod *							
⊾ cat.mod *		interaction with the other authors. It requires the NEURON simulator to be installed (available at http://www.neuron.yale.edu).					
∎ distr.mod *	To regreste	figuros fro	m the paper of	art the simulator by			
🗅 h.mod	To recreate figures from the paper, start the simulator by auto-launching from ModelDB *OR*						
∎ ipulse2.mod *	Under unter a	veteme.					
🗅 kadist.mod	Under unix s	ystems:					
🗅 kaprox.mod	In the expan command "nrn		's folder compi	le the mod files using.	the		

based on McDougal et al., J. Comp. Neurosci. 2017

Asterisks mark reuse Click asterisk to see by whom and for what

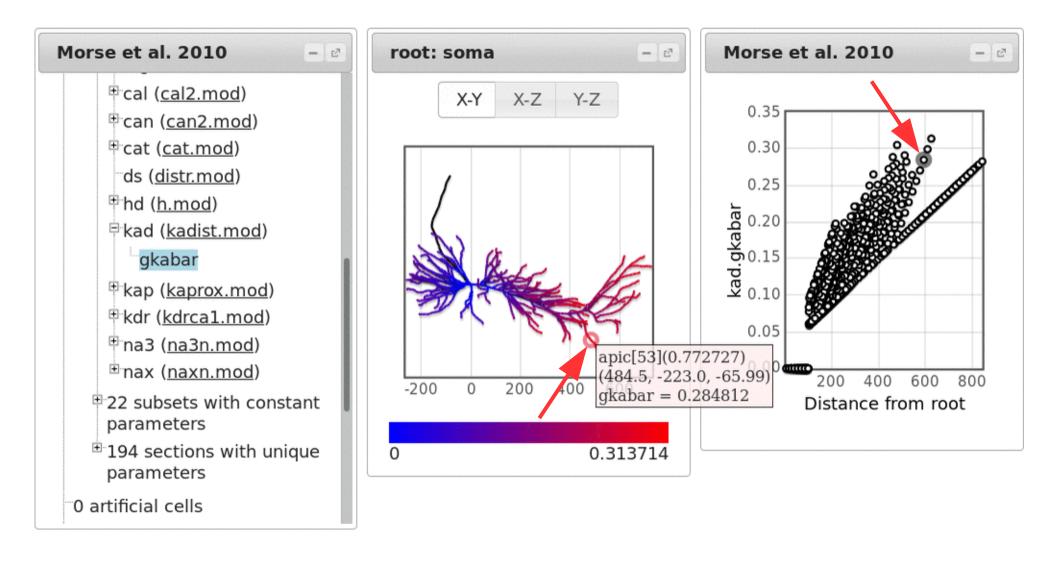

 / CA1_abeta translate readme.html cacumm.mod 	<pre>TITLE CaGk : Calcium activated K channel. : Modified from Moczydlowski and Latorre (1983) J. Gen. Physiol. 82 UNITS { (molar) = (1/liter) }</pre>
CA1 pyramidal neu CA3 pyramidal neu CA3 pyramidal neu Channel density va Distinct current ma Neuronal dendrite	
■ kdrca1.mod ■ na3n.mod ■ naxn.mod *	USEION k READ ek WRITE ik RANGE gbar,gkca,ik GLOBAL oinf, tau }

Ion channels linked to ICGenealogy.org



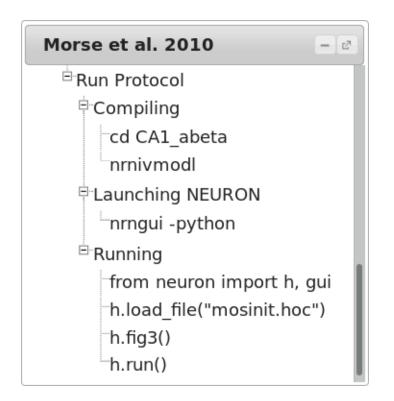
Model Views: interactive model analysis

Amyloid beta (IA block) effects on a model CA1 pyramidal cell (Morse et al. 2010)



ModelView: discover what's where

based on McDougal et al., *Neuroinformatics* 2015


ModelView: inhomogeneous params

based on McDougal et al., *Neuroinformatics* 2015

Model View: run protocol

Answering one of life's vexing, if smaller, questions . . .

Why use ModelDB?

Help others discover and understand your own models Discover:

- and understand models published by others
- how modeling is being used to address a given topic
- models for new computational experiments, or starting points for new models
- reusable model components (channels, cell classes . . .)
- programming examples, e.g. FInitializeHandler usage
- models for regression testing of simulators

You can help by:

- citing ModelDB and model authors when you find something useful
- using ModelDB to share your own published models

Sharing your models

Submit Model

ModelDB provides an accessible location for storing and efficiently retrieving computational neuroscience models. A ModelDB entry contains a model's source code, concise

description, and a citation of the article that published it. The source code can be in

Submit New Model

Required information: W.M. Bellman Your full name: bellmanwm@dodgson.net Your email address: No file selected. Browse... Zip file of model code: Read-Write access code (15 character max): Used as a password to only access this model PubMed ID(s) or citation(s) associated with the model: Only required for publicly shared models. Citation(s) can be in any bibliographic format.

Sharing your models continued

Let us find ModelDB keywords for you!

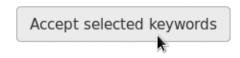
Click the button to automatically find, approve, and populate model entry keywords based on your paper abstract.

Automatic keyword identifier

X

Please paste your paper abstract here.

We used a large scale mechanistic model of snark wulst to explore the role of asynchronous dopaminergic and serotonergic signaling in triggering the boojum state. Our model relates this phenomenon to spillover of these neurotransmitters into adjacent neural circuits, activating D1, D2, and 5HT receptors throughout the brain. Simulations reveal acceleration of axonal conduction, sometimes to supraluminal levels. This is accompanied by local violations of causality, granger and otherwise, including temporary conversion of Hebbian to anti-Hebbian plasticity and vice-versa. In-vivo experiments are now under way to determine how this is related to the tendency of nearby organisms to revert to uncoupled pairs of gametes through the process known as


Sharing your models continued

Automatic	keyword	identifier:	results

 \times

Deselect keywords that do not describe the model, then press the button to accept the rest.

- Serotonin
- Hebbian plasticity
- Synaptic Plasticity
- Dopamine

References

SenseLab (including ModelDB) Twitter feed: @SenseLabProject

* McDougal RA, Morse TM, Carnevale T, Marenco L, Wang R, Migliore M, Miller PL, Shepherd GM, Hines M. Twenty years of ModelDB and beyond: building essential modeling tools for the future of neuroscience. J. Comput. Neurosci. 42:1-10, 2017.

McDougal RA, Morse TM, Hines ML, Shepherd GM. ModelView for ModelDB: online presentation of model architecture. Neuroinformatics 13:459-470, 2015.

[ICGenealogy] Podlaski WF, Seeholzer A, Groschner LN, Miesenböck G, Ranjan R, Vogels T. Mapping the function of neuronal ion channels in model and experiment. eLife 6:e22152, doi: 10.7554/eLife.22152, 2017

***--How to cite ModelDB.** For more specific information, see "How to cite ModelDB" link at modeldb.yale.edu