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Chapter 1

A tour of the NEURON simulation environment

Modeling and understanding

Modeling can have many uses, but its principal benefit is to improve understanding.

The chief question that it addresses is whether what is known about a system can account

for the behavior of the system. An indispensable step in modeling is to postulate a

conceptual model that expresses what we know, or think we know, about a system, while

omitting unnecessary details. This requires considerable judgment and is always

vulnerable to hindsight and revision, but it is important to keep things as simple as

possible. The choice of what to include and what to leave out depends strongly on the

hypothesis that we are studying. The issue of how to make such decisions is outside the

primary focus of this book, although from time to time we may return to it briefly.

The task of building a computational model should only begin after a conceptual

model has been proposed. In building a computational model we struggle to establish a

match between the conceptual model and its computational representation, always asking

the question: would the conceptual model behave like the simulation? If not, where are

the errors? If so, how can we use NEURON to help understand why the conceptual model

implies that behavior?
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Introducing NEURON

NEURON is a simulation environment for models of individual neurons and

networks of neurons that are closely linked to experimental data. NEURON provides

numerically sound, computationally efficient tools for conveniently constructing,

exercising, and managing models, so that special expertise in numerical methods or

programming is not required for its productive use. Increasing numbers of

experimentalists and theoreticians are incorporating it into their research strategies. As of

this writing, more than 460 scientific publications have reported work done with

NEURON on topics that range from the molecular biology of voltage-gated channels to

the operation of networks containing thousands of neurons (see Research reports that

have used NEURON at http://www.neuron.yale.edu/neuron/bib/usednrn.html).

In the following pages we introduce NEURON by going through the development of

a simple model from start to finish. This will require us to consider each of these steps: 

1. State the question that we are interested in

2. Formulate a conceptual model

3. Implement the model in NEURON

4. Instrument the model, i.e. attach signal sources and set up graphs

5. Set up controls for running simulations

6. Save the model with instrumentation and run controls

7. Run simulation experiments
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8. Analyze results

Since our aim is to provide an overview, we have chosen a simple model that

illustrates just one of NEURON's strengths: the convenient representation of the spread

of electrical signals in a branched dendritic architecture. We could do this by writing

instructions in NEURON's programming language hoc, but for this example we will

employ some of the tools that are provided by its graphical user interface. Later chapters

examine hoc and the graphical tools for constructing models and managing simulations

in more detail, as well as many other features and applications of the NEURON

simulation environment (e.g. complex biophysical mechanisms, neural networks, analysis

of experimental data, model optimization, customization of the user interface).

1. State the question

The scientific issue that motivates the design and construction of this model is the

question of how synaptic efficacy is affected by synaptic location and the anatomical and

biophysical properties of the postsynaptic cell. This has been the subject of too many

experimental and theoretical studies to reference here. Interested readers will find

numerous relevant publications in NEURON's on-line bibliography (cited above), and

may retrieve working code for several of these from ModelDB

(http://senselab.med.yale.edu/senselab/modeldb/).
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2. Formulate a conceptual model

Most neurons have many branches with irregularly varying diameters and lengths

(Fig. 1.1 A), and their membranes are populated with a wide assortment of ionic channels

that have different ionic specificities, kinetics, dependence on voltage and second

messengers, and spatial distributions. Scattered over the surface of the cell may be

hundreds or thousands of synapses, some with a direct effect on ionic conductances

(which may also be voltage-dependent) while others act through second messengers.

Synapses themselves are far from simple, often displaying stochastic and use-dependent

phenomena that can be quite prominent, and frequently being subject to various pre- and

postsynaptic modulatory effects. Given all this complexity, we might well ask if it is

possible to understand anything without understanding everything. From the very onset

we are forced to decide what to include and what to omit.

Suppose we are already familiar with the predictions of the basic ball and stick model

(Rall 1977; Jack et al. 1983), and that experimental observations motivate us to ask

questions such as: How do synaptic responses observed at the soma vary with synaptic

location if dendrites of different diameters and lengths are attached to the soma? What

happens if some parts of the cell have active currents, while others are passive? What if a

neuromodulator or shift of the background level of synaptic input changes membrane

conductance? 

Then our conceptual model might be similar to the one shown in Fig. 1.1 B. This

model includes a neuron with a soma that gives rise to an axon and two dendritic trunks,

and a single excitatory synapse that may be located at any point on the cell.
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A

  

B

Figure 1.1. A. Clockwise from top left: Ca1 and Ca3 pyramidal neurons (from

D.A. Turner); calbindin-, parvalbumin-, and calretinin-positive interneurons

(from A.I. Gulyás). B. Our conceptual model neuron. The conductance change

synapse can be located anywhere on the cell.

Although deliberately more complex than the prototypical ball and stick, the

anatomical and biophysical properties of our model are much simpler than the biological

original (Table 1.1). The axon and dendrites are simple cylinders, with uniform diameters

and membrane properties along their lengths. The dendrites are passive, while the soma

and axon have Hodgkin-Huxley sodium, potassium, and leak currents, and are capable of

generating action potentials (Hodgkin and Huxley 1952). A single synaptic activation

causes a localized transient conductance increase with a time course described by an

alpha function
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Eq. 1.1

where tact is the time of synaptic activation, and gs reaches a peak value of gmax at t = τs

(see Table 1.2 for parameter values). This conductance increase mechanism is just

slightly more complex than the ideal current sources used in many theoretical studies

(Rall 1977; Jack et al. 1983), but it is still only a pale imitation of any real synapse (Bliss

and Lømo 1973; Ito 1989; Castro-Alamancos and Connors 1997; Thomson and Deuchars

1997).

Table 1.1. Model cell parameters

Length
µm

Diameter
µm

Biophysics

soma 30 30 HH gNa, gK, and gleak

apical dendr ite 600 1 passive with Rm = 5,000 Ω cm2, Epas = -65 mV

basilar dendr ite 200 2 same as apical dendrite

axon 1000 1 same as soma

Cm = 1 µf / cm2

cytoplasmic resistivity = 100 Ω cm

Temperature = 6.3 °C

Table 1.2. Synaptic mechanism parameters

gmax 0.05 µS

τs 0.1 ms

Es 0 mV
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3. Implement the model in NEURON

With a clear picture of our model in mind, we are ready to express it in the form of a

computational model. Instead of writing instructions in NEURON's programming

language hoc, for this example we will employ some of the tools that are provided by

NEURON's graphical user interface.

We begin with the CellBuilder, a graphical tool for constructing and managing models

of individual neurons. At this stage, we are not considering synapses, stimulating

electrodes, or simulation controls. Instead we are focussing on creating a representation

of the continuous properties of the cell. Even if we were not using the CellBuilder but

instead were developing our model entirely with hoc code, it would probably be best for

us to follow a similar approach, i.e. specify the biological attributes of the model cell

separately from the specification of the instrumentation and control code that we will use

to exercise the model. This is an example of modular programming, which is related to

the "divide and conquer" strategy of breaking a large and complex problem into smaller,

more tractable steps.

The CellBuilder makes it easier for us to create a model of a neuron by allowing us to

specify its architecture and biophysical properties through a graphical interface. When we

are satisfied with the specification, the CellBuilder will generate the corresponding hoc

code for us. Once we have a model cell, we will be ready to use other graphical tools to

attach a synapse to it and plot simulation results (see 4. Instrument the model below).

The images in the following discussion were obtained under MSWindows; the

appearance of NEURON under UNIX, Linux, and MacOS is quite similar.
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Starting and stopping NEURON

No matter what a program does, the first thing you have to learn is how to start and

stop it. To start NEURON under UNIX or Linux, just type nrngui on the command line

and skip the remainder of this paragraph. Under MSWindows, double click on the nrngui

icon on your desktop (Fig. 1.2 left); if you don't see one there, bring up the NEURON

program group (i.e. use Start / Program Files / NEURON) and select the nrngui item

(Fig. 1.2 right). If you are using MacOS, open the folder where you installed NEURON

and double click on the nrngui icon.

Figure 1.2. Under MSWindows, start NEURON by clicking on the nrngui icon

on the desktop (left) or selecting the nrngui item in the NEURON program

group (right).

You should now see the NEURON Main Menu (Fig. 1.3 top), which offers a set of

menus for bringing up graphical tools for creating models and running simulations. If you

are using UNIX or Linux, a "banner" that includes the version of NEURON you are

running will be printed in the xterm where you typed nrngui, and the prompt will

change to oc> to indicate that NEURON's hoc interpreter is running. Under MacOS and

MSWindows, the "banner" and oc> prompt will appear in a new console window

(Fig. 1.3 bottom). 
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There are three different ways to exit NEURON; you can use whichever is most

convenient.

1. type ^D (i.e. control D) at the oc> prompt

2. type quit() at the oc> prompt

3. click on File in the NEURON Main Menu, scroll down to Quit, and release the mouse

button (Fig. 1.4)

Figure 1.3. Top: The NEURON Main Menu toolbar. Bottom: NEURON's

"banner" and oc> prompt in an MSWindows console window.
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Figure 1.4. One way to exit NEURON is to click on File / Quit in the

NEURON Main Menu toolbar.

Bringing up a CellBuilder

To get a CellBuilder just click on Build in the NEURON Main Menu, scroll down to

the CellBuilder item, and release the mouse button (Fig. 1.5).

Figure 1.5. Using the NEURON Main Menu to bring up a CellBuilder.

Across the top of the CellBuilder is a row of radio buttons and a checkbox, which

correspond to the sequence of steps involved in building a model cell (Fig. 1.6). Each

radio button brings up a different page of the CellBuilder, and each page provides a view

of the model plus a graphical interface for defining properties of the model. The first four

pages (Topology, Subsets, Geometry, Biophysics) are used to create a complete

specification of a model cell. On the Topology page, we will set up the branched
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architecture of the model and give a name to each branch, without regard to diameter,

length, or biophysical properties. We will deal with length and diameter on the Geometry

page, and the Biophysics page is where we will define the properties of the membrane

and cytoplasm of each of the branches.

Figure 1.6. Top panel of the CellBuilder

The Subsets page deserves special comment. In almost every model that has more

than one branch, two or more branches will have at least some biophysical attributes that

are identical, and there are often significant anatomical similarities as well. Furthermore,

we can almost always apply the d_lambda rule for compartmentalization throughout the

entire cell (see below). We can take advantages of such regularities by assigning shared

properties to several branches at once. The Subsets page is where we group branches

into subsets, on the basis of shared features, with an eye to exploiting these

commonalities on the Geometry and Biophysics pages. This allows us to create a model

specification that is compact, efficient, and easily understood.

Enter the specifications of the model cell

�
Topology

We start by using the Topology page to set up the branched architecture of the model.

As Fig. 1.7 shows, when a new CellBuilder is created, it already contains a branch (or

"section," as it is called in NEURON) that will serve as the root of the branched
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architecture of the model (the root of a tree is the branch that has no parent). This root

section is initially called "soma," but we can rename it if we desire (see below).

Figure 1.7. The Topology page. The left panel shows a simple diagram of the

model, which is called a "shape plot." The right panel contains many functions

for editing the branched architecture of a model cell.

The Topology page offers many functions for creating and editing individual sections

and subtrees. We can make the section that will become our apical dendrite by following

the steps presented in Fig. 1.8. Repeating these actions a couple more times (and

resorting to functions like Undo Last, Reposition, and Delete Section as needed to correct

mistakes) gives us the basilar dendrite and axon.
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Figure 1.8. Making a new section. Verify that the Make Section radio button is on, and then perform the

following steps.

Place the cursor near one end of an existing section. 

Click to start a new section. One end of the new section will automatically attach

to the nearest end of an existing section; the other end is tethered to the cursor

while the mouse button is held down.

Drag to the desired length and orientation. 

Release the mouse button.

Our model cell should now look like Fig. 1.9. At this point some minor changes

would improve its appearance: moving the labels away from the sections so they are

easier to read (Fig. 1.10), and then renaming the apical and basilar dendrites and the axon

(Figs. 1.11 and 12). The final result should resemble Fig. 1.13.

Figure 1.9. The model after all sections have been created.

Figure 1.10. To change the location of a label,

click on the Move Label radio button,

then click on the label,

drag it to its new position,

and release the mouse button.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 13



The NEURON Book: Chapter 1 November 25, 2004

Figure 1.11. Preparing to change the name of a section. Each section we created was automatically given

a name based on "dend." To change these names, we must first change the base name as shown here. 

Click the Basename button.

This pops up a Section name prefix window.

Click inside the text entry field of this new window, and type the

desired name. It is important to keep the mouse cursor inside the

text field while typing; otherwise keyboard entries may not have

an effect.

After the new base name is complete, click on the Accept button.

This closes the Section name prefix window, and the new base

name will appear next to the Basename button.

Figure 1.12. Changing the name of a section.

First make sure that the base name is what you want; if not, change the base name

(see Fig. 1.11).

Click the Change Name radio button.

Place the mouse cursor over the section whose name is to be changed.

Click the mouse button to change the name of the section.

Figure 1.13. The shape plot of the model with labels positioned and

named as desired.
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�
Subsets

As mentioned above, the Subsets page (Fig. 1.14) is for grouping sections that share

common features. Well-chosen subsets can save a lot of effort later by helping us create

very compact specifications of anatomical and biophysical properties. 

Figure 1.14. The Subsets page. The middle panel lists the names of all existing

subsets. In the shape plot, the sections that belong to the currently selected

subset are shown in red. When the Subsets page initially appears, it already has

an all subset that contains every section in the model.

The properties of the sections in this particular example suggest that we create two

subsets: one that contains the basilar and apical branches, which are passive, and another

that contains the soma and axon, which have Hodgkin-Huxley spike currents. To make a

subset called has_HH that contains the sections with HH currents, follow the steps in

Fig. 1.15. Then make another subset called no_HH that contains the basilar and apical

dendrites. 
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Figure 1.15. Making a new subset. 

With the Select One radio button on (Fig. 1.14), click on the

axon and soma sections while holding down the shift key. The

selected sections will be indicated in  red . . . 

. . . and the list of subsets will change to show that all is not the

same as the set { axon, soma} .

Next, click on the New SectionList button (a subset is a list of

sections). 

This pops up a window that asks you to enter a name for the new

SectionList.

Click inside the text entry field of this new window and type the

name of the new subset, then click on the Accept button.

The new subset name will appear in the middle panel of the

CellBuilder.

�
Geometry

In order to use the Geometry page (Fig. 1.16) to specify the anatomical dimensions of

the sections and the spatial resolution of our model, we must first set up a strategy for

assigning these properties. After we have built our (hopefully efficient) strategy, we will

give them specific values.

The geometry strategy for our model is simple. Each section has different dimensions,

so the length L and diameter diam of each section must be entered individually. However,

for each section we will let NEURON decide how fine to make the spatial grid, based on

a fraction of the length constant at 100 Hz (spatial accuracy and NEURON's tools for
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adjusting the spatial grid are discussed in Chapter 5). Figure 1.17 shows how to set up

this strategy.

Having set up the strategy, we are ready to assign the geometric parameters (see

Figs. 1.18 and 19).

Figure 1.16. When the Geometry page in a new CellBuilder is first viewed, a red

check mark should appear in the Specify Strategy checkbox. If not, clicking on

the checkbox will toggle Specify Strategy on.
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Figure 1.17. Specifying strategy for assignment of geometric parameters. First make sure that

Specify Strategy contains a red check (see Fig. 1.16). Then proceed with the following steps. 

For the all subset, toggle d_lambda on. 

Select soma in the middle panel, and then toggle L and diam on. 

Repeat for apical, basilar, and axon, and the result should

resemble this figure.

Figure 1.18. Assigning values to the geometric parameters. Toggling Specify Strategy

off makes the middle panel show only the subsets and sections that we selected

when setting up our strategy. Adjacent to each of these are the names of the

parameters that are to be reviewed and perhaps changed. Here the subset all is

selected; the right panel displays the current value of the parameter associated

with it (d_lambda) and offers us the means to change this parameter if

necessary. According to the d_lambda criterion for spatial resolution,
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NEURON will automatically discretize the model, breaking each section into 

compartments small enough that none will be longer than d_lambda at 100 Hz.

The default value of d_lambda is 0.1, i.e. 10% of the AC length constant. This

is short enough for most purposes, so we do not need to change it.

Discretization is discussed in Chapter 5.

Figure 1.19. Assigning values to the geometric parameters continued. 

The length and diameter of each section must

be changed from the default values.

To set the length of the soma to 30 µm, first

click inside the numeric field for L so that a red

editing cursor appears.

Then use the backspace key to delete the old

value, and finally type in the new value.

After doing the same for diam, the dimensions

of soma should look like this. The checkboxes

adjacent to the L and diam buttons indicate that

these parameters have been changed from their

default values. The x in the middle panel is

another reminder that at least one of the

parameters associated with soma has been

changed.

After adjusting L and diam for the dendrites and

the axon, the middle panel shows an x next to

the name of each section.
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�
Biophysics

The Biophysics page (Fig. 1.20) is used to insert biophysical properties of membrane

and cytoplasm (e.g. Ra, Cm, ion channels, buffers, pumps) into subsets and individual

sections. As with the Geometry page, first we set up our strategy (Fig. 1.21), and then we

review and adjust parameter values (Fig. 1.22). The CellBuilder will then contain a

complete specification of our model. 

Figure 1.20. The Biophysics page, ready for specification of strategy. The right panel

shows the mechanisms that are available to be inserted into our model. For this simple

example, the number of mechanisms is deliberately small; adding new mechanisms is

covered in Chapter 9: How to expand NEURON's library of mechanisms.
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Figure 1.21. Specifying strategy for assignment of biophysical parameters. First make sure that Specify

Strategy contains a red check, then proceed with the following steps. 

For the all subset, toggle Ra (cytoplasmic resistivity) and cm

(specific membrane capacitance) on. 

Select the has_HH subset in the middle panel, and then

toggle HH on. 

Finally select the no_HH subset and toggle pas on.
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Figure 1.22. Assigning values to the biophysical parameters. Toggling Specify Strategy off shows a list of

the names of the subsets that are part of the strategy. Beneath each subset are the names of the

mechanisms that are associated with it. Clicking on a mechanism brings up a set of controls in the right

panel for displaying and adjusting the parameters of the mechanism. 

For the subset all, change the value of Ra

from its default (80 Ω cm) to the desired

value of 100 Ω cm. 

The sections in the no_HH subset have a

passive current whose parameters must be

changed from their defaults (shown here). 

The value of g_pas can be set by deleting

the default and then typing 1/5000 

( = 1/Rm). 

The final values of g_pas and e_pas. Not

shown: cm (all subset) and the parameters

of the hh mechanism (has_HH subset),

which have the desired values by default

and do not need to be changed, although it

is good practice to review them.

Save the model cell

After investing time and effort to set up our model, we would be wise to take just a

moment to save it. The CellBuilder, like NEURON's other graphical windows, can be

saved to disk as a "session file" for future re-use, as shown in Figures 1.23 and 1.24. For

more information about saving and retrieving session files, including how to use the Print

Page 22 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 25, 2004 The NEURON Book: Chapter 1

& File Window Manager GUI tool to select and save specific windows, see Using

Session Files for Saving and Retrieving Windows at

http://www.neuron.yale.edu/neuron/docs/saveses/saveses.html

Figure 1.23. Top: To save all of NEURON's graphical windows into a session file, first

click on File in the NEURON Main Menu and scroll down to save session. Bottom left:

This brings up a directory browser that can be used to navigate to the directory where the

session file will be saved. Bottom right: Click in the edit field at the top of the directory

browser and type the name to use for the session file, then click on the Save button.
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Figure 1.24. Left: To recreate the graphical windows that were saved to a session file,

first click on File in the NEURON Main Menu and scroll down to load session. Right:

Use the directory browser that appears to navigate to the directory where the session file

was saved. Then double click on the session file that you want to retrieve.

Execute the model specification

Now that the CellBuilder contains a complete specification of the model cell, we

could use the Export button on the Management page (see Chapter 6) to write out a hoc

file that, when executed by NEURON, would create the model. However, for this

example we will just turn Continuous Create on (Fig. 1.25). This makes the CellBuilder

send its output directly to NEURON's interpreter without bothering to write a hoc file.

The model cell whose specifications are contained in the CellBuilder is now available to

be used in simulations.

Figure 1.25. Continuous Create is initially off,

but clicking on the adjacent button toggles it on

and off.
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If we make any changes to the model while Continuous Create is on, the CellBuilder

will automatically send new code to the interpreter. This can be very convenient during

model development, since it allows us to quickly examine the effects of any change.

Automatic updates might bog things down if we were dealing with a large model on a

slow machine. In such a case, we could just turn Continuous Create off, make whatever

changes were necessary, and then cycle it on and off again.

4. Instrument the model

Signal sources

In the NEURON simulation environment, a synapse or electrode for passing current

(current clamp or voltage clamp) is represented by a point source of current which is

associated with a localized conductance. These signal sources are called "point

processes" to distinguish them from properties that are distributed over the cell surface

(e.g. membrane capacitance, active and passive ionic conductances) or throughout the

cytoplasm (e.g. buffers), which are called "distributed mechanisms" or "density

mechanisms."

We have already seen how to use one of NEURON's graphical tools for dealing with

distributed mechanisms (the CellBuilder). To attach a synapse to our model cell, we turn

to one of NEURON's tools for dealing with point processes: the PointProcessManager

(Fig. 1.26). Using a PointProcessManager we can specify the type and parameters of the

point process (Fig. 1.27) and where it is attached to the cell.
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Figure 1.26. Bringing up a PointProcessManager in order to attach a synapse to

our model cell. In the NEURON Main Menu, click on Tools / Point Processes /

Managers / Point Manager, then proceed as shown in Fig. 1.27.

Figure 1.27. Configuring a new PointProcessManager to emulate a synapse.

A. Note the labels in the top panel. None means that a signal

source has not yet been created. The bottom panel shows a stick

figure of our model cell. 

B. SelectPointProcess / AlphaSynapse creates a point process

that emulates a synapse with a conductance change governed by

Eq. 1.1, and shows us a panel for adjusting its parameters. 
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C. The top panel of the PointProcessManager indicates what kind

of point process has been specified, and where it is located (in this

case, at the midpoint of the soma). The bottom panel shows the

parameters of an AlphaSynapse: its start time onset and time

constant tau (tact and τs in Eq. 1.1), peak conductance gmax (gmax

in Eq. 1.1), and reversal potential e (Es in Table 1.2). The button

marked i (nA) is just a label for the adjacent numeric field, which

displays the instantaneous synaptic current.

D. For this example change onset to 0.5 ms and gmax to 0.05 µS;

leave tau and e unchanged.

Signal monitors

Since one motivation for the model is to examine how synaptic responses observed at

the soma vary with synaptic location, we want a graph that shows the time course of

somatic membrane potential. In the laboratory this would ordinarily require attaching an

electrode to the soma, so in a NEURON simulation it might seem to require a point

process. However, the computer automatically evaluates somatic Vm in the course of a

simulation. In other words, graphing Vm doesn't really change the system, unlike

attaching a signal source, which adds new equations to the system. This means that a
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point process is not needed; instead, we just bring up a graph that includes somatic Vm in

the list of variables that it plots (see Fig. 1.28).

We could monitor Vm at other locations by adding more variables to this graph, and

bring up additional graphs if this one became too crowded. However, it can be more

informative and convenient to create a "space plot" (Fig. 1.29), which shows Vm as a

function of position along one or more branches of a cell. This graph will change

throughout the simulation run, displaying the evolution of Vm as a function of space and

time.

Figure 1.28. Creating a graph to display somatic membrane potential as a function of time. 

A. Click on Graph / Voltage axis in the

NEURON Main Menu. 

B. In the graph that appears, the horizontal axis is

in milliseconds and the vertical axis is in

millivolts. The label v(.5) signifies that this graph

will show Vm at the middle of the default section.

With the CellBuilder, this is always the root

section, which in this example is the soma (the

concepts of "root section" and "default section"

are discussed in Chapter 5.
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Figure 1.29. Setting up a space plot. 

A. The first step is to create a Shape plot by clicking

on Graph / Shape plot in the NEURON Main Menu. 

B. This brings up a Shape plot window, which is

used to create the space plot.

C. Right click in the Shape plot window to bring up

its primary menu. While still pressing the mouse

button, scroll down the menu to the Space Plot item,

then release the button.

D. Place the cursor just to the left of the distal end

of the axon and press the left mouse button. 
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E. While still holding the button down, drag the

cursor across the window to the right, finally

releasing the button when the cursor has passed the

distal end of the apical dendrite.

F. The branches along the selected path (axon,

soma, and apical dendrite) are now shown in red,

and a new graph window appears (see G). If you

like, you may now click on the Close button at the

upper left corner of the shape plot window to

conserve screen space 

G. The x axis of the Space Plot window shows the

distance from the 0 end of the default section, which

in this example is the left end of the soma.

5. Set up controls for running the simulation

At this point we have a model cell with a synapse attached to the soma, and a

graphical display of somatic Vm. All that is missing is a means to start and control the

subsequent course of a simulation run. This is provided by the RunControl window

(Fig. 1.30), which allows us to specify many more options than we will use in this

example. 
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6. Save model with instrumentation and run control

After rearranging the RunControl, PointProcessManager, and graph window, our 

customized user interface for running simulations and observing simulation results should

look something like Fig. 1.31. For the sake of safety and possible future convenience, it is

a good idea to use NEURON Main Menu / File / Save Session to save this custom GUI to

a session file. 

Figure 1.30. Left: To bring up a window with controls for running simulations,

click on the RunControl button in NEURON Main Menu / Tools. Right: The

RunControl window provides many options for controlling the overall time

course of a simulation run. For this example, only three of these controls are

relevant.
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1. Init (mV) sets time t to 0, assigns the displayed starting value (-65 mV) to Vm

throughout the model cell, and sets the ionic conductances to their their steady

state values at this potential.

2. Init & Run performs the same initialization as Init (mV), and then starts a

simulation run.

3. Points plotted/ms determines how often the graphical displays are updated

during a simulation.

Three other items in this panel are of obvious interest, although we will not do

anything with them in this example. The first is dt, which sets the size of the

time intervals at which the equations that describe the model are solved. The

second is Tstop, which specifies the duration of a simulation run. Finally, the

button marked t doesn't actually do anything but is just a label for the adjacent

numeric field, which displays the elapsed simulation time. Additional features

of the RunControl window are discussed in Chapter 7: How to control

simulations.
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Figure 1.31. The windows we will use to run simulations and observe simulation results. Other

windows that are present on the screen but not shown in this figure are the NEURON Main Menu and

the CellBuilder. 

7. Run the simulation experiment

We are now ready to use our "virtual experimental rig" to exercise the model. When

we run a simulation with the synapse located at the soma (Fig. 1.32 and 33), a spike is
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triggered. However, if we move the synapse even a small distance away from the soma

along the apical dendrite (Fig. 1.34) and run a new simulation, the epsp is too small to

evoke a spike (Fig. 1.35).

The utility of the space plot as a tool for understanding the temporal evolution of Vm

throughout the cell can be enhanced by using it like a storage oscilloscope, as shown in

Fig. 1.36. This allows us to compare the distribution of Vm at successive intervals during

a run. It might be helpful to do something similar with the plot of somatic Vm vs. t if we

wanted to compare responses to synaptic inputs with different parameters or locations.

Figure 1.32. Running a simulation. 
A. Press Init & Run in the RunControl window to launch a simulation.

B. This makes time t advance from 0 . . .

. . . to 5 ms in 0.025 ms increments. The response of the model is shown in Fig.

1.33.
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Figure 1.33. Snapshots of the space plot (top) and the graph of Vm vs. t at the soma (bottom) taken at 1 ms

intervals. Synaptic input at the soma triggers a spike that propagates actively along the axon and spreads

with passive decrement into the apical dendrite.
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Figure 1.34. Changing synaptic location.

A. In the top panel of the PointProcessManager, click on Show

and scroll down to Shape. 

B. The top panel remains unchanged, but the bottom panel of the

PointProcessManager now displays a shape plot of the cell, with

a blue dot that indicates the location of the synapse.

C. Clicking on a different point in the shape plot moves the

synapse to a new location. This change is reflected in the top and

bottom panels of the PointProcessManager.

Figure 1.35. Pressing Init & Run starts a new

simulation. Even though the synapse is still quite

close to the soma, the somatic depolarization is

now too small to trigger a spike (space plot not

shown).
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Figure 1.36. A. Activating "keep lines" can help

visualize the evolution of Vm more clearly. Right

click in the space plot window to bring up its primary

menu, then scroll down to Keep Lines and release the

mouse button. The next time the primary graph menu

is examined, a red check mark will appear next to

this item as an  indication that keep lines has been

toggled on (Fig. 1.37 A).

B. To keep the graph from filling up with an opaque

tangle of lines, we should make sure the stored traces

will be sufficiently different from each other.

Plotting only 5 traces per millisecond will do the

trick for this example (leave dt = 0.025 ms).

C. Now pressing Init & Run generates a set of traces

that facilitate a close examination of the process of

excitation and impulse conduction over the model. 

For this example the synapse was at the middle of the

soma (soma(0.5)). Before running another simulation

with a different synaptic location, it would be a good

idea to erase these traces (see Fig. 1.37).
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Figure 1.37. How to erase traces. 

A. Bring up the primary graph menu and scroll down

to Erase.

B. The traces will disappear when the mouse button

is released. Since keep lines is active, running

another simulation will generate a new set of traces.

8. Analyze results

In this section we turn from our specific example to a consideration of the analysis of

results. Models are generally constructed either for didactic purposes or as a means for

testing a hypothesis. The design and analysis of any model are both strongly dependent

on this original motivation, which determines what features are included in the model,

what variables are regarded as important enough to measure, and how these

measurements are to be interpreted.

While computational models are arguably simpler than any (interesting) experimental

preparation, analysis of simulation results presents its own special problems. In the first
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place, attempting to use a digital computer to mimic the behavior of a biological system

introduces many potential complexities and artifacts. Some arise from the fact that

neurons are continuous in space and time, but a digital computer can only generate

approximate solutions for a finite number of discrete locations at particular instants. Even

so, under the right conditions the approximation can be very good indeed. Furthermore, a

well-designed simulation environment can reduce the difficulty of achieving good results.

Other difficulties can arise if there is a mismatch between the expectations of the user

and the level of detail that has been included in a model. For example, the most widely

used computational model of a conductance change synapse is designed to do the same

thing each and every time it is "activated," yet most real synapses display many kinds of

use-dependent plasticity, and many also have a high degree of stochastic variability. And

even the venerable Hodgkin-Huxley model (Hodgkin and Huxley 1952), which is

probably the classical success story of computational neuroscience, does not replicate all

features of the action potential in the squid giant axon, because it does not completely

capture the dynamics of the currents that generate the spike (Moore and Cox 1976;

Fohlmeister et al. 1980; Clay and Shlesinger 1982). Such discrepancies are potentially a

problem only if a user who is unaware of their existence attempts to apply a model

outside of its original context.

The first analysis that is required of all computational modeling is actually the

verification that what has been implemented in the computer is a faithful representation

of the conceptual model. At the least, this involves checking to be sure that the intended

anatomical and biophysical features have been included, that parameters have been

assigned the desired values, and that appropriate initialization and integration methods
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have been chosen. It may also be necessary to test the model's biophysical mechanisms to

ensure that they show the correct dependence on time, membrane potential, ionic

concentrations, and modulators. This means understanding the internals of the

computational model, which in turn demands a nontrivial grasp of the programming

language in which it is expressed. A custom graphical interface that includes well-

designed menus and "variable browsers" can make it easier to answer the frequently

occurring question "what are the names of things?" Even so, every simulation

environment is predicated on a set of underlying concepts and assumptions, and questions

inevitably arise that can only be answered on the basis of knowledge of these core

concepts and assumptions.

Verification should also involve the qualitative, if not quantitative, comparison of

simulation results with basic predictions obtained from experimental observations on

biological preparations or generated with prior models. Discrepancies between prediction

and simulation are usually caused by trivial errors in model implementation, but

sometimes the fault lies in the prediction. Detecting these more interesting outcomes

requires practical facility with the simulation environment, so that the level of effort does

not obscure one's thinking about the problem.

Agreement between prediction and simulation is reassuring and suggests that the

model itself may be useful for generating experimentally-testable predictions. Thus the

effort shifts from verifying the model to characterizing its behavior in ways that extend

beyond the initial test runs. Both verification and characterization of neural models may

entail determining not only membrane potential but also rate functions, levels of

modulators, and ionic conductances, currents, and concentrations at one or more locations
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in one or more cells. Thus it is necessary to be able to gather and manage measurements,

both within a single simulation run and across a family of runs in which one or more

independent variables are assigned different values.

Similar concerns arise in connection with optimization, in which one or more

parameters are adjusted until the behavior of the model satisfies certain criteria.

Optimization also opens a host of new questions whose answers depend in part on the

user's judgment, and in part on the resources provided by the simulation environment.

Which parameters should remain fixed and which should be adjustable? What constitutes

a "run" of the model? What are the criteria for goodness of fit? What constraints, if any,

should be imposed on adjustable parameters, and what rules should govern how they are

adjusted?

In summary, analysis of results can be the most difficult aspect of any experiment,

whether it was performed on living neurons or on a computer model, yet it can also be the

most rewarding. The issues raised here are critical to the informed use of any simulation

environment, and in the following chapters we will reexamine them in the course of

learning how to develop and exercise models with NEURON.
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