
November 23, 2004 The NEURON Book: Chapter 9

Chapter 9
How to expand NEURON's library of mechanisms

Neuronal function involves the interaction of electrical and chemical signals that are
distributed in time and space. The mechanisms that generate these signals and regulate
their interactions are marked by a wide diversity of properties, differing across neuronal
cell class, developmental stage, and species (e.g. chapter 7 in (Johnston and Wu 1995);
also see (McCormick 1998)). To be useful in research, a simulation environment must
provide a flexible and powerful means for incorporating new biophysical mechanisms in
models. It must also help the user remain focused on the model instead of programming.

Such a means is provided to NEURON by NMODL, a high level language that was
originally implemented for NEURON by Michael Hines and later extended by him and
Upinder Bhalla to generate code suitable for linking with GENESIS (Wilson and Bower
1989). This chapter shows how to use NMODL to represent biophysical mechanisms by
presenting a sequence of increasingly complex examples.

Overview of NMODL
A brief overview of how NMODL is used will clarify its rationale. First one writes a

text file (a "mod file") that describes a mechanism as a set of nonlinear algebraic
equations, differential equations, or kinetic reaction schemes. The description employs a
syntax that closely resembles familiar mathematical and chemical notation. This text is
passed to a translator that converts each statement into many statements in C,
automatically generating code that handles details such as mass balance for each ionic
species and producing code suitable for each of NEURON's integration methods. The
output of the translator is then compiled for computational efficiency. This achieves
tremendous conceptual leverage and savings of effort, not only because the high level
mechanism specification is much easier to understand and far more compact than the
equivalent C code, but also because it spares the user from having to bother with low
level programming issues like how to "interface" the code with other mechanisms and
with NEURON itself.

NMODL is a descendant of the MOdel Description Language (MODL (Kohn et al.
1994)), which was developed at Duke University by the National Biomedical Simulation
Resource project for the purpose of building models that would be exercised by the
Simulation Control Program (SCoP (Kootsey et al. 1986)). NMODL has the same basic
syntax and style of organizing model source code into named blocks as MODL. Variable
declaration blocks, such as PARAMETER, STATE, and ASSI GNED, specify names and
attributes of variables that are used in the model. Other blocks are directly involved in
setting initial conditions or generating solutions at each time step (the equation definition

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Book: Chapter 9 November 23, 2004

blocks, e.g. I NI TI AL, BREAKPOI NT, DERI VATI VE, KI NETI C, FUNCTI ON,
PROCEDURE). Furthermore, C code can be inserted inside the model source code to
accomplish implementation-specific goals.

NMODL recognizes all the keywords of MODL, but we will address only those that
are relevant to NEURON simulations. We will also examine the changes and extensions
that were necessary to endow NMODL with NEURON-specific features. To give these
ideas real meaning, we will consider them in the context of models of the following kinds
of mechanisms:

� a passive "leak" current and a localized transmembrane shunt (distributed mechanisms
vs. point processes)

� an electrode stimulus (discontinuous parameter changes with variable time step
methods)

� voltage-gated channels (differential equations vs. kinetic schemes)
� ion accumulation in a restricted space (extracellular K+)
� buffering, diffusion, and active transport (Ca2+ pump)

Features of NMODL that are used in models of synaptic transmission and networks are
examined in Chapter 10.

Example 9.1: a passive " leak"  current
A passive "leak" current is one of the simplest biophysical mechanisms. Because it is

distributed over the surface of a cell, it is described in terms of conductance per unit area
and current per unit area, and therefore belongs to the class of "density" or "distributed
mechanisms" (see Distributed mechanisms in Chapter 5). 

Figure 9.1

Figure 9.1 illustrates a branch of a neuron with a distributed leak current (left) and the
equivalent circuit of a model of this passive current mechanism (right): a distributed,
voltage-independent conductance gleak in series with a voltage source Eleak that

represents the equilibrium potential for the ionic current. The leak current density is given
by ileak = gleak (Vm - Eleak), where Vm is membrane potential. Since this is a model of a

physical system that is distributed in space, the variables i leak and Vm and the parameters

gleak and Eleak are all functions of position. 

Page 2 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 23, 2004 The NEURON Book: Chapter 9

Listing 9.1 presents an implementation of this mechanism with NMODL. Single line
comments start with a : (colon) and terminate at the end of the line. NMODL also allows
multiple line comments, which are demarcated by the keywords COMMENT and
ENDCOMMENT. 

COMMENT
Thi s i s  a
mul t i pl e l i ne
comment
ENDCOMMENT

A similar syntax can be used to embed C code in a mod file, e.g.

VERBATI M
/ *  C st at ement s * /

ENDVERBATI M

The statements between VERBATI M and ENDVERBATI M will appear without change in the
output file written by the NMODL translator. Although this should be done only with
great care, VERBATI M can be a convenient and effective way to add new features or even
to employ NEURON as a "poor man's C compiler."

:  A passi ve l eak cur r ent

NEURON {
  SUFFI X l eak
  NONSPECI FI C_CURRENT i
  RANGE i ,  e,  g
}

PARAMETER {
  g = 0. 001  ( si emens/ cm2)   < 0,  1e9 >
  e = - 65    ( mi l l i vol t )
}

ASSI GNED {
  i   ( mi l l i amp/ cm2)
  v  ( mi l l i vol t )
}

BREAKPOI NT {  i  = g* ( v -  e)  }

Listing 9.1. l eak. mod

Named blocks have the general form KEYWORD {  statements } , where KEYWORD
is all upper case. User-defined variable names in NMODL can be up to 20 characters
long. Each variable must be defined before it is used. The variable names chosen for this
example were i , g, and e for the leak current, its specific conductance, and its
equilibrium potential, respectively. Some variables are not "owned" by any mechanism
but are available to all mechanisms; these include v , cel s i us , t , di am, and ar ea.

Another variable that is available to all mechanisms is dt . However, using dt  in
NMODL is neither necessary nor good practice. Before variable time step methods were
added to NEURON, analytic expressions involving dt  were often used for efficient
modeling of voltage sensitive channel states. This idiom is now built-in and employed
automatically when such models are described in their underlying derivative form.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3



The NEURON Book: Chapter 9 November 23, 2004

The NEURON block
The principal extension that differentiates NMODL from its MODL origins is that

there are separate instances of mechanism data, with different values of states and
parameters, in each segment (compartment) of a model cell. The NEURON block was
introduced to make this possible by defining what the model of the mechanism looks like
from the "outside" when many instances of it are sprinkled at different locations on the
cell. The specifications entered in this block are independent of any particular simulator,
but the detailed "interface code" requirements of a particular simulator determine whether
the output C file is suitable for NEURON (NMODL) or GENESIS (GMODL). For this
paper, we assume the translator is NMODL and that it produces code accepted by
NEURON.

The actual name of the current NMODL translator is nocmodl  (nocmodl . exe under
MSWindows). This translator is consistent with the object oriented extensions that were
introduced with version 3 of NEURON. However, the older translator, which predated
these extensions, was called nmodl , and we will use the generic name NMODL to refer
to NEURON compatible translators.

The SUFFI X keyword has two consequences. First, it identifies this to be a distributed
mechanism, which can be incorporated into a NEURON cable section by an i nser t
statement (see Usage below). Second, it tells the NEURON interpreter that the names for
variables and parameters that belong to this mechanism will include the suffix _l eak , so
there will be no conflict with similar names in other mechanisms.

The stipulation that i  is a NONSPECI FI C_CURRENT also has two consequences. First,
the value of i  will be reckoned in charge balance equations. Second, this current will
make no direct contribution to mass balance equations (it will have no direct effect on
ionic concentrations). In later examples, we will see how to implement mechanisms with
specific ionic currents that can change concentrations.

The RANGE statement asserts that i , e, and g are range variables, and can be accessed
by the hoc  interpreter using range variable syntax (see Range and range variables in
Chapter 5). That is, each of these variables is a function of position, and can have a
different value in each of the segments that make up a section. Each variable mentioned
in a RANGE statement should also be declared in a PARAMETER or ASSI GNED block. The
alternative to RANGE is GLOBAL, which is discussed below in The PARAMETER block.

Membrane potential v  is not mentioned in the NEURON block because it is one of the
variables that are available to all mechanisms, and because it is a RANGE variable by
default. However, for model completeness in non-NEURON contexts, and to enable units
checking, v  should be declared in the ASSI GNED block (see below).

Variable declaration blocks
As noted above, each user-defined variable must be declared before it is used. Even if

it is named in the NEURON block, it still has to appear in a variable declaration block.

Page 4 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 23, 2004 The NEURON Book: Chapter 9

Mechanisms frequently involve expressions that mix constants and variables whose
units belong to different scales of investigation and which may themselves be defined in
terms of other, more "fundamental" units. This can easily produce arithmetic errors that
are difficult to isolate and rectify. Therefore NMODL has special provisions for
establishing and maintaining consistency of units. To facilitate units checking, each
variable declaration includes a specification of its units in parentheses. The names used
for these specifications are defined in a file called nr nuni t s. l i b, which is based on the
UNIX units database (/ usr / shar e/ uni t s. dat  in Linux). nr nuni t s. l i b is located
in nr n- x. x / shar e/ l i b/  under UNIX/Linux, and c: \ nr nxx\ l i b\  under
MSWindows). A variable whose units are not specified is taken to be dimensionless. 

The user may specify whatever units are appropriate except for variables that are
defined by NEURON itself. These include v  (millivolts), t  (milliseconds), cel s i us

(ºC), di am (µm), and ar ea (µm2). Currents, concentrations, and equilibrium potentials
created by the USEI ON statement also have their own particular units (see The NEURON
block in Example 9.6: extracellular potassium accumulation below). In this
particular distributed mechanism, i  and g are given units of current per unit area
(milliamperes/cm2) and conductance per unit area (siemens/cm2), respectively. 

The PARAMETER block

Variables whose values are normally specified by the user are parameters, and are
declared in a PARAMETER block. PARAMETERs generally remain constant during a
simulation, but they can be changed in mid-run if necessary to emulate some external
influence on the characteristic properties of a model (see Models with discontinuities
and Time-dependent PARAMETER changes near the end of this chapter)

The PARAMETER block in this example assigns default values of 0.001 siemens/cm2

and -65 mV to g and e, respectively. The pair of numbers in angle brackets specifies the 
minimum and maximum limits for g that can be entered into the field editor of the GUI.
In this case, we are trying to keep conductance g from assuming a negative value. This
protection, however, only holds for field editors and does not prevent a hoc  statement
from giving g a negative value.

Because g and e are PARAMETERs, their values are visible at the hoc level and can be
overridden by hoc  commands or altered through the GUI. If a PARAMETER does not
appear in a NEURON block's RANGE statement, it will have GLOBAL scope, which means
that changing its value will affect every instance of that mechanism throughout an entire
model. However, the RANGE statement in the NEURON block of this particular mechanism
asserts that g and e are range variables, so they can be given different values in every
segment that has this leak current.

The ASSIGNED block

The ASSI GNED block is used to declare two kinds of variables: those that are given
values outside the mod file, and those that appear on the left hand side of assignment
statements within the mod file. The first group includes variables that are potentially
available to every mechanism, such as v, cel s i us , t , and ionic variables (ionic

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 5



The NEURON Book: Chapter 9 November 23, 2004

variables are discussed in connection with The NEURON block in Example 9.6:
extracellular potassium accumulation below). The second group specifically omits
variables that are unknowns in a set of simultaneous linear or nonlinear algebraic
equations, or that are dependent variables in differential equations or kinetic reaction
schemes, which are handled differently (see Example 9.4: a voltage-gated current
below for a discussion of the STATE block).

By default, a mechanism-specific ASSI GNED variable is a range variable, in that it
can have a different value for each instance of the mechanism. However, it will not be 
visible at the hoc  level unless it is declared in a RANGE or GLOBAL statement in the
NEURON block. This contrasts with ASSI GNED variables that are not "owned" by any
mechanism (v, cel s i us , t , dt , di am, and ar ea) which are visible at the hoc level but
are not mentioned in the NEURON block.

The current i  is not a state variable because the model of the leak current mechanism
does not define it in terms of a differential equation or kinetic reaction scheme; that is to
say, i  has no dynamics of its own. Furthermore it is not an unknown in a set of equations,
but is merely calculated by direct assignment. Therefore it is declared in the ASSI GNED
block.

For similar reasons membrane potential v is also declared in the ASSI GNED block.
Although membrane potential is unquestionably a state variable in a model of a cell, to
the leak current mechanism it is a driving force rather than a state variable (or even a
STATE variable).

Equation definition blocks
One equation suffices to describe this simple leak current model. This equation is

defined in the BREAKPOI NT block. As we shall see later, more complicated models may
require invoking NMODL's built-in routines to solve families of simultaneous algebraic
equations or perform numeric integration.

The BREAKPOINT block

The BREAKPOI NT block is the main computation block in NMODL. Its name derives
from SCoP, which executes simulations by incrementing an independent variable over a
sequence of steps or "breakpoints" at which the dependent variables of the model are
computed and displayed (Kohn et al. 1994). At exit from the BREAKPOI NT block, all
variables should be consistent with the independent variable. The independent variable in
NEURON is always time t , and neither t  nor the time step dt  should be changed in
NMODL. 

Usage
The following hoc  code illustrates how this mechanism might be used. Note the use

of RANGE syntax to examine the value of i _l eak  near one end of cabl e.

Page 6 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 23, 2004 The NEURON Book: Chapter 9

cabl e {
  nseg = 5
  i nser t  l eak
  / /  over r i de def aul t s
  g_l eak = 0. 002  / /  S/ cm2
  e_l eak = - 70    / /  mV
}

/ /  show l eak cur r ent  densi t y near  0 end of  cabl e
pr i nt  cabl e. i _l eak( 0. 1)

The l eak  mechanism automatically appears with the other distributed mechanisms in
GUI tools such as the Distributed Mechanism Inserter (Fig. 9.2). This is a consequence of
interface code that is generated by the NMODL compiler when it parses the definitions in
the NEURON block.

Figure 9.2. Compiling the leak mechanism automatically makes it available
through NEURON's graphical user interface, as in this Distributed Mechanism
Inserter (brought up by NEURON Main Menu / Tools / Distributed Mechanisms /
Managers / Inserter). The check mark signifies that the l eak  mechanism has
been inserted into the section named cabl e.

Example 9.2: a localized shunt
At the opposite end of the spatial scale from a distributed passive current is a

localized shunt induced by microelectrode impalement  (Durand 1984; Staley et al.
1992). A shunt is restricted to a small enough region that it can be described in terms of a
net conductance (or resistance) and total current, i.e. it is a point process (see Point
processes in Chapter 5). Most synapses are also best represented by point processes.

Figure 9.3

The localized nature of the shunt is emphasized in a cartoon of the neurite (Fig. 9.3
left). The equivalent circuit of the shunt (right) is similar to the equivalent circuit of the

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 7



The NEURON Book: Chapter 9 November 23, 2004

distributed leak current (Fig. 9.1 right), but here the resistance and current are understood
to be concentrated in a single, circumscribed part of the cell. We will focus on how the
NMODL code for this localized shunt (Listing 9.2) differs from the leak distributed
mechanism of Example 9.1.

The NEURON block
The POI NT_PROCESS statement in the NEURON block identifies this mechanism as a

point process, so it will be managed in hoc  using an object oriented syntax (see Usage
below). Declaring i , e, and r  to be RANGE means that each instance of this point process
can have separate values for these variables. If a variable is declared in a GLOBAL
statement, then its value is shared among all instances of the mechanism (however, see
Equation definition blocks: The DERIVATIVE block in Example 9.5: a calcium-
activated, voltage-dependent current).

Variable declaration blocks
These are nearly identical to the PARAMETER and ASSI GNED blocks of the l eak

mechanism. However, Shunt  is a point process so all of its current flows at one site
instead of being distributed over an area. Therefore its i  and r  are in units of
nanoamperes (total current) and gigaohms (0.001 / total conductance in microsiemens),
respectively.

This code specifies default values for the PARAMETERs r  and e. Allowing a minimum
value of 10-9 for r  prevents an inadvertent divide by 0 error (infinite conductance) by
ensuring that a user cannot set r  to 0 in its GUI field editor. However, as we noted in the
l eak  model, the <minval,  maxval> syntax does not prevent a hoc  statement from
assigning r  a value outside of the desired range.

:  A shunt  cur r ent

NEURON {
  POI NT_PROCESS Shunt
  NONSPECI FI C_CURRENT i
  RANGE i ,  e,  r
}

PARAMETER {
  r  = 1 ( gi gaohm)   < 1e- 9,  1e9 >
  e = 0 ( mi l l i vol t )
}

ASSI GNED {
  i   ( nanoamp)
  v  ( mi l l i vol t )
}

BREAKPOI NT {  i  = ( 0. 001) * ( v  -  e) / r  }

Listing 9.2. shunt . mod

Page 8 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 23, 2004 The NEURON Book: Chapter 9

Equation definition blocks
Like the leak current mechanism, the shunt mechanism is extremely simple and

involves no state variables. Its single equation is defined in the BREAKPOI NT block.

The BREAKPOINT block

The sole "complication" is that computation of i  includes a factor of 0.001 to
reconcile the units on the left and right hand sides of this assignment (nanoamperes vs.
millivolts divided by gigaohms). The parentheses surrounding this conversion factor are a
convention for units checking: they disambiguate it from mere multiplication by a
number. When the NMODL code in Listing 9.2 is checked with NEURON's modl uni t
utility, no inconsistencies will be found.

[ t ed@f ant om dshunt ] $ modl uni t  shunt . mod 
model    1. 1. 1. 1   1994/ 10/ 12 17: 22: 51
Checki ng uni t s  of  shunt . mod
[ t ed@f ant om dshunt ] $ 

However if the conversion factor were not enclosed by parentheses, there would be an
error message that reports inconsistent units.

[ t ed@f ant om dshunt ] $ modl uni t  shunt . mod 
model    1. 1. 1. 1   1994/ 10/ 12 17: 22: 51
Checki ng uni t s  of  shunt . mod
The pr evi ous pr i mar y expr essi on wi t h uni t s :  1- 12 coul / sec
i s  mi ss i ng a conver s i on f act or  and shoul d r ead:
  ( 0. 001) * ( )
 at  l i ne 20 i n f i l e shunt . mod
        i  = 0. 001* ( v -  e) / r <<ERROR>>
[ t ed@f ant om dshunt ] $ 

An error message would also result if parentheses surrounded a number which the user
intended to be a quantity, since the units would be inconsistent. 

The simple convention of enclosing single numbers in parentheses to signify units
conversion factors minimizes the possibility of mistakes, either by the user or by the
software. It is important to note that expressions that involve more than one number, such
as "(1 + 1)", will not be interpreted as units conversion factors.

Usage
This hoc  code illustrates how the shunt mechanism might be applied to a section

called cabl e; note the object syntax for specifying the shunt resistance and current (see
Point processes in Chapter 5).

obj r ef  s
cabl e s  = new Shunt ( 0. 1)  / /  put  near  0 end of  cabl e
s. r  = 0. 2 / /  pr et t y  good f or  a shar p el ect r ode
pr i nt  s . i  / /  show shunt  cur r ent

The definitions in the NEURON block of this particular model enable NEURON's
graphical tools to include the Shunt  object in the menus of its PointProcessManager and
Viewer windows (Fig. 9.4). The check mark on the button adjacent to the numeric field

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 9



The NEURON Book: Chapter 9 November 23, 2004

for r  indicates that the shunt resistance has been changed from its default value (0.2
gigaohm when the shunt was created by the hoc  code immediately above) to 0.1
gigaohm.

Figure 9.4. The properties of a specific instance of the Shunt  mechanism are
displayed in this Point Process Viewer (brought up by NEURON Main Menu /
Tools / Point Processes / Viewers / PointProcesses / Shunt and then selecting
Shunt [ 0]  from the displayed list).

Example 9.3: an intracellular stimulating electrode
An intracellular stimulating electrode is similar to a shunt in the sense that both are

localized sources of current that are modeled as point processes. However, the current
from a stimulating electrode is not generated by an opening in the cell membrane, but
instead is injected directly into the cell. This particular model of a stimulating electrode
(Listing 9.3) has the additional difference that the current changes discontinuously, i.e. it
is a pulse with distinct start and stop times.

The NEURON block
This mechanism is identical to NEURON's built-in I Cl amp. Calling it I Cl amp1

allows the reader to test and modify it without conflicting with the existing I Cl amp point
process.

This model of a current clamp generates a rectangular current pulse whose amplitude
amp in nanoamperes, start time del  in milliseconds, and duration dur  in milliseconds are
all adjustable by the user. Furthermore, these parameters need to be individually
adjustable for each separate instance of this mechanism, so they appear in a RANGE
statement.

The current i  delivered by I Cl amp1 is declared in the NEURON block to make it
available for examination. The ELECTRODE_CURRENT statement has two important
consequences: positive values of i  will depolarize the cell (in contrast to the
hyperpolarizing effect of positive transmembrane currents), and when the 
ext r acel l ul ar  mechanism is present there will be a change in the extracellular
potential vext .

Page 10 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 23, 2004 The NEURON Book: Chapter 9

Equation definition blocks

The BREAKPOINT block

The logic for deciding whether i  = 0 or i  = amp is straightforward, but the at _t i me( )
calls need explanation. From the start we wish to emphasize that at _t i me( )  has become
a "deprecated" function, i.e. it still works but it should not be used in future model
development. We bring it up here because you may encounter it in legacy code.
However, NEURON's event delivery system (see Chapter 10) provides a far better way
to implement discontinuities.

To work properly with variable time step methods, e.g. CVODE, models that change
parameters discontinuously during a simulation must notify NEURON when such events
take place. With fixed time step methods, users implicitly assume that events occur on
time step boundaries (integer multiples of dt ), and they would never consider defining a
pulse duration narrower than dt . Neither eventuality can be left to chance with variable
time step methods. 

When this mechanism is used in a variable time step simulation, the first at _t i me( )
call guarantees there will be a time step boundary just before del , and that integration
will restart from a new initial condition just after del  (see Models with discontinuities
near the end of this chapter for more details). 

:  Cur r ent  cl amp

NEURON {
  POI NT_PROCESS I Cl amp1
  RANGE del ,  dur ,  amp,  i
  ELECTRODE_CURRENT i
}

UNI TS {  ( nA)  = ( nanoamp)  }

PARAMETER {
  del  ( ms)
  dur  ( ms)   < 0,  1e9 >
  amp ( nA)
}

ASSI GNED {  i  ( nA)  }

I NI TI AL {  i  = 0 }

BREAKPOI NT {
  at _t i me( del )
  at _t i me( del +dur )
  i f  ( t  < del  + dur  && t  > del )  {
    i  = amp
  }  el se {
    i  = 0
  }
}

Listing 9.3. i c l amp1. mod

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 11



The NEURON Book: Chapter 9 November 23, 2004

The INITIAL block

The code in the I NI TI AL block is executed when the standard run system's
f i ni t i al i ze( )  is called. The initialization here consists of making sure that
I Cl amp1. i  is 0 when t  = 0. Initialization of more complex mechanisms is discussed
below in Example 9.4: a voltage-gated current and Example 9.6: extracellular
potassium accumulation, and Chapter 8 considers the topic of initialization from a
broader perspective.

Usage
Regardless of whether a fixed or variable time step integrator is chosen, I Cl amp1

looks the same to the user. In either case, a current stimulus of 0.01 nA amplitude that
starts at t  = 1 ms and lasts for 2 ms would be created by this hoc  code 

obj r ef  cc l
/ /  put  at  mi ddl e of  soma
soma cc l  = new I Cl amp1( 0. 5)
cc l . del  = 1
cc l . dur  = 2
cc l . amp = 0. 01

or through the PointProcessManager GUI tool (Fig. 9.5).

Figure 9.5. A PointProcessManager configured as an I c l amp1 object.

Example 9.4: a voltage-gated current
One of the particular strengths of NMODL is its flexibility in dealing with ion

channels whose conductances are not constant but instead are regulated by factors such as
membrane potential and/or ligand concentrations on one or both sides of the membrane.
Here we use the well known Hodgkin-Huxley (HH) delayed rectifier to show how a
voltage-gated current can be implemented; in this example, membrane potential is in

Page 12 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 23, 2004 The NEURON Book: Chapter 9

absolute millivolts, i.e. reversed in polarity from the original Hodgkin-Huxley convention
and shifted to reflect a resting potential of -65 mV. In Example 9.5 we will examine a
potassium current model that depends on both voltage and intracellular calcium
concentration.

The delayed rectifier and all other ion channels that are distributed over the cell
surface are distributed mechanisms. Therefore their NMODL representations and hoc
usage be similar to those of Example 9.1: a passive " leak"  current. The following
discussion focuses on the significant differences between the implementations of the
delayed rectifier and passive leak current models. 

:  HH vol t age- gat ed pot ass i um cur r ent

NEURON {
  SUFFI X kd
  USEI ON k READ ek WRI TE i k
  RANGE gbar ,  g,  i
}

UNI TS {
  ( S)   =  ( s i emens)
  ( mV)  =  ( mi l l i vol t )
  ( mA)  =  ( mi l l i amp)
}

PARAMETER {  gbar  = 0. 036 ( S/ cm2)  }

ASSI GNED {
  v  ( mV)
  ek ( mV)  :  t ypi cal l y  ~ - 77. 5
  i k  ( mA/ cm2)
  i   ( mA/ cm2)
  g  ( S/ cm2)
}

STATE {  n }

BREAKPOI NT {
  SOLVE st at es METHOD cnexp
  g = gbar  *  n^4
  i  = g *  ( v  -  ek)
  i k  = i
}

I NI TI AL {  
  :  Assume v has been const ant  f or  a l ong t i me
  n = al pha( v) / ( al pha( v)  + bet a( v) )
}

DERI VATI VE st at es {
  :  Comput es s t at e var i abl e n at  pr esent  v  & t
  n'  = ( 1- n) * al pha( v)  -  n* bet a( v)
}

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 13



The NEURON Book: Chapter 9 November 23, 2004

FUNCTI ON al pha( Vm ( mV) )  ( / ms)  {
  LOCAL x
  UNI TSOFF
  x = ( Vm+55) / 10
  i f  ( f abs( x)  > 1e- 6)  {
    al pha = 0. 1* x/ ( 1 -  exp( - x) )
  }  el se {
    al pha = 0. 1/ ( 1 -  0. 5* x)
  }
  UNI TSON
}

FUNCTI ON bet a( Vm ( mV) )  ( / ms)  {
  UNI TSOFF
  bet a = 0. 125* exp( - ( Vm+65) / 80)
  UNI TSON
}

Listing 9.4. kd. mod

The NEURON block
As with the passive leak model, SUFFI X marks this as a distributed mechanism,

whose variables and parameters are identified in hoc by a particular suffix. Three RANGE
variables are declared in this block: the peak conductance density gbar  (the product of
channel density and "open" conductance per channel), the macroscopic conductance g
(the product of gbar  and the fraction of channels that are open at any moment), and the
current i  that passes through g. At the level of hoc , these will be available as gbar _kd,
g_kd, and i _kd.

This model also has a fourth range variable: the gating variable n, which is declared
in the STATE block (see The STATE block below). STATE variables are automatically
RANGE variables and do not need to be declared in the NEURON block.

A mechanism needs a separate USEI ON statement for each of the ions that it affects or
that affect it. This example has one USEI ON statement, which includes READ ek  because
the potential gradient that drives i _kd depends on the equilibrium potential for K+

(potassium). Since the resulting ionic flux may change local [K+], this example also
includes WRI TE i k . The WRI TE i x syntax enables NEURON to keep track of the total
outward current that is carried by an ionic species, its internal and external
concentrations, and its equilibrium potential. We will return to this point in the context of
a model with extracellular K+ accumulation.

The UNITS block
The statements in the UNI TS block define new names for units in terms of existing

names in the UNIX units database. This can increase legibility and convenience, and is
helpful both as a reminder to the user and as a means for automating the process of
checking for consistency of units.

Page 14 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 23, 2004 The NEURON Book: Chapter 9

Variable declaration blocks

The ASSIGNED block

This is analogous to the ASSI GNED block of the l eak  mechanism. For the sake of
clarity, variables whose values are computed outside this mod file are listed first. Note
that ek  is listed as an ASSI GNED variable, unlike the leak mechanism's e which was a 
PARAMETER. The reason for this difference is that mechanisms that produce fluxes of
specific ions, such as K+, may cause the ionic equilibrium potential to change in the
course of a simulation. However, the NONSPECI FI C_CURRENT generated by the leak
mechanism was not linked to any particular ionic species, so e_l eak  remains fixed
unless explicitly altered by hoc  statements or the GUI.

The STATE block

If a model involves differential equations, families of algebraic equations, or kinetic
reaction schemes, their dependent variables or unknowns are to be listed in the STATE
block. Therefore gating variables such as the delayed rectifier's n are declared here. 

In NMODL, variables that are declared in the STATE block are called STATE
variables, or simply STATEs. This NMODL-specific terminology should not be confused
with the physics or engineering concept of a "state variable" as a variable that describes
the state of a system. While membrane potential is a "state variable" in the engineering
sense, it would never be a STATE because its value is calculated only by NEURON and
never by NMODL code. Likewise, the unknowns in a set of simultaneous equations (e.g.
specified in a LI NEAR or NONLI NEAR block) would not be state variables in an
engineering sense, yet they would all be STATEs (see State variables and STATE
variables in Chapter 8).

All STATEs are automatically RANGE variables. This is appropriate, since channel
gating can vary with position along a neurite.

Equation definition blocks
In addition to the BREAKPOI NT block, this model also has I NI TI AL, DERI VATI VE,

and FUNCTI ON blocks.

The BREAKPOINT block

This is the main computation block of the mechanism. By the end of the
BREAKPOI NT block, all variables are consistent with the new time. If a mechanism has
STATEs, this block must contain one SOLVE statement that tell how the values of the
STATEs will be computed over each time step. The SOLVE statement specifies a block of
code that defines the simultaneous equations that govern the STATEs. Currents are set
with assignment statements at the end of the BREAKPOI NT block.

There are two major reasons why variables that depend on the number of executions,
such as counts or flags or random numbers, should generally not be calculated in a

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 15



The NEURON Book: Chapter 9 November 23, 2004

BREAKPOI NT block. First, the assignment statements in a BREAKPOI NT block are usually
called twice per time step. Second, with variable time step methods the value of t  may
not even be monotonically increasing. The proper way to think about this is to remember
that the BREAKPOI NT block is responsible for making all variables consistent at time t .
Thus assignment statements in this block are responsible for trivially specifying the
values of variables that depend only on the values of STATEs, t , and v , while the SOLVE
statements perform the magic required to make the STATEs consistent at time t . It is not
belaboring the point to reiterate that the assignment statements should produce the same
result regardless of how many times BREAKPOI NT is called with the same STATEs, t , and
v . All too often, errors have resulted from an attempt to explicitly compute what is
conceptually a STATE in a BREAKPOI NT block. Computations that must be performed
only once per time step should be placed in a PROCEDURE, which in turn would be
invoked by a SOLVE statement in a BREAKPOI NT block.

We must also emphasize that the SOLVE statement is not a function call, and that the
body of the DERI VATI VE block (or any other block specified in a SOLVE statement) will
be executed asynchronously with respect to BREAKPOI NT assignment statements.
Therefore it is incorrect to invoke rate functions from the BREAKPOI NT block; instead
these must be called from the block that is specified by the SOLVE statement (in this
example, from within the DERI VATI VE block).

Models of active currents such as i _kd are generally formulated in terms of ionic
conductances governed by gating variables that depend on voltage and time. The SOLVE
statements at the beginning of the BREAKPOI NT block specify the differential equations
or kinetic schemes that govern the kinetics of the gating variables. The algebraic
equations that compute the ionic conductances and currents follow the SOLVE statements.

The INITIAL block

Though often overlooked, proper initialization of all STATEs is as important as
correctly computing their temporal evolution. This is accomplished for the common case
by the standard run system's f i ni t i al i ze( ) , which executes the initialization strategy
defined in the I NI TI AL block of each mechanism (see also INITIAL blocks in NMODL
in Chapter 8). The I NI TI AL block may contain any instructions that should be executed
when the hoc  function f i ni t i al i ze( )  is called. 

Prior to executing the I NI TI AL block, STATE variables are set to the values asserted
in the STATE block (or to 0 if no specific value was given in the STATE block). A
NET_RECEI VE block, if present, may also have its own I NI TI AL block for nonzero
initialization of Net Con "states" (the NET_RECEI VE block and its initialization are
discussion further in Chapter 10 and under Basic initialization in NEURON:
finitialize() in Chapter 8). 

The I NI TI AL block should be used to initialize STATEs with respect to the initial
values of membrane potential and ionic concentrations. There are several other ways to
prepare STATEs for a simulation run, the most direct of which is simply to assign values
explicitly with hoc statements such as axon. n_kd( 0. 3)  = 0. 9. However, this
particular strategy can create arbitrary initial conditions that would be quite unnatural. A

Page 16 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 23, 2004 The NEURON Book: Chapter 9

more "physiological" approach, which may be appropriate for models of oscillating or
chaotic systems or whose mechanisms show other complex interactions, is to perform an
initialization run during which the model converges toward its limit cycle or attractor.
One practical alternative for systems that settle to a stable equilibrium point when left
undisturbed is to assign t  a large negative value and then advance the simulation over
several large time steps (keeping t  < 0 prevents the initialization steps from triggering
scheduled events such as stimulus currents or synaptic inputs); this takes advantage of the
strong stability properties of NEURON's implicit integration methods (see Chapter 4).
For a more extensive discussion of initialization, see Chapter 8, especially Examples of
custom initializations).

This delayed rectifier mechanism sets n to its steady state value for the local
membrane potential wherever the mechanism has been inserted. This potential itself can
be "left over" from a previous simulation run, or it can be specified by the user, e.g.
uniformly over the entire cell with a statement like f i ni t i al i ze( - 55) , or on a
compartment by compartment basis by asserting statements such as dend. v( 0. 2)  =
- 48 before calling f i ni t i al i ze( )  (see Default initialization in the standard run
system: stdinit() and init() in Chapter 8). 

The DERIVATIVE block

This is used to assign values to the derivatives of those STATEs that are described by
differential equations. The statements in this block are of the form y'  = expr, where a
series of apostrophes can be used to signify higher order derivatives.

In fixed time step simulations, these equations are integrated using the numerical
method specified by the SOLVE statement in the BREAKPOI NT block. The SOLVE
statement should explicitly invoke one of the integration methods that is appropriate for
systems in which state variables can vary widely during a time step (stiff systems). The
cnexp method, which combines second order accuracy with computational efficiency, is
a good choice for this example. It is appropriate when the right hand side of y´ = f(v,y) is
linear in y and involves no other states, so it is well suited to models with HH-style ionic
currents. This method calculates the STATEs analytically under the assumption that all
other variables are constant throughout the time step. If the variables change but are
second order correct at the midpoint of the time step, then the calculation of STATEs is
also second order correct.

If f(v,y) is not linear in y, then the SOLVE
statement in the BREAKPOI NT block should
specify the implicit integration method
der i v i mpl i ci t . This provides first order
accuracy and is usable with general ODEs
regardless of stiffness or nonlinearity.

With variable time step methods, no variable is assumed to be constant. These
methods not only change the time step, but adaptively choose a numerical integration
formula with accuracy that ranges from first order up to O(∆t6). The present
implementation of NMODL creates a diagonal Jacobian approximation for the block of

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 17

Other integrators, such as r unge and eul er ,
are defined but are not useful in the
NEURON context. Neither is guaranteed to
be numerically stable, and r unge's high
order accuracy is wasted since voltage does
not have an equivalent order of accuracy.



The NEURON Book: Chapter 9 November 23, 2004

STATEs. This is done analytically if yi´ = fi(v,y) is polynomial in yi; otherwise, the

Jacobian is approximated by numerical differencing. In the rare case where this is
inadequate, the user may supply an explicit Jacobian. Future versions of NMODL may
attempt to deal with Jacobian evaluation in a more sophisticated manner. This illustrates a
particularly important benefit of the NMODL approach: improvements in methods do not
affect the high level description of the membrane mechanism.

The FUNCTION block

The functions defined by FUNCTI ON blocks are available at the hoc level and in other
mechanisms by adding the suffix of the mechanism in which they are defined, e.g.
al pha_kd( )  and bet a_kd( ) . Functions or procedures can be simply called from hoc if
they do not reference range variables (references to GLOBAL variables are allowed). If a
function or procedure does reference a range variable, then prior to calling the function
from hoc it is necessary to specify the proper instance of the mechanism (its location on
the cell). This is done by a set dat a_ function that has the syntax

section_name set dat a_suffix( x)

where section_name is the name of the section that contains the mechanism in
question, suffix is the mechanism suffix, and x  is the normalized distance along the
section where the particular instance of the mechanism exists. The functions in our kd
example do not use range variables, so a specific instance is not needed.

The differential equation that describes the kinetics of n involves two voltage-
dependent rate constants whose values are computed by the functions al pha( )  and
bet a( ) . The original algebraic form of the equations that define these rates is

��� 0.1

�
v � 55

10 �
1 � e�	� v 
 55

10 � and � � 0.125 e�� v 
 65
80 �

Eq. 9.1

The denominator for �  goes to 0 when v = -55 mV, which could cause numeric
overflow. The code used in al pha( )  avoids this by switching, when v is very close to
-55, to an alternative expression that is based on the first three terms of the infinite series
expansion of ex.

As noted elsewhere in this paper, NMODL has features that facilitate establishing and
maintaining consistency of units. Therefore the rate functions al pha( )  and bet a( )  are
introduced with the syntax 

FUNCTI ON f_name( arg1 ( units1) ,  arg2 ( units2) ,  .  . .  ) ( returned_units)

to declare that their arguments are in units of millivolts and that their returned values are
in units of inverse milliseconds ("/ms"). This allows automatic units checking on entry to
and return from these functions. For the sake of legibility the UNI TSOFF .  .  .  UNI TSON
directives disable units checking just within the body of these functions. This is
acceptable because the terms in the affected statements are mutually consistent.

Page 18 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 23, 2004 The NEURON Book: Chapter 9

Otherwise the statements would have to be rewritten in a way that makes unit consistency
explicit at the cost of legibility, e.g. 

x = ( Vm + 55 ( mi l l i vol t ) ) / ( 10 ( mi l l i vol t ) )

Certain variables exist solely for the sake of computational convenience. These
typically serve as scale factors, flags, or temporary storage for intermediate results, and
are not of primary importance to the mechanism. Such variables are often declared as
LOCAL variables declared within an equation block, e.g. x in this mechanism. LOCAL
variables that are declared in an equation block are not "visible" outside the block and
they do not retain their values between invocations of the block. LOCAL variables that are
declared outside an equation block have very different properties and are discussed under
Variable declaration blocks in Example 9.8: calcium diffusion with buffering.

Usage
The hoc  code and graphical interface for using this distributed mechanism are similar

to those for the l eak  mechanism (Fig. 9.2). However, the kd mechanism involves more
range variables, and this is reflected in the choices available in the range variable menu of
variable browsers, such as the Plot what? tool (brought up from the primary menu of a
Graph). Since kd uses potassium, the variables ek  and i k  (total K+ current) appear in
this list along with the variables that are explicitly declared in RANGE statements or the
STATE block of kd. mod (see Fig. 9.6). The total K+ current i k  will differ from i _kd
only if another mechanism that WRI TEs i k  is present in this section.

Figure 9.6. A Plot what? tool from a Graph created after the kd mechanism was
inserted into a section called cabl e. Note the hoc  names of variables
associated with the kd mechanism.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 19



The NEURON Book: Chapter 9 November 23, 2004

Example 9.5: a calcium-activated, 
voltage-gated current

This model of a potassium current that depends on both voltage and intracellular
calcium concentration [Ca2+]i. is based on the work of Moczydlowski and Latorre

(Moczydlowski and Latorre 1983). It is basically an elaboration of the HH mechanism in
which the forward and backward rates depend jointly on membrane potential and [Ca2+] i.

Here we point out the salient implementational differences between this and the previous
model. 

:  Cal ci um- act i vat ed K channel

NEURON {
  SUFFI X cagk
  USEI ON ca READ cai
  USEI ON k READ ek WRI TE i k
  RANGE gkbar
  GLOBAL oi nf ,  t au
}

UNI TS {
  ( mV)     = ( mi l l i vol t )
  ( mA)     = ( mi l l i amp)
  ( S)      = ( s i emens)
  ( mol ar )  = ( 1/ l i t er )
  ( mM)     = ( mi l l i mol ar )
  FARADAY = ( f ar aday)  ( k i l ocoul ombs)
  R       = ( k- mol e)  ( j oul e/ degC)
}

PARAMETER {
  gkbar  = 0. 01  ( S/ cm2)
  d1    = 0. 84
  d2    = 1. 0
  k1    = 0. 18  ( mM)
  k2    = 0. 011 ( mM)
  bbar   = 0. 28  ( / ms)
  abar   = 0. 48  ( / ms)
}

ASSI GNED {
  cai       ( mM)     :  t ypi cal l y 0. 001
  cel s i us  ( degC)   :  t ypi cal l y 20
  v        ( mV)
  ek       ( mV)
  i k        ( mA/ cm2)
  oi nf
  t au      ( ms)
}

Page 20 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 23, 2004 The NEURON Book: Chapter 9

STATE {  o }     :  f r act i on of  channel s  t hat  ar e open

BREAKPOI NT {
  SOLVE st at e METHOD cnexp
  i k  = gkbar * o* ( v  -  ek)
}

DERI VATI VE st at e {
  r at e( v,  cai )
  o'  = ( oi nf  -  o) / t au
}

I NI TI AL {
  r at e( v,  cai )
  o = oi nf
}

:  t he f ol l owi ng ar e al l  cal l abl e f r om hoc

FUNCTI ON al p( v ( mV) ,  ca ( mM) )  ( / ms)  {
  al p = abar / ( 1 + exp1( k1, d1, v) / ca)
}

FUNCTI ON bet ( v  ( mV) ,  ca ( mM) )  ( / ms)  {
  bet  = bbar / ( 1 + ca/ exp1( k2, d2, v) )
}

FUNCTI ON exp1( k ( mM) ,  d,  v ( mV) )  ( mM)  {
  :  numer i c  const ant s i n an addi t i on or  subt r act i on 
  :  expr ess i on aut omat i cal l y t ake on t he uni t  val ues 
  :  of  t he ot her  t er m
  exp1 = k* exp( - 2* d* FARADAY* v/ R/ ( 273. 15 + cel s i us) )
}

PROCEDURE r at e( v ( mV) ,  ca ( mM) )  {
  LOCAL a
  :  LOCAL var i abl e t akes on uni t s of  r i ght  hand s i de
  a = al p( v , ca)
  t au = 1/ ( a + bet ( v,  ca) )
  oi nf  = a* t au
}

Listing 9.5. cagk. mod

The NEURON block
This potassium conductance depends on [Ca2+]i, so two USEI ON statements are

required. Since this potassium channel depends on intracellular calcium concentration, it
must READ cai . The RANGE statement declares the peak conductance density gkbar .
However, there is no g, so this mechanism's ionic conductance will not be visible from
hoc  (in fact, this model doesn't even calculate the activated ionic conductance density).
Likewise, there is no i _cagk to report this particular current component separately, even
though it will be added to the total K+ current i k  because of WRI TE i k .

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 21



The NEURON Book: Chapter 9 November 23, 2004

The variables oi nf  and t au, which govern the gating variable o, should be
accessible in hoc  for the purpose of seeing how they vary with membrane potential and
[Ca2+]i. At the same time, the storage and syntax overhead required for a RANGE variable

does not seem warranted because it appears unlikely to be necessary or useful to plot
either oi nf  or t au as a function of space. Therefore they have been declared in a 
GLOBAL statement. On first examination, this might seem to pose a problem. The gating
of this K+ current depends on membrane potential and [Ca2+] i, both of which may vary

with location, so how can it be correct for oi nf  and t au to be GLOBALs? And if some
reason did arise to examine the values of these variables at a particular location, how
could this be done? The answers to these questions lie in the DERI VATI VE and
PROCEDURE blocks, as we shall see below.

The UNITS block
The last two statements in this block require some explanation. The first

parenthesized item on the right hand side of the equal sign is the numeric value of a
standard entry in nr nuni t s. l i b, which may be expressed on a scale appropriate for
physics rather than membrane biophysics. The second parenthesized item rescales this to
the biophysically appropriate units chosen for this model. Thus ( f ar aday)  appears in
the units database in terms of coulombs/mole and has a numeric value of 96,485.309, but
for this particular mechanism we prefer to use a constant whose units are
kilocoulombs/mole. The statement

FARADAY = ( f ar aday)  ( k i l ocoul ombs)

results in FARADAY having units of kilocoulombs and a numeric value of 96.485309. The
item ( k- mol e)  in the statement 

R       = ( k- mol e)  ( j oul e/ degC)

is not kilomoles but instead is a specific entry in the units database equal to the product of
Boltzmann's constant and Avogadro's number. The end result of this statement is that R
has units of joules/°C and a numeric value of 8.313424. These special definitions of
FARADAY and R pertain to this mechanism only; a different mechanism could assign
different units and numeric values to these labels.

Another possible source of confusion is the interpretation of the symbol e. Inside a
UNITS block this is always the electronic charge (~ 1.6 · 10-19 coulombs), but elsewhere
a single number in parentheses is treated as a units conversion factor, e.g. the expression
( 2e4)  is a conversion factor of 2 · 104. Errors involving e in a units expression are easy
to make, but they are always caught by modl uni t .

Page 22 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 23, 2004 The NEURON Book: Chapter 9

Variable declaration blocks

The ASSIGNED block

Comments in this block can be helpful to the user as reminders of "typical" values or
usual conditions under which a mechanism operates. For example, the cagk  mechanism
is intended for use in the context of [Ca2+]i on the order of 0.001 mM. Similarly, the

temperature sensitivity of this mechanism is accommodated by including the global
variable cel s i us , which is used to calculate the rate constants (see The FUNCTION and
PROCEDURE blocks below). NEURON's default value for cel s i us  is 6.3ºC, but as the
comment in this mod file points out, the parameter values for this particular mechanism
were intended for an "operating temperature" of 20ºC. Therefore the user may need to
change cel s i us  through hoc or the GUI.

The variables oi nf  and t au, which were made accessible to NEURON by the
GLOBAL statement in the NEURON block, are given values by the procedure r at e and are
declared as ASSI GNED.

The STATE block

This mechanism needs a STATE block because o, the fraction of channels that are
open, is described by a differential equation.

Equation definition blocks

The BREAKPOINT block

This mechanism does not make its ionic conductance available to hoc , so the
BREAKPOI NT block just calculates the ionic current passing through these channels and
doesn't bother with separate computation of a conductance.

The DERIVATIVE block

The gating variable o is governed by a first order differential equation. The procedure
r at e( )  assigns values to the voltage sensitive parameters of this equation: the steady
state value oi nf , and the time constant t au. This answers the first question that was
raised above in the discussion of the NEURON block. The procedure r at e( )  will be
executed individually for each segment in the model that has the cagk  mechanism. Each
time r at e( )  is called, its arguments will equal the membrane potential and [Ca2+]i of

the segment that is being processed, since v and cai  are both RANGE variables. Therefore
oi nf  and t au can be GLOBAL without destroying the spatial variation of the gating
variable o.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 23



The NEURON Book: Chapter 9 November 23, 2004

The FUNCTION and PROCEDURE blocks

The functions al p( ) , bet ( ) , exp1( ) , and the procedure r at e( )  implement the
mathematical expressions that describe oi nf  and t au. To facilitate units checking, their
arguments are tagged with the units that they use. For efficiency, r at e( )  calls al p( )
once and uses the returned value twice; calculating oi nf  and t au separately would have
required two calls to al p( ) .

Now we can answer the second question that was raised in the discussion of the
NEURON block: how to examine the variation of oi nf  and t au over space. This is easily
done in hoc  with nested loops, e.g.

f or al l  {  / /  i t er at e over  al l  sect i ons
  f or  ( x)  {  / /  i t er at e over  each segment
    r at e_cagk( v( x) ,  cai ( x) )
    / /  her e put  st at ement s t o pl ot
    / /    or  save oi nf  and t au
  }
}

Usage
This mechanism involves both K+ and Ca2+, so the list of RANGE variables displayed

by Plot what? has more entries than it did for the kd mechanism (Fig. 9.7; compare this
with Fig. 9.6). However, cai , cao, and eca will remain constant unless the section in
which this mechanism has been inserted also includes something that can affect calcium
concentration (e.g. a pump or buffer).

Page 24 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 23, 2004 The NEURON Book: Chapter 9

Figure 9.7. A Plot what? tool from a Graph created after the cagk  mechanism
was inserted into a section called cabl e. Note the hoc  names of variables
associated with the cagk  mechanism.

Example 9.6: extracellular potassium accumulation
Because mechanisms can generate transmembrane fluxes that are attributed to

specific ionic species by the USEI ON x WRI TE ix syntax, modeling the effects of
restricted diffusion is straightforward. The kext  mechanism described here emulates
potassium accumulation in the extracellular space adjacent to squid axon (Fig. 9.8). The
experiments of Frankenhaeuser and Hodgkin (Frankenhaeuser and Hodgkin 1956)
indicated that satellite cells and other extracellular structures act as a diffusion barrier that
prevents free communication between this space and the bath. When there is a large
efflux of K+ ions from the axon, e.g. during the repolarizing phase of an action potential
or in response to injected depolarizing current, K+ builds up in this "Frankenhaeuser-
Hodgkin space" (F-H space). This elevation of [K+]o shifts EK in a depolarized direction,

which has two important consequences. First, it reduces the driving force for K+ efflux
and causes a decline of the outward IK. Second, when the action potential terminates or

the injected depolarizing current is stopped, the residual elevation of [K+]o causes an

inward current that decays gradually as [K+]o equilibrates with [K+]bath.

Figure 9.8. Restricted diffusion may cause extracellular potassium
accumulation adjacent to the cell membrane. From Fig. 1 in (Hines and
Carnevale 2000).

:  Ext r acel l ul ar  pot assi um i on accumul at i on

NEURON {
  SUFFI X kext
  USEI ON k READ i k WRI TE ko
  GLOBAL kbat h
  RANGE f hspace,  t xf er
}

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 25



The NEURON Book: Chapter 9 November 23, 2004

UNI TS {
  ( mV)     = ( mi l l i vol t )
  ( mA)     = ( mi l l i amp)
  FARADAY = ( f ar aday)  ( coul ombs)
  ( mol ar )  = ( 1/ l i t er )
  ( mM)     = ( mi l l i mol ar )
}

PARAMETER {
  kbat h   =  10 ( mM)         :  seawat er  ( squi d axon! )
  f hspace = 300 ( angst r om)   :  ef f ect i ve t hi ckness of  F- H space
  t xf er    =  50 ( ms)   :  t au f or  F- H space <- > bat h exchange = 30- 100
}

ASSI GNED {  i k  ( mA/ cm2)  }

STATE {  ko  ( mM)  }

BREAKPOI NT {  SOLVE st at e METHOD cnexp }

DERI VATI VE st at e {
  ko'  = ( 1e8) * i k/ ( f hspace*FARADAY)  + ( kbat h -  ko) / t xf er
}

Listing 9.6. kext . mod

The NEURON block
A compartment may contain several mechanisms that have direct interactions with

ionic concentrations (e.g. diffusion, buffers, pumps). Therefore NEURON must be able to
compute the total currents and concentrations consistently. The USEI ON statement sets up
the necessary "bookkeeping" by automatically creating a separate mechanism that keeps
track of four essential variables: the total outward current carried by an ion, the internal
and external concentrations of the ion, and its equilibrium potential (also see Ion
concentrations and equilibrium potential in Chapter 8). In this case the name of the
ion is "k" and the automatically created mechanism is called "k_i on" in the hoc
interpreter. The k_i on mechanism has variables i k , ki , ko, and ek , which represent IK,

[K+] i, [K
+]o, and EK, respectively. These do not have suffixes; furthermore, they are

RANGE variables so they can have different values in every segment of each section in
which they exist. In other words, the K+ current through Hodgkin-Huxley potassium
channels near one end of the section cabl e is cabl e. i k_hh( 0. 1) , but the total K+

current generated by all sources, including other ionic conductances and pumps, would be
cabl e. i k( 0. 1) .

This mechanism computes [K+]o from the outward potassium current, so it READs i k

and WRI TEs ko. When a mechanism WRI TEs a particular ionic concentration, it sets the
value for that concentration at all locations in every section into which it has been
inserted. This has an important consequence: in any given section, no ionic concentration
should be "written" by more than one mechanism.

Page 26 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 23, 2004 The NEURON Book: Chapter 9

The bath is assumed to be a large, well stirred compartment that envelops the entire
"experimental preparation." Therefore kbat h is a GLOBAL variable so that all sections
that contain the kext  mechanism will have the same numeric value for [K+]bath. Since

this would be one of the controlled variables in an experiment, the value of kbat h is
specified by the user and remains constant during a simulation. The thickness of the F-H
space is f hspace, the time constant for equilibration with the bath is t x f er , and both
are RANGE variables so they can vary along the length of each section.

Variable declaration blocks

The PARAMETER block

The default value of kbat h is set to 10 mM, consistent with the composition of
seawater (Frankenhaeuser and Hodgkin 1956). Since kbat h is GLOBAL, a single hoc
statement can change this to a new value that will affect all occurrences of the kext
mechanism, e.g. kbat h_kext  = 8 would change it to 8 mM everywhere.

The STATE block

Ionic concentration is a STATE of a mechanism only if that mechanism calculates the
concentration in a DERI VATI VE or KI NETI C block. This model computes ko, the
potassium concentration in the F-H space, according to the dynamics specified by an
ordinary differential equation.

Equation definition blocks

The BREAKPOINT block

This mechanism involves a single differential equation that tells the rate of change of
ko, the K+ concentration in the F-H space. The choice of integration method in NMODL
is based on the fact that the equation is linear in ko. The total K+ current i k  might also
vary during a time step (see the DERI VATI VE block) if membrane potential, some K+

conductance, or ko itself is changing rapidly. In a simulation where such rapid changes
are likely to occur, proper modeling practice would lead one either to use NEURON with 
CVODE, or to use a fixed time step that is short compared to the rate of change of i k .

The INITIAL block

How to provide for initialization of variables is a recurring question in model
implementation, and here it comes again. The answer is important because it bears
directly on how the model will be used. The only STATE in this mechanism is the ionic
concentration ko, which we could initialize in several different ways. The simplest might
be with the I NI TI AL block 

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 27



The NEURON Book: Chapter 9 November 23, 2004

I NI TI AL {
  ko = kbat h
}

but this seems too limiting. One alternative is to declare a new RANGE variable ko0 in the
NEURON block, specify its value in the PARAMETER block

PARAMETER {
   .  .  .
  ko0     =  10 ( mM)   =  10 ( mM)
}

and use this I NI TI AL block 

I NI TI AL {
  ko = ko0
}

This would be a very flexible implementation, allowing ko0 to vary with location
wherever kext  has been i nser t ed. But some care is needed in its use, because ion
concentration assignment in an I NI TI AL block can result in an inconsistent initialization
on return from f i ni t i al i ze( )  (see Ion concentrations and equilibrium potentials
in Chapter 8). 

So for this example we have decided to let the initial value of ko be controlled by the
built-in hoc variable ko0_k_i on (see Initializing concentrations in hoc in Chapter 8).
To make our mechanism rely on ko0_k_i on for the initial value of ko, we merely omit
any ko = .  .  .  assignment statement from the I NI TI AL block. Since ko is kext 's only
STATE, we don't need an I NI TI AL block at all. This might seem a less flexible approach
than using our own ko0 RANGE variable, because ko0_k_i on is a global variable (has
the same value wherever ko is defined), but Initializing concentrations in hoc in
Chapter 8 shows how to work around this apparent limitation.

The DERIVATIVE block

At the core of this mechanism is a single differential equation that relates d[K+]o/dt to

the sum of two terms. The first term describes the contribution of i k  to [K+]o, subject to

the assumption that the thickness F-H space is much smaller than the diameter of the
section. The units conversion factor of 108 is required because f hspace is given in
Ångstroms. The second term describes the exchange of K+ between the bath and the F-H
space.

Usage
If this mechanism is present in a section, the following RANGE variables will be

accessible through hoc : [K+] inside the cell and within the F-H space (ki  and ko);
equilibrium potential and total current for K (ek  and i k ); thickness of the F-H space and
the rate of equilibration between it and the bath (f hspace_kext  and t x f er _kext ). The
bath [K+] will also be available as the global variable kbat h_kext .

Page 28 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 23, 2004 The NEURON Book: Chapter 9

General comments about kinetic schemes
Kinetic schemes provide a high level framework that is perfectly suited for compact

and intuitively clear specification of models that involve discrete states in which material
is conserved. The basic notion is that flow out of one state equals flow into another (also
see Chemical reactions in Chapter 3). Almost all models of membrane channels,
chemical reactions, macroscopic Markov processes, and diffusion can be elegantly
expressed through kinetic schemes. It will be helpful to review some fundamentals before
proceeding to specific examples of mechanisms implemented with kinetic schemes.

The unknowns in a kinetic scheme, which are usually concentrations of individual
reactants, are declared in the STATE block. The user expresses the kinetic scheme with a
notation that is very similar to a list of simultaneous chemical reactions. The NMODL
translator converts the kinetic scheme into a family of ODEs whose unknowns are the
STATEs. Hence 

STATE {  mc   m }
KI NETI C scheme1 {
  ~ mc <- > m ( a( v) ,  b( v) )
}

is equivalent to

DERI VATI VE scheme1 {
  mc'  = - a( v) * mc + b( v) * m
  m'   =  a( v) * mc -  b( v) * m
}

The first character of a reaction statement is the tilde "~", which is used to
immediately distinguish this kind of statement from other sequences of tokens that could
be interpreted as an expression. The expressions on the left and right of the three
character reaction indicator "<- >" specify the reactants. The two expressions in
parentheses are the forward and reverse reaction rates (here the rate functions a( v)  and b
( v) ). Immediately after each reaction, the variables f _f l ux  and b_f l ux are assigned
the values of the forward and reverse fluxes respectively. These can be used in
assignment statements such as 

~ cai  + pump <- > capump ( k1, k2)
~ capump <- > pump + cao ( k3, k4)
i ca = ( f _f l ux -  b_f l ux) * 2* Far aday/ ar ea

In this case, the forward flux is k3* capump, the reverse flux is k4* pump* cao, and the
"positive outward" current convention is consistent with the sign of the expression for
i ca (in the second reaction, forward flux means positive ions move from the inside to the
outside).

More complicated reaction sequences such as the wholly imaginary

KI NETI C scheme2 {
  ~ 2A + B <- > C ( k1, k2)
  ~  C + D <- > A + 2B ( k3, k4)
}

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 29



The NEURON Book: Chapter 9 November 23, 2004

begin to show the clarity of expression and suggest the comparative ease of modification
of the kinetic representation over the equivalent but stoichiometrically confusing

DERI VATI VE scheme2 {
  A'  = - 2* k1* A^2* B + 2* k2* C   + k3* C* D   -  k4* A* B^2
  B'  =   - k1* A^2* B   + k2* C + 2* k3* C* D -  2* k4* A* B^2
  C'  =    k1* A^2* B   -  k2* C   -  k3* C* D   + k4* A* B^2
  D'  =                        -  k3* C* D   + k4* A* B^2
}

Clearly a statement such as

~ cal modul i n + 3Ca <- > act i ve ( k1,  k2)

would be easier to modify (e.g. so it requires combination with 4 calcium ions) than the
relevant term in the three differential equations for the STATEs that this reaction affects.
The kinetic representation is easy to debug because it closely resembles familiar notations
and is much closer to the conceptualization of what is happening than the differential
equations would be.

Another benefit of kinetic schemes is the simple polynomial nature of the flux terms,
which allows the translator to easily perform a great deal of preprocessing that makes
implicit numerical integration more efficient. Specifically, the nonzero � y' i

�
� y j

elements (partial derivatives of dyi

�
dt  with respect to y j ) of the sparse matrix are

calculated analytically in NMODL and collected into a C function that is called by
solvers to calculate the Jacobian. Furthermore, the form of the reaction statements
determines if the scheme is linear, obviating an iterative computation of the solution. 
Voltage-sensitive rates are allowed, but to guarantee numerical stability, reaction rates
should not be functions of STATEs. Thus writing the calmodulin example as

~ cal modul i n <- > act i ve ( k3* Ca^3,  k2)

will work but is potentially unstable if Ca is a STATE in other simultaneous reactions in
the same mod file. Variable time step methods such as CVODE will compensate by
reducing dt , but this will make the simulation run more slowly.

Kinetic scheme representations provide a great deal of leverage because a single
compact expression is equivalent to a large amount of C code. One special advantage
from the programmer's point of view is the fact that these expressions are independent of
the solution method. Different solution methods require different code, but the NMODL
translator generates this code automatically. This saves the user's time and effort and
ensures that all code expresses the same mechanism. Another advantage is that the
NMODL translator handles the task of interfacing the mechanism to the remainder of the
program. This is a tedious exercise that would require the user to have special knowledge
that is not relevant to neurophysiology and which may change from version to version. 

Special issues are raised by mechanisms that involve fluxes between compartments of
different size, or whose reactants have different units. The first of the following examples
has none of these complications, which are addressed later in models of diffusion and
active transport.

Page 30 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 23, 2004 The NEURON Book: Chapter 9

Example 9.7: kinetic scheme for a 
voltage-gated current

This illustration of NMODL's facility for handling kinetic schemes implements a
simple three state model for the conductance state transitions of a voltage gated
potassium current 

C1

�
�
kb1

kf 1

C2

�
�
kb2

kf 2

O Eq. 9.2

The closed states are C1 and C2, the open state is O, and the rates of the forward and

backward state transitions are calculated in terms of the equilibrium constants and time
constants of the isolated reactions through the familiar expressions K i

�
v � � kf i

�
kbi

and � i

�
v � � 1

� �
kf i � kbi � . The equilibrium constants K i

�
v �  are the Boltzmann factors

K 1
� e

�
k2 � d2 � v � � k1 � d1 � v �
	

 and K 2
� e� k2 � d2 � v �

, where the energies of states C1,

C2, and O are 0, k1

�
d1 � v � , and k2

�
d2 � v �  respectively.

The typical sequence of analysis is to determine the constants k1, d1, k2, and d2 by

fitting the steady state voltage clamp data, and then to find the voltage sensitive transition
time constants � 1

�
v �  and � 2

�
v �  from the temporal properties of the clamp current at

each voltage pulse level. In this example the steady state information has been
incorporated in the NMODL code, and the time constants are conveyed by tables (arrays)
that are created within the interpreter.

:  Thr ee st at e k i net i c scheme f or  HH- l i ke pot ass i um channel
:  St eady st at e v- dependent  st at e t r ansi t i ons have been f i t
:  Needs v- dependent  t i me const ant s 
:    f r om t abl es cr eat ed under  hoc

NEURON {
  SUFFI X k3st
  USEI ON k READ ek WRI TE i k
  RANGE g,  gbar
}

UNI TS {  ( mV)  = ( mi l l i vol t )  }

PARAMETER {
  gbar  = 33     ( mi l l i mho/ cm2)
  d1   = - 38    ( mV)
  k1   = 0. 151  ( / mV)
  d2   = - 25    ( mV)
  k2   = 0. 044  ( / mV)
}

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 31



The NEURON Book: Chapter 9 November 23, 2004

ASSI GNED {
  v    ( mV)
  ek   ( mV)
  g    ( mi l l i mho/ cm2)
  i k    ( mi l l i amp/ cm2)
  kf 1  ( / ms)
  kb1  ( / ms)
  kf 2  ( / ms)
  kb2  ( / ms)
}

STATE {  c1 c2 o }

BREAKPOI NT {
  SOLVE k i n METHOD spar se
  g = gbar * o
  i k  = g* ( v  -  ek) * ( 1e- 3)
}

I NI TI AL {  SOLVE k i n STEADYSTATE spar se }

KI NETI C k i n {
  r at es( v)
  ~ c1 <- > c2   ( kf 1,  kb1)
  ~ c2 <- > o    ( kf 2,  kb2)
  CONSERVE c1 + c2 + o = 1
}

FUNCTI ON_TABLE t au1( v( mV) )  ( ms)
FUNCTI ON_TABLE t au2( v( mV) )  ( ms)

PROCEDURE r at es( v( mi l l i vol t ) )  {
  LOCAL K1,  K2
  K1 = exp( k2* ( d2 -  v)  -  k1* ( d1 -  v) )
  kf 1 = K1/ ( t au1( v) * ( 1+K1) )
  kb1 = 1/ ( t au1( v) * ( 1+K1) )
  K2 = exp( - k2* ( d2 -  v) )
  kf 2 = K2/ ( t au2( v) * ( 1+K2) )
  kb2 = 1/ ( t au2( v) * ( 1+K2) )
}

Listing 9.7. k3st . mod

The NEURON block
With one exception, the NEURON block of this model is essentially the same as for the

delayed rectifier presented in Example 9.4: a voltage-gated current. The difference is
that, even though this model contributes to the total K+ current i k , its own current is not
available separately (i.e. there will be no i k_k3st  at the hoc  level) because i k  is not
declared as a RANGE variable.

Page 32 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 23, 2004 The NEURON Book: Chapter 9

Variable declaration blocks

The STATE block

The STATEs in this mechanism are the fractions of channels that are in closed states 1
or 2 or in the open state. Since the total number of channels in all states is conserved, the
sum of the STATEs must be unity, i.e. c1 + c2 + o = 1. This conservation rule means that
the k3st  mechanism really has only two independent STATE variables, a fact that
underscores the difference between a STATE in NMODL and the general concept of a
state variable. It also affects how NMODL sets up the equations that are to be solved, as
we will see in the discussion of the KI NETI C block below.

Not all reactants have to be STATEs. If the reactant is an ASSI GNED or PARAMETER
variable, then a differential equation is not generated for it, and it is treated as constant
for the purposes of calculating the declared STATEs. Statements such as

PARAMETER { kbat h ( mM) }
STATE { ko ( mM) }
KI NETI C scheme3 {
  ~ ko <- > kbat h ( r ,  r )
}

are translated to the single ODE equivalent

ko'  = r * ( kbat h -  ko)

i.e. ko tends exponentially to the steady state value of kbat h.

Equation definition blocks

The BREAKPOINT block

The recommended idiom for integrating a kinetic scheme is

BREAKPOI NT {
  SOLVE scheme METHOD spar se
  .  .  .
}

which integrates the STATEs in the scheme one dt  step per call to f advance( ) . The
spar se method is generally faster than computing the full Jacobian matrix, though both
use Newton iterations to advance the STATEs with a fully implicit method (first order
correct). Additionally, the spar se method separates the Jacobian evaluation from the
calculation of the STATE derivatives, thus allowing adaptive integration methods, such as
CVODE, to efficiently compute only what is needed to advance the STATEs. Nonimplicit
methods, such as Runge-Kutta or forward Euler, should be avoided since kinetic schemes
commonly have very wide ranging rate constants that make these methods numerically
unstable with reasonable dt  steps. In fact, it is not unusual to specify equilibrium
reactions such as

~ A <- > B ( 1e6* sqr t ( K) ,  1e6/ sqr t ( K) )

which can only be solved by implicit methods.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 33



The NEURON Book: Chapter 9 November 23, 2004

The INITIAL block

Initialization of a kinetic scheme to its steady state is accomplished with

I NI TI AL {
SOLVE scheme STEADYSTATE spar se

}

Appropriate CONSERVE statements should be part of the scheme (see the following
discussion of the KI NETI C block) so that the equivalent system of ODEs is linearly
independent. It should be kept in mind that source fluxes (constant for infinite time) have
a strong effect on the steady state. Finally, it is crucial to test the scheme in NEURON
under conditions in which the correct behavior is known.

The KINETIC block

The voltage-dependent rate constants are computed in procedure r at es( ) . That
procedure computes the equilibrium constants K1 and K2 from the constants k1, d1, k2,
and d2, whose empirically determined default values are given in the PARAMETER block,
and membrane potential v. The time constants t au1 and t au2, however, are found from
tables created under hoc  (see The FUNCTION_TABLEs below).

The other noteworthy item in this block is the CONSERVE statement. As mentioned
above in General comments about kinetic schemes, the basic idea is to systematically
account for conservation of material. If there is neither a source nor a sink reaction for a
STATE, the differential equations are not linearly independent when steady states are
calculated (dt  approaches infinity). For example, in scheme1 above the steady state
condition m'  = mc'  = 0 yields two identical equations. Steady states can be approximated
by integrating for several steps from any initial condition with large dt , but roundoff
error can be a problem if the Jacobian matrix is nearly singular. To help solve the
equations while maintaining strict numerical conservation throughout the simulation (no
accumulation of roundoff error), the user is allowed to explicitly specify conservation
equations with the CONSERVE statement. The conservation law for scheme1 is specified
in NMODL by 

CONSERVE m + mc = 1

The CONSERVE statement does not add to the information content of a kinetic scheme
and should be considered only as a hint to the translator. The NMODL translator uses this
algebraic equation to replace the ODE for the last STATE on the left side of the equal
sign. If one of the STATE names is an array, the conservation equation will contain an
implicit sum over the array. If the last STATE is an array, then the ODE for the last
STATE array element will be replaced by the algebraic equation. The choice of which
STATE ODE is replaced by the algebraic equation depends on the implementation, and
does not affect the solution (to within roundoff error). If a CONSERVEd STATE is relative
to a compartment size, then compartment size is implicitly taken into account for the
STATEs on the left hand side of the CONSERVE equation (see Example 9.8: calcium
diffusion with buffering for discussion of the COMPARTMENT statement). The right hand
side is merely an expression, in which any necessary compartment sizes must be included
explicitly.

Page 34 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 23, 2004 The NEURON Book: Chapter 9

Thus in a calcium pump model

Caint � Pump
�
�
k2

k1

Ca � Pump
�
�
k4

k3

Caext � Pump Eq. 9.3

the pump is conserved and one could write

CONSERVE pump + pumpca = t ot al _pump *  pumpar ea

The FUNCTION_TABLEs

As noted above, the steady state clamp data define the voltage dependence of K1 and

K2, but a complete description of the K+ current requires analysis of the temporal

properties of the clamp current to determine the rate factors at each of the command
potentials. The result would be a list or table of membrane potentials with associated time
constants. One way to handle these numeric values would be to fit them with a pair of
approximating functions, but the tactic used in this example is to leave them in tabular
form for NMODL's FUNCTI ON_TABLE to deal with.

This is done by placing the numeric values in three Vect or s, say v_vec , t au1_vec ,
and t au2_vec, where the first is the list of voltages and the other two are the
corresponding time constants. These Vect or s would be attached to the
FUNCTI ON_TABLEs of this model with the hoc commands

t abl e_t au1_k3st ( t au1_vec,  v_vec)
t abl e_t au2_k3st ( t au2_vec,  v_vec)

Then whenever t au1( x)  is called in the NMODL file, or t au1_k3st ( x)  is called from
hoc , the returned value is interpolated from the array.

A useful feature of FUNCTI ON_TABLEs is that, prior to developing the Vect or
database, they can be attached to a scalar value, as in

t abl e_t au1_k3st ( 100)

effectively becoming constant functions. Also FUNCTI ON_TABLEs can be declared with
two arguments and attached to doubly dimensioned hoc  arrays. In this case the table is
linearly interpolated in both dimensions. This is useful with rates that depend on both
voltage and calcium. 

Usage
Inserting this mechanism into a section makes the STATEs c1_k3st , c2_k3st , and

o_k3st  available at the hoc  level, as well as the conductances gbar _k3st  and g_k3st .

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 35



The NEURON Book: Chapter 9 November 23, 2004

Example 9.8: calcium diffusion with buffering
This mechanism illustrates how to use kinetic schemes to model intracellular Ca2+

diffusion and buffering. It differs from the prior example in several important aspects:
Ca2+ is not conserved but instead enters as a consequence of the transmembrane Ca2+

current; diffusion involves the exchange of Ca2+ between compartments of unequal size;
Ca2+ is buffered.

Only free Ca2+ is assumed to be mobile, whereas bound Ca2+ and free buffer are
stationary. Buffer concentration and rate constants are based on the bullfrog sympathetic
ganglion cell model described by Yamada et al. (Yamada et al. 1998). For a thorough
treatment of numeric solution of the diffusion equations the reader is referred to Oran and
Boris (Oran and Boris 1987).

Modeling diffusion with kinetic schemes
Diffusion is modeled as the exchange of Ca2+ between adjacent compartments. We

begin by examining radial diffusion, and defer consideration of longidudinal diffusion to
Equation definition blocks: The KINETIC block later in this example.

For radial diffusion, the compartments are a series of concentric shells around a
cylindrical core, as shown in Fig. 9.9 for Nannul i  = 4. The index of the outermost shell
is 0 and the index of the core is Nannul i  - 1. The outermost shell is half as thick as the
others so that [Ca2+] will be second order correct with respect to space at the surface of
the segment. Concentration is also second order correct midway through the thickness of
the other shells and at the center of the core. These depths are indicated by "x" in Fig. 9.9.
The radius of the cylindrical core equals the thickness of the outermost shell, and the
intervening Nannul i  - 2 shells each have thickness ∆r = di am / 2 (Nannul i  - 1), where
di am is the diameter of the segment.

Figure 9.9. Diagram of the concentric shells used to model radial diffusion. The
× mark the radial distances at which concentration will be second order correct
in space.

Because segment diameter and the number of shells affect the dimensions of the
shells, they also affect the time course of diffusion. The flux between adjacent shells is 
∆[Ca2+] DCa A / ∆r, where ∆[Ca2+] is the concentration difference between the shell

Page 36 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 23, 2004 The NEURON Book: Chapter 9

centers, DCa is the diffusion coefficient for Ca2+, A is the area of the boundary between

shells, and ∆r is the distance between their centers. This suggests that diffusion can be
described by the basic kinetic scheme 

FROM i  = 0 TO Nannul i - 2 {
  ~ ca[ i ]  <- > ca[ i +1]  ( f [ i +1] ,  f [ i +1] )
}

where Nannul i  is the number of shells, ca[ i ]  is the concentration midway through the
thickness of shell i  (except for ca[ 0]  which is the concentration at the outer surface of
shell 0), and the rate constants f [ i +1]  equal DCa A i+1 / ∆r. For each adjacent pair of

shells, both Ai+1 and ∆r are directly proportional to segment diameter. Therefore the

ratios A i+1 / ∆r depend only on shell index, i.e. once they have been computed for one

segment, they can be used for all segments that have the same number of radial
compartments regardless of segment diameter.

As it stands, this kinetic scheme is dimensionally incorrect. Dimensional consistency
requires that the product of STATEs and rates be in units of STATE per time (also see
Compartment size in the section on Chemical reactions in Chapter 3). In the present
example the STATEs ca[ ]  are intensive variables (concentration, or mass/volume), so the
product of f [ ]  and ca[ ]  must be in units of concentration/time. However, the rates f [ ]
have units of volume/time, so this product is actually in units of mass/time, i.e. it is a flux
that signifies the rate at which Ca2+ is entering or leaving a compartment. This is the time
derivative of an extensive variable (i.e. of a variable that describes amount of material).

This disparity is corrected by specifying STATE volumes with the COMPARTMENT
statement, as in

COMPARTMENT vol ume { st at e1 st at e2 .  .  .  }

where the STATEs named in the braces have the same compartment volume given by the
volume expression after the COMPARTMENT keyword. The volume merely multiplies the
dSTATE/dt left hand side of the equivalent differential equations, converting it to an
extensive quantity and making it consistent with flux terms in units of absolute quantity
per time.

The volume of each cylindrical shell depends on its index and the total number of
shells, and is proportional to the square of segment diameter. Consequently the volumes
can be computed once for a segment with unit diameter and then scaled by di am̂ 2 for
use in each segment that has the same Nannul i . The equations that describe the radial
movement of Ca2+ are independent of segment length. Therefore it is convenient to
express shell volumes and surface areas in units of µm2 (volume/length) and µm
(area/length), respectively.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 37



The NEURON Book: Chapter 9 November 23, 2004

:  Cal ci um i on accumul at i on wi t h r adi al  and l ongi t udi nal  di f f usi on

NEURON {
  SUFFI X cadi f us
  USEI ON ca READ cai ,  i ca WRI TE cai
  GLOBAL vr at ,  Tot al Buf f er   :  vr at  must  be GLOBAL- - see I NI TI AL bl ock
                            :  however  Tot al Buf f er  may be RANGE
}

DEFI NE Nannul i  4  :  must  be >=2 ( i . e.  at  l east  shel l  and cor e)

UNI TS {
  ( mol ar )  = ( 1/ l i t er )
  ( mM)     = ( mi l l i mol ar )
  ( um)     = ( mi cr on)
  ( mA)     = ( mi l l i amp)
  FARADAY = ( f ar aday)   ( 10000 coul omb)
  PI       = ( pi )        ( 1)
}

PARAMETER {
  DCa   = 0. 6 ( um2/ ms)
  k1buf  = 100 ( / mM- ms)  :  Yamada et  al .  1989
  k2buf  = 0. 1 ( / ms)
  Tot al Buf f er  = 0. 003  ( mM)
}

ASSI GNED {
  di am      ( um)
  i ca       ( mA/ cm2)
  cai        ( mM)
  vr at [ Nannul i ]   ( 1)  :  di mensi onl ess
              :  vr at [ i ]  i s vol ume of  annul us i  of  a 1um di amet er  cyl i nder
              :  mul t i pl y by di am̂ 2 t o get  vol ume per  um l engt h
  Kd        ( / mM)
  B0        ( mM)
}

STATE {
  :  ca[ 0]  i s equi val ent  t o cai
  :  ca[ ]  ar e ver y smal l ,  so speci f y absol ut e t ol er ance
  ca[ Nannul i ]        ( mM)  <1e- 10>
  CaBuf f er [ Nannul i ]  ( mM)
  Buf f er [ Nannul i ]    ( mM)
}

BREAKPOI NT {  SOLVE st at e METHOD spar se }

Page 38 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 23, 2004 The NEURON Book: Chapter 9

LOCAL f act or s_done

I NI TI AL {
   i f  ( f act or s_done == 0)  {   :  f l ag becomes 1 i n t he f i r st  segment
      f act or s_done = 1       :    al l  subsequent  segment s wi l l  have
      f act or s( )               :    vr at  = 0 unl ess vr at  i s GLOBAL
   }

  Kd = k1buf / k2buf
  B0 = Tot al Buf f er / ( 1 + Kd*cai )

  FROM i =0 TO Nannul i - 1 {
    ca[ i ]  = cai
    Buf f er [ i ]  = B0
    CaBuf f er [ i ]  = Tot al Buf f er  -  B0
  }
}

LOCAL f r at [ Nannul i ]   :  scal es t he r at e const ant s f or  model  geomet r y

PROCEDURE f act or s( )  {
  LOCAL r ,  dr 2
  r  = 1/ 2                :  st ar t s at  edge ( hal f  di am)
  dr 2 = r / ( Nannul i - 1) / 2  :  f ul l  t hi ckness of  out er most  annul us,
                         :  hal f  t hi ckness of  al l  ot her  annul i
  vr at [ 0]  = 0
  f r at [ 0]  = 2* r
  FROM i =0 TO Nannul i - 2 {
    vr at [ i ]  = vr at [ i ]  + PI * ( r - dr 2/ 2) *2*dr 2  :  i nt er i or  hal f
    r  = r  -  dr 2
    f r at [ i +1]  = 2*PI * r / ( 2*dr 2)   :  out er  r adi us of  annul us
                                :  di v by di st ance bet ween cent er s
    r  = r  -  dr 2
    vr at [ i +1]  = PI * ( r +dr 2/ 2) *2*dr 2  :  out er  hal f  of  annul us
  }
}

LOCAL dsq,  dsqvol   :  can' t  def i ne l ocal  var i abl e i n KI NETI C bl ock
                   :    or  use i n COMPARTMENT st at ement

KI NETI C st at e {
  COMPARTMENT i ,  di am*di am*vr at [ i ]  { ca CaBuf f er  Buf f er }
  LONGI TUDI NAL_DI FFUSI ON i ,  DCa*di am*di am*vr at [ i ]  { ca}
  ~ ca[ 0]  << ( - i ca*PI *di am/ ( 2*FARADAY) )   :  i ca i s Ca ef f l ux
  FROM i =0 TO Nannul i - 2 {
    ~ ca[ i ]  <- > ca[ i +1]   ( DCa* f r at [ i +1] ,  DCa*f r at [ i +1] )
  }
  dsq = di am*di am
  FROM i =0 TO Nannul i - 1 {
    dsqvol  = dsq*vr at [ i ]
    ~ ca[ i ]  + Buf f er [ i ]  <- > CaBuf f er [ i ]   ( k1buf *dsqvol ,  k2buf *dsqvol )
  }
  cai  = ca[ 0]
}

Listing 9.8. cadi f . mod

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 39



The NEURON Book: Chapter 9 November 23, 2004

The NEURON block
This model READs cai  to initialize both intracellular [Ca2+] and the buffer (see The

INITIAL block below), and it WRI TEs cai  because it computes [Ca2+] in the outermost
shell during a simulation run. It also READs i ca, which is the Ca2+ influx into the
outermost shell. 

There are two GLOBALs. One is the total buffer concentration Tot al Buf f er , which
is assumed to be uniform throughout the cell. The other is vr at , an array whose elements
will be the numeric values of the (volume/length) of the shells for a segment with unit
diameter. These values are computed by PROCEDURE f act or s( )  near the end of
Listing 9.8. As noted above, a segment with diameter di am has shells with volume/length
equal to di am̂ 2 *  vr at [ i ] . Because each instance of this mechanism has the same
number of shells, the same vr at [ i ]  can be used to find the shell volumes at each
location in the model cell where the mechanism exists.

The DEFI NE statement sets the number of shells to 4. Many of the variables in this
model are arrays, and NMODL arrays are not dynamic. Instead, their size must be
specified when the NMODL code is translated to C.

The UNITS block
Faraday's constant is rescaled here so we won't have to include a separate units

conversion factor in the statement in the KI NETI C block where transmembrane current
i ca is reckoned as the efflux of Ca2+ from the outermost shell. Each statement in a
UNI TS block must explicitly assert the units that are involved, so the statement that
assigns the value 3.141 . . . to PI  includes a ( 1)  to mark it as a dimensionless constant.

Variable declaration blocks

The ASSIGNED block

The variable vr at  is declared to be an array with Nannul i  elements. As with C,
array indices run from 0 to Nannul i  - 1. The variables Kd and B0 are the dissociation
constant for the buffer and the initial value of free buffer, which are computed in the
I NI TI AL block (see below). Both the total buffer and the initial concentration of Ca2+

are assumed to be uniform throughout all shells, so a scalar is used for B0.

The STATE block

In addition to diffusion, this mechanism involves Ca2+ buffering 

Ca � Buffer
�
�

k2
buf

k1
buf

Ca � Buffer Eq. 9.4

Page 40 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 23, 2004 The NEURON Book: Chapter 9

This happens in each of the shells, so ca, Buf f er  and CaBuf f er  are all arrays. 

The declaration of ca[ ]  uses the syntax state ( units)  <absolute_tolerance>
to specify the local absolute error tolerance that will be employed by CVODE. The solver
tries to use a step size for which the local error �

i of each statei satisfies at least one of

these two inequalities:
�

i < relative_tolerance · |statei|

or 
�

i < absolute_tolerance

The default values for these tolerances are 0 and 10-3, respectively, so only a STATE that
is extremely small (such as intracellular [Ca2+]) needs to have its absolute tolerance
specified. As an alternative to specifying a smaller absolute tolerance, ca[ ]  could have
been defined in terms of units such as micromolar or nanomolar, which would have
increased the numeric value of these variables. This would necessitate different units
conversion factors in many of the statements that involve ca[ ] . For example, the
assignment for cai  (which is required to be in mM) would be cai  = ( 1e- 6) * ca[ 0] .

LOCAL variables declared outside of equation definition blocks

A LOCAL variable that is declared outside of an equation definition block is
equivalent to a static variable in C. That is, it is visible throughout the mechanism (but
not at the hoc level), it retains its value, and it is shared between all instances of a given
mechanism. The initial value of such a variable is 0.

This particular mechanism employs four variables of this type: f act or s_done,
f r at [ ] , dsq, and dsqvol . The meaning of each of these is discussed below.

Equation definition blocks

The INITIAL block

Initialization of this mechanism is a two step process. The first step is to use
PROCEDURE f act or s( )  (see below) to set up the geometry of the model by computing
vr at [ ]  and f r at [ ] , the arrays of units conversion factors that are applied to the shell
volumes and rate constants. This only has to be done once because the same conversion
factors are used for all segments that have the same number of shells, as noted above in
Modeling diffusion with kinetic schemes. The variable f act or s_done is a flag that
indicates whether vr at [ ]  and f r at [ ]  have been computed. The NMODL keyword
LOCAL means that the value of f act or s_done will be the same in all instances of this
mechanism, but that it will not be visible at the hoc  level. Therefore f act or s( )  will be
executed only once, regardless of how many segments contain the cadi f us  mechanism.

The second step is to initialize the mechanism's STATEs. This mechanism assumes
that the total buffer concentration and the initial free calcium concentration are uniform

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 41



The NEURON Book: Chapter 9 November 23, 2004

in all shells, and that buffering has reached its steady state. Therefore the initial
concentration of free buffer is computed from the initial [Ca2+] and the buffer's
dissociation constant. It should be noted that the value of cai  will be set to
cai 0_ca_i on just prior to executing the code in the I NI TI AL block (see Ion
concentrations and equilibrium potentials in Chapter 8).

It may be instructive to compare this initialization strategy with the approach that was
used for the voltage-gated current of Listing 9.7 (k3st . mod). That previous example
initialized the STATE through numeric solution of a kinetic scheme, so its KI NETI C
block required a CONSERVE statement to ensure that the equivalent system of ODEs
would be linearly independent. Here, however, the STATEs are initialized by explicit
algebraic assignment, so no CONSERVE statement is necessary.

PROCEDURE factors()

The arrays vr at [ ]  and f r at [ ] , which are used to scale the shell volumes and rate
constants to ensure consistency of units, are computed here. Their values depend only on
the number of shells, so they do not have to be recomputed if di am or DFr ee is changed.

The elements of vr at [ ]  are the volumes of a set of concentric cylindrical shells,
whose total volume equals the volume of a cylinder with diameter and length of 1 µm.
These values are computed in two stages by the FROM i =0 TO Nannul i - 2 {  }  loop.
The first stage finds the volume of the outer half and the second finds the volume of the
inner half of the shell.

The f r at  array is declared to be LOCAL because it applies to all segments that have
the cadi f us  mechanism, but it is unlikely to be of interest to the user and therefore does
not need to be visible at the hoc  level. This contrasts with vr at , which is declared as
GLOBAL within the NEURON block so that the user can see its values. The values f r at

[ i +1]  equal Ai+1 / ∆r, where Ai+1 is the surface area between shells i  and i +1 for 0 ≤ i

< Nannul i , and ∆r is the distance between shell centers (radius / (Nannul i  - 1)).

The KINETIC block

The first statement in this block specifies the shell volumes for the STATEs ca,
CaBuf f er , and Buf f er . As noted above in Modeling diffusion with kinetic schemes,
these volumes equal the elements of vr at [ ]  multiplied by the square of the segment
diameter. This mechanism involves many compartments whose relative volumes are
specified by the elements of an array, so we can deal with all compartments with a single 
statement of the form

COMPARTMENT index,  volume[ index]  {  state1 state2 .  .  .  }

where the diffusing STATEs are listed inside the braces.

Next in this block is a LONGI TUDI NAL_DI FFUSI ON statement, which specifies that
this mechanism includes "nonlocal" diffusion, i.e. longitudinal diffusion along a section
and into connecting sections. The syntax for scalar STATEs is

LONGI TUDI NAL_DI FFUSI ON flux_expr {  state1 state2 .  .  .  }

Page 42 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 23, 2004 The NEURON Book: Chapter 9

where flux_expr is the product of the diffusion constant and the area of the cross
section between adjacent compartments. Units of the flux_expr must be (micron4/ms),
i.e. the diffusion constant has units of (micron2/ms) and the cross sectional area has units
of (micron2). For cylindrical shell compartments, the cross sectional area is just the
volume per unit length. If the states are arrays then all elements are assumed to diffuse
between corresponding volumes in adjacent segments and the iteration variable must be
specified as in

LONGI TUDI NAL_DI FFUSI ON index,  flux_expr( index)  {  state1 state2 . . . }

A COMPARTMENT statement is also required for the diffusing STATEs and the units must
be (micron2), i.e. (micron3/micron).

The compactness of LONGI TUDI NAL_DI FFUSI ON specification contrasts nicely with
the great deal of trouble imposed on the computational methods used to solve the
equations. The standard backward Euler method, historically the default method used by
NEURON (see Chapter 4), can no longer find steady states with extremely large (e.g.
109 ms) steps since not every Jacobian element for both flux and current with respect to
voltage and concentration is presently accurately computed. CVODE works well for
these problems since it does not allow dt  to grow beyond the point of numerical
instability. Despite these occasional limitations on numerical efficiency, it is satisfying
that, as methods evolve to handle these problems more robustly, the specification of the
models does not change.

The third statement in this block is equivalent to a differential equation that describes
the contribution of transmembrane calcium current to Ca2+ in the outermost shell. The <<
signifies an explicit flux. Because of the COMPARTMENT statement, the left hand side of
the differential equation is not d[Ca2+]0/dt but d(total Ca2+ in the outermost shell)/dt.

This is consistent with the right hand side of the equation, which is in units of mass per
time.

Next is the kinetic scheme for radial diffusion. The rate constants in this scheme
equal the product of DCa and the factor f r at [ ]  for reasons that were explained earlier in
Modeling diffusion with kinetic schemes.

It may not be immediately clear why the rate constants in the kinetic scheme for Ca2+

buffering are scaled by the compartment volume dsqvol ; however, the reason will
become obvious when one recalls that the COMPARTMENT statement at the beginning of
the KI NETI C block has converted the units of the dSTATE/dt on the left hand side of the
equivalent differential equations from concentration per time to mass per time. If the
reaction rate constants were left unchanged, the right hand side of the differential
equations for buffering would have units of concentration per time, which is inconsistent.
Multiplying the rate constants by compartment volume removes this inconsistency by
changing the units of the right hand side to mass per time.

The last statement in the KI NETI C block updates the value of cai  from ca[ 0] . This
is necessary because intracellular [Ca2+] is known elsewhere in NEURON as cai , e.g. to
other mechanisms and to NEURON's internal routine that computes ECa.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 43



The NEURON Book: Chapter 9 November 23, 2004

When developing a new mechanism or making substantive changes to an existing
mechanism, it is generally advisable to check for consistency of units with modl uni t .
Given the dimensional complexity of this model, such testing is absolutely indispensable.

Usage
If this mechanism is inserted in a section, the concentrations of Ca2+ and the free and

bound buffer in all compartments will be available through hoc as ca_cadi f us[ ] ,
Buf f er _cadi f us[ ] , and CaBuf f er _cadi f us[ ] . These STATEs will also be available
for plotting and analysis through the GUI. 

The PARAMETERs DCa, k1buf , k2buf , and Tot al Buf f er  will also be available for
inspection and modification through both the graphical interface and hoc  statements
(with the _cadi f us  suffix). All PARAMETERs are GLOBALs by default, i.e. they will have
the same values in each location where the cadi f us  mechanism has been inserted.
Therefore in a sense it is gratuitous to declare in the NEURON block that Tot al Buf f er  is
GLOBAL. However, this declaration serves to remind the user of the nature of this
important variable, which is likely to be changed during exploratory simulations or
optimization.

In some cases it might be useful for one or more of the PARAMETERs to be RANGE
variables. For example, Tot al Buf f er  and even DCa or the buffer rate constants might
not be uniform throughout the cell. To make Tot al Buf f er  and DCa RANGE variables
only requires replacing the line 

GLOBAL vr at ,  Tot al Buf f er

in the NEURON block with 

GLOBAL vr at
RANGE Tot al Buf f er ,  DCa

The GLOBAL volume factors vr at [ ]  are available through hoc for inspection, but it
is inadvisable to change their values because they would likely be inconsistent with the
f r at [ ]  values and thereby cause errors in the simulation.

All occurrences of this mechanism will have the same number of shells, regardless of
the physical diameter of the segments in which the mechanism has been inserted. With
Nannul i  = 4, the thickness of the outermost shell will be ≤ 1 µm in segments with di am

≤ 6 µm. If this spatial resolution is inadequate, or if the model has segments with larger
diameters, then Nannul i  may have to be increased. NMODL does not have dynamic
arrays, so in order to change the number of shells one must recompile the mechanism
after assigning a new value to Nannul i  by editing the NMODL source code.

Example 9.9: a calcium pump
This mechanism involves a calcium pump based on the reaction scheme outlined in

the description of the KI NETI C block of Example 9.7: kinetic scheme for a voltage-
gated current. It is a direct extension of the model of calcium diffusion with buffering in

Page 44 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 23, 2004 The NEURON Book: Chapter 9

Example 9.8: calcium diffusion with buffering, the principal difference being that a
calcium pump is present in the cell membrane. The following discussion focuses on the
requisite changes in Listing 9.8, and the operation and use of this new mechanism. For all
other details the reader should refer to Example 9.8.

The NEURON block
Changes in the NEURON block are marked in bold. The first nontrivial difference from

the prior example is that this mechanism READs the value of cao, which is used in the
pump reaction scheme.

NEURON {
SUFFI X cdp
USEI ON ca READ cao,  cai ,  i ca WRI TE cai , ica
RANGE ica_pmp
GLOBAL vr at ,  Tot al Buf f er , TotalPump

}

The mechanism also WRI TEs a pump current that is attributed to i ca so that its
transmembrane Ca2+ flux will be factored into NEURON's calculations of [Ca2+] i. This

current, which is a RANGE variable known as i ca_pmp_cdp to the hoc  interpreter,
constitutes a net movement of positive charge across the cell membrane, and it follows
the usual sign convention (outward current is "positive"). The pump current has a direct
effect on membrane potential, which, because of the rapid activation of the pump, is
manifest by a distinct delay of the spike peak and a slight increase of the postspike
hyperpolarization. This mechanism could be made electrically "silent" by having it
WRI TE an equal but opposite NONSPECI FI C_CURRENT or perhaps a current that involves
some other ionic species, e.g. Na+, K+, or Cl-.

The variable Tot al Pump is the total density of pump sites on the cell membrane,
whether free or occupied by Ca2+. Making it GLOBAL means that it is user adjustable, and
that the pump is assumed to have uniform density wherever the mechanism has been
inserted. If local variation is required, this should be a RANGE variable.

The UNITS block
This mechanism includes the statement ( mol )  = ( 1)  because the density of pump

sites will be specified in units of ( mol / cm2) . The term mol e cannot be used here
because it is already defined in NEURON's units database as 6.022169 · 1023

(Avogadro's number).

Variable declaration blocks

The PARAMETER block

Five new statements have been added because this mechanism uses the rate constants
of the pump reactions and the density of pump sites on the cell membrane. 

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 45



The NEURON Book: Chapter 9 November 23, 2004

k1 = 1      ( / mM- ms)
k2 = 0. 005  ( / ms)
k3 = 1      ( / ms)
k4 = 0. 005  ( / mM- ms)
:  t o el i mi nat e pump,  set  Tot al Pump t o 0 i n hoc
Tot al Pump = 1e- 11  ( mol / cm2)

These particular rate constant values were chosen to satisfy two criteria: the pump influx
and efflux should be equal at [Ca2+] = 50 nM, and the rate of transport should be slow
enough to allow a slight delay in accelerated transport following an action potential that
included a voltage-gated Ca2+ current. The density Tot al Pump is sufficient for the pump
to have a marked damping effect on [Ca2+] i transients; lower values reduce the ability of

the pump to regulate [Ca2+]i. 

The ASSIGNED block

These three additions have been made. 

cao      ( mM)
i ca_pmp  ( mA/ cm2)
par ea    ( um)

This mechanism treats [Ca2+]o as a constant. The pump current and the surface area over

which the pump is distributed are also clearly necessary.

The CONSTANT block

Consistency of units requires explicit mention of an extracellular volume in the
kinetic scheme for the pump.

CONSTANT {  vol o = 1e10  ( um2)  }

The value used here is equivalent to 1 liter of extracellular space per micron length of the
cell, but the actual value is irrelevant to this mechanism because cao is treated as a
constant. Since the value of vol o is not important for this mechanism, there is no need
for it to be accessible through hoc  commands or the GUI, so it is not a PARAMETER. On
the other hand, there is a sense in which it is an integral part of the pump mechanism, so
it would not be appropriate to make vol o be a LOCAL variable since LOCALs are intended
for temporary storage of "throwaway" values. Finally, the value of vol o would never be
changed in the course of a simulation. Therefore vol o is declared in a CONSTANT block. 

The STATE block

The densities of pump sites that are free or have bound Ca2+, respectively, are
represented by the two new STATEs 

pump    ( mol / cm2)
pumpca  ( mol / cm2)

Page 46 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 23, 2004 The NEURON Book: Chapter 9

Equation definition blocks

The BREAKPOINT block

This block has one additional statement

BREAKPOI NT {
  SOLVE st at e METHOD spar se
  i ca = i ca_pmp
}

The assignment i ca = i ca_pmp is needed to ensure that the pump current is reckoned
in NEURON's calculation of [Ca2+] i.

The INITIAL block

The statement

par ea = PI * di am

must be included to specify the area per unit length over which the pump is distributed.

If it is correct to assume that [Ca2+] i has been equal to cai 0_ca_i on (default =

50 nM) for a long time, the initial levels of pump and pumpca can be set by using the
steady state formula

pump = Tot al Pump/ ( 1 + ( cai * k1/ k2) )
pumpca = Tot al Pump -  pump

An alternative initialization strategy is to place 

i ca = 0
SOLVE st at e STEADYSTATE spar se

at the end of the I NI TI AL block, where the i ca = 0 statement is needed because the
kinetic scheme treats transmembrane Ca2+ currents as a source of Ca2+ flux. This idiom
makes NEURON compute the initial values of STATEs, which can be particularly
convenient for mechanisms whose steady state solutions are difficult or impossible to
express in analytical form. This would require adding a CONSERVE statement to the
KI NETI C block to insure that the equations that describe the free and bound buffer are
independent (see also The INITIAL block in Example 9.7: kinetic scheme for a
voltage-gated current).

Both of these initializations explicitly assume that the net Ca2+ current generated by
other sources equals 0, so the net pump current following initialization is also 0. If this
assumption is incorrect, as is almost certainly the case if one or more voltage-gated Ca2+

currents are included in the model, then [Ca2+]i will start to change immediately when a

simulation is started. Most often this is not the desired outcome. The proper initialization
of a model that contains mechanisms with complex interactions may involve performing
an "initialization run" and using SaveSt at e objects (see Examples of custom
initializations in Chapter 8).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 47



The NEURON Book: Chapter 9 November 23, 2004

The KINETIC block

Changes in this block are marked in bold. For dimensional consistency, the pump
scheme requires the new COMPARTMENT statements and units conversion factor ( 1e10) .

KI NETI C st at e {
  COMPARTMENT i ,  di am*di am*vr at [ i ]  { ca CaBuf f er  Buf f er }
  COMPARTMENT (1e10)*parea {pump pumpca}
  COMPARTMENT volo {cao}
  LONGI TUDI NAL_DI FFUSI ON i ,  DCa*di am*di am*vr at [ i ]  { ca}

  :pump
  ~ ca[0] + pump <-> pumpca  (k1*parea*(1e10), k2*parea*(1e10))
  ~ pumpca <-> pump + cao    (k3*parea*(1e10), k4*parea*(1e10))
  CONSERVE pump + pumpca = TotalPump * parea * (1e10)
  ica_pmp = 2*FARADAY*(f_flux - b_flux)/parea

  : all currents except pump
  ~ ca[ 0]  << ( - ( i ca - ica_pmp) *PI *di am/ ( 2*FARADAY) )
  FROM i =0 TO Nannul i - 2 {
    ~ ca[ i ]  <- > ca[ i +1]  ( DCa*f r at [ i +1] ,  DCa*f r at [ i +1] )
  }
  dsq = di am*di am
  FROM i =0 TO Nannul i - 1 {
    dsqvol  = dsq*vr at [ i ]
    ~ ca[ i ]  + Buf f er [ i ]  <- > CaBuf f er [ i ]  ( k1buf *dsqvol ,  k2buf *dsqvol )
  }

  cai  = ca[ 0]
}

The pump reaction statements implement the scheme outlined in the description of
the KI NETI C block of Example 9.7: kinetic scheme for a voltage-gated current. Also
as described in that section, the CONSERVE statement ensures strict numerical
conservation, which is helpful for convergence and accuracy.

In the steady state, the net forward flux in the first and second reactions must be
equal. Even during physiologically relevant transients, these fluxes track each other
effectively instantaneously. Therefore the transmembrane Ca2+ flux generated by the
pump is taken to be the net forward flux in the second reaction. 

This mechanism WRI TEs i ca in order to affect [Ca2+] i. The total transmembrane

Ca2+ flux is the sum of the pump flux and the flux from all other sources. Thus to make
sure that i ca_pmp is not counted twice, it is subtracted from total Ca2+ current i ca in
the expression that relates Ca2+ current to Ca2+ flux.

Usage
The STATEs and PARAMETERs that are available through hoc  and the GUI are

directly analogous to those of the cadi f us  mechanism, but they will have the suffix
_cdp rather than _cadi f us . The additional pump variables pump_cdp, pumpca_cdp,
i ca_pmp_cdp, and Tot al Pump_cdp will also be available and are subject to similar

Page 48 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 23, 2004 The NEURON Book: Chapter 9

concerns and constraints as their counterparts in the diffusion reactions (see Usage in
Example 9.8: calcium diffusion with buffering).

Models with discontinuities
The incorporation of variable time step integration methods in NEURON made it

necessary to provide a way to ensure proper handling of abrupt changes in PARAMETERs,
ASSI GNED variables, and STATEs. At first this was accomplished by adding at _t i me( )
and st at e_di scont i nui t y( )  to NMODL, but the advent of NEURON's event
delivery system has obviated the need for these functions and we strongly advise against
using them in any new model development. Even so, they have been employed in several
mechanisms of recent vintage, e.g. models of pulse generators and synaptic transmission,
so the following discussion contains explanations of why they were used and what they
do, as well as current recommendations for preferred ways to implement models that
involve discontinuities.

Discontinuities in PARAMETERs and ASSIGNED variables
Before CVODE was added to NEURON, sudden changes in PARAMETERs and

ASSI GNED variables, such as the sudden change in current injection during a current
pulse, had been implicitly assumed to take place on a time step boundary. This is
inadequate with variable time step methods because it is unlikely that a time step
boundary will correspond to the onset or offset of the pulse. Worse, the time step may be
longer than the pulse itself, which may thus be entirely ignored.

The at _t i me( )  function was added so that a model description could explicitly
notify NEURON of the times at which any discontinuities occur. This function has no
effect on fixed time step integration, but during variable time step integration, the
statement at _t i me( t event )  guarantees that the integrator reduces the step size so that
it completes at time t event - , which is on the order of roundoff error before t event .
The integrator then reinitializes at t event +, which is on the order of roundoff error after
t event , and the solution continues from there. This is how the built-in current clamp
model I Cl amp notifies NEURON of the time of onset of the pulse and its offset (see the
BREAKPOI NT block of Example 9.3: an intracellular stimulating electrode). As noted
above, however, now the preferred way to implement abrupt changes in PARAMETERs
and ASSI GNED variables is to take advantage of NEURON's event delivery system
(specifically, self-events) because of improved computational efficiency and greater
conceptual clarity (see Chapter 10).

In the course of a variable time step simulation, a missing at _t i me( )  call may cause
one of two symptoms. If a PARAMETER changes but returns to its original value within
the same interval, the pulse may be entirely missed. More often, a single discontinuity
will take place within a time step interval, causing the integrator to start what seems like
a binary search for the location of the discontinuity in order to satisfy the error tolerance
on the step; of course, this is very inefficient.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 49



The NEURON Book: Chapter 9 November 23, 2004

Discontinuities in STATEs
Some kinds of synaptic models involve a discontinuity in one or more STATE

variables. For example, a synapse whose conductance follows the time course of an alpha
function (for more detail about the alpha function itself see Rall (Rall 1977) and Jack et
al. (Jack et al. 1983)) can be implemented as a kinetic scheme in the two state model

KI NETI C st at e {
  ~ a <- > g ( k ,  0)
  ~ g - > ( k)
}

("- >" indicates a sink reaction), where a discrete synaptic event results in an abrupt
increase of STATE a. This formulation has the attractive property that it can handle
multiple streams of events with different weights, so that g will be the sum of the
individual alpha functions with their appropriate onsets.

Abrupt changes in STATEs require particularly careful treatment because of the
special nature of states in variable time step ODE solvers. Before the advent of an event
delivery system in NEURON, this required not only an at _t i me( )  call to notify
NEURON about the time of the discontinuity, but also a st at e_di scont i nui t y( )
statement to specify how the affected STATE would change. Furthermore,
st at e_di scont i nui t y( )  could only be used in an i f  ( at _t i me( ) ) { }  block. Thus
the BREAKPOI NT block for a synaptic event that starts at onset  and reaches a maximum
conductance gmax  would look like this 

BREAKPOI NT {
  i f  ( at _t i me( onset ) )  {
    :  scal e f act or  exp( 1)  = 2. 718. . .  ensur es
    :  t hat  peak conduct ance wi l l  be gmax
    st at e_di scont i nui t y( a,  a + gmax* exp( 1) )
  }
  SOLVE st at e METHOD spar se
  i  = g* ( v -  e)
}

The first argument to st at e_di scont i nui t y( )  is interpreted as a reference to the
STATE, and the second argument is an expression for its new value. The first argument
will be assigned the value of its second argument just once for any time step. This is
important because, for several integration methods, BREAKPOI NT assignment statements
are often executed twice to calculate the di/dv terms of the Jacobian matrix.

This synaptic model works well with deterministic stimulus trains, but it is difficult
for the user to supply the administrative hoc code for managing the onset  and gmax
variables to take advantage of the promise of "multiple streams of input events with
different weights." The most important problem is how to save events that have
significant delay between their generation and their handling at time onset . As this
model stands, an event can be passed to it by assigning values to onset  and gmax  only
after the previous onset event has been handled.

These complexities have been eliminated by the event delivery system. Instead of
handling the state discontinuity in the BREAKPOI NT block, the synaptic model should
now be written in the form

Page 50 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 23, 2004 The NEURON Book: Chapter 9

BREAKPOI NT {
  SOLVE st at e METHOD spar se
  i  = g* ( v -  e)
}

NET_RECEI VE( wei ght  ( mi cr osi emens) )  {
  a = a + wei ght * exp( 1)
}

in which event distribution is handled
internally from a specification of network
connectivity (see next section). Note that
there is no need to use either at _t i me( )
or st at e_di scont i nui t y( ) . Also, the
BREAKPOI NT block should not have any i f
statements. All discontinuities should be
handled in a NET_RECEI VE block. For
further details of how to deal with streams
of synaptic events with arbitrary delays and weights, see Chapter 10.

Event handlers
With recent versions of NEURON, the most powerful and general strategy for dealing

with discontinuities in ASSI GNED variables, PARAMETERs, and STATEs is to use the
Net Con class's event ( )  method, which exploits NEURON's event delivery system (see
Chapter 10). The handler( )  procedure in netcon. event ( te,  " handler( ) " )  can
contain statements that change anything discontinuously, as long as the last statement in
handler( )  is cvode. r e_i ni t ( )  (see Chapter 8).

Time-dependent PARAMETER changes
One way to translate the concept of a "smoothly varying" parameter into a

computational implementation is by explicit specification in a model description, as in 

BREAKPOI NT {  i  = i max* si n( w* t )  }

This works with both fixed and variable time step integration. Time-dependent changes
can also be specified at the hoc  interpreter level, but care is needed to ensure they are
properly computed in the context of variable time steps. For instance, it might seem
convenient to change PARAMETERs prior to f advance( )  calls, e.g. 

pr oc advance( )  {
  I Cl amp[ 0] . amp = i max* s i n( w* t )
  f advance( )
}

This does work with fixed dt  but is discouraged because it produces inaccurate results
with variable dt  methods. 

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 51

We should mention that early implementations
of the event delivery system did require 
st at e_di scont i nui t y( ) . Thus you may
encounter a legacy synaptic model whose
NET_RECEI VE block contains a statement such
as st at e_di scont i nui t y( a,  a+w*exp( 1) ) .
This requirement no longer exists, and we
discourage the use of this syntax.



The NEURON Book: Chapter 9 November 23, 2004

An alternative that works well with fixed and variable time step integration is to use
the Vect or  class's pl ay( )  method with linear interpolation, which became available in
NEURON 5.4. This is invoked with 

vec. pl ay( &rangevar,  tvec,  1)

in which vec and tvec are a pair of Vect or s that define a piecewise linear function of
time y = f(t), i.e. tvec contains a monotonically increasing sequence of times, and vec
holds the corresponding y values. The rangevar is the variable that is to be driven by f().
In the future, Vect or . pl ay  will be extended to cubic spline interpolation and will allow
"continuous" play of a smooth function defined by a Vect or . 

Page 52 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 23, 2004 The NEURON Book: Chapter 9

References
Durand, D. The somatic shunt cable model for neurons. Biophys. J. 46:645-653, 1984.

Frankenhaeuser, B. and Hodgkin, A.L. The after-effects of impulses in the giant nerve
fibers of Loligo. J. Physiol. 131:341-376, 1956.

Hines, M.L. and Carnevale, N.T. Expanding NEURON's repertoire of mechanisms with
NMODL. Neural Computation 12:995-1007, 2000.

Jack, J.J.B., Noble, D., and Tsien, R.W. Electric Current Flow in Excitable Cells.
London: Oxford University Press, 1983.

Johnston, D. and Wu, S.M.-S. Foundations of Cellular Neurophysiology. Cambridge,
MA: MIT Press, 1995.

Kohn, M.C., Hines, M.L., Kootsey, J.M., and Feezor, M.D. A block organized model
builder. Mathematical and Computer Modelling 19:75-97, 1994.

Kootsey, J.M., Kohn, M.C., Feezor, M.D., Mitchell, G.R., and Fletcher, P.R. SCoP: an
interactive simulation control program for micro- and minicomputers. Bulletin of
Mathematical Biology 48:427-441, 1986.

McCormick, D.A. Membrane properties and neurotransmitter actions. In: The Synaptic
Organization of the Brain, edited by G.M. Shepherd. NY: Oxford University Press, 1998,
p. 37-75.

Moczydlowski, E. and Latorre, R. Gating kinetics of Ca
2+

-activated K
+

 channels from
rat muscle incorporated into planar lipid bilayers. Journal of General Physiology 82:511-
542, 1983.

Oran, E.S. and Boris, J.P. Numerical Simulation of Reactive Flow. New York: Elsevier,
1987.

Rall, W. Core conductor theory and cable properties of neurons. In: Handbook of
Physiology, vol. 1, part 1:  The Nervous System, edited by E.R. Kandel. Bethesda, MD:
American Physiological Society, 1977, p. 39-98.

Staley, K.J., Otis, T.S., and Mody, I. Membrane properties of dentate gyrus granule cells:
comparison of sharp microelectrode and whole-cell recordings. J. Neurophysiol.
67:1346-1358, 1992.

Wilson, M.A. and Bower, J.M. The simulation of large scale neural networks. In:
Methods in Neuronal Modeling, edited by C. Koch and I. Segev. Cambridge, MA: MIT
Press, 1989, p. 291-333.

Yamada, W.M., Koch, C., and Adams, P.R. Multiple channels and calcium dynamics. In: 
Methods in Neuronal Modeling, edited by C. Koch and I. Segev. Cambridge, MA: MIT
Press, 1998, p. 137-170.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 53



The NEURON Book: Chapter 9 November 23, 2004

Chapter 9 Index
A

absolute error

local

tolerance 41

active transport

electrically silent 45

pump current 45-47

countering with a NONSPECIFIC_CURRENT 45

initialization 47

ASSIGNED block 5, 15, 23, 40

ASSIGNED variable 5

GLOBAL

spatial variation 23

vs. RANGE 8, 22

is a range variable by default 6

v, celsius, t, dt, diam, and area 6

visibility at the hoc level 6, 10

when to use for an equilbrium potential 15

B

Backward Euler method

and LONGITUDINAL_DIFFUSION 43

BREAKPOINT block 6, 15

and computations that must be performed only once per time step 16

and counts, flags, and random numbers 15

and PROCEDUREs 16

and rate functions 16

and variables that depend on the number of executions 15

currents assigned at end of 15

SOLVE 15, 17

cnexp 17

derivimplicit 17

Page 54 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 23, 2004 The NEURON Book: Chapter 9

is not a function call 16

sparse 33

C

celsius 5, 23

channel

gating model

HH type 17

nonlinear 17

computational efficiency 1, 3, 17, 30, 33, 43, 49

conceptual clarity 1, 30, 49

CONSTANT

vs. PARAMETER or LOCAL variable 46

CONSTANT block 46

CVODE

and LONGITUDINAL_DIFFUSION 43

and model descriptions

at_time() 11, 49-51

state_discontinuity() 49-51

CVode class

re_init() 51

D

DERIVATIVE block 17, 23, 28

DERIVATIVE block

' (apostrophe) 17

diffusion

kinetic scheme 29

longitudinal 42

radial 36, 43

distributed mechanism 2, 13

Distributed Mechanism GUI

Manager

Inserter 7

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 55



The NEURON Book: Chapter 9 November 23, 2004

dt

use in NMODL 3, 6

E

e

electronic charge vs. units conversion factor 22

equation

conservation 4

current balance 4

event

self-event 49

times

with adaptive integration 11, 51

Example 9.1: a passive "leak" current 2

Example 9.2: a localized shunt 7

Example 9.3: an intracellular stimulating electrode 10

Example 9.4: a voltage-gated current 12

Example 9.5: a calcium-activated, voltage-gated current 20

Example 9.6: extracellular potassium accumulation 25

Example 9.7: kinetic scheme for a voltage-gated current 31

Example 9.8: calcium diffusion with buffering 36

Example 9.9: a calcium pump 44

F

forward Euler method

stability 33

FUNCTION block 18, 24

G

GENESIS 1, 4

GMODL 4

H

hoc

calling an NMODL FUNCTION or PROCEDURE 18

specifying proper instance with setdata_ 18

Page 56 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 23, 2004 The NEURON Book: Chapter 9

I

INITIAL block 16

SOLVE

STEADYSTATE sparse 34, 47

initialization

categories 16

finitialize() 12, 16

strategies 16

steady state initialization of complex kinetic schemes 47

ion accumulation

initialization

of model geometry 41

ion mechanism

automatically created 26

initialization 27

J

Jacobian 30, 33

approximate 17, 43

computing di/dv elements 50

nearly singular 34

user-supplied 18

K

KINETIC block 34, 42, 48

-> (sink reaction indicator) 50

~ (tilde) 29

<-> (reaction indicator) 29

<< (explicit flux) 43

b_flux 29

COMPARTMENT 37, 42, 43

CONSERVE 34

when is it required for initialization? 34, 42, 47

f_flux 29

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 57



The NEURON Book: Chapter 9 November 23, 2004

LONGITUDINAL_DIFFUSION 42

reactants 29

ASSIGNED or PARAMETER variables as 33

reaction rates 29

STATE-dependent, and instability 30

voltage-sensitive 30

reaction statement 29

L

LINEAR block 15

LOCAL variable

declared outside an equation block

initial value 41

scope and persistence 41

declared within an equation block

scope and persistence 19

M

Markov process

kinetic scheme 29

material

conservation 29, 33-35, 48

mod file 1

MODL 1

vs. NMODL 1, 4

modlunit 9, 22

N

National Biomedical Simulation Resource project 1

NET_RECEIVE block

handling abrupt changes and discontinuities 51

INITIAL block 16

state_discontinuity() 51

NetCon class

event() 51

Page 58 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 23, 2004 The NEURON Book: Chapter 9

NEURON block 4

ELECTRODE_CURRENT 10

effect on extracellular mechanism 10

GLOBAL 4

NONSPECIFIC_CURRENT 4

equilibrium potential 15

POINT_PROCESS 8

RANGE 4, 10

SUFFIX 4

USEION 14, 21

READ ex (reading an equilibrium potential) 14

READ ix (reading an ionic current) 26, 40

READ xi (reading an intracellular concentration) 21, 40

READ xo (reading an extracellular concentration) 45

WRITE ix (writing an ionic current) 14, 21, 25, 45, 48

WRITE xi (writing an intracellular concentration) 40

WRITE xo (writing an extracellular concentration) 26

NMODL

arrays

are not dynamic 40, 44

index starts at 0 40

comments 3

declaring variables 4

specifying units 5

DEFINE 40

FROM . . . TO . . . (loop statement) 42

FUNCTION_TABLE 35

named blocks 1

equation definition 1

general form 3

variable declaration 1

translator 1, 3, 30, 34

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 59



The NEURON Book: Chapter 9 November 23, 2004

translator

nmodl 4

nocmodl 4

nocmodl.exe 4

units conversion factor 9, 22, 28, 40, 41, 48

units conversion factor

parentheses 9

UNITSOFF . . . UNITSON 18

user-defined variable 3

VERBATIM . . . ENDVERBATIM 3

NONLINEAR block 15

nrnunits.lib 5, 22

numeric integration

adaptive 16, 17, 27, 33, 49, 51

explicit 33

fixed time step 17, 27, 51

fixed time step

event aggregation to time step boundaries 11, 49

implicit 33

order of accuracy

first 17, 33

second 17, 36

variable 17

P

PARAMETER block 5

assigning default PARAMETER values 5

specifying minimum and maximum limits 5

PARAMETER variable 5

GLOBAL vs. RANGE 5, 27, 45

is GLOBAL by default 44

RANGE 10

time-dependent 51

Page 60 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



November 23, 2004 The NEURON Book: Chapter 9

visibility at the hoc level 5

when to use for an equilbrium potential 15

Plot what? GUI 19, 24

point process 7, 10

Point Process Viewer GUI 10

PROCEDURE block 24

R

Runge-Kutta method

stability 33

S

SCoP 1, 6

standard run system

fadvance() 33, 51

STATE block 15

specifying local absolute error tolerance 41

state variable

of a mechanism vs. state variable of a model 6

STATE variable 15

array in NMODL 34

initialization 16

state0 28

ion concentration as 27

is automatically RANGE 15

vs. state variable 33

T

t

the independent variable in NEURON 6

use in NMODL 6

U

units

checking 5, 9, 44

consistency 37, 43

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 61



The NEURON Book: Chapter 9 November 23, 2004

database 5

dimensionless

(1) 40

by default 5

e 22

faraday 22

k-mole 22

mole 45

specifying 18

UNITS block 14

defining new names 14

units scaling 22, 40

V

v

is a RANGE variable 4

variable

abrupt change of 49, 50

extensive 37

intensive 37

Vector class

play()

with interpolation 52

X

x 45

Page 62 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved


