September 8, 2004 The NEURON Book: Chapter 8

Chapter 8

How to initialize simulations

In most cases, initialization basically means the assignment of values at timet =0 for
membrane potential, gating states, and ionic concentrations at every spatial position in the
model. A model is properly initialized when clicking on the Init & Run button produces
exactly the same resullts, regardless of previous simulation history. Of course we assume
that model parameters have not changed between runs, and that any random number
generator has been re-initialized with the same seed so that it produces the same sequence
of "random" numbers. Models described by kinetic schemes require that each of the
reactant states be initialized to some concentration. If linear circuits are involved, initia
values must be assigned to voltages across capacitors and the internal states of
operational amplifiers. For networks and other models that use the event delivery system,
initialization aso includes specifying which events are in transit to their destinations at
time O (i.e. events generated, at least conceptually, at t < 0 for delivery at t = 0). Complex
models often have complex recording and analysis methods, perhapsinvolving counters
and vectors, and these may also need to be initialized.

State variables and STATE variables

In rough mathematical terms, if a system consists of n first order differential
equations, then initialization consists in specifying the starting values of n variables. For
the Hodgkin-Huxley membrane patch (only one compartment), these equations have the

form
%z fl(m,h,n,v) Eq. 8.1ad
%-T: f,(m,v)
%: f4(h,v)
%: f,(n,v)

so that, knowing the value of each variable at time t, we can specify the dope of each
variable at time t. We have already seen (Chapter 7) that integration of these equationsis
an iterative process in which the purpose of an individual integration step (f advance())
isto carry the system from time t to time t + At using more or less sophisticated equations
of theform

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Chapter 8 September 8, 2004

V(t+At) = v(t) + At % Eq. 8.2
dm(t*)

m(t+At) = m(t) + At "

where the sophistication isin the choice of a value of t* somewhere betweent and t + At.
However, regardless of the integration method, the iterative process cannot begin without
choosing starting values for v, m, h, and n. This choice is arbitrary over the domain of the
variables (-0 <v<o,0<m<1,...), but oncetheinitial v, m, h, and n are chosen, all
auxiliary variables (e.g. conductances, currents, d/dt terms) at that instant of time are
determined, and the equations determine the trgjectories of each variable forever after.
The actual evaluation of these auxiliary variables is normally done with assignment
statements, such as

gna = gnabar *nmfnfnth

ina = gna*(v - ena)
Thisiswhy the model description language NMODL designatesgna andi na as
ASS| GNED variables, as opposed to the gating variables m h, and n, which are the
dependent variables in differential equations and are therefore termed STATE variables.

Unfortunately, over time an abuse of notation has evolved so that STATE refers to any
variable that is an unknown quantity in a set of equations, and ASSI GNED refers to any
variable that is not a STATE or a PARAMVETER (PARAMETERs can be meaningfully set by
the user as constants throughout the simulation, e.g. gnabar). Currently, within asingle
model description, STATE just specifies which variables are the dependent variables of
KI NETI C schemes, algebraic equationsin LI NEAR and NONLI NEAR blocks, or
differential equationsin DERI VATI VE blocks. Generally the number of STATESin a
model description isequal to the number of equations. Thus, locally in a model
description, the membrane potential v is never a dependent variable (the model
description contains no equation that solves for its value) and it cannot be regarded as a
user-specified value. Instead, it is declared in model descriptions as an ASSI GNED
variable, even though it is obviously a state variable at the level of the entire ssmulation.
This abuse of terminology also occurs in linear circuits, where the potential at every node
is an unknown to be solved and therefore a STATE. However, aresistive network does
not add any differential equation to the system (although it adds algebraic equations), so
those additional dependent variables do not strictly need to be initialized.

While STATE variables may be assigned any values whatever during initialization, in
practice only afew general categories of custom initialization are used. Some of these are
analogous to experimental methods for preparing a system for stimulation, e.g. letting the
system rest without experimental perturbation, or using a voltage clamp or constant
injected current to hold the system at a defined membrane potential--the ideais that the
system should reach an unchanging steady state independent of previous history. Itis
from this steady state that the simulation begins at timet = 0. When there is no steady
state, as for oscillating or chaotic systems, whatever initialization is ultimately chosen

Page 2 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

September 8, 2004 The NEURON Book: Chapter 8

will need to be saved in order to be able to reproduce the smulation. More complicated
initializations involve finding parameters that meet certain conditions, such as what value
of some parameter or set of parameters yields a steady state with a desired potential.
Some initial conditions may not be physically realizable by any possible manipulations of
membrane potential. For example, with the hh model the h gating state has a steady state
of 1 at large hyperpolarized potentials and the n gating state has a steady state of 1 at
large depolarized potentials. It would therefore be impossible to reach acondition of h =
1 and n =1 by controlling only voltage.

Basic initialization in NEURON: finitialize()

Basic initialization in NEURON is accomplished withthefi ni tiali ze() function,
whichisdefined in nr n- x. x/ src/ nrnoc/ f advance. ¢ (UNIX/Linux). Thiscarries
out several actions.

1. t issetto 0 and the event queueis cleared (undelivered events from the previous run
are thrown away).

2. Variablesthat receive arandom stream (the list defined by Random pl ay()
statements) are set to values picked from the appropriate random distributions.

3. All internal structures that depend on topology and geometry are updated, and chosen
solvers are made ready.

4. The controller for Vect or . pl ay() variablesisinitialized. The controller makes use
of the event delivery system for Vect or . pl ay() specificationsthat define transfer
times for a step function in terms of dt or atime Vect or .

Eventsat timet =0 (e.g. appropriate Vect or . pl ay() events) are delivered.

5. Iffinitialize() wascalledwith anargument v_i ni t, the membrane potential v
in every compartment is set to the value v_i ni t with a statement equivalent to

forall for (x) v(x) = v_init

6. Thel NI TI AL block of every inserted mechanism in every segment of every section is
called. Thisincludes point processes as well as distributed mechanisms (see | NI Tl AL
blocks in NMODL later in this chapter). The order in which mechanisms are
initialized depends on whether any mechanism has a USEI ON statement or WRI TES an
ion concentration.

lon initialization is performed first, including calculation of equilibrium potentials.
Then mechanismsthat WRI TE an ion concentration are initialized; this necessitates
recal culation of the equilibrium potentials for any affected ions. Finally, al other
mechanism | NI TI AL blocks are called.

Apart from these constraints, the call order of user-defined mechanismsis currently
defined by the alphabetic list of nod file names or the order of the nod file arguments
to nrni vnodl (or mknr ndl I). However one should avoid sequence-dependent

I NI TI AL blocks. Thusif thel NI TI AL block of one mechanism needs the values of

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

The NEURON Book: Chapter 8 September 8, 2004

variables another mechanism, the latter should be assigned beforefini tiali ze() is
executed.

If extracellular mechanisms exist, their vext states are initialized to O before any other
mechanism isinitialized. Therefore, for every mechanism that computes an
ELECTRODE_CURRENT, v_i ni t refersto both the internal potential and the
membrane potential.

I NI TI AL blocks are discussed in further detail below.
7. Li near Mechani smgtates, if any, areinitialized.

8. Network connections areinitialized. This means that the | NI TI AL block inside any
NET_RECEI VE block that is atarget of aNet Con object is called to initialize the states
of the Net Con object.

9. Thel NI TI AL blocks may have initiated net _send events whose delay is 0. These
events are delivered to the corresponding NET_RECE! VE blocks.

10. If fixed step integration is being used, all mechanism BREAKPOINT blocks are
called (essentially equivalent to acall tof cur rent ()) inorder toinitialize all
assigned variables (conductances and currents) based on the initial STATE and
membrane voltage.

If any variable time step method is active, then those integrators are initialized. In this
case, if you desire to change any state variable (here "state variable" means variables
associated with differential equations, such as gating states, membrane potential,
chemical kinetic states, or ion concentrations in accumulation models) after
finitialize() iscalled, youmustthencall cvode. re_i nit () tonotify the
variable step methods that their copy of the initial states needs to be updated. Note that
initialization of the differential algebraic solver IDA consists of two very short (dt =

10°® ms) backward Euler time steps in order to ensure the validity of f (y',y)=0.
11. Vect or recording of variables using the list defined by cvode. r ecor d(&st at e,
vector) statementsisinitialized. Asdiscussed in Chapter 7 under The fixed step

methods: backward Euler and Crank-Nicholson, cvode. recor d() istheonly
good way of keeping the proper association between local step state value and local t .

12. Vect or sthat record avariable, and are in the list defined by Vect or. recor d()
statements, record the valuein Vect or . x[0] , if t = Oisarequested timefor
recording.

Default initialization in the standard run system:
stdinit() andinit()

The standard run system's default initialization takes effect when you enter anew
valuefor v_i ni t into the field editor next to the RunControl panel's Init button, or when
you press either RunControl panel's Init or Init & Run button. These buttonsdo not cal the

Page 4 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

September 8, 2004 The NEURON Book: Chapter 8

i nit() proceduredirectly but instead execute a procedure called st di ni t () which has
the implementation

proc stdinit() {
realtime=0 // "run tinme" in seconds
startsw() /[l initialize run time stopwatch
setdt ()

init()

} initPlot()

set dt () ensures (by reducing dt , if necessary) that the points plotted fall on time step
boundaries, i.e. that 1/ (st eps_per _ns*dt) isaninteger. Theini t Pl ot () procedure
begins each plotted lineat t = 0 with the proper y value.

Thedefaulti ni t () procedureitselfis

proc init() {
finitialize(v_init)
User-specified custom zati ons go here.
If this invalidates the initialization of
variable time step integration and vector recording,
uncomrent the foll ow ng code.

—_——— — — —
TR e e e

(cvode. active()) {
cvode.re_init()

} else {

fcurrent ()

i;ecord_init()

}
Custom initialization is generally accomplished by inserting additional statements after
thecall tofini tiali ze(). These statements often have the effect of changing one or
more state variables, i.e. variables associated with differential equations, such as gating
states, membrane potential, chemical kinetic states, or ion concentrations in accumulation
models. Thisinvalidates the initialization of the variable time step integrator, making it
necessary to call cvode. re_i ni t () tonotify the variable step integrator that its copy of
theinitia states needsto be updated. If instead fixed step integration is being used,
fcurrent () should be called to make the values of conductances and currents
consistent with the new states. Changing state variables after callingfini tiali ze()
can also cause incorrect values to be stored as the first element of recorded vectors.
Addingfrecord_init() totheendofinit () preventsthis.

| NI TI AL blocks in NMODL

I NI TI AL blocksfor channel models generally set the gating states to their steady
state values with respect to the present value of v. Hodgkin-Huxley style models do this
easly and explicitly by calculating the voltage sensitive a pha and betarates for each
gating state and using the two state formulafor the steady state, e.g.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

The NEURON Book: Chapter 8 September 8, 2004

PROCEDURE rates(v(mv)
/ (al

m nf = al pha(v)/(a |)oh£1(v) + beta(v))

}
and then
I NITIAL {
rates(v)
m = m nf
}

When channel models are described by kinetic schemes, it is common to calculate the
steady states with the idiom

INITIAL {
SCLVE schene STEADYSTATE sparse
}

where schene isthe name of aKl NETI C block. To place thisin an amost complete
setting, consider thisimplementation of a three state potassium channel with two closed
states and an open state:

NEURON {
USEl ON k READ ek WRITE ik

}
STATE { c1 c2 o}
INITIAL {
SCLVE schene STEADYSTATE sparse
}
BREAKPO NT {

SCLVE schene METHCD sparse
ik = gbar*o*(v - ek)

KI NETI C schene {
rates(v) : calculate the 4 k rates.
~cl <->c2 (k12, k21)
~c2 <-> o0 (k20, ko2)

}
(ther at es() procedure and some minor variable declarations are omitted for clarity).
As mentioned earlier in Default initialization in the standard run system: st di ni t ()
and i ni t (), wheninitialization has been customized so that states are changed after
finitialize() hasbeencaled,itisgeneraly useful to call thef current () function
to make the values of al conductances and currents consistent with the newly initialized
states. In particular thiswill call the BREAKPO NT block (twice, in order to compute the
Jacobian (di/dv) elements for the voltage matrix equation) for all mechanismsin all
segments, and on return the ionic currents such asi na, i k, andi ca will equal the
corresponding net ionic currents through each segment.

Page 6 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

September 8, 2004 The NEURON Book: Chapter 8

Default vs. explicit initialization of STATEs

In model descriptions, a default initialization of the STATES of the model occurs just
prior to the execution of the | NI TI AL block. However, this default initialization is rarely
useful, and one should always explicitly implement an | NI TI AL block. If the name of a
STATE variableis st at e, then there is also an implicitly declared parameter called
st at 0. The default value of st at e0 is specified either in the PARAMETER block

PARAVETER {
state0 = 1

or implicitly in the STATE declaration with the syntax

STATE {
state START 1

}

If aspecific value for st at e0 isnot declared by the user, st at e0 will be assigned a
default value of 0. st at e0 isnot accessible from the interpreter unlessit is explicitly
mentioned in the GLOBAL or RANGE list of the NEURON block. For example,

NEURON {

GLCBAL nD
RANGE hO

}
specifiesthat every mwill be set to the single globa nD value during initialization, while
h will be set to the possibly spatially-varying h0 values. Clarity will be served if, in using
the st at e0 idiom, you explicitly usean | NI TI AL block of the form

I NITIAL {
m= D
h = hO
n = no

}

lon concentrations and equilibrium potentials

Each ion type is managed by its own separate ion mechanism, which keeps track of
the total membrane current carried by the ion, itsinternal and external concentrations,
and its equilibrium potential. The name of this mechanism is formed by appending the
suffix _i on to the name of the ion specified in the USElI ON statement. Thusif cai and
cao are integrated by amodel that declares

USEl ON ca READ ica WRI TE cai, cao
there would also be an automatically created mechanism called ca_i on, with associated
variablesi ca, cai , cao, and eca. Theinitial values of cai and cao are set globally to
thevauesof cai 0_ca_i on and cao0_ca_i on, respectively (see Initializing
concentrationsin hoc below).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

The NEURON Book: Chapter 8 September 8, 2004

Prior to version 4.1, model descri ptions Since calcium currents, concentrations, and

could not initialize concentrations, or at equilibrium potential s are managed by the
least it was very cumbersome to do so. ca_i on mechanism, one might reasonably ask
Instead, the automatically created ion why we can refer to the short namesi ca, cai ,
mechanism would initiaize the ionic cao and eca, father than the longer forms that
. - include the suffix _i on, i.e.ica_ca_i on €c..
Concen_trat' on adjacent _tO the membrane The answer isthat there is unlikely to be any
according to global variables. The reason mistake about the meaning of i ca, cai , . .. S0
that model mechanisms were not allowedto | we might aswell take advantage of the
specify ion variables (or other potentially convenience of using these short names.

shared variables such ascel si us) was that
confusion could result if more that one mechanism at the same location tried to assign
different values to the same variable. The unintended consequence of this policy is
confusion of adifferent kind, which happens when a model declares an ion variable, such
asena, to be aPARAMETER and attempts to assign avaue to it. The attempted
assignment has no effect, other than to generate awarning message. Consider the
mechanism

NEURON {

SUFFI X t est
USElI ON na READ ena

}

PARAMETER {
ena = 25 (nV)

When this model istranslated by nr ni vnod| (or nknr ndl |) we see

$ nrnivrodl test. nod
Transl ating test.nod into test.c
Warni ng: Default 25 of PARAMETER ena will be ignored and set by NEURON.

and use of the model in NEURON shows that the value of ena isthat defined by the
na_i on mechanism itself, instead of what was asserted inthet est model.
$ nrngui

Addftional mechani sns fromfil es
t est. nod

oc>create soma
oc>access soma
oc>i nsert test
oc>ena

50

If we add the initialization

INITIAL {
printf("ena was %@\ n", ena)
ena = 30
printf("we think we changed it to %g\n", ena)

tot est . nod, we quickly discover that ena remains unchanged.

Page 8 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

September 8, 2004 The NEURON Book: Chapter 8

oc>finitialize(-65)

ena was 50

we think we changed it to 30
1

oc>ena
50

It is perhaps not a good ideato invite dinersinto the kitchen, but the reason for this
can be seen from the careful hiding of the ion variables by making local copies of them in
the C code generated by the nocnod| trandator. Translation of the | NI TI AL block into a
model-specifici ni t nodel function isan almost verbatim copy, except for some trivia
boiler plate. However, fi ni ti al i ze() calsthisindirectly viathe model-generic
nrn_i ni t function, which can be seenin al its gory detail in the C file output from
nocnodl test.nod:

/***************************/

static nrn_init(_count, _nodes, _data, _pdata, _type_ignore)

int _count, _type_ignore; Node** _nodes; double** _data; Datum¥* _pdat a;
{ int _ix; double _v;
_p = _data; _ppvar = _pdat a;

#f _CRAY
#pragma _CR ivdep
#endi f

for (_Lix =0; _ix < _count; ++.ix) {
v = _nodes[_i x]->_v;

]
V= v

ena = _ion_ena;
i ni tmodel (_ix);
}

/***************************/

It suffices merely to call attention to the statement
ena = _ion_ena;

which shows the difference between the local copy of ena and the pointer to theion
variable itself. The model description can touch only the local copy and is unable to
change the value referenced by _i on_ena. Some old model descriptions circumvented
this hiding by using the actual reference to the ion mechanism variablesin the | NI TI AL
block (from a knowledge of the trandation implementation), but that was always
considered an absolutely last resort.

This hands-off policy for ion variables has recently been relaxed for the case of
modelsthat WRI TE ion concentrations, but only if the concentration is declared to be a
STATE and the concentration isinitialized explicitly inan | NI TI AL block. Itis
meaningless for more than one model at the same location to specify the same
concentrations, and an error is generated if multiple models WRI TE the same
concentration variable at the same location.

If we try this mechanism

NEURON {
SUFFI X test?2
USEI ON na WRI TE na
RANGE nai O

}

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

The NEURON Book: Chapter 8 September 8, 2004

PARAMETER {
nai0 = 20 (mlli/liter)

STATE {
nai (mlli/liter)

INITIAL {
nai = nai 0
}

we get this result

oc>create soma
oc>access soma
oc>i nsert test2
oc>nai

10

oc>finitialize(-65)
1

oc>nai
20
oc>nai 0 test2 = 30
oc>finitialize(-65)
1

oc>nai
30

If thel NI TI AL block isnot present, the nai 0_t est 2 starting value will have no effect.

Initializing concentrationsin hoc

The best way to initialize concentrations depends on the design and intended use of
the model. One must ask whether the concentration is supposed to start at the same value
in al sections where the mechanism has been inserted, or should it be nonuniform from
the outset?

Take the case of a mechanism that WRI TES an ion concentration. Such a mechanism
has an associated global variable that can be used to initialize the concentration to the
same vaue in each section where the mechanism exists. These global variables have
default values for [Na], [K] and [Ca] that are broadly "reasonable” but probably incorrect
for any particular case. The default concentrations for ion names created by the user are
1 mM; these should be assigned correct valuesin hoc. A subsequent call to
finitialize() will usethisto initializeionic concentrations.

The name of the global variableis formed from the name of the ion that the
mechanism uses and the concentration that it WRI TES. For example, suppose we have a
mechanism kext that implements extracellular potassium accumulation as described by
Frankenhaeuser and Hodgkin [Frankenhaeuser, 1956 #307]). The kext mechanism
WRI TEs ko, so the corresponding global variableiskoO_k_i on. The sequence of

instructions
koO_k_ion = 10 Il seawater, 4 x default value (2.5)
kio k ion = 4*54.4 || 4 default value, preserves ek
finitialize(v_init) // v_init is the starting Vm

Page 10 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

September 8, 2004 The NEURON Book: Chapter 8

will set ko to 10 mM and ki to 217.6 mM in every segment that has the kext
mechanism.

What if one or more sections of the model are supposed to have different initial
concentrations? For these particular sections we can use thei on_styl e() functionto
assert that the global variable is not to be used to initialize the concentration for this
particular ion. A complete discussion of i on_styl e(), itsarguments, and its actionsis
contained in NEURON's help system, but we will consider one specific example here.
Let's say we have inserted kext into section dend. Then the numeric argumentsin the
statement

dend ion_style("k_ion",3,2,1,1,0)

would have the following effects on the kext mechanism in the dend section (in
sequence): treat ko asa STATE variable; treat ek asan ASSI GNED variable; on call to
finitialize() usetheNernst equationto compute ek from the concentrations;
compute ek from the concentrations on every call to f advance() ; do not use
koO_k_i onor ki 0_k_i on toset theinitial values of ko and ki . The proper
initialization isto set ko and ki explicitly for this section, e.g.

koO_k ion = 10 // all sections start with ko = 10 nM

dend {ko = 5 ki = 2*54.4} [/ . . . except dend
finitialize(v_init)

Examples of custom initializations

Initializing to a particular resting potential

Perhaps the most trivial custom initialization isto force the initialized voltage to be
the resting potential. Returning our consideration to initialization of the HH membrane
compartment,

finitialize(-65)
will indeed set the voltage to -65 mV, and m h, and n will be in steady state relative to

that voltage. However, this must be considered analogous to a voltage clamp initialization
since the sum of all the currents may not be O at this potential, i.e. -65 mV may not be the

resting potential. For this reason it is common to adjust the equilibrium potential of the
leak current so that the resting potentia is precisely -65 mV.

This can be done with auser-defined i ni t () Remember to load user-defined
procedure based on the idea that total membrane versions of functions or
current at steady state must be 0. For our single procedures that are part of the
compartment HH model, this means that standard system, such asi ni t (),
— ; *) after loading stdrun.hoc.
0 =ina+ik+gl_hh*(v - el_hh) Otherwise, the user-defined
So our customi ni t () is version will be overwritten.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 11

The NEURON Book: Chapter 8 September 8, 2004

proc init(
finitiall

(-65

el _hh = (ina +
|

i

{
ze)
in I k
if (cvode. active()

cvode.re_init()
el se {

fcurrent ()

+ gl _hh*v)/gl _hh
Y) {

frecord_init()

}

Thecvode. re_init () cal isnot essentia here since states have not been changed, but
itis still good practice since it will update the calculation of all the dstate/dt (note that
now dv/dt should be 0 as a consequence of the changein el _hh) aswell asinternally

makeacal tof current () (necessary because changing el _hh requires recalculation
of i I _hh).

Calculating the value of leak equilibrium potential in order to realize a specific
resting potential isnot fail-safe in the sense that the resultant value of el _hh may be very
large and out of its physiological range--after all, gl _hh may be avery small quantity. It
may sometimes be better to introduce a constant current mechanism and set its value so
that

O =ina+ ik +ica + i_constant
holds at the desired resting potential. An example of such a mechanismis

constant current for custominitialization

NEURON {
SUFFI X const ant
NONSPECI FI C_CURRENT i
RANGE i, ic

}

UNI TS {

} (my) = (mllianp)

PARAMETER {
ic =0 (mVcnR)

ASSI GNED {
i (MY cnR)

BREAKPO NT {
i =ic
}

and the corresponding custom i ni t () would be

Page 12 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

September 8, 2004 The NEURON Book: Chapter 8

proc init() {
finitiallze(-65)
ic_constant = -(i
if (cvode. active(
cvode.re_init()
el se {
fcurrent ()

na + ik + il_hh)
))

+
{

frecord_init()

}

Before moving on to the next example, we should mention that testing is required to
verify that the system is stable at the desired v_i ni t , i.e. that the system returns to
v_i ni t after small perturbations.

Initializing to steady state

In Chapter 4 we mentioned that NEURON's default integrator uses the backward
Euler method, which can find the steady state of alinear system in asingle step if the
integration step size is large compared to the longest system time constant. Backward
Euler can aso find the steady state of many nonlinear systems, but it may be necessary to
perform severad iterationswith largedt . Ani ni t () that takes advantage of thisfactis

proc init() { |ocal dtsav, tenp
finitialize(v_init)

t = -1el0
dt sav = dt
dt = 1e9

/1 if cvode is on, turn it off to do large fixed step
tenp = cvode. active()

if (tenp!'=0) { cvode.active(0) }

while (t<-1e9) {

fadvance()

}
/] restore cvode if necessary
if (tenp!'=0) { cvode.active(l) }
dt = dtsav
t =0
if (cvode.active()) {
cvode.re_init()
} else {
fcurrent ()

frecord_init()

}

Thisfirst performs a preliminary "voltage clamp" initializationtov_i ni t . Then it sets
time to a very large negative value (to prevent triggering point processes and other
events) and integrates over several steps with alarge fixed dt so that the system can
reach steady state. The procedure wraps up by returning dt toitsoriginal value, setting t
back to O, and, if necessary, reactivating the variable step integrator. The last few
statements are the familiar re-initialization of cvode or invocation of f cur rent (),
followed by initialization of vector recording.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

The NEURON Book: Chapter 8 September 8, 2004

Thisinitialization strategy generaly works well, but there are circumstances in which
it may fail. Active transport mechanisms can be troublesome with fixed time step
integration if dt islarge, because even asmall pump rate may produce a negative
concentration. To see a more mundane example of instability with large dt , construct a
single compartment model that has the hh mechanism. With the default hh parameters,
and in the absence of any injected current, thisis quite stable even for huge values of dt

(e.g. 10° ms). Now reduce gnabar _hh to 0, increase dt to 100 ms, and watch what
happens over the course of 5000 ms. The result is an oscillation whose peak-to-peak
amplitude gradually increasesto ~ 10 mV. It would be al to easy to miss such
oscillations when using steady state initialization with large steps. This underscores the
need for careful testing of any initialization strategy, since in asense all of them work
"behind the scenes."

Initializing to a desired state

Suppose the end of some run isto serve as theinitial condition for subsequent runs;
thisisaparticularly useful strategy for dealing with models that oscillate or otherwise
lack a"resting" state. We can save al the states with

objref svstate, f

svstate = new SaveState()
svst at e. save()

The binary state information can be saved for use in later neuron sessions with

f = new File("states.dat")
svstate.fwite(f)

and future sessions can read the file into the Save St at e object with

objref svstate, f
svstate = new SaveSt at e()
f = new File("states.dat")
svstate.fread(f)

Whether or not the state information comes from asvst at e. save() inthissession
or was read from afile, we only have to make aminor changetoi ni t () inorder to use
that information to initialize the system.

proc init()
finitialize(v_init)
svstate.restore()
t =0// t is one of the "states"”
if (cvode.active()) {

g}lgge{ re_init() This might be called a"groundhog
fcurrent () day initiaization," after the moviein

which the protagonist awakened to

frecord_init() the same day over and over again.

}

Now every ssimulation will start from the state that we saved earlier.

Page 14 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

September 8, 2004 The NEURON Book: Chapter 8

Initializing by changing model parameters

Occasionaly theamisto bring amodel to aninitial condition that it would never
reach on itsown. This can be aparticular challenge if the model involves several
interacting nonlinear processes, making it difficult or impossible to know in advance
what values the states should have. Such problems can sometimes be circumvented by
changing the parameters of the model so that initialization reaches the desired state, and
then restoring the original parameters of the model.

As aspecific example, consider aconceptual model of the regulation of the calcium
concentration in athin intracellular compartment ("shell™) adjacent to the cell membrane

(Fig. 8.1). Calcium (Ca*?) can enter or leave the shell in one of three ways: by diffusion
between the shell and the core of the cell, by active transport via a membrane-bound
pump, or as aresult of non-pump calcium current I -, (i.e. transmembrane calcium flux

not produced by the pump). For the sake of simplicity, we will assume that Ca, . and

Ca, ([Ca*?] in the core and extracellular solution) are constant. However, the problems

that we encounter, and the manner in which we solve them, would be the same even if
Ca,,e and Ca, were allowed to vary.

Fig. 8.1. Schematic diagram of a model of regulation of [Ca*z] in athin shell
just inside the cell membrane.

Our gods areto:

1. initialize the internal calcium concentration next to the membrane [Ca*2] el
(hereafter called Cay) to adesired vaue and then plot Cay ,, and the pump

current ICa as functions of time
pump

2. plot thestarting value of I, asafunction of theinitial Cay
pump

To achieve these goals, we must be able to set the initia value of Cag,, to whatever level
we want and ensure that the pump reaches its corresponding steady state.

Details of the mechanism
The kinetic scheme that describes this mechanism of calcium regulation is

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 15

The NEURON Book: Chapter 8

September 8, 2004

ks
e R
diffusion Cacore - Cashd Eqg. 8.3a
ks
kl
active transport Cayg,y + Pump ~ CaPump Eg.8.3bandc
(_
k2
k3
CaPump ~ Ca_+ Pump
(_
k4
1/2Fvol
calcium current Cagy < ~lo Eq. 8.3d

where T is the time constant for equilibration of Ca*2 between the shell and the core, Fis
Faraday's constant, and vol is the volume of the shell.

The NMODL code that implements this mechanismis

NEURON {
SUFFI X capnp
USEl ON ca READ cao, ica, cai WRITE cai, ica
} RANGE tau, width, cacore, ica, punpO
UNI TS {
(u n) = (mcron)
(molar) = (2/liter
(mv) = (mllinolar)
(uM = (mcronolar)
(mA) = (mllianp)
(ol) = (1)
} FARADAY = (faraday) (coul onmb)
PARAMETER {
wdth = 0.1 (um
tau = 1 (ns) corresponds to D = 2e-7 cn®/s
: Dfor Cain water is 6e-6 cn2/s, i.e. 30x faster
kl = 5e8 [Mt s)
k2 = 0. 25e6 /'s)
k3 = 0.5e3 (/s)
k4 = 5e0 (/ mvts)
cacore = 0.1 (uM
} punpO = 3e-14 (nol/cnR)

Page 16

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

September 8, 2004

The NEURON Book: Chapter 8

ASSI GNED {
cao (M) on the order of 10 niM
cai (mMV) : on the order of 0.001 nmM
ica (mA/ cni)
ica_pnp (md cnR)
} i ca_pnp_l ast (M cnR)
STATE {
cashell (uM <le- 6>
punp (rmol/cnm2) <le-16>
capunp (nmol/cn2) <le-16>
INITIAL {
ica =0
ica_pmp =0
ica_pnp_last =0
SOLVE pnp STEADYSTATE sparse
BREAKPO NT {
SOLVE pnp METHCD sparse
ica_pnmp_last = ica_pnp
ica = I1ca_pnp

KI NETI C pnp {

vol une/ unit surface area has di mensi ons of um
: area/unit surface area is di nensionl ess
COMPARTMENT wi dth {cashel |}
COVMPARTMENT (1e13) {punp capunp}
COMPARTMENT 1(un) {cacore}
COVPARTMENT (1e3)*1(unm) {cao}

CONSERVE
~ cacore
~ cashel
~ capunp

ica_pnmp =

ica_pnmp is the "new' val ue,
computed using the "ol d" value, i.e.

~ cashel |

cai = (0.

}

punp + capunp = (1el3)* punpO

<-> cashell (width/tau, w dth/tau)

+ punp <-> capunp ((le7)*kl, (1el0)*k2)
<-> cao + pu (1e10) *k3, (1lel0)*k4)
(le-7)*2* FARADAY* (f _flux - b_flux)

but cashel | be
i ca_pnp_| ast
<< (-(ica - ica_pnp_last)/(2* FARADAY) *(1e7))

001) *cashel |

nmust

Initializing the mechanism

For the sake of convenience we will assume that our model cell has only one section

called sonma, and that

sona isthe default section. Also suppose that we have aready

assigned the desired value of Cag,, to a parameter wewill call ca_i ni t, eg. witha

statement of the form

ca_init = someval ue. Our problemishow to ensure that

initialization makes cashel | _capnp takeonthevaueof ca_i nit.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

Page 17

The NEURON Book: Chapter 8 September 8, 2004

Asanaivefirst stab at this problem, we might try changing thei ni t () procedure

like this
proc ini
cashel
|

(
finitial

) |
capnp = ca_init
ize(v_init)

t
I
a

i.e. inserting aline that sets the desired value of Ca,, beforecallingfinitialize().

To see whether this has the desired effect, we need only to run a smulation and examine

the time course of Cay, and the pump current | ., . Thisquickly showsthat, no
pump
matter what value we first assign to cashel | _capnp, finitialize() drivesCagyy,

andl, tothesamesteady state levels (Fig. 8.2). We might have anticipated this
pump
result, because it iswhat steady state initialization is supposed to do. If Cay, istoo high,

the excess calcium will diffuse into the core or be pumped out of the cell until Cag,
returns to the steady state value. On the other hand, if Cay, istoo low, calcium will

diffuse into the shell from the core, and the pump will slow or may even reverse, until
Cay,q Comes back to the steady state value. Thus, regardiess of how we perturb Cay

steady state initialization always brings the model back to the same condition.

0.1 _ cashell_capmp 0.0002 _ ica
HM mA/cm?
0.08 0.00015 | _
0.06 |
le-04_
0.04
5e-05[_
0.02 |
0 | | l J 0 | | l J
0 5 10 15 20 0 5 10 15 20
ms ms

Fig. 8.2. Default initialization after setting cashel | _capnp to 0.1 pM leaves
Cayg (leftyand I, (right) at their steady state levels of ~ 0.034 uM and
pump

~ 1.3 x 104 mA/cm?, respectively.

Page 18 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

September 8, 2004 The NEURON Book: Chapter 8

For our second attempt wetry callingfi ni tiali ze() first, and then setting the
desired value of Cag,y,-

proc init()
finitialize(v_init)
cashell _capnp = ca_init
// we've changed a state, so the follow ng are needed
if (cvode.active()) {
cvode.re_init()
} else {
fcurrent ()

frecord_init()

}

Thisis partly successful, in that it does affect Cay,, and I, , but plots of these
pump
variables seem to start from the wrong initial conditions. For example, if we try
ca_init =0.1uM, the plot of cashel | _capnp appearsto start with avalue of
~0.044 pM instead. Using the Graph menu's Color/Brush to change the color and
thickness of the plots of cashel | _capnp andi ca, we discover the presence of early,
fast transients that overliethey axis (Fig. 8.3 top). Thuscashel | _capnp realy does
start at theright initial value, but in less than 5 microsecondsit drops by ~ 56%. So we
have solved one mystery only to uncover another: what causes these fast transients?

Some reflection brings the realization that, although we changed the concentration in
the shell, we did not properly initialize the pump. Consequently, as soon as we launch a
simulation, Ca*? starts binding to the pump, and this is responsible for the precipitous
drop of Cay,,- At the same time, the rate of active transport beginsto rise, whichis
reflected intheincrease of I -, . These changes produce the "pump transients’ in
pump

Cay g andl-, ,whichcanbequitelarge asFig. 8.3 shows.
pump

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 19

The NEURON Book: Chapter 8

0.1 _ cashell_capmp 0.0002 _ ica
HM mA/cm?
0.08
0.00015 k
0.06
le-04 |
0048
0.02 5e-05 |
0 | | | J 0 | | |
0 5 10 15 20 0 5 10 15 20
ms ms
0.1 _ cashell_capmp 0.0002 _ ica
uM mA/cm2
0.08
0.00015 7////”—
0.06 |
le-04 |
0.04 |
002 L 5e-05|_
0 | | | J 0 | | |
0 0.0025 0.005 0.0075 0.01 0 0.0025 0.005 0.0075 0.01
ms ms

Fig. 8.3. Time course of Cay,, (I€ft) and I, (right) following an
pump

initialization that increased Cay,, abruptly after calling i ni t () . Thetracesin

the top figures were thickened to make the early fast transients easier to see.
The time scal e of the bottom figures has been expanded to reveal the details of

these fast transients. The final steady state levelsof Cay,, and I, arethe
pump
sameasin Fig. 8.2.

A strategy that does what we want is to change the value of cacor e_capnp to
ca_i nit and maket very fast beforecallingfi ni tiali ze() , then wrap up by
restoring the values of cacor e_capnp and T. This amounts to changing the model in
order to achieve the desired initialization. One example of such acustomi nit () is

Page 20

proc init() { |oca

savtau
to ca_init

savcore,
/'l make cacore equa
savcore = cacor e_capnp
cacore_capnmp = ca_init
/1 initialize cashel
savtau = tau_capnp
tau_capnp = le-6 // so cashel
finitialize(v_init)

to cacore

tracks cacore closely

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

September 8, 2004

September 8, 2004 The NEURON Book: Chapter 8

/'l restore cacore and tau
cacore_capnp = savcore
tau_capnp = savtau
if (cvode.active()) {
cvode.re_init()
el se {
fcurrent ()

frecord_init()

}
This code ensures that the difference between Cag,, and Ca,_, becomes vanishingly
small, and at the same time allows the pump to initialize properly (Fig. 8.4).

0.1 _ cashell_capmp 0.00052 _ica
UM mA/cm
0.08 0.0004
0.06 |- 0.0003 |
0.04 0.0002 |-
0.02 0.0001 |-
0 l | | J 0 L l | J
0 5 10 15 20 0 5 10 15 20
ms ms

Fig. 8.4. Following proper initialization, plots of Cay,, (left)and 1, (right)
pump

begin at the correct values and do not display the early fast transient that
appeared in Fig. 8.3.

Now we can plot the starting value of |, asafunction of theinitial Cay,.
pump
Figure 8.5 shows a Grapher configured to do this. To make this a semilog plot, we used

an independent variable x to sweep ca_i ni t from 104 to 102 uM in 30 logarithmically
equally spaced intervals. For each value of x the Grapher calculated the corresponding

valueof ca_i nit as10%, called our customii ni t (), and plotted theresulting i ca_capnp
vs.1 0g10(cashel | _capnp) ,i.e l0g;,(Cay,y,)- Note that | og10(cashel | _capnp)

ranges from -4 to 2, which meansthat Ca,, ranges from 104 to0 102 pM, i.e. exactly the

same range of concentrationsasca_i ni t . Thisconfirmsthe ability of our cugsominit () to
set cashel | _capnp to the desired values.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 21

The NEURON Book: Chapter 8

Fig. 8.5. A Grapher used to plot of I~
p

Grapher

‘ Plot IErase AIII

Indep Begin
Indep End |j2

‘ Independent VarI X

X-expr IIoglO(casheII_capmp)

ca_init=10"x init()

0.003 ica_capmp
mA/cm2
0.002
0.001 [
\ |
0
-4 -2 0 2

ump

Change Text was used to add the md/ cn? label.

September 8, 2004

vs. initid Cayy,- The Graph menu's

Page 22 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

September 8, 2004

Chapter 8 Index
A
activetransport 15
initialization 19-21
initialization
pump transient 19
kinetic scheme 15
ASSIGNED variable 2,11
ASSIGNED variable
initialization 4
C
calcium
current 15
effect on concentration 16
pump 15
constant current mechanism 12
CVodeclass
re_init() 4,5,12
record() 4
D
DERIVATIVE block
dependent variable
isaSTATE variable 2
diffusion 15
kinetic scheme 15

ELECTRODE _CURRENT 4
equilibrium potential
computation 3, 11
event
net_send 4
extracellular mechanism

The NEURON Book: Chapter 8

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 23

The NEURON Book: Chapter 8

vext 4
F
fadvance.c 3
I
IDA
initialization 4

INITIAL block 3, 5,7
INITIAL block

sequence-dependent 3
SOLVE
STEADY STATE sparse 6

initialization

Page 24

anaysis 1

basc 3

categories
overview of custom initialization 2,5
to adesired state 14

to a particular resting potential 11
to steady state 13
channel model 5
Hodgkin-Huxley style 5
kinetic scheme 6

criterion for proper initialization 1
default 4
extracellular mechanism 4
finitidize() 3,4
frecord init() 5
init) 5
custom 11-14, 20
initPlot() 5
internal data structures dependent on topology and geometry
ion 3,811

September 8, 2004

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

September 8, 2004

kinetic scheme 1

linear circuit 1,4
network 1,4
random number generator 1

Random.play() 3
recording 1
startsw() 5
stdinit() 5
strategies

t

changing a state variable 4,5

changing an equilibrium potential 11

changing model parameters 15

groundhog day 14

injecting aconstant current 12

jumping back to move forward 13
3

v_init 3-5
Vector.play() 3

ion accumulation 15
initialization 15
kinetic scheme 15

ion mechanism

_ionsuffix 7
automatically created 7
default concentration

for user-created ion names 10
name 10
specificationinhoc 10, 11

initialization 10

ion_style()

Jacobian

11

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Chapter 8

Page 25

The NEURON Book: Chapter 8 September 8, 2004

computing di/dv elements 6
K
KINETIC block
dependent variable
isaSTATE variable 2

LINEAR block
dependent variable
isaSTATE variable 2
M
mechanisms
initialization sequence 3
user-defined
initialization sequence 3
membrane potential
initialization 3-5

N
NET_RECEIVE block
INITIAL block 4
NEURON block
GLOBAL 7
RANGE 7
USEION
effect on initialization sequence 3
WRITE xi (writing an intracellular concentration) 9
WRITE xo (writing an extracellular concentration) 9
NMODL
translator
mknrndl| 3,8
nocmodl 9

nrnivmod] 3,8
NONLINEAR block

Page 26 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

September 8, 2004

dependent variable
isaSTATE variable 2
numeric integration
adaptive
initialization 4
fixed time step
initialization 4
P
PARAMETER 2
PARAMETER block
default value of stateO 7
S
SaveState class
fread() 14
fwrite() 14
restore() 14
save() 14
standard run system
event delivery system
initidization 1, 3,4

fadvance() 1
10.fcurrent() 4
ininitialization 56,12
realtime 5
setdt() 5
STATE block
START 7
state variable

asan ASSIGNED variable 2
STATE variable 2
initialization
default vs. explicit 7

The NEURON Book: Chapter 8

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 27

The NEURON Book: Chapter 8 September 8, 2004

stateQ 7
vs. state variable 2
Vv
Vector class
12record() 4
initialization 4

Page 28 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

