
November 2, 2004 The NEURON Book: Chapter 6

Chapter 6
How to build and use models of individual cells

In Chapter 2 we remarked that a conceptual model is an absolute prerequisite for the
scientific application of computational modeling. But if a computational model is to be a
fair test of our conceptual model, we must take special care to establish a direct
correspondence between concept and implementation. To this end, the research use of
NEURON involves all of these steps:

1. Implement a computational model of the biological system

2. Instrument the model

3. Set up controls for running simulations

4. Save the model with instrumentation and run controls

5. Run simulation experiments

6. Analyze results

These steps are often applied iteratively. We first encountered them in Chapter 1, and we
will return to each of them repeatedly in the remainder of this book.

GUI vs. hoc code: which to use, and when?
At the core of NEURON is an interpreter which is based on the hoc programming

language [Kernighan , 1984 #175]. In NEURON, hoc has been extended by the addition
of many new features, some of which improve its general utility as a programming
language, while others are specific to the construction and use of models of neurons and
neural circuits in particular. One of these features is a graphical user interface (GUI)
which provides graphical tools for performing most common tasks. We have already seen
that many of these tools are especially useful for model development and exploratory
simulations (Chapter 1).

Prior to the advent of the GUI, the only way to use NEURON was by writing
programs in hoc. For many users, convenience is probably reason enough to use the
GUI. We should also mention that several of the GUI tools are quite powerful in their
own right, with functionality that would require significant effort for users to recreate by
writing their own hoc code. This is particularly true of the tools for optimization and
electrotonic analysis.

But sooner or later, even the most inveterate GUI user may encounter situations that
call for augmenting or replacing the default implementations provided by the GUI.
Traditional programming allows maximum control over model specification, simulation

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Chapter 6 November 2, 2004

control, and display and analysis of results. It is also appropriate for noninteractive
simulations, such as "production" runs that generate large amounts of data for later
analysis.

So the answer to our question is: use the GUI and write hoc code, in whatever
combination gets the job done with the greatest conceptual clarity and the least human
effort. Each has its own advantages, and the most productive strategy for working with
NEURON is to combine them in a way that exploits their respective strengths. One
purpose of this book is to help you learn what these strengths are.

Hidden secrets of the GUI
There aren't any, really. All but one of the GUI tools are implemented in hoc , and all

of the hoc code is provided with NEURON (see nr n- x. x/ shar e/ nr n/ l i b/ hoc/ under
UNIX/Linux, c: \ nr nxx\ l i b\ hoc\ in
MSWindows). Thus the CellBuilder, the
Network Builder, and the Linear Circuit
Builder are all implemented in hoc, and
each of them works by executing hoc
statements in a way that amounts to
creating hoc programs "on the fly." It can be instructive to examine the source code for
these and NEURON's other GUI tools. A recurring theme in many of them is a sequence
of hoc statements that construct a string, followed by a hoc statement that executes this
string (if it is a valid hoc statement) or uses it as an argument to some other hoc function
or procedure. We will return to this idea in Chapter 14: How to modify NEURON itself,
which shows how to create new GUI tools and add new functions to NEURON.

Anything that can be done with a GUI tool can be done directly with hoc . To
underscore this point, we will now use hoc statements to replicate the example that we
built with the GUI in Chapter 1. Our code follows the same broad outline as before,
specifying the model first, then
instrumenting it, and finally setting up
controls for running simulations. For
clarity of presentation, we will consider
this code in the same sequence: model
implementation, instrumentation, and
simulation control.

Implementing a model with hoc
The properties of our conceptual model neuron are summarized in Fig. 6.1 and Tables

6.1 and 6.2. For the most part, the steps required to implement a computational model of
this cell with hoc statements parallel what we did to build the model with NEURON's
GUI; differences will be noted and discussed as they arise. In the following program
listings, single line comments begin with a pair of forward slashes / / and multiple line

Page 2 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The only GUI tool that is not implemented in hoc
is the Print & File Window Manager, which is
written in C. The source code for it is included
with the UNIX distribution of NEURON.

If you want to work along with this example, it
would be a good idea to create an empty directory
in which to save the file or files that you will
make. These will be plain text files, which are
also sometimes known as ASCII files. Begin by
using a text editor to create a file called
exampl e. hoc that will contain the code.

November 2, 2004 The NEURON Book: Chapter 6

comments begin with / * and are terminated by * / . For a discussion of hoc syntax, see
Chapter 12.

Fig. 6.1. The model neuron. The conductance change synapse can be located
anywhere on the cell.

Table 6.1. Model cell parameters

Length
µm

Diameter
µm

Biophysics

soma 30 30 HH gNa, gK, and gleak

apical dendr ite 600 1 passive with Rm = 5,000 Ω cm2, Epas = -65 mV

basilar dendr ite 200 2 same as apical dendrite

axon 1000 1 same as soma

Cm = 1 µf / cm2

cytoplasmic resistivity = 100 Ω cm

Temperature = 6.3 oC

Table 6.2. Synaptic mechanism parameters

gmax 0.05 µS

τs 0.1 ms

Es 0 mV

Topology
Our first task is to map the branched architecture of this conceptual model onto the

topology of the computational model. We want each unbranched neurite in the
conceptual model to be represented by a corresponding section in the computational
model, and this is done with a cr eat e statement (top of Listing 6.1). The connect
statements attach these sections to each other so that the conceptual and computational
models have the same shape. As we noted in Chapter 5, each section has a normalized
position parameter which ranges from 0 at one end to 1 at the other. The basi l ar and
axon sections arise from one end of the cell body while the api cal section arises from
the other, so they are attached by connect statements to the 0 and 1 ends of the soma,
respectively.

This model is simple enough that its geometry and biophysical properties can be
specified directly in hoc without having to resort to sophisticated strategies. Therefore
we will not bother with subsets of sections, but proceed immediately to geometry.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

The NEURON Book: Chapter 6 November 2, 2004

/ /
/ * model speci f i cat i on * /
/ /

/ / / / / / / t opol ogy / / / / / / / /

cr eat e soma, api cal , bas i l ar , axon
connect api cal (0) , soma(1)
connect basi l ar (0) , soma(0)
connect axon(0) , soma(0)

/ / / / / / / geomet r y / / / / / / / /

soma {
 L = 30
 di am = 30
 nseg = 1
}

api cal {
 L = 600
 di am = 1
 nseg = 23
}

basi l ar {
 L = 200
 di am = 2
 nseg = 5
}

axon {
 L = 1000
 di am = 1
 nseg = 37
}

/ / / / / / / bi ophysi cs / / / / / /

f or al l {
 Ra = 100
 cm = 1
}

soma {
 i nser t hh
}

api cal {
 i nser t pas
 g_pas = 0. 0002
 e_pas = - 65
}

Page 4 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 2, 2004 The NEURON Book: Chapter 6

basi l ar {
 i nser t pas
 g_pas = 0. 0002
 e_pas = - 65
}

axon {
 i nser t hh
}

Listing 6.1. The first part of exampl e. hoc specifies the anatomical and
biophysical attributes of our model.

Geometry
Each section of the model has its own length L, diameter di am, and discretization

parameter nseg. The statements inside the block soma { } pertain to the soma section,
etc. (the "stack of sections" syntax--see Which section do we mean? in Chapter 5).
Since the emphasis here is on elementary aspects of model specification with hoc , we
have assigned specific numeric values to nseg according to what we learned from prior
use of the CellBuilder (see Chapter 1). A more general approach would be to wait until L,
di am, and biophysical properties (Ra and cm) have been assigned, and then compute
values for nseg based on a fraction of the AC length constant at 100 Hz (see The
d_lambda rule in Chapter 5).

Biophysics
The biophysical properties of each section must be set up individually because we

have not defined subsets of sections. Cytoplasmic resistivity Ra and specific membrane
capacitance cm are supposed to be uniform throughout the model, so we use a f or al l
statement to assign these values to each section.

The Hodgkin-Huxley mechanism hh and the passive mechanism pas are distributed
mechanisms and are specified with i nser t statements (see Distributed mechanisms in
Chapter 5). No further qualification is necessary for hh because our model cell uses its
default ionic equilibrium potentials and conductance densities. However, the parameters
of the pas mechanism in the basi l ar and api cal sections differ from their default
values, and so require explicit assignment statements.

Testing the model implementation
Testing is always important, especially when project development involves writing

code. If you are working along with this example, this would be an excellent time to save
what you have written to exampl e. hoc and use NEURON to test it. Then, if you're
using a Mac, just drag and drop exampl e. hoc onto nr ngui . Under MSWindows use
Windows Explorer (the file manager, not Internet Explorer) to go to the directory where
you saved exampl e. hoc and double click on the name of the file. Under UNIX or
Linux, type the command nr ni v exampl e. hoc - at the system prompt (we're

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

The NEURON Book: Chapter 6 November 2, 2004

deliberately not typing nr ngui exampl e. hoc , to avoid having NEURON load its GUI
library).

This will launch NEURON, and NEURON's interpreter will then process the contents
of exampl e. hoc and generate a message that looks something like this:

NEURON - - Ver s i on 5. 6 2004- 5- 19 23: 5: 24 Mai n (81)
by John W. Moor e, Mi chael Hi nes, and Ted Car neval e
Duke and Yal e Uni ver si t y - - Copyr i ght 2001

oc>

The NEURON Main Menu toolbar will not appear under MSWindows, UNIX, or Linux.
This happens because NEURON did not load its GUI library, which contains the code
that implements the NEURON Main Menu. We're roughing it, remember? We trust that
Mac users will pretend they don't see the toolbar, because dropping a hoc file on the
nr ngui icon automatically loads the GUI library.

Since we aren't using the CellBuilder, there isn't see a nice graphical summary of the
model's properties. However a couple of hoc commands will quickly help you verify that
the model has been properly specified.

We can check the branched architecture of our model by typing t opol ogy() at the
oc> prompt (see Checking the tree structure with topology() in Chapter 5). This
confirms that soma is the root section (i.e. the section that has no parent; note that this is
not the same as the default section). It also shows that api cal is attached to the 1 end of
soma, and basi l ar and axon are connected to its 0 end.

oc>t opol ogy()

| - | soma(0- 1)
 ` - | api cal (0- 1)
 ` - - - - | basi l ar (0- 1)
 ` - | axon(0- 1)

1
oc>

The command f or al l psect i on() generates a printout of the geometry and
biophysical properties of each section. The printout is in the form of hoc statements that,
if executed, will recreate the model.
oc>f or al l psect i on()
soma { nseg=1 L=30 Ra=100

/ * l ocat i on 0 at t ached t o cel l 0* /
/ * Fi r st segment onl y * /
i nser t mor phol ogy { di am=30}
i nser t capaci t ance { cm=1}
i nser t hh { gnabar _hh=0. 12 gkbar _hh=0. 036 gl _hh=0. 0003 el _hh=- 54. 3}
i nser t na_i on { ena=50}
i nser t k_i on { ek=- 77}

}

Page 6 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 2, 2004 The NEURON Book: Chapter 6

api cal { nseg=23 L=600 Ra=100
soma connect api cal (0) , 1
/ * Fi r st segment onl y * /
i nser t capaci t ance { cm=1}
i nser t mor phol ogy { di am=1}
i nser t pas { g_pas=0. 0002 e_pas=- 65}

}
basi l ar { nseg=5 L=200 Ra=100

soma connect basi l ar (0) , 0
/ * Fi r st segment onl y * /
i nser t capaci t ance { cm=1}
i nser t mor phol ogy { di am=2}
i nser t pas { g_pas=0. 0002 e_pas=- 65}

}
axon { nseg=37 L=1000 Ra=100

soma connect axon (0) , 0
/ * Fi r st segment onl y * /
i nser t capaci t ance { cm=1}
i nser t mor phol ogy { di am=1}
i nser t hh { gnabar _hh=0. 12 gkbar _hh=0. 036 gl _hh=0. 0003 el _hh=- 54. 3}
i nser t na_i on { ena=50}
i nser t k_i on { ek=- 77}

}
oc>

After verifying that the model specification is correct, exit NEURON by typing
qui t () in the interpreter window.

An aside: how does our model implementation in hoc
compare with the output of the CellBuilder?

The hoc code we have just written is supposed to set up a model that has the same
anatomical and biophysical properties as the model that we created in Chapter 1 with the
CellBuilder. We can confirm that this is indeed the case by starting a fresh instance of
NEURON, using it to load the session file that we saved in Chapter 1, and then typing
t opol ogy() and f or al l psect i on() . But the CellBuilder can also create a file
containing hoc statements that, when executed, recreate the model cell. How do the
statements in this computer-generated file compare with the hoc code that we wrote for
the purpose of specifying this model?

To find out, let us retrieve the session file from Chapter 1, and then select the
Management page of the CellBuilder. Next we click on the Export button (Fig. 6.2), and
save all the topology, subsets, geometry, and membrane information to a file called
cel l . hoc . Executing the hoc statements in this file will recreate the model cell that we
specified with the CellBuilder.

It is instructive to briefly review the contents of cel l . hoc , which are presented in
Listing 6.2. At first glance this looks quite complicated, and its organization may seem a
bit strange--after all, cel l . hoc is a computer-generated file, and this might account for
its peculiarities. But let him who has never written an idiosyncratic line of code cast the
first stone! Actually, cel l . hoc is fairly easy to understand if, instead of attempting a
line-by-line analysis from top to bottom, we focus on the flow of program execution.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

The NEURON Book: Chapter 6 November 2, 2004

Figure 6.2. The Management page of the CellBuilder. We have clicked on the
Export radio button, and are about to export the model's topology, subsets,
geometry, and membrane information to a hoc file that can be executed to
recreate the model cell.

pr oc cel l def () {
 t opol ()
 subset s()
 geom()
 bi ophys()
 geom_nseg()
}

cr eat e soma, api cal , basi l ar , axon

pr oc t opol () { l ocal i
 connect api cal (0) , soma(1)
 connect basi l ar (0) , soma(0)
 connect axon(0) , soma(0)
 basi c_shape()
}

pr oc basi c_shape() {
 soma { pt 3dcl ear () pt 3dadd(0, 0, 0, 1) pt 3dadd(15, 0, 0, 1) }
 api cal { pt 3dcl ear () pt 3dadd(15, 0, 0, 1) pt 3dadd(75, 0, 0, 1) }
 basi l ar { pt 3dcl ear () pt 3dadd(0, 0, 0, 1) pt 3dadd(- 29, 30, 0, 1) }
 axon { pt 3dcl ear () pt 3dadd(0, 0, 0, 1) pt 3dadd(- 74, 0, 0, 1) }
}

obj r ef al l , has_HH, no_HH

pr oc subset s() { l ocal i
 obj r ef al l , has_HH, no_HH
 al l = new Sect i onLi st ()
 soma al l . append()
 api cal al l . append()
 basi l ar al l . append()
 axon al l . append()

 has_HH = new Sect i onLi st ()
 soma has_HH. append()
 axon has_HH. append()

Page 8 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 2, 2004 The NEURON Book: Chapter 6

 no_HH = new Sect i onLi st ()
 api cal no_HH. append()
 basi l ar no_HH. append()
}

pr oc geom() {
 f or sec al l { }
 soma { L = 30 di am = 30 }
 api cal { L = 600 di am = 1 }
 basi l ar { L = 200 di am = 2 }
 axon { L = 1000 di am = 1 }
}

pr oc geom_nseg() {
 soma ar ea(. 5) / / make sur e di am r ef l ect s 3d poi nt s
 f or sec al l { nseg = i nt ((L/ (0. 1* l ambda_f (100)) +. 9) / 2) *2 + 1 }
}

pr oc bi ophys() {
 f or sec al l {
 Ra = 100
 cm = 1
 }
 f or sec has_HH {
 i nser t hh
 gnabar _hh = 0. 12
 gkbar _hh = 0. 036
 gl _hh = 0. 0003
 el _hh = - 54. 3
 }
 f or sec no_HH {
 i nser t pas
 g_pas = 0. 0002
 e_pas = - 65
 }
}

access soma

cel l def ()

Listing 6.2. The contents of cel l . hoc , a file generated by exporting data from
the CellBuilder that was used in Chapter 1 to implement the model specified in
Table 6.1 and 2 and shown in Fig. 6.1.

So we skip over the definition of pr oc cel l def () to find the first statement that is
executed:

cr eat e soma, api cal , basi l ar , axon

Nothing too obscure about this. Next we jump over the definitions of two more pr ocs
(the temptingly simple t opol () and the slightly puzzling basi c_shape()) before
encountering a declaration of three obj r ef s (see Chapter 13: Object oriented
programming)

obj r ef al l , has_HH, no_HH

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

The NEURON Book: Chapter 6 November 2, 2004

that are clearly used by the immediately following pr oc subset s() (what does it do?
patience, all will be revealed . . .).

Finally at the end of the file we find a declaration of the default section, and then the
procedure cel l def () is called.

pr oc cel l def () {
 t opol ()
 subset s()
 geom()
 bi ophys()
 geom_nseg()
}

This is the master procedure of this file. It invokes other procedures whose names remind
us of that familiar sequence "topology, subsets, geometry, biophysics" before it ends with
the eponymic geom_nseg() . Using cel l def () as our guide, we can skim through the
rest of the procedures.

�
t opol () first connects the sections to form the branched architecture of our model,
and then it calls basi c_shape() . The latter uses pt 3dadd statements that are based
on the shape of the stick figure that we saw in the CellBuilder itself. This establishes
the orientations (angles) of sections, but the lengths and diameters will be superseded
by statements in geom() , which is executed later.

�
subset s() uses Sect i onLi s t s to implement the three subsets that we defined in
the CellBuilder (al l , has_HH, no_HH).

�
geom() specifies the actual physical dimensions of each of the sections.

�
bi ophys() establishes the biophysical properties of the sections.

�
geom_nseg() applies the discretization strategy we specified, which in this case is to
ensure that no segment is longer than 0.1 times the length constant at 100 Hz (see The
d_lambda rule in Chapter 5). This procedure is last to be executed because it needs
to have the geometry and biophysical properties of the sections.

Instrumenting a model with hoc
The next part of exampl e. hoc contains

statements that set up a synaptic input and
create a graphical display of simulation results
(Listing 6.3). The synapse and the graph are
specific instances of the Al phaSynapse and
Gr aph classes, and are managed with object
syntax (see Chapter 13). The synapse is placed
at the middle of the soma and is assigned the
desired time constant, peak conductance, and
reversal potential. The graph will be used to
show the time course of soma. v(0. 5) , the
somatic membrane potential.

Page 10 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The strategy for dealing with synapses
depends on the nature of the model. They
are treated as part of the instrumentation in
cellular and subcellular models, and there is
indeed a sense in which they can be
regarded as "physiological extensions" of
the stimulating apparatus. However,
synapses between cells in a network model
are clearly intrinsic to the biological
system. This difference is reflected in the
GUI tools for constructing models of
individual cells and networks.

November 2, 2004 The NEURON Book: Chapter 6

/ /
/ * i nst r ument at i on * /
/ /

/ / / / / synapt i c i nput / / / /

obj r ef syn
soma syn = new Al phaSynapse(0. 5)
syn. onset = 0. 5
syn. t au = 0. 1
syn. gmax = 0. 05
syn. e = 0

/ / / gr aphi cal di spl ay / / /

obj r ef g
g = new Gr aph()
g. si ze(0, 5, - 80, 40)
g. addvar (" soma. v(0. 5) " , 1, 1, 0. 6, 0. 9, 2)

Listing 6.3. The second part of exampl e. hoc specifies the instrumentation
used to stimulate and monitor our model.

Setting up simulation control with hoc
The code in the last part of exampl e. hoc controls

the execution of simulations. This code must
accomplish many tasks. It must define the size of the
time step and the duration of a simulation. It also has
to initialize the simulation, which means setting time
to 0, making membrane potential assume its proper
initial value(s) throughout the model, and ensuring that
all gating variables and ionic currents are consistent
with these conditions. Furthermore, it has to advance
the solution from beginning to end and plot the
simulation results on the graph. Finally, if interactive
use is important, initializing and running simulations
should be as easy as possible.

The code in Listing 6.4 accomplishes these goals for our simple example. Simulation
initialization and execution are generally performed by separate procedures, as shown
here; the sole purpose of the final procedure is to provide the minor convenience that
simulations can be initialized and executed by merely typing the command go() at the
oc> prompt.

The first three statements in Listing 6.4 specify the default values for the time step,
simulation duration, and initial membrane potential. However, initialization doesn't
actually happen until you invoke the i ni t i al i ze() procedure, which contains
statements that set time, membrane potential, gating variables and ionic currents to their
proper initial values. The main computational loop that executes the simulation (whi l e

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 11

Setting up simulation control is a
recurring task in developing
computational models, and much
effort can be wasted trying to
reinvent the wheel. For didactic
purposes, in this example we
create our own simulation control
code de novo. However, it is
always far more efficient to use the
powerful, customizable functions
and procedures that are built into
NEURON's standard run system
(see Chapter 7).

The NEURON Book: Chapter 6 November 2, 2004

(t <t s t op) { }) is in the i nt egr at e() procedure, with additional statements that
make the plot of somatic membrane potential appear in the graph.

/ /
/ * s i mul at i on cont r ol * /
/ /

dt = 0. 025
t st op = 5
v_i ni t = - 65

pr oc i ni t i al i ze() {
t = 0
f i ni t i al i ze(v_i ni t)
f cur r ent ()

}

pr oc i nt egr at e() {
g. begi n()
whi l e (t <t st op) {

f advance()
g. pl ot (t)

}
g. f l ush()

}

pr oc go() {
i ni t i al i ze()
i nt egr at e()

}

Listing 6.4. The final part of exampl e. hoc provides for initialization and
execution of simulations.

Testing simulation control
Use NEURON to execute exampl e. hoc (a graph should appear) and then type the

command go() (this should launch a simulation, and a trace will appear in the graph).
Change the value of v_i ni t to -60mV and repeat the simulation (at the oc> prompt type
v_i ni t =- 60, then type go()). When you are finished, type qui t () in the interpreter
window to exit NEURON.

Evaluating and using the model
Now that we have a working model, we are almost ready to put it to practical use. We

have already checked that its sections are properly connected, and that we have correctly
specified their biophysical properties. Although we based the number of segments on
nseg generated by the CellBuilder using the d_lambda rule, we have not really tested
discretization in space or time, so some exploratory simulations to evaluate the spatial
and temporal grid are advisable (see Chapter 4 and Choosing a spatial grid in
Chapter 5). Once we are satisfied with its accuracy, we may be interested in improving
simulation speed, saving graphical and numerical results, automating simulations and

Page 12 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 2, 2004 The NEURON Book: Chapter 6

data collection, curve fitting and model optimization. These are somewhat advanced
topics that we will examine later in this book. The remainder of this chapter is concerned
with practical strategies for working with models and fixing common problems.

Combining hoc and the GUI
The GUI tools are a relatively "recent" addition to NEURON (recent is a relative term

in a fast-moving field--would you believe 1995?) so many published models have been
implemented entirely in hoc . Also, many long-time NEURON users continue to work
quite productively by developing their models, instrumentation, and simulation control
exclusively with hoc . Often the resulting software is elegantly designed and implemented
and serves its original purpose quite well, but applying it to new research questions can
be quite difficult if significant revision is required.

Some of this difficulty can be avoided by generic good programming practices such
as modular design, in particular striving to keep the specifications of the model,
instrumentation, and simulation control separate from each other (see Elementary
project management below). There is also a large class of problems that would require
significant programming effort if one starts from scratch, but which can be solved with a
few clicks of the mouse by taking advantage of existing GUI tools. But what if you don't
see the NEURON Main Menu toolbar, or (as often happens when you first start to work
with a "legacy" model) you do see it but many of the GUI tools don't seem to work?

No NEURON Main Menu toolbar?
This is actually the easiest problem to solve. At the oc>

prompt, type the command l oad_f i l e(" nr ngui . hoc") and
the toolbar should quickly appear. If you add this statement to
the very beginning of the hoc file, you'll never have to bother with it again.

The toolbar will always appear if you use nr ngui to load a hoc file. On the Mac this
is what happens when you drag and drop a hoc file onto the nr ngui icon. Under
MSWindows you would have to start NEURON by clicking on its desktop nr ngui icon
(or on the nr ngui item in the Start menu's NEURON program group), and then use
NEURON Main Menu / File / load hoc to open the the hoc file. UNIX/Linux users can
just type nr ngui filename at the system prompt.

However, even if you see the toolbar, many of the GUI tools will not work if the hoc
code didn't define a default section.

Default section? We ain't got no default section!
No badges, either. But to make full use of the GUI tools, you do need a default

section. To see what happens if there isn't one, let's add a second synapse to the
instrumentation of our example as if we were modeling feedforward inhibition. We could
do this by writing hoc statements that define another point process, but this time let's use
the GUI (see 4. Instrument the model. Signal sources in Chapter 1).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

nr ngui also loads the
standard run library

The NEURON Book: Chapter 6 November 2, 2004

First, change exampl e. hoc by adding the statement

l oad_f i l e(" nr ngui . hoc")

at the very beginning of the file. Now when NEURON executes the commands in
exampl e. hoc , the first thing that happens is the GUI
library is loaded and the NEURON Main Menu toolbar
appears.

But NEURON Main Menu / Tools / Point Processes / Managers / Point Manager
doesn't work. Instead of a PointProcessManager we get an error message that there is
"no accessed section" (Fig. 6.2). What went wrong, and how do we fix it?

Fig. 6.2. A useful error message.

Many of the GUI tools, such as voltage graphs, shape plots, and point processes, must
refer to a particular section at the moment they are spawned. This is because sections
share property names, such as L and v . Remember the statement we used to create a point
process in exampl e. hoc:

soma syn = new Al phaSynapse(0. 5)

This placed the newly created synapse at the 0.5 location on a particular section: the
soma. But we're not writing hoc statements now; we're using a graphical tool (the
NEURON Main Menu) to create another graphical tool that we will use to attach a point
process to a section, and the NEURON Main Menu has no way to guess which section
we're thinking about.

The way to fix this problem is to add the statement

access soma

to our model description, right after the cr eat e
statement. The access statement defines the default
section (see Which section do we mean? in
Chapter 5). If we assign membrane properties or attach
a point process to a model, the default section is
affected unless we specify otherwise. And if we use the
GUI to create a plot of voltage vs. time, v at the middle
of the default section is automatically included in the list of things that are plotted.

So click on the "Continue" button to dismiss the error message,
quit NEURON, add the access soma statement to
exampl e. hoc , and try again. This time it works. Configure the
PointProcessManager to be an AlphaSynapse with onset =
0.5 ms, tau = 0.3 ms, gmax = 0.04 µS, and e = -70 mV and type

Page 14 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

UNIX/Linux users can go back to
typing nr ngui exampl e. hoc .

If there are many sections, which
one should be the default section?
A good rule of thumb is to pick a
conceptually privileged section
that will get most of the use. The
soma is generally a good choice.

Scientific question:
can you explain the
effect of the
inhibitory synapse's
tau on cell firing?

November 2, 2004 The NEURON Book: Chapter 6

go() to run a simulation. Run a couple more simulations with tau = 1 ms and 3 ms. Then
exit NEURON.

Strange Shapes?

The barbed wire model

In Chapter 1 we mentioned that the 3-D method for specifying geometry can be used
to control the appearance of a model in a Shape plot. The benefits of the 3-D method for
models based on detailed morphometric data are readily appreciated: the direct
correspondence between the anatomy of the cell as seen under a microscope, and its
representation in a Shape plot, can assist conceptual clarity when specifying model
properties and understanding simulation results. Perhaps less obvious, but no less real, is
the utility of the 3-D method for dealing with more abstract models, whose geometry is
easy enough to specify in terms of L and di am. We hinted at this in the walkthrough of
the hoc code exported by the CellBuilder, but a few examples will prove its value and at
the same time help prevent misapplication and misunderstanding of this approach.

Suppose our conceptual model is a cell with an apical dendrite that gives rise to 10
oblique branches along its length. For the sake of visual variety, we will have the lengths
of the obliques increase systematically with distance from the soma. Listing 6.5 presents
an implementation of such a model using L and di am to specify geometry. The apical
trunk is represented by the proximal section api cal and the sequence of progressively
more distal sections ap[0] - ap[NDEND- 1] . With our mind's eye, aided perhaps by dim
recollection of Ramon y Cajal's marvelous drawings, we can visualize the apical trunk
stretching away from the soma in a more or less straight line, with the obliques coming
off at an angle to one side.

/ / / / / / / t opol ogy / / / / / / / /

NDEND = 10

cr eat e soma, api cal , dend[NDEND] , obl i que[NDEND]
access soma

connect api cal (0) , soma(1)
connect ap[0] (0) , api cal (1)
connect obl i que[0] (0) , api cal (1)

f or i =1, NDEND- 1 {
 connect ap[i] (0) , ap[i - 1] (1)
 connect obl i que[i] (0) , dend[i - 1] (1)
}

/ / / / / / / geomet r y / / / / / / / /

soma { L = 30 di am = 30 }

api cal { L = 3 di am = 5 }

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 15

The NEURON Book: Chapter 6 November 2, 2004

f or i =0, NDEND- 1 {
 ap[i] { L = 15 di am = 2 }
 obl i que[i] { L = 15+5* i di am = 1 }
}

Listing 6.5. Implementation of an abstract model that has a moderate degree of
dendritic branching using L and di am to specify geometry.

But executing this code and bringing up a Shape plot (e.g. by NEURON Main Menu /
Graph / Shape plot) produces the results shown in Figure 6.3. So much for our mind's
eye. Where did all the curvature of the apical trunk come from?

This violence to our imagination stems from the fact that stylized specification of
model geometry says nothing about the orientation of sections. At every branch point,
NEURON's internal routine for rendering shapes makes its own decision, and in doing so
it follows a simple rule: make a fork with one child pointing to the left and the other to
the right by the same amount relative to the orientation of the parent. Models with more
complex branching patterns can look even stranger; if the detailed architecture of a real
neuron is translated to simple hoc statements that assert nothing more than connectivity,
length, and diameter, the resulting Shape may resemble a tangle of barbed wire.

Fig. 6.3. Shape plot rendering of the model produced by the code in Listing 6.5.
To help indicate the location of the soma section, Shape Style: Show Diam was
enabled.

To gain control of the graphical appearance of our model, we must specify its
geometry with the 3-D method. This is illustrated in Listing 6.6, where we have
meticulously used absolute (x,y,z) coordinates, based on the actual location of each
section, as arguments for the pt3dadd() statements. Now when we bring up a Shape plot,
we get what we wanted: a nice, straight apical trunk with oblique branches coming off to
one side (Fig. 6.4).

/ / / / / / / geomet r y / / / / / / / /

f or al l pt 3dc l ear ()

soma {
 pt 3dadd(0, 0, 0, 30)
 pt 3dadd(30, 0, 0, 30)
}

api cal {
 pt 3dadd(30, 0, 0, 5)
 pt 3dadd(60, 0, 0, 5)
}

Page 16 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 2, 2004 The NEURON Book: Chapter 6

f or i =0, NDEND- 1 {
 ap[i] {
 pt 3dadd(60+i * 15, 0, 0, 2)
 pt 3dadd(60+(i +1) * 15, 0, 0, 2)
 }
 obl i que[i] {
 pt 3dadd(60+i * 15, 0, 0, 1)
 pt 3dadd(60+i * 15, - 15- 5* i , 0, 1)
 }
}

Listing 6.6. Specification of model geometry using the 3-D method. This
assumes the same model topology as shown in Listing 6.5.

Fig. 6.4. Shape plot rendering of the model when the geometry is specified
using the 3-D method shown in Listing 6.6.

Although we scrupulously used absolute (x,y,z) coordinates for each of the sections,
we could have saved some effort by taking advantage of the fact that the root section is
treated as the origin of the cell with respect to 3-D position. When any section's 3-D
shape or length changes, the 3-D information of all child sections is translated to
correspond to the new position. Thus, if the soma is the root section, we can move an
entire cell to another location just by changing the location of the soma. Another useful
implication of this feature allows us to simplify our model specification: the only
pt 3dadd() statements that must use absolute coordinates are those that belong to the
root section. We can use relative coordinates for all child sections, instead of absolute
(x,y,z) coordinates, as long as they result in proper length and orientation (see
Listing 6.7).

/ / / / / / / geomet r y / / / / / / / /

f or al l pt 3dc l ear ()

soma {
 pt 3dadd(0, 0, 0, 30)
 pt 3dadd(30, 0, 0, 30)
}

api cal {
 pt 3dadd(0, 0, 0, 5)
 pt 3dadd(30, 0, 0, 5)
}

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 17

The NEURON Book: Chapter 6 November 2, 2004

f or i =0, NDEND- 1 {
 ap[i] {
 pt 3dadd(0, 0, 0, 2)
 pt 3dadd(15, 0, 0, 2)
 }
 obl i que[i] {
 pt 3dadd(0, 0, 0, 1)
 pt 3dadd(0, - 15- 5* i , 0, 1)
 }
}

Listing 6.7. A simpler 3-D specification of model geometry that relies on the
absolute coordinates of the root section and relative coordinates of all child
sections. Compare the (x,y,z) coordinates in the pt 3dadd() statements for
api cal , ap, and obl i que with those in Listing 6.6.

The case of the disappearing section

In Chapter 5 we mentioned that it is generally a good idea to attach the 0 end of a
child section to its parent, in order to avoid confusion. For an example of one particularly
vexing problem that can arise when this recommendation is ignored, consider Listing 6.8.
The access dend[0] statement and the arguments to the pt 3dadd() statements
suggest that the programmer's conceptual model had the sections arranged in the left to
right sequence dend[0] - dend[1] - dend[2] . Note that the 1 end of dend[0] is
connected to the 0 end of dend[1] , and the 1 end of dend[1] is connected to the 0 end
of dend[2] . This means that dend[2] , which is not connected to anything, is the root
section. From a purely computational standpoint this is perfectly fine, and if we simulate
the effect of a current step applied to the 0 end of dend[0] , there will be an orderly
spread of charge and potential along each section from its 0 end to its 1 end, with the
largest membrane potential shift in dend[0] and the smallest in dend[2] .

/ / / / / / / t opol ogy / / / / / / / /

NDEND = 3

cr eat e dend[NDEND]
access dend[0]

connect dend[0] (1) , dend[1] (0)
connect dend[1] (1) , dend[2] (0)

/ / / / / / / geomet r y / / / / / / / /

f or al l pt 3dc l ear ()

dend[0] {
 pt 3dadd(0, 0, 0, 1)
 pt 3dadd(100, 0, 0, 1)
}

dend[1] {
 pt 3dadd(100, 0, 0, 1)
 pt 3dadd(200, 0, 0, 1)
}

Page 18 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 2, 2004 The NEURON Book: Chapter 6

dend[2] {
 pt 3dadd(200, 0, 0, 1)
 pt 3dadd(300, 0, 0, 1)
}

Listing 6.8. The programmer's intent seems to be for dend[0] , dend[1] , and
dend[2] to line up from left to right. However, the connect statements make
dend[2] the root section, and thereby hangs a tale.

However, we're in for a surprise when we bring up a PointProcessManager
(NEURON Main Menu / Tools / Point Processes / Managers / Point Manager) and try to
place an I Cl amp at different locations in this model. No matter where we click, we can
only put the I Cl amp on dend[0] or dend[2] (Fig. 6.5). Try as we might to find it,
there just doesn't seem to be any dend[1] !

But dend[1] really does exist, and we can easily prove this by invoking the
t opol ogy() function, which generates this diagram:

| - | dend[2] (0- 1)
 ` | dend[1] (1- 0)
 ` | dend[0] (1- 0)

This not only confirms the existence of dend[1] , but also shows that dend[2] is the
root section, with the 1 end of dend[1] connected to its to the 0 end, and the 1 end of
dend[0] connected to the 0 end of dend[1] . Exactly as we expected, and just as
specified by the code in Listing 6.8.

SelectPointProcess

Show

IClamp[0]

at: dend[0](0.5)

PointProcessManager

SelectPointProcess

Show

IClamp[0]

at: dend[2](0.5)

PointProcessManager

Fig. 6.5. The code in Listing 6.8 produces a model that seems not to have a
dend[1] --or at least, we can't find dend[1] when we try to use a
PointProcessManager to attach an I Cl amp to it.

But isn't something terribly wrong with the appearance of our model in the Shape
plot? Not at all. Although we might not like it, the model looks exactly as it should, given
the statements in Listing 6.8.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 19

The NEURON Book: Chapter 6 November 2, 2004

Here's why. As we mentioned above in The barbed wire model, the location of the
root section determines the placement of all other sections. The root section is dend[2] ,
and the pt 3dadd() statements in Listing 6.8 place its 0 end at (200, 0, 0) and its 1 end at
(300, 0, 0) (Fig. 6.6).

Since dend[1] is attached to the 0 end of dend[2] , the first 3-D data point of dend[1]
is mapped to (200, 0, 0) (see 3-D specification in Chapter 5). According to the
pt 3dadd() statements for dend[1] , its last 3-D data point lies 100 µm to the right of its
first 3-D point. This means that the 1 end of dend[1] is at (200, 0, 0) and its 0 end is at
(300, 0, 0) (Fig. 6.6)--precisely the locations of the left and right ends of dend[2] ! So
dend[1] and dend[2] will appear as the same line in the Shape plot. When we try to
select one of these sections by clicking on this line, the section we get will depend on the
inner workings of NEURON's GUI library. It just happens that, for the particular hoc
statements in Listing 6.8, we can only select points on dend[2] . This is as if dend[1] is
hidden from view and shielded from our mouse cursor.

Finally we consider dend[0] , whose 1 end is connected to the 0 end of dend[1] .
Thus its first 3-D data point is drawn at (300, 0, 0), and, following its pt 3dadd()
statements, its last 3-D data point lies 100 µm to the right, i.e. at (400, 0, 0). Thus
dend[0] runs from (400, 0, 0) (its 0 end) to (300, 0, 0) (its 1 end), which is just to the
right of dend[2] and the hidden dend[1] (Fig. 6.6).

So the mystery is solved. All three sections are present, but two are on top of each
other.

The first lesson to take from this sad tale is the usefulness of t opol ogy() as a
means for diagnosing problems with model architecture. The second lesson is the
importance of following our recommendation to avoid confusion by connecting the 0 end
of a child section to its parent. The strange appearance of the model in the Shape plot
happened entirely because this advice was not followed. There are probably occasions in
which it makes excellent sense to violate this simple rule; please be sure to let us know if
you find one.

(200,0,0) (300,0,0) (400,0,0)

dend[2] runs
from here

(its 0 end)

from here
dend[1] runs

(its 1 end)

to here
(its 1 end)

to here
(its 0 end)

to here
(its 0 end)

from here
(its 1 end)

dend[0] runs

.

.

.

Fig. 6.6. Deciphering the pt 3dadd() statements in Listing 6.8 leads us to
realize that we only see two sections in the Shape plot because two of them
(dend[1] and dend[2]) are drawn in the same place. This figure shows the
(x,y,z) coordinates of the sections and indicates their 0 and 1 ends.

Page 20 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 2, 2004 The NEURON Book: Chapter 6

Graphs don't work?
If there is no default section, new graphs created with the GUI won't work properly.

You've already seen how to declare the default section, so everything should be OK,
right? Let's see for ourselves.

Make sure that exampl e. hoc starts with l oad_f i l e(" nr ngui . hoc") and
contains an access soma statement, and then use NEURON to execute it. Then follow
the steps shown in Fig. 1.27 (see Signal monitors in Chapter 1) to create a space plot
that will show membrane potential along the length of the cell. Now type go() . What
happens?

The graph of soma. v(0. 5) shows an action potential, but the trace in the space plot
remains a flat line. Is there something wrong with the space plot, or does the problem lie
elsewhere?

To find out, use NEURON Main Menu / Tools / RunControl to bring up a RunControl
window. Click on the RunControl's Init & Run button. Result: this time it's the space plot
that works, and the graph of soma. v(0. 5) that doesn't (Init & Run should have erased
the trace in the latter and drawn a new one).

So there are actually two problems. The simulation control code in our hoc file can't
update new graphs that we create with the GUI, and the GUI's own simulation control
code can't update the "old" graph that is created by our hoc file. Of the many possible
ways to deal with these problems, one is ridiculously easy and another requires a little
effort (but only a very little).

The ridiculously easy solution is to use the GUI to make a new graph that shows the
same variables, and ignore or throw away the old graph. In this example, resorting to
NEURON Main Menu / Graph / Voltage axis gets us a new graph. Since the soma is the
default section, the v(. 5) that appears automatically in our new graph is really
soma. v(0. 5) .

What if a lot of programming went into one or more of the old graphs, so the GUI
tools offer nothing equivalent? This calls for the solution that requires a little effort:
specifically, we add a single line of hoc code for each old graph that needs to be fixed. In
this example we would revise the code that defines the old graph by adding the line
shown here in bold:

/ / / gr aphi cal di spl ay / / /

obj r ef g
g = new Gr aph()
addplot(g, 0)
g. si ze(0, 5, - 80, 40)
g. addvar (" soma. v(0. 5) " , 1, 1, 0. 6, 0. 9, 2)

Listing 6.9. Fixing an old graph so it works with NEURON's standard run
system.

This takes advantage of NEURON's standard run system, a set of functions and
procedures that orchestrate the execution of simulations (see Chapter 7). The statement
addpl ot (g, 0) adds g to a list of graphs that the standard run system automatically

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 21

The NEURON Book: Chapter 6 November 2, 2004

updates during the course of a simulation.
Also, the x-axis of our graph will be adjusted
automatically when we change t s t op (Tstop
in the RunControl panel). NEURON's GUI
relies heavily on the standard run system, and
every time we click on the RunControl's
Init & Run button we are actually invoking
routines that are built into the standard run system.

Does this mean that we have to abandon the simulation control code in our hoc
program, and does it matter if we do? The control code in exampl e. hoc performs a
"plain vanilla" initialization and simulation execution, so abandoning it in favor of the
standard run system only makes things better by providing additional functionality. But
what if we want a customized initialization or some unusual flow of simulation
execution? As we shall see in Chapter 7, the standard run system was designed and
implemented so that only minor changes are required to accommodate most special
needs.

Conflicts between hoc code and GUI tools
Many of the GUI tools specify properties of the model or the interface, and this leads

to the possibility of conflicts that cause a mismatch between what you think is in the
computer, and what actually is in the computer. For example, suppose you use the
CellBuilder to construct a model cell with a section called dend that has di am = 1 µm,
L = 300 µm, and passive membrane, and you turn Continuous create ON. Then typing
dend psect i on() at the oc> prompt will produce something like this

oc>dend psect i on()
dend { nseg=11 L=300 Ra=80

. . .
i nser t pas { g_pas=0. 001 e_pas=- 70}

}

(a few lines were omitted for clarity), which confirms the presence of the pas
mechanism.

A bit later, you decide to make dend active and get rid of its pas mechanism. You
could do this with the CellBuilder, but let's say you find it quicker just to type

oc>dend { uni nser t pas i nser t hh}

and then confirm the result of your action with another psect i on()

oc>dend psect i on()
dend { nseg=11 L=300 Ra=80

. . .
i nser t hh { gnabar _hh=0. 12 gkbar _hh=0. 036 gl _hh=0. 0003 el _hh=- 54. 3}
i nser t na_i on { ena=50}
i nser t k_i on { ek=- 77}

}

So far, so good.

Page 22 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The standard run system has many powerful
features and can be used in any simulation,
with or without the GUI. The statement
l oad_f i l e(" st dr un. hoc") loads the
hoc code that implements the standard run
system, without loading the GUI.

November 2, 2004 The NEURON Book: Chapter 6

But check the Biophysics page of the CellBuilder, and you will see that the change
you accomplished with hoc did not track back into the GUI tool, which still shows dend
as having pas but not hh. This is particularly treacherous, because it is all too easy to
become confused about what is the actual specification of the model. If these new
biophysical properties lead to particularly interesting simulation results, you might save
"everything" to a session file, thinking that you would be able to reproduce those results
in the future--but the session file would only contain the state of the GUI tools.
Completely absent would be any reflection of the fact that you had executed your own
hoc statement to override the CellBuilder's model specification.

And still more surprises are in store. Using the CellBuilder, with Continuous create
still ON, change dendritic diameter to 2 µm. Now use psect i on() to check the
properties of dend

oc>dend psect i on()
dend { nseg=7 L=300 Ra=80

. . .
i nser t hh { gnabar _hh=0. 12 gkbar _hh=0. 036 gl _hh=0. 0003 el _hh=- 54. 3}
i nser t na_i on { ena=50}
i nser t k_i on { ek=- 77}
i nser t pas { g_pas=0. 001 e_pas=- 70}

}

and you see that both pas and hh are present, despite the previous use of uni nser t to
get rid of the pas mechanism.

Similar conflicts can arise between hoc statements and other GUI tools (e.g. the
PointProcessManager) All of these problems have a common source: changes you make
at the hoc level are not propagated to the GUI tools, so if you then make any changes
with the GUI tools, it is likely that all the changes you
made with hoc statements will be lost. The lesson
here is to exercise great caution when combining GUI
tools and hoc statements, in order to avoid
introducing potentially confusing conflicts.

Elementary project management
The example used in this chapter is simple so all of its code fits in a single, small file

that can be quickly understood. Nonetheless, we were careful to organize exampl e. hoc
in a way that separates specification of the model per se from the specification of the
interface, i.e. the instrumentation and control procedures for running simulations. This
separation maximizes clarity and reduces effort, and it should begin while the model is
still in the conceptual stage.

Designing a model starts by answering the questions: what anatomical features are
necessary, and what biophysical properties should be included? The answers to these
questions govern key decisions about what what kinds of stimuli to apply, what kinds of
measurements to make, and how to display, record, and analyze these measurements.
When it is finally time to implement the computational model, it is a good idea to try to

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 23

Conflicts may also occur between
the CellBuilder and older GUI tools
for managing section properties.

The NEURON Book: Chapter 6 November 2, 2004

keep these questions separate. This is the way NEURON's graphical tools are organized,
and this is the way models specified with hoc should be organized.

� First you create a model, specifying its topology, geometry, and biophysics, either
with the CellBuilder or with hoc code. This is a representation of selected aspects of a
biological system, and you might think of it as a virtual experimental preparation.

� Then you instrument that model. This is analogous to applying stimulating and
recording electrodes and other apparatus to a real neuron or neural circuit in the
laboratory.

� Finally, you set up controls for running simulations.

Instrumentation and simulation controls are the user interface for exercising the
model. Metaphorically speaking, they amount to a virtual experimental rig. In a wet lab,
noone would ever confuse a brain slice with the microscope or instrumentation rack. The
physical and conceptual distinction between biological preparation and experimental rig
them is an inescapable fact and has a strong bearing on the and execution of
experiments. NEURON lets you carry this separation over into modeling. Why confound
the code that defines the properties of a model cell with the code that generates a stimulus
or governs the sequence of events in a simulation?

One way to help separate model specification from user interface is to put the code
that defines them into separate files. One file, which we might call cel l . hoc , would
contain the statements that specify the properties of the model: its topology, geometry,
and biophysics. The code that defines point processes, graphs, other instrumentation, and
simulation controls would go into a second file that we might call r i g. hoc . Finally, we
would use a third file for purely administrative purposes, so that a single command will
make NEURON execute the other files in proper sequence. This file, which we might call
i ni t . hoc , would contain only the statements shown in Listing 6.10. Executing
i ni t . hoc with NEURON will make NEURON load its GUI and standard run libraries,
bring up a NEURON Main Menu toolbar, execute the statements in cel l . hoc to
reconstitute the model cell, and finally execute the statements in r i g. hoc to reconstitute
our user interface for exercising the model.

l oad_f i l e(" nr ngui . hoc")
l oad_f i l e(" cel l . hoc")
l oad_f i l e(" r i g. hoc")

Listing 6.10. Contents of i ni t . hoc .

For instance, we could recast exampl e. hoc in this manner by putting its model
specification component into cel l . hoc , while the instrumentation and simulation
control components would become r i g. hoc . This would allow us to reuse the same
model specification with different instrumentation configurations r i g1. hoc , r i g2. hoc,
etc.. To make it easy to select which rig is used, we could create a corresponding series of
i ni t files (i ni t 1. hoc , i ni t 2. hoc , etc.) that differ only in the argument to the third
l oad_f i l e() statement. This strategy is not limited to hoc files, but can also be used to
retrieve cells and/or interfaces that have been constructed with the GUI and saved to
session (ses) files.

Page 24 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 2, 2004 The NEURON Book: Chapter 6

Iterative program development
A productive strategy for program development in NEURON is to revise and

reinterpret hoc code and/or GUI tools repeatedly during the same session. Bugs afflict all
nontrivial programs, and the process of making incremental changes, saving them to
intermediate hoc or ses files, and testing at each step, reduces the difficulty of trying to
diagnose and eliminate them. In this way it is possible begin with a program skeleton that
consists of one or two hoc files with a handful of l oad_f i l e() statements and function
stubs, and quickly refine it until everything works properly. However, two caveats do
apply.

First, a variable cannot be declared with a new type during the same session. In other
words, "once a scalar, always a scalar" (or double, or string, or object reference).
Attempting to redeclare a variable will produce an error message, e.g.

oc>x = 3
f i r st i nst ance of x
oc>obj r ef x
/ usr / l ocal / nr n/ i 686/ bi n/ nr ni v: x al r eady decl ar ed near l i ne 2
obj r ef x
 ^
oc>

Trying to redefine a double, string, or object reference as something else will likewise
fail. This is generally of little consequence, since it is rarely absolutely necessary to
change the type assigned to a particular variable name. When this does happen, you just
have to exit NEURON, make your changes to the hoc code, and restart.

The second caveat is that, once the hoc interpreter has parsed the code in a template
(see Chapter 13: Object-oriented programming), the class that it defines is fixed for
that session. This means that any changes to a template require exiting NEURON and
restarting. The result is some inconvenience when developing and testing new classes,
but this is still easier than having to recompile and link a program in C or C++.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 25

The NEURON Book: Chapter 6 November 2, 2004

Chapter 6 Index
3-D specification of geometry 15

coordinates

absolute vs. relative 16, 17

A

access 14

B

biophysical properties

specifying 5

C

CellBuilder

hoc output

exported cell 7

CellBuilder GUI

Continuous create 22, 23

Management page

Export 7

computational model

implementing with hoc 2

conceptual clarity 2, 15

connect 3

create 3

D

diam 5

distributed mechanism 5

E

error message

no accessed section 14

G

good programming style

iterative development 25

modular programming 13

Page 26 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 2, 2004 The NEURON Book: Chapter 6

program organization 23

separate model specification from user interface 24

GUI

combining with hoc 13

conflicts with hoc or other GUI tools22

tools

are implemented in hoc 2

work by constructing hoc programs 2

vs. hoc 1

H

hoc 1

can do anything that a GUI tool can 2

combining with GUI 13

conflicts with GUI 22

idiom

forall psection() 6

load_file("nrngui.hoc") 13

implementing a computational model 2

vs. GUI 1

hoc syntax

comments 2

variables

cannot change type 25

I

initialization 11

custom 22

insert 5

instrumentation 23

L

L 5

M

model

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 27

The NEURON Book: Chapter 6 November 2, 2004

computational

essential steps 1

correspondence between conceptual and computational 1, 3

testing 12

model specification 23

as virtual experimental preparation 24

N

NEURON

starting with a specific hoc file 5

NEURON Main Menu

creating 13, 24

nrngui 6

loads GUI and standard run library 13

nrniv 5

nseg 5

P

plain text file 2

PointProcessManager

creating 19

project management 23

Q

quantitative morphometric data 15

R

RunControl

creating 21

RunControl GUI

Init & Run 22

Tstop 22

S

section

child

connect 0 end to parent 18

Page 28 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 2, 2004 The NEURON Book: Chapter 6

currently accessed

default section 14

orientation 10, 16, 17

root section 6

is 3-D origin of cell 17, 20

vs. default. section 6

SectionList class 10

Shape plot

creating 16

Shape plot GUI

Shape Style

Show Diam 16

simulation control 11, 23

standard run system 21

addplot() 21

tstop 22

stylized specification of geometry 5

strange shapes 15

synapse

as instrumentation 10

T

template

cannot be redefined 25

topology

checking 6, 20

specifying 3

topology, subsets, geometry, biophysics 10

topology() 20

troubleshooting

disappearing section 18

Graphs don't work 21

legacy code 13

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 29

The NEURON Book: Chapter 6 November 2, 2004

no default section 13

no NEURON Main Menu toolbar 13

U

uninsert 23

user interface 23

as virtual experimental rig 24

Page 30 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

