November 2, 2004 The NEURON Book: Chapter 6

Chapter 6

How to build and use models of individual cells

In Chapter 2 we remarked that a conceptual model is an absolute prerequisite for the
scientific application of computational modeling. But if a computational model isto be a
fair test of our conceptual model, we must take special careto establish a direct
correspondence between concept and implementation. To this end, the research use of
NEURON involves all of these steps:

1. Implement a computational model of the biological system
Instrument the model

Set up controls for running simulations

Save the model with instrumentation and run controls

Run simulation experiments

o 0k~ WD

Analyze results

These steps are often applied iteratively. We first encountered them in Chapter 1, and we
will return to each of them repeatedly in the remainder of this book.

GUI vs. hoc code: which to use, and when?

At the core of NEURON is an interpreter which is based on the hoc programming
language [Kernighan , 1984 #175]. In NEURON, hoc has been extended by the addition
of many new features, some of which improveits general utility as a programming
language, while others are specific to the construction and use of models of neurons and
neural circuitsin particular. One of these features is a graphical user interface (GUI)
which provides graphical tools for performing most common tasks. We have already seen
that many of these tools are especially useful for model development and exploratory
simulations (Chapter 1).

Prior to the advent of the GUI, the only way to use NEURON was by writing
programsin hoc. For many users, convenience is probably reason enough to use the
GUI. We should also mention that several of the GUI tools are quite powerful in their
own right, with functionality that would require significant effort for users to recreate by
writing their own hoc code. Thisis particularly true of the tools for optimization and
electrotonic analysis.

But sooner or later, even the most inveterate GUI user may encounter situations that
call for augmenting or replacing the default implementations provided by the GUI.
Traditional programming allows maximum control over model specification, ssimulation

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Chapter 6

November 2, 2004

control, and display and analysis of results. It is aso appropriate for noninteractive
simulations, such as "production” runs that generate large amounts of datafor later
anaysis.

So the answer to our question is. use the GUI and write hoc code, in whatever
combination gets the job done with the greatest conceptual clarity and the least human
effort. Each has its own advantages, and the most productive strategy for working with
NEURON isto combine them in away that exploits their respective strengths. One
purpose of this book isto help you learn what these strengths are.

Hidden secrets of the GUI

There aren't any, really. All but one of the GUI tools are implemented in hoc, and al
of the hoc code is provided with NEURON (see nr n- x. x/ shar e/ nrn/ | i b/ hoc/ under
UNIX/Linux, c: \ nrnxx\ | i b\ hoc\ in

MSWindows). Thusthe CellBuilder, the
Network Builder, and the Linear Circuit
Builder are al implemented in hoc, and

The only GUI tool that is not implemented in hoc
isthe Print & File Window Manager, which is
written in C. The source code for it isincluded

with the UNIX distribution of NEURON.

each of them works by executing hoc
statements in away that amountsto
creating hoc programs "on the fly." It can be instructive to examine the source code for
these and NEURON's other GUI tools. A recurring theme in many of them is a sequence
of hoc statements that construct a string, followed by ahoc statement that executes this
string (if it isavalid hoc statement) or usesit as an argument to some other hoc function
or procedure. We will return to thisideain Chapter 14: How to modify NEURON itself,
which shows how to create new GUI tools and add new functions to NEURON.

Anything that can be done with a GUI tool can be done directly with hoc. To
underscore this point, we will now use hoc statements to replicate the example that we
built with the GUI in Chapter 1. Our code follows the same broad outline as before,

specifying the model first, then
instrumenting it, and finally setting up
controls for running simulations. For
clarity of presentation, we will consider
this code in the same sequence: model
implementation, instrumentation, and
simulation control.

If you want to work along with this example, it
would be agood ideato create an empty directory
in which to save thefile or files that you will
make. These will be plain text files, which are
also sometimes known as ASCII files. Begin by
using atext editor to create afile called

exanpl e. hoc that will contain the code.

Implementing a model with hoc

The properties of our conceptual model neuron are summarized in Fig. 6.1 and Tables
6.1 and 6.2. For the most part, the steps required to implement a computational model of
this cell with hoc statements parallel what we did to build the model with NEURON's
GUI; differences will be noted and discussed as they arise. In the following program
listings, single line comments begin with a pair of forward dashes// and multiple line

Page 2

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 2, 2004 The NEURON Book: Chapter 6

comments begin with / * and are terminated by */ . For a discussion of hoc syntax, see

Chapter 12.
basilar \S;r:a lS
ynapse

A
axon apical

Fig. 6.1. The model neuron. The conductance change synapse can be located
anywhere on the cell.

Table6.1. Model cell parameters

Length Diameter Biophysics

pm pm

soma 30 30 HH e 9k ad g

apical dendrite 600 1 passive with Rm = 5,000 Q cm?, Epasz -65 mV
basilar dendrite 200 2 same as apical dendrite

axon 1000 1 same as soma

Cm=1pf / cm?
cytoplasmic resistivity = 100 Q cm

Temperature = 6.3 °C

Table 6.2. Synaptic mechanism parameters

Omax 0-05 LS
Tg 0.1 ms
E omv

S

Topology

Our first task is to map the branched architecture of this conceptual model onto the
topology of the computational model. We want each unbranched neurite in the
conceptual model to be represented by a corresponding section in the computational
model, and thisis done with acr eat e statement (top of Listing 6.1). The connect
statements attach these sections to each other so that the conceptual and computational
models have the same shape. Aswe noted in Chapter 5, each section has a normalized
position parameter which ranges from O at one end to 1 at the other. The basi | ar and
axon sections arise from one end of the cell body while the api cal section arises from
the other, so they are attached by connect statementsto the O and 1 ends of the soma,
respectively.

This model is simple enough that its geometry and biophysical properties can be
specified directly in hoc without having to resort to sophisticated strategies. Therefore
we will not bother with subsets of sections, but proceed immediately to geometry.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

The NEURON Book: Chapter 6

Page 4

LEEEEEEEErrr i rrrirrrry
/* nmodel specification */
FEEEEEEEErrr i rriirrd

I111111 topology /1111111

create somm, apical, basilar
connect apical (0), som(1)
connect basilar(0), soma(0)
connect axon(0), soma(0)

[111111 geonmetry /(1111111

soma {
L=23
di am
nseg

Inno

api cal
L=2¢6
di am
nseg

Inno—
o

basi | ar
L =2
di am
nseg

{
0

Inno

2
5

axon
L = 1000
diam=1
nseg = 37

111111 biophysics /1111

forall {
Ra = 100
cm=1

}

soma {
i nsert hh

}

api cal {
i nsert pas
g_pas = 0.0002
} e _pas = -65

axon

November 2, 2004

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 2, 2004 The NEURON Book: Chapter 6

basi | ar {
i nsert pas
g_pas = 0.0002
e _pas = -65

}

axon {
insert hh

Listing 6.1. Thefirst part of exanpl e. hoc specifiesthe anatomical and
biophysical attributes of our model.

Geometry

Each section of the model hasits own length L, diameter di am, and discretization
parameter nseg. The statementsinside the block soma { } pertainto the soma section,
etc. (the "stack of sections’ syntax--see Which section do we mean? in Chapter 5).
Since the emphasis here is on elementary aspects of model specification with hoc, we
have assigned specific numeric values to nseg according to what we learned from prior
use of the CellBuilder (see Chapter 1). A more genera approach would be to wait until L,
di am and biophysical properties (Ra and cm) have been assigned, and then compute
values for nseg based on afraction of the AC length constant at 100 Hz (see The
d_lambda rule in Chapter 5).

Biophysics

The biophysical properties of each section must be set up individually because we
have not defined subsets of sections. Cytoplasmic resistivity Ra and specific membrane
capacitance cmare supposed to be uniform throughout the model, so we use af or al |
statement to assign these values to each section.

The Hodgkin-Huxley mechanism hh and the passive mechanism pas are distributed
mechanisms and are specified with i nsert statements (see Distributed mechanisms in
Chapter 5). No further qualification is necessary for hh because our model cell usesits
default ionic equilibrium potentials and conductance densities. However, the parameters
of the pas mechanismin thebasi | ar and api cal sectionsdiffer from their default
values, and so require explicit assignment statements.

Testing the model implementation

Testing is aways important, especially when project development involves writing
code. If you are working along with this example, this would be an excellent time to save
what you have written to exanpl e. hoc and use NEURON to test it. Then, if you're
using aMac, just drag and drop exanpl e. hoc onto nr ngui . Under MSWindows use
Windows Explorer (the file manager, not Internet Explorer) to go to the directory where
you saved exanpl e. hoc and double click on the name of the file. Under UNIX or
Linux, type the command nr ni v exanpl e. hoc - a the system prompt (we're

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

The NEURON Book: Chapter 6 November 2, 2004

Page 6

deliberately not typing nr ngui exanpl e. hoc, to avoid having NEURON load its GUI
library).

Thiswill launch NEURON, and NEURON's interpreter will then process the contents
of exanpl e. hoc and generate a message that |0oks something like this:
NEURON -- Version 5.6 2004-5-19 23:5:24 Main (81)

by John W Mboore, M chael Hines, and Ted Carneval e
Duke and Yale University -- Copyright 2001

oc>

The NEURON Main Menu toolbar will not appear under MSWindows, UNIX, or Linux.
This happens because NEURON did not load its GUI library, which contains the code
that implements the NEURON Main Menu. We're roughing it, remember? We trust that
Mac users will pretend they don't see the toolbar, because dropping ahoc file on the

nr ngui icon automatically loads the GUI library.

Since we aren't using the CellBuilder, there isn't see a nice graphical summary of the
model's properties. However a couple of hoc commands will quickly help you verify that
the model has been properly specified.

We can check the branched architecture of our model by typingt opol ogy() at the
oc> prompt (see Checking the tree structure with topology() in Chapter 5). This
confirmsthat soma is the root section (i.e. the section that has no parent; note that thisis
not the same as the default section). It also shows that api cal isattached to the 1 end of
somm, and basi | ar and axon are connected to its 0 end.

oc>t opol ogy()

B e | axon(0-1)

Thecommand foral | psection() generatesa printout of the geometry and
biophysical properties of each section. The printout isin the form of hoc statements that,
if executed, will recreate the model.

oc>forall psection()
soma { nseg=1 L=30 Ra=100
/*l ocation O attached to cell 0*/
/* First segnent only */
i nsert norphol ogy { di am=30}
i nsert capacitance { cn¥l}
insert hh { gnabar_hh=0.12 gkbar _hh=0.036 gl _hh=0. 0003 el _hh=-54. 3}
insert na_ion { ena=50}
insert k_ion { ek=-77}

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 2, 2004 The NEURON Book: Chapter 6

api cal { nseg=23 L=600 Ra=100
soma connect apical (0), 1
/* First segnent only */
i nsert capacitance { cn¥l}
i nsert norphol ogy { dian¥l}
insert pas { g_pas=0.0002 e_pas=-65}

}
basil ar { nseg=5 L=200 Ra=100
soma connect basilar (0), O
/* First segnent only */
i nsert capacitance { cn¥l}
i nsert norphol ogy { dianr2}
insert pas { g_pas=0.0002 e_pas=-65}

}
axon { nseg=37 L=1000 Ra=100
soma connect axon (0), O
/* First segnent only */
i nsert capacitance { cnrl}
i nsert norphol ogy { dian¥l}
insert hh { gnabar_hh=0.12 gkbar _hh=0.036 gl _hh=0. 0003 el _hh=-54. 3}
insert na_ion { ena=50}
insert k_ion { ek=-77}
}
oc>
After verifying that the model specification is correct, exit NEURON by typing

qui t () inthe interpreter window.

An aside: how does our model implementation in hoc
compare with the output of the CellBuilder?

The hoc code we have just written is supposed to set up a model that has the same
anatomical and biophysical properties as the model that we created in Chapter 1 with the
CellBuilder. We can confirm that thisisindeed the case by starting a fresh instance of
NEURON, using it to load the session file that we saved in Chapter 1, and then typing
topol ogy() andforal | psection().ButtheCellBuilder can also create afile
containing hoc statements that, when executed, recreate the model cell. How do the
statements in this computer-generated file compare with the hoc code that we wrote for
the purpose of specifying this model ?

To find out, let us retrieve the session file from Chapter 1, and then select the
Management page of the CellBuilder. Next we click on the Export button (Fig. 6.2), and
save al the topology, subsets, geometry, and membrane information to afile called
cel I . hoc. Executing the hoc statementsin thisfile will recreate the model cell that we
specified with the CellBuilder.

It isinstructive to briefly review the contents of cel | . hoc, which are presented in
Listing 6.2. At first glance this looks quite complicated, and its organization may seem a
bit strange--after al, cel | . hoc isacomputer-generated file, and this might account for
its peculiarities. But let him who has never written an idiosyncratic line of code cast the
first stone! Actually, cel | . hoc isfairly easy to understand if, instead of attempting a
line-by-line analysis from top to bottom, we focus on the flow of program execution.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

The NEURON Book: Chapter 6 November 2, 2004

* Manage ment EContinuous Creste

Hirts
~ Cell Type 4 Export -, Import

Export to file [or top lewvel with "Continuous")
i.e. does not encapsulate the cell in an object.
Kind of infor mation exported
Topology [Destroys all existing top lewvel sections)
Subsets
Geometry

Mermbrans

Export to file

I

Figure 6.2. The Management page of the CellBuilder. We have clicked on the
Export radio button, and are about to export the model's topology, subsets,
geometry, and membrane information to a hoc file that can be executed to
recreate the model cell.

proc cel I def () {
topol ()
subset s()
geonf)
bi ophys()
geom hseg()

create sona, apical, basilar, axon

proc topol () { local i
connect api cal (0), sona(1)
connect basilar(0), soma(0)
connect axon(0), sona(0)
basi c_shape()

proc basi c_shape()
soma { pt 3dcl ear() t 3dadd(0, O,
api cal {pt 3dcl ear(gJ pt 3dadd(15,
basil ar {pt3dcl ear() pt3dadd(O0,
axon {pt3dcl ear() pt3dadd(0O, O,

1) pt3dadd(15, 0, 0, 1)}

0, 1) pt3dadd(75, 0, 0, 1)}
0, 1) pt3dadd(-29, 30, 0, 1)}
1) pt3dadd(-74, 0, 0, 1)}

cooo

objref all, has_HH no HH

proc subsets() { local i
objref all, has_ HH no HH
all = new SectionLi st ()

soma al | . append()
api cal all.append()
basilar all. append()
axon al | . append()

has_HH = new Sect i onLi st ()

sorma has_HH append()
axon has_HH append()

Page 8 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 2, 2004 The NEURON Book: Chapter 6

no_HH = new Secti onLi st ()
api cal no_HH append()
} basi | ar no_HH append()

proc geont)
forsec all {
soma{ L =30 diam=30 }
apical { L=600 diam=1 }
basilar { L =200 diam=2 }
}axon{ L =1000 diam=1 }

proc geomnseg() {
sona area(.5) // nake sure diamreflects 3d points
forsec all { nseg = int((L/(0.1*l anbda_f(100))+.9)/2)*2 + 1 }

proc biophys() {
forsec all {
Ra = 100
cm=1

forsec has HH {
insert hh
gnabar _hh = 0. 12
gkbar _hh = 0. 036

gl _hh = 0. 0003
el_hh =-54.3
forsec no HH {
insert pas
g_pas = 0. 0002
e pas = -65
}
}
access sona
cel | def ()

Listing 6.2. The contents of cel | . hoc, afile generated by exporting data from
the CellBuilder that was used in Chapter 1 to implement the model specified in
Table 6.1 and 2 and shown in Fig. 6.1.

So we skip over the definition of pr oc cel | def () to find the first statement that is
executed:

create sona, apical, basilar, axon

Nothing too obscure about this. Next we jump over the definitions of two more pr ocs
(the temptingly smplet opol () and theslightly puzzling basi c_shape()) before
encountering a declaration of three obj r ef s(see Chapter 13: Object oriented
programming)

objref all, has_HH no HH

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

The NEURON Book: Chapter 6 November 2, 2004

that are clearly used by the immediately following pr oc subset s() (what doesit do?
patience, all will bereveded. . .).

Finally at the end of the file we find a declaration of the default section, and then the
procedurecel | def () iscalled.
proc cel I def () {
topol ()
subset s()
geonf)
bi ophys()
geom nseg()

}

Thisisthe master procedure of thisfile. It invokes other procedures whose names remind
us of that familiar sequence "topology, subsets, geometry, biophysics' before it ends with
the eponymic geom nseg() . Using cel | def () asour guide, we can skim through the
rest of the procedures.

e topol () first connects the sections to form the branched architecture of our model,
and then it callsbasi c_shape() . Thelatter uses pt 3dadd statements that are based
on the shape of the stick figure that we saw in the CellBuilder itself. This establishes
the orientations (angles) of sections, but the lengths and diameters will be superseded
by statementsin geon() , which is executed later.

e subsets() usesSecti onLi st stoimplement the three subsets that we defined in
the CellBuilder (al | , has_HH, no_HH).

e geom() specifiesthe actual physical dimensions of each of the sections.
e bi ophys() establishesthe biophysical properties of the sections.

e geom nseg() appliesthe discretization strategy we specified, which in this caseisto
ensure that no segment islonger than 0.1 times the length constant at 100 Hz (see The
d_lambda rule in Chapter 5). This procedure is last to be executed because it needs
to have the geometry and biophysical properties of the sections.

Instrumenting a model with hoc

The next part of exanpl e. hoc contains The strategy for dealing with synapses
statements tha.t set L_Jp a W”ap?' Cl npgt and depends on the nature of the model. They
create agraphical display of simulation results aretreated as part of the instrumentation in

(Listing 6.3). The synapse and the graph are cellular and subcellular models, and thereis
specific instances of the Al phaSynapse and indeed a sense in which they can be

G aph classes, and are managed with object regar ?ﬁﬁi"nphys O;Oagtlh‘;a':gﬁe‘?”s" of
Syntax (See Chapter 13). The _synap_se Is placed Synapses betvx?egﬁp%ells ina network' model
at the middle of the sona and is assigned the are clearly intrinsic to the biological
desired time constant, peak conductance, and system. Thisdifference is reflected in the
reversal potential. The graph will be used to GUI tooals for constructing models of

show the time course of soma. v(0. 5) , the individual cells and networks.

somatic membrane potential.

Page 10 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 2, 2004

(00 rrrrrrrd
/* i nstrument ati on */
(00 rrrrrird

[111] synaptic input ////

objref syn

soma syn = new Al phaSynapse(0.5)
syn.onset = 0.5

syn.tau = 0.1

syn. gmax = 0.05

syn.e =0

/1] graphical display ///
objref g

g = new G aph()

g.si ze(0, 5, -80, 40)

g. addvar ("soma. v(0.5)",

The NEURON Book: Chapter 6

1, 1, 0.6, 0.9, 2)

Listing 6.3. The second part of exanpl e. hoc specifies the instrumentation

used to stimulate and monitor our mode!.

Setting up simulation control with hoc

The code in the last part of exanpl e. hoc controls
the execution of simulations. This code must
accomplish many tasks. It must define the size of the
time step and the duration of asimulation. It also has
to initialize the smulation, which means setting time
to 0, making membrane potential assume its proper
initial value(s) throughout the model, and ensuring that
all gating variables and ionic currents are consistent
with these conditions. Furthermore, it has to advance
the solution from beginning to end and plot the
simulation results on the graph. Finaly, if interactive
use isimportant, initializing and running simulations
should be as easy as possible.

Setting up simulation control isa
recurring task in developing
computational models, and much
effort can be wasted trying to
reinvent the wheel. For didactic
purposes, in this example we
create our own simulation control
code de novo. However, itis
always far more efficient to use the
powerful, customizable functions
and proceduresthat are built into
NEURON's standard run system
(see Chapter 7).

The code in Listing 6.4 accomplishes these goals for our ssimple example. Smulation
initialization and execution are generally performed by separate procedures, as shown
here; the sole purpose of the final procedure isto provide the minor convenience that
simulations can be initialized and executed by merely typing the command go() at the

oc> prompt.

The first three statementsin Listing 6.4 specify the default values for the time step,
simulation duration, and initial membrane potential. However, initialization doesn't
actualy happen until you invokethei niti al i ze() procedure, which contains
statements that set time, membrane potential, gating variables and ionic currentsto their
proper initial values. The main computational loop that executes the ssimulation (whi | e

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

Page 11

The NEURON Book: Chapter 6 November 2, 2004

(t<tstop) { })isintheintegrate() procedure, with additional statements that
make the plot of somatic membrane potential appear in the graph.
(EEEEEEErrrrr e rrrrrrr

/* simulation control */
(00 rrrrrrrd

dt = 0.025
tstop = 5
v _init = -65

proc initialize() {
t =0
finitialize(v_init)
fcurrent ()

pr oc éntegrate() {
. begin
ghilg (gltstop) {
fadvance()

g. plot(t)
g. fl ush()

proc go()
initialize()
i ntegrate()

Listing 6.4. The final part of exanpl e. hoc providesfor initialization and
execution of smulations.

Testing simulation control

Use NEURON to execute exanpl e. hoc (agraph should appear) and then type the
command go() (thisshould launch asimulation, and atrace will appear in the graph).
Change thevalue of v_i ni t to-60mV and repeat the simulation (at the oc> prompt type
v_ini t =-60, thentypego()). When you are finished, type qui t () inthe interpreter
window to exit NEURON.

Evaluating and using the model

Now that we have aworking model, we are aimost ready to put it to practical use. We
have already checked that its sections are properly connected, and that we have correctly
specified their biophysical properties. Although we based the number of segments on
nseg generated by the CellBuilder using thed_lambda rule, we have not really tested
discretization in space or time, so some exploratory simulations to evaluate the spatial
and temporal grid are advisable (see Chapter 4 and Choosing a spatial grid in
Chapter 5). Once we are satisfied with its accuracy, we may be interested in improving
simulation speed, saving graphical and numerical results, automating simulations and

Page 12 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 2, 2004 The NEURON Book: Chapter 6

data collection, curve fitting and model optimization. These are somewhat advanced
topicsthat we will examine later in thisbook. The remainder of this chapter is concerned
with practical strategies for working with models and fixing common problems.

Combining hoc and the GUI

The GUI tools are arelatively "recent” addition to NEURON (recent is arelative term
in a fast-moving field--would you believe 1995?) so many published models have been
implemented entirely in hoc. Also, many long-time NEURON users continue to work
quite productively by developing their models, instrumentation, and simulation control
exclusively with hoc. Often the resulting software is elegantly designed and implemented
and servesits original purpose quite well, but applying it to new research questions can
be quite difficult if significant revision is required.

Some of this difficulty can be avoided by generic good programming practices such
as modular design, in particular striving to keep the specifications of the model,
instrumentation, and simulation control separate from each other (see Elementary
project management below). Thereis also alarge class of problemsthat would require
significant programming effort if one starts from scratch, but which can be solved with a
few clicks of the mouse by taking advantage of existing GUI tools. But what if you don't
see the NEURON Main Menu toolbar, or (as often happens when you first start to work
with a"legacy” model) you do see it but many of the GUI tools don't seem to work?

No NEURON Main Menu toolbar?

Thisis actually the easiest problem to solve. At the oc> arngui also loads the
prompt, type the command | oad_fi I e("nrngui . hoc") and | gandard run library
the toolbar should quickly appear. If you add this statement to
the very beginning of the hoc file, you'll never have to bother with it again.

The toolbar will always appear if you use nr ngui toload ahoc file. Onthe Mac this
is what happens when you drag and drop ahoc file onto the nr ngui icon. Under
M SWindows you would have to start NEURON by clicking on its desktop nr ngui icon
(or on the nr ngui itemin the Start menu's NEURON program group), and then use
NEURON Main Menu / File / load hoc to open the the hoc file. UNIX/Linux users can
justtypenr ngui fil ename at the system prompt.

However, even if you see the toolbar, many of the GUI tools will not work if the hoc
code didn't define a default section.

Default section? We ain't got no default section!

No badges, either. But to make full use of the GUI tools, you do need a default
section. To see what happens if there isn't one, let's add a second synapse to the
instrumentation of our example as if we were modeling feedforward inhibition. We could
do this by writing hoc statements that define another point process, but this time let's use
the GUI (see 4. Instrument the model. Signal sources in Chapter 1).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

The NEURON Book: Chapter 6 November 2, 2004

First, change exanpl e. hoc by adding the statement
| oad_file("nrngui.hoc")

at the very beginning of the file. Now when NEURON executes the commands in
exanpl e. hoc, the first thing that happensis the GUI UNIX/Linux users can go back to
library isloaded and the NEURON Main Menu tool bar typing nrngui exanpl e. hoc.

appears.
But NEURON Main Menu / Tools / Point Processes / Managers / Point Manager

doesn't work. Instead of a PointProcessManager we get an error message that thereis
"no accessed section” (Fig. 6.2). What went wrong, and how do we fix it?

= MEURON M =] E3

Mo accessed section: Can't start a Point Process Manager

Fig. 6.2. A useful error message.

Many of the GUI tools, such as voltage graphs, shape plots, and point processes, must
refer to aparticular section at the moment they are spawned. This is because sections
share property names, such asL and v. Remember the statement we used to create a point
processin exanpl e. hoc:

soma syn = new Al phaSynapse(0.5)

This placed the newly created synapse at the 0.5 location on a particular section: the
soma. But we're not writing hoc statements now; we're using agraphical tool (the
NEURON Main Menu) to create another graphical tool that we will use to attach a point
process to a section, and the NEURON Main Menu has no way to guess which section
we're thinking about.

The way to fix this problem is to add the statement
access som

to our model description, right after the cr eat e _ _
statement. The access statement defines the default If there are many sections, which
section (see Which section do we mean? in one should be the default section?
; . A good rule of thumb isto pick a
Chapter 5). If we assign membrane properties or attach | conceptually privileged section
apoint process to amodel, the default section is that will get most of the use. The
affected unless we specify otherwise. And if we usethe | somaisgenerally agood choice.
GUI to create a plot of voltage vs. time, v at the middle

of the default section is automatically included in the list of things that are plotted.
So click on the "Continue" button to dismiss the error message,

quit NEURON, add the access sonm statement to Sclertific question:
- o . can you explain the
exanpl e. hoc, and try again. Thistime it works. Configure the effect of the
PointProcessManager to be an AlphaSynapse with onset = inhibitory synapse's
0.5 ms, tau = 0.3 ms, gmax = 0.04 uS, and e =-70 mV and type tau on cell firing?

Page 14 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 2, 2004 The NEURON Book: Chapter 6

go() torunasimulation. Run a couple more smulations with tau = 1 msand 3 ms. Then
exit NEURON.

Strange Shapes?

The barbed wire model

In Chapter 1 we mentioned that the 3-D method for specifying geometry can be used
to control the appearance of amodel in a Shape plot. The benefits of the 3-D method for
model s based on detailed morphometric data are readily appreciated: the direct
correspondence between the anatomy of the cell as seen under a microscope, and its
representation in a Shape plot, can assist conceptual clarity when specifying model
properties and understanding simulation results. Perhaps less obvious, but no lessredl, is
the utility of the 3-D method for dealing with more abstract models, whose geometry is
easy enough to specify interms of L and di am We hinted at this in the walkthrough of
the hoc code exported by the CellBuilder, but afew examples will proveits value and at
the same time help prevent misapplication and misunderstanding of this approach.

Suppose our conceptual model isacell with an apical dendrite that givesriseto 10
oblique branches along its length. For the sake of visual variety, we will have the lengths
of the obliques increase systematically with distance from the soma. Listing 6.5 presents
an implementation of such amodel using L and di amto specify geometry. The apical
trunk is represented by the proximal section api cal and the sequence of progressively
more distal sectionsap[0] - ap[NDEND- 1] . With our mind's eye, aided perhaps by dim
recollection of Ramon y Cgjal's marvel ous drawings, we can visualize the apical trunk
stretching away from the somain amore or less straight line, with the obliques coming
off at an angleto one side.

I111111 topology /1111111
NDEND = 10

create somm, apical, dend[NDEND], oblique[NDEND]
access somm

connect apical (0), som(1)

connect ap0, apical (1)

connect oblique0, apical (1)

for i=1, NDEND- 1 {
connect ap[i](0), ap[i-1](1)
connect obliquel[i]() dend[i-1] (1)

}
[111111 geonmetry [/11111]

soma { L = 30 diam= 30 }
apical { L =3 diam=5}

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 15

The NEURON Book: Chapter 6 November 2, 2004

for i =0, NDEND- 1 {
ap[i] { L = 15 diam= 2}
oblique[i] { L = 15+5*i diam= 1 }

Listing 6.5. Implementation of an abstract model that has a moderate degree of
dendritic branching using L and di amto specify geometry.

But executing this code and bringing up a Shape plot (e.g. by NEURON Main Menu /
Graph / Shape plot) produces the results shown in Figure 6.3. So much for our mind's
eye. Where did all the curvature of the apica trunk come from?

This violence to our imagination stems from the fact that stylized specification of
model geometry says nothing about the orientation of sections. At every branch point,
NEURON's internal routine for rendering shapes makes its own decision, and in doing so
it follows a ssmple rule: make a fork with one child pointing to the left and the other to
the right by the same amount relative to the orientation of the parent. Models with more
complex branching patterns can look even stranger; if the detailed architecture of ared
neuron istranslated to simple hoc statements that assert nothing more than connectivity,
length, and diameter, the resulting Shape may resemble atangle of barbed wire.

Fig. 6.3. Shape plot rendering of the model produced by the codein Listing 6.5.
To help indicate the location of the soma section, Shape Style: Show Diam was
enabled.

To gain control of the graphical appearance of our model, we must specify its
geometry with the 3-D method. Thisisillustrated in Listing 6.6, where we have
meticulously used absolute (x,y,z) coordinates, based on the actual location of each
section, as arguments for the pt3dadd() statements. Now when we bring up a Shape plot,
we get what we wanted: a nice, straight apical trunk with oblique branches coming off to
oneside (Fig. 6.4).

[T geometry /1111111
forall pt3dclear()
soma {

pt 3dadd(0, 0, 0, 30)
pt 3dadd(30, 0, 0, 30)

api cal
pt 3dadd(30, 0O, 0, 5)
pt 3dadd(60, O, 0, 5)

Page 16 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 2, 2004 The NEURON Book: Chapter 6

for i=0, NDEND-1 {
ap[i] { |

pt 3dadd(60+i *15, 0, 0, 2)

pt 3dadd(60+(i +1)*15, 0, 0, 2)

L. :
oblique[i]

pt 3dadd(60+i *15, 0, 0, 1)
pt 3dadd(60+i *15, -15-5%i, 0, 1)

Listing 6.6. Specification of model geometry using the 3-D method. This
assumes the same model topology as shown in Listing 6.5.

il

Fig. 6.4. Shape plot rendering of the model when the geometry is specified
using the 3-D method shown in Listing 6.6.

Although we scrupuloudly used absolute (x,y,z) coordinates for each of the sections,
we could have saved some effort by taking advantage of the fact that the root section is
treated as the origin of the cell with respect to 3-D position. When any section's 3-D
shape or length changes, the 3-D information of al child sectionsistranslated to
correspond to the new position. Thus, if the somais the root section, we can move an
entire cell to another location just by changing the location of the soma. Another useful
implication of thisfeature allows us to simplify our model specification: the only
pt 3dadd() statements that must use absolute coordinates are those that belong to the
root section. We can use relative coordinates for all child sections, instead of absolute
(x,y,2) coordinates, aslong as they result in proper length and orientation (see
Listing 6.7).

111111 geometry /1111111
forall pt3dclear()

soma {
pt 3dadd(0, 0, 0, 30)
pt 3dadd(30, O, 0, 30)

api cal
pt 3dadd(0, 0, 0, 5)
pt 3dadd(30, O, 0, 5)

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 17

The NEURON Book: Chapter 6 November 2, 2004

for i=0, NDEND-1 {
ap[i] {

pt 3dadd(0, 0, 0, 2)

pt 3dadd(15, 0, 0, 2)

}
oblique[i] {
pt 3dadd(0, 0, 0, 1)
pt 3dadd(0, -15-5*i, 0, 1)

Listing 6.7. A smpler 3-D specification of model geometry that relies on the
absolute coordinates of the root section and relative coordinates of all child
sections. Compare the (x,y,z) coordinatesin the pt 3dadd() statementsfor
api cal , ap, and obl i que withthosein Listing 6.6.

The case of the disappearing section

In Chapter 5 we mentioned that it is generally agood idea to attach the O end of a
child section to its parent, in order to avoid confusion. For an example of one particularly
vexing problem that can arise when this recommendation isignored, consider Listing 6.8.
Theaccess dend[0] statement and the argumentsto the pt 3dadd() statements
suggest that the programmer's conceptual model had the sections arranged in the left to
right sequence dend[0] - dend[1] - dend[2] . Notethat the 1 end of dend[0] is
connected to the 0 end of dend[1] , and the 1 end of dend[1] is connected to the O end
of dend[2] . Thismeansthat dend[2] , which is not connected to anything, is the root
section. From a purely computational standpoint thisis perfectly fine, and if we simulate
the effect of acurrent step applied to the 0 end of dend[0] , there will be an orderly
spread of charge and potential along each section fromits 0 end to its 1 end, with the
largest membrane potentia shift in dend[0] and the smallest indend[2] .

I111111 topology /1111111
NDEND = 3

creat e dend[NDEND]
access dend| 0]

connect dend[0] (1), dend[1
connect dend[1] (1), dend[2

[111111 geonmetry [/11111]

[T

(0)
(0)

forall pt3dclear()

dend[0]
pt 3dadd(0, 0, 0, 1)
pt 3dadd(100, 0, 0, 1)

dend[1] {
pt 3dadd(100, 0, O, 1
pt 3dadd(200, O, O, 1

Page 18 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 2, 2004 The NEURON Book: Chapter 6

dend[2] {
pt 3dadd(200, 0O, 0, 1)
pt 3dadd(300, 0, 0, 1)

Listing 6.8. The programmer's intent seems to be for dend[0] , dend[1] , and
dend[2] toline up from left to right. However, the connect statements make
dend[2] theroot section, and thereby hangs atale.

However, we'rein for asurprise when we bring up a PointProcessManager
(NEURON Main Menu / Tools / Point Processes / Managers / Point Manager) and try to
place an | O anp at different locations in this model. No matter where we click, we can
only put thel C anp ondend[0] or dend[2] (Fig. 6.5). Try aswe might to find it,
there just doesn't seem to be any dend] 1] !

But dend[1] readlly does exist, and we can easily prove this by invoking the

t opol ogy() function, which generates this diagram:

|- dend[2] (0- 1)

N dend[1] (1- 0)
Y dend[0] (1- 0)

This not only confirms the existence of dend[1] , but also showsthat dend[2] isthe
root section, with the 1 end of dend[1] connected to itsto the O end, and the 1 end of
dend[0] connected to the O end of dend[1] . Exactly as we expected, and just as
specified by the code in Listing 6.8.

PointProcessManager

SelectPointProcess | -
PointProcessManager
Show -
IClamp[0] SelectPointProcess |
at:dend[0](0.5) [Show |
IClamp|[0]
at:dend[2](0.5)
. e

Fig. 6.5. The code in Listing 6.8 produces a model that seems not to have a
dend[1] --or at least, we can't find dend[1] when wetry to usea
PointProcessManager to attach an 1 Cl anp toit.

But isn't something terribly wrong with the appearance of our model in the Shape
plot? Not at all. Although we might not likeit, the model looks exactly asit should, given
the statementsin Listing 6.8.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 19

The NEURON Book: Chapter 6 November 2, 2004

Here'swhy. Aswe mentioned above in The barbed wire model, the location of the
root section determines the placement of all other sections. Theroot sectionisdend[2] ,
and the pt 3dadd() statementsin Listing 6.8 placeits 0 end at (200, 0, 0) and its 1 end at
(300, 0, 0) (Fig. 6.6).

Sincedend[1] is attached to the O end of dend[2] , the first 3-D data point of dend[1]
is mapped to (200, 0, 0) (see 3-D specification in Chapter 5). According to the
pt 3dadd() statementsfor dend[1], itslast 3-D data point lies 100 pm to the right of its
first 3-D point. This meansthat the 1 end of dend[1] isat (200, 0, 0) and itsOend is at
(300, 0, 0) (Fig. 6.6)--precisely the locations of the left and right ends of dend[2] ! So
dend[1] and dend[2] will appear as the same line in the Shape plot. When we try to
select one of these sections by clicking on this line, the section we get will depend on the
inner workings of NEURON's GUI library. It just happens that, for the particular hoc
statementsin Listing 6.8, we can only select pointson dend[2] . Thisisasif dend[1] is
hidden from view and shielded from our mouse cursor.

Finally we consider dend[0] , whose 1 end is connected to the 0 end of dend[1] .
Thusitsfirst 3-D data point is drawn at (300, 0, 0), and, following its pt 3dadd()
statements, its last 3-D data point lies 100 um to the right, i.e. at (400, O, 0). Thus
dend[0] runsfrom (400, O, 0) (its 0 end) to (300, 0, 0) (its 1 end), whichisjust to the
right of dend[2] and the hidden dend[1] (Fig. 6.6).

So the mystery is solved. All three sections are present, but two are on top of each
other.

Thefirst lesson to take from this sad tale is the usefulness of t opol ogy() asa
means for diagnosing problems with model architecture. The second lesson isthe
importance of following our recommendation to avoid confusion by connecting the O end
of achild section to its parent. The strange appearance of the model in the Shape plot
happened entirely because this advice was not followed. There are probably occasionsin
which it makes excellent sense to violate this simple rule; please be sure to let us know if

you find one.

dend[2] runs

fromhere | to here

(its 0 end) (its 1 end) dend[0] runs

fromhere to here

dendilruns \ 1 here | (its 1 end) (its 0 end)

(its 1 end) (its 0 end)

(200,0,0) (300,0,0) (400,0,0)

Fig. 6.6. Deciphering the pt 3dadd() statementsin Listing 6.8 leads usto
realize that we only see two sections in the Shape plot because two of them
(dend[1] and dend[2]) aredrawn in the same place. This figure shows the
(x,y,z) coordinates of the sections and indicates their 0 and 1 ends.

Page 20 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 2, 2004 The NEURON Book: Chapter 6

Graphs don't work?

If there is no default section, new graphs created with the GUI won't work properly.
Y ou've already seen how to declare the default section, so everything should be OK,
right? Let's see for ourselves.

Make sure that exanpl e. hoc startswith | oad_fi | e("nrngui . hoc") and
containsan access soma statement, and then use NEURON to execute it. Then follow
the steps shown in Fig. 1.27 (see Signal monitors in Chapter 1) to create a space plot
that will show membrane potential along the length of the cell. Now type go() . What
happens?

The graph of soma. v(0. 5) shows an action potential, but the trace in the space plot
remains aflat line. |s there something wrong with the space plot, or does the problem lie
elsewhere?

To find out, use NEURON Main Menu / Tools / RunControl to bring up a RunControl
window. Click on the RunControl's Init & Run button. Result: thistime it's the space plot
that works, and the graph of soma. v(0. 5) that doesn't (Init & Run should have erased
the trace in the latter and drawn a new one).

So there are actually two problems. The simulation control code in our hoc file can't
update new graphs that we create with the GUI, and the GUI's own simulation control
code can't update the "old" graph that is created by our hoc file. Of the many possible
ways to deal with these problems, oneisridiculoudy easy and another requires alittle
effort (but only avery little).

The ridiculously easy solution isto use the GUI to make a new graph that shows the
same variables, and ignore or throw away the old graph. In this example, resorting to
NEURON Main Menu / Graph / Voltage axis gets us a new graph. Since the sona isthe
default section, thev(. 5) that appears automatically in our new graph isredly
soma. v(0.5).

What if alot of programming went into one or more of the old graphs, so the GUI
tools offer nothing equivalent? This calls for the solution that requires a little effort:
specificaly, we add asingle line of hoc code for each old graph that needs to be fixed. In
this example we would revise the code that defines the old graph by adding the line
shown herein bold:

/1] graphical display ///

objref g

g = new G aph()

addpl ot (g, 0)

g.si ze(0, 5, -80, 40)

g. addvar ("soma.v(0.5)", 1, 1, 0.6, 0.9, 2)

Listing 6.9. Fixing an old graph so it works with NEURON's standard run
system.

This takes advantage of NEURON's standard run system, a set of functions and
procedures that orchestrate the execution of simulations (see Chapter 7). The statement
addpl ot (g, 0) addsg toalist of graphs that the standard run system automatically

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 21

The NEURON Book: Chapter 6 November 2, 2004

updates during the course of a simulation. The standard run system has many powerful

Also, the x-axis of our graph will be adjusted features and can be used in any simulation,

automatically when we changet st op (Tstop with or without the GUI. The statement

in the RunControl panel). NEURON's GUI load_file("stdrun.hoc") loadsthe

relies heavily on the standard run system, and hoc code that implements the standard run
. . e system, without loading the GUI.

every time we click on the RunControl's

Init & Run button we are actually invoking

routines that are built into the standard run system.

Does this mean that we have to abandon the simulation control code in our hoc
program, and does it matter if we do? The control codein exanpl e. hoc performsa
"plain vanilla" initialization and simulation execution, so abandoning it in favor of the
standard run system only makes things better by providing additional functionality. But
what if we want a customized initialization or some unusual flow of simulation
execution? Aswe shall see in Chapter 7, the standard run system was designed and
implemented so that only minor changes are required to accommodate most special
needs.

Conflicts between hoc code and GUI tools

Many of the GUI tools specify properties of the model or the interface, and this leads
to the possibility of conflicts that cause a mismatch between what you think isin the
computer, and what actually isin the computer. For example, suppose you use the
CellBuilder to construct amodel cell with asection called dend that hasdi am= 1 um,

L =300 um, and passive membrane, and you turn Continuous create ON. Then typing
dend psection() attheoc> prompt will produce something like this

oc>dend psecti on()
dend { nseg=11 L=300 Ra=80

i nsert pas { g_pas=0.001 e pas= 70}

(afew lines were omitted for clarity), which confirms the presence of the pas
mechanism.

A bit later, you decide to make dend active and get rid of its pas mechanism. You
could do this with the CellBuilder, but let's say you find it quicker just to type

oc>dend {uninsert pas insert hh}
and then confirm the result of your action with another psect i on()

oc>dend psecti on()
dend { nseg=11 L=300 Ra=80

insert hh { gnabar_hh=0.12 gkbar hh=0.036 gl _hh=0.0003 el hh=-54. 3}
insert na_ion { ena=50}
insert k ion { ek=77}

So far, so good.

Page 22 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 2, 2004 The NEURON Book: Chapter 6

But check the Biophysics page of the CellBuilder, and you will see that the change
you accomplished with hoc did not track back into the GUI tool, which still shows dend
as having pas but not hh. Thisis particularly treacherous, because it is al too easy to
become confused about what is the actual specification of the model. If these new
biophysical properties|ead to particularly interesting simulation results, you might save
"everything" to a session file, thinking that you would be able to reproduce those results
in the future--but the session file would only contain the state of the GUI tools.
Completely absent would be any reflection of the fact that you had executed your own
hoc statement to override the CellBuilder's model specification.

And still more surprises are in store. Using the CellBuilder, with Continuous create
still ON, change dendritic diameter to 2 um. Now use psect i on() to check the
properties of dend

oc>dend psecti on()
dend { nseg=7 L=300 Ra=80

insert hh { gnabar_hh=0.12 gkbar hh=0.036 gl _hh=0.0003 el hh=-54. 3}
insert na_ion { ena=50}
insert k ion { ek=77}
insert pas { g pas=0.001 e pas= 70}
}
and you see that both pas and hh are present, despite the previous use of uni nsert to
get rid of the pas mechanism.

Similar conflicts can arise between hoc statements and other GUI tools (e.g. the
PointProcessManager) All of these problems have a common source: changes you make
at the hoc level are not propagated to the GUI tools, so if you then make any changes
with the GUI tools, it islikely that al the changes you
made with hoc statements will be lost. The lesson Conflicts may also occur between
here isto exercise great caution when combining GUI the CellBuilder and older GUI tools
tools and hoc statements, in order to avoid for managing section properties.
introducing potentially confusing conflicts.

Elementary project management

The example used in this chapter issimple so adl of its code fitsin asingle, small file
that can be quickly understood. Nonetheless, we were careful to organize exanpl e. hoc
in away that separates specification of the model per se from the specification of the
interface, i.e. the instrumentation and control procedures for running simulations. This
separation maximizes clarity and reduces effort, and it should begin while the model is
still in the conceptual stage.

Designing amodel starts by answering the questions: what anatomical features are
necessary, and what biophysical properties should be included? The answers to these
guestions govern key decisions about what what kinds of stimuli to apply, what kinds of
measurements to make, and how to display, record, and analyze these measurements.
When it isfinally time to implement the computational model, it isagood ideato try to

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 23

The NEURON Book: Chapter 6 November 2, 2004

keep these questions separate. Thisisthe way NEURON's graphical tools are organized,
and thisis the way models specified with hoc should be organized.

e First you create amodel, specifying its topology, geometry, and biophysics, either
with the CellBuilder or with hoc code. Thisis arepresentation of selected aspects of a
biological system, and you might think of it asavirtua experimental preparation.

e Then you instrument that model. Thisis analogous to applying stimulating and
recording electrodes and other apparatus to areal neuron or neura circuit in the
laboratory.

e Finally, you set up controls for running simulations.

Instrumentation and simulation controls are the user interface for exercising the
model. Metaphorically speaking, they amount to avirtual experimental rig. In awet lab,
noone would ever confuse a brain slice with the microscope or instrumentation rack. The
physical and conceptual distinction between biological preparation and experimental rig
them is an inescapabl e fact and has a strong bearing on the and execution of
experiments. NEURON lets you carry this separation over into modeling. Why confound
the code that defines the properties of amodel cell with the code that generates a stimulus
or governsthe sequence of eventsin asimulation?

One way to help separate model specification from user interface is to put the code
that defines them into separate files. One file, which we might call cel | . hoc, would
contain the statements that specify the properties of the model: its topology, geometry,
and biophysics. The code that defines point processes, graphs, other instrumentation, and
simulation controls would go into a second file that we might call ri g. hoc. Finally, we
would use athird file for purely administrative purposes, so that a single command will
make NEURON execute the other filesin proper sequence. Thisfile, which we might call
i ni t. hoc, would contain only the statements shown in Listing 6.10. Executing
i nit. hoc with NEURON will make NEURON load its GUI and standard run libraries,
bring up aNEURON Main Menu toolbar, execute the statementsin cel | . hoc to
reconstitute the model cell, and finally execute the statementsinri g. hoc to reconstitute
our user interface for exercising the model.

| oad_file("nrngui.hoc")

| oad_file("cell.hoc")
load _file("rig.hoc")

Listing 6.10. Contents of i ni t . hoc.

For instance, we could recast exanpl e. hoc in this manner by putting its model
specification component into cel | . hoc, while the instrumentation and simulation
control components would becomer i g. hoc. Thiswould allow usto reuse the same
model specification with different instrumentation configurationsri g1. hoc, ri g2. hoc,
etc.. To make it easy to select which rig is used, we could create a corresponding series of
init files(initl. hoc,init2. hoc, etc.) that differ only in the argument to the third
| oad_fil e() statement. Thisstrategy is not limited to hoc files, but can also be used to
retrieve cells and/or interfaces that have been constructed with the GUI and saved to
session (ses) files.

Page 24 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 2, 2004 The NEURON Book: Chapter 6

Iterative program development

A productive strategy for program development in NEURON isto revise and
reinterpret hoc code and/or GUI tools repeatedly during the same session. Bugs afflict all
nontrivial programs, and the process of making incremental changes, saving them to
intermediate hoc or ses files, and testing at each step, reduces the difficulty of trying to
diagnose and eliminate them. In thisway it is possible begin with a program skeleton that
consists of one or two hoc fileswith ahandful of | oad_fi | e() statementsand function
stubs, and quickly refine it until everything works properly. However, two caveats do
apply.

First, avariable cannot be declared with a new type during the same session. In other
words, "once a scalar, alwaysascaar" (or double, or string, or object reference).
Attempting to redeclare a variable will produce an error message, e.g.

oc>x = 3
first instance of x
oc>obj ref x

[usr/local /nrn/i 686/ bin/nrniv: x already declared near |ine 2
objref x
N

oc>

Trying to redefine a double, string, or object reference as something else will likewise
fall. Thisis generally of little consequence, since it is rarely absolutely necessary to
change the type assigned to a particular variable name. When this does happen, you just
have to exit NEURON, make your changes to the hoc code, and restart.

The second caveat is that, once the hoc interpreter has parsed the code in atemplate
(see Chapter 13: Object-oriented programming), the classthat it definesis fixed for
that session. This means that any changes to a template require exiting NEURON and
restarting. The result is some inconvenience when developing and testing new classes,
but thisis still easier than having to recompile and link a program in C or C++.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 25

The NEURON Book: Chapter 6

Chapter 6 Index
3-D specification of geometry 15
coordinates
absolute vs. relative 16, 17
A
access 14
B
biophysical properties
specifying 5
C
CellBuilder
hoc output
exported cell 7
CellBuilder GUI
Continuous create 22, 23
Management page
Export 7
computational model
implementing with hoc 2
conceptual clarity 2,15
connect 3
create 3
D
diam 5
distributed mechanism 5
E
error message
no accessed section 14
G
good programming style
iterative development 25
modular programming 13

November 2, 2004

Page 26 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 2, 2004

program organization 23

separate model specification from user interface

GUI
combining withhoc 13
conflicts with hoc or other GUI tools 22
tools
are implemented in hoc 2
work by constructing hoc programs 2
vs. hoc 1
H
hoc 1
can do anything that a GUI tool can 2
combining with GUI 13
conflictswith GUI 22
idiom
forall psection() 6
load_file("nrngui.hoc™) 13
implementing a computational model
vs. GUI 1
hoc syntax

comments 2
variables
cannot changetype 25

initialization 11
custom 22

insert 5

instrumentation 23

L5
M
model

The NEURON Book: Chapter 6

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 27

The NEURON Book: Chapter 6 November 2, 2004

computationa
essential steps 1
correspondence between conceptual and computational 1,3
testing 12
model specification 23
asvirtual experimental preparation 24

N
NEURON
starting with a specific hoc file 5
NEURON Main Menu
creating 13,24
nrngui 6
loads GUI and standard run library 13
nrniv 5
nseg 5
P

plaintext file 2
PointProcessM anager

creating 19
project management 23
Q
guantitative morphometric data 15
R
RunControl
creating 21
RunControl GUI
Init& Run 22
Tstop 22
S
section
child
connect 0 end to parent 18

Page 28 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 2, 2004 The NEURON Book: Chapter 6

currently accessed
default section 14
orientation 10, 16, 17
root section 6
is3-D originof cell 17,20
vs. default. section 6
SectionList class 10

Shape plot
creating 16
Shape plot GUI
Shape Style
Show Diam 16
simulation control 11, 23

standard run system 21

addplot() 21
tstop 22
stylized specification of geometry 5
strange shapes 15
synapse
asinstrumentation 10
T
template
cannot beredefined 25
topology
checking 6, 20
specifying 3
topology, subsets, geometry, biophysics 10
topology() 20
troubleshooting

disappearing section 18
Graphsdontwork 21
legacy code 13

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 29

The NEURON Book: Chapter 6 November 2, 2004

no default section 13
no NEURON Main Menu toolbar 13
U
uninsert 23
user interface 23
asvirtual experimental rig 24

Page 30 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

