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Chapter 4

Essentials of numerical methods for neural modeling

Neurons are distributed analog systems that are continuous in time and space, but
digital computation isinherently discrete. Therefore implementing a model of aneuron
with adigital computer raises many purely numerical issues that have no relationship to
the biological questions that are of primary interest, yet must be addressed if simulations
are to be tractable and produce reliable results. In this chapter we examine how
NEURON deals with these issues.

We saw in Chapter 3 that the principle of conservation of charge can be expressed
with asingle ordinary differential equation

dt inj

so long as the transmembrane current density is nearly uniform over the surface of a cell.
If current density varies too much, the computational representation must consist of two
or more coupled compartments. These are described by a set of equations of the form

av _ Eq. 4.1
C—+|ion—| q

V,—V.
k _"J Eqg. 4.2
+|inj. q

dv.
—Ly =
Cj dt * I'O”j Zk: M ik

where the second term on the right hand side is the sum of all axial currentsfrom
neighboring compartments. Additional terms and equations are necessary if extracellular
fields (theext r acel | ul ar mechanism) or electronic instrumentation (linear circuits)
are to be included in the smulation.

Selection of amethod for numerical integration of these equations is guided by
concerns of stability, accuracy, and efficiency. In this chapter we review these important
concepts and explain the rationale for the integrators used in NEURON. We start with a
theoretical analysis of the errors that are introduced by discretizing the linear cable
eguation. Then we move on to a comparative analysis of methods for computing
numerical solutions, whichisillustrated by a series of case studies that bring up issues
related to the practical concerns of empirically-based modeling.

Spatial and temporal error
in discretized cable equations
A linear cable with uniform propertiesis described by the equation
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2

dt 2 Ra P X2
where V is the membrane potentia in volts, ¢ the specific membrane capacitance in
[F/cm?], g the specific membrane conductance in [S/cm?], a the radiusin [cm], R, the

cytoplasmic resistivity in [Q cm], and x the distance along the cablein [cm], so that each
term in Eq. 4.3 has units of [A/cm?]. We assume that the cable is L cm long, and that the
axial current at each end is zero, i.e. "sealed end" boundary conditions, which implies that
0V /0x =0at x=0and x= L. The membrane potential is afunction of time and
location V(t,x), and the initial condition V(0,x) can be any spatial pattern that satisfiesthe
boundary conditions.

Analytic solutions: continuous in time and space

The spatial patterns that preserve their shape, changing only in amplitude, are the
Fourier cosine terms cos(wnx/L). From Fourier theory, we know that any spatial pattern
can be represented as an infinite sum of such cosine patterns [Strang, 1986, #719].

These cosine patterns always satisfy the boundary condition at x=0 because sin(0)=0.
Satisfaction of the boundary condition at x =L, i.e. sin(rtn) = 0O, requires that n be an
integer. The pattern preserves its shape because substituting V(t,x) =V, (t) cos(rtnx/L) into

Eq. 4.3 gives
dv (t) mnla
n =— Eqg. 44
c 00 + gvn(t) R L2 Vn(t) q
a
which has the solution
—k t
Vn(t)=Vn(O)e n Eq 45a

where nis the number of half waves in the cosine pattern, V,(0) isitsinitial amplitude,
and the rate of decay is

2.2
K -9, m™nha Eq. 4.5b

" ¢ 2RlL%

When n = 0, voltage is independent of |ocation aong the length of the cable and
decays with the membrane time constant <, = c/g seconds (top graphin Fig. 4.1). If nis

large, i.e. when the spatial frequency of the cosine pattern is high, the second term on the
right hand side of Eq. 4.5b is dominant, so the pattern decays very quickly at aratethat is
proportional to the square of the number of half waves on the cable (see Fig. 4.1,
especially the bottom graph). In a continuous cable, there is no limit to the spatial
frequency, but high spatial frequencies decay extremely quickly.
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Figure 4.1. Top five graphs: These are the first five spatial patterns of V that preserve
their shape aong a uniform cylindrical passive cable. V is plotted as a function of
normalized distance along the cablefor n =0, 1, 2, 3, and 4 haf cycles. The decay of
these patterns with time isillustrated by "snapshots® takenat t =0, 0.1, 0.2, 0.3, and 0.4
times the membrane time constant t,,. Note that larger n implies faster decay. Bottom
graph: Amplitudes of these patterns plotted as functions of normalized time. Starting
with the top trace and working down, n=0, 1, 2, 3, and 4. Dots mark the amplitudes at
the times of the snapshots shown in the upper graphs. These amplitudes assume cable
length is  timesits DC length constant A, so that n = 1 makes the first and second terms
of Eq. 4.5b equal. Shorter cables have bigger k,, hence decay is more rapid.

Adding a current stimulus to the equationsis not difficult, but the detailed derivation
is not necessary to our discussion of discretization error. Two points are worth
mentioning, however. First, any stimulus can be represented as a Fourier sum. Second, a
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cosi ne stimulus with a specific spatial frequency excites a voltage response with the same
gpatial frequency and an amplitude that follows a single exponential decay,
asymptotically approaching a steady state.

Spatial discretization

Now let us compare the continuous cable solution of Eq. 4.5 with the solution of a
cable equation that has been discretized in space by replacing 8%V /8 x? with the second
order correct approximation

o2V _V(x+Ax) =2V (x)+V (x—AX)

o X2 AX?
For concreteness we need to specify precisely which values of x are allowed. The
ordinary approach is to suppose m points with the first point at x = 0 and the last point at
x =L, sothat Ax = L/(m-1). However, NEURON takes a different approach to
discretization, in which there are mintervals of length Ax = L/mand the m points are at
the centers of these intervals. Thus the centersareat x = (i + 0.5)L/mwhere0<i<m.

Eq. 4.6

With either method, mis the number of pointsin space at which a numerical solution
for Vis computed, and m = 1 corresponds to a spatial frequency of O, i.e. uniform
membrane potential along the entire cable. Furthermore, for either approach the largest
number of half waves that can be represented in the discretized systemisn=m-1 so the
highest spatial frequency is (m-1)/2L cycles per unit length. Thisresult is related to the
Nyquist sampling theorem, which states that at |east two samples must be captured per
cyclein order to accurately measure the frequency of asignal [Strang, 1986, #719].

The ordinary method puts the ith point at x = iL/(m-1), so cos(rnnx/L) =
cos(rt(m-1)iL/(m-1)L) = cos(mi), and the value of V alternates sign at adjacent points.
With NEURON's method, the largest nis also m-1 because, at n = m, cos(rthx/L) =
cos(tm(m+0.5)L/mL) = cos(rt(m+0.5)) = 0.

With the ordinary method, the second difference at the ith point is most easily
computed from the real part of

ejrrn(i+1)/(m—1)_ 2ejrrni/(m—l) jmn(i—1)/(m-1)

+e
:(ejrrn/(m—l)_ 24 e—jrrn/(m—l)) ejrrni/(m—l)
= 2 (cos(rrn/(m=1)) — 1) el ™N/(m=1) Eq. 4.7
whichis
2 (cos(mrn/(m—1)) — 1) cos(mni/(m—1)) Eq. 4.8
NEURON's method gives
2 (cos(rrn/m) — 1) cos(rrn(i+0.5)/(m—1)) Eq. 4.9
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Therefore, for either method

WVom_ oy Eq. 4.10
dt nm nm
where
K = 9. (1—cos(rrnA>2</L))a Eq. 411
c R, CAX
The solution of Eq. 4.10 is
—k_t
_ Eqg. 4.12
V)=V _ (0)e ™ d

Notethat k_ approaches k (Eq. 4.5b) when nAX/L is << 1 (because cos(¢) ~ 1 - ¢%/2

when ¢ is small). This makes sense when one realizes that L/n is half of the wavelength
of the spatial pattern, so "nAx/L issmall" means that the discretization interval Axis short
compared to the wavelength of the spatial pattern. Thus the discrete system is "sampling"
the spatial pattern at an interval that is fine enough to allow a smooth representation of
the pattern. Restating thisin more formal terms, the discretized system approximates the
origina continuous system more closely at those spatial frequencies for which the
discretization interval Axis short compared to the spatial wavelength.

number of half waves
|

5 10 15 20

+ ordinary method
O NEURON's method

-1 e analytic solution
log 10tau

-2

250

Figure 4.2. Normalized time constant for decay of spatial patternsvs. number of
half waves along a uniform passive cylindrical cable (cable parametersasin
Fig. 4.1).

Figure 4.2 shows the normalized time constant of decay t = V/kt, asafunction of the

number of half waves for the continuous cable of Fig. 4.1 aswell asfor discretized
models of this cable with 2, 4, 8, and 16 points. We must point out that, for both
discretization methods, doubling the number of points reduces the error in the time
constant for a given spatia frequency by afactor of 4. Also note that, for small numbers
of compartments and at the highest spatial frequencies, the spatial error of NEURON's
discretization method is significantly less than that of the ordinary method.
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Adding temporal discretization

So far we have solved the spatially continuous and spatially discretized cables
analytically with respect to time. Now we complete the discretization with respect to
time. The numerical integration methods that have seen the widest use in empirically-
based neural modeling are forward Euler, backward Euler, and Crank-Nicholson. Later in
this chapter we will examine each of these individually and in more detail. For the
purpose of our present theoretical analysis, it is better to treat them all at once by
introducing a parameter 6 so that

av _ V(t+A4t) — V() Eq. 4.13a
dt At

isevauated at t+6At by using V interpolated from its values at t and t+0At, i.e.

V(t+0At)=(1-0)V (t) + 8V (t+At) Eq. 4.130
Thus Eg. 4.10 becomes
V(t+At) = V(1)

I =—k.,V (t+8At) Eq. 4.14
Drawing on Eq. 4.13b, we can write this as
VLAY = V() —k[(1=0)V (t) + 8V (t+At)) Eq. 4.15

At

When 6 = 0 Eq. 4.15 isthe forward Euler method, 6 = 1 turnsit into the backward Euler
method, and 6 = 0.5 gives us the Crank-Nicholson method.

From Eq. 4.15 weimmediately get the iteration equation
1- (1-0)k At
1+06 knmAt

Eq. 4.16

V o (t+AL) = m

The first term on the right hand side of this equation is the iteration coefficient; if its
magnitude for any spatial frequency is> 1, the iterations will diverge. With the forward
Euler method (6 = 0), the iteration coefficient with the largest magnitude is for the spatial
frequency at which n = m. At this frequency, the cos(tnAx/L) term in Eq. 4.11is-1,
making the decay rate constant
g 2a
=<+ —— 4.
Kom ¢ R e Eq. 4.17
a

so we see that the magnitude of the iteration coefficient is> 1 whenk  At> 2. If we

want the discretized system to represent high spatial frequencies, Ax must be small, and
this makes the second term ink . dominant. Substituting 6 =0and k  ~ 2a/ Rach2
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into Eq. 4.16 and rearranging, we find that, for the forward Euler method to avoid
numerical instability, the combination of At and Ax must obey the constraint

R.C
At _Ta Eq. 4.18
Ax? a

With the backward Euler method (6 = 1), there is no constraint on At because k. is

always positive and so the iteration coefficient is greater than 0 and less than 1. For the
Crank-Nicholson method (6 = 0.5), the iteration coefficient never becomes less than -1,
so this method is formally stable for all At.

Numerical integration methods

Now we continue our comparative analysis of numerical methods for integrating
Eg. 4.1 and 4.2 by examining them in the context of practical examples. We start with the
simplest approach: explicit or forward Euler, which is not used in NEURON for reasons
that will become clear. Then we consider the implicit or backward Euler method, Crank-
Nicholson, CVODE, and DASPK, which are al available in NEURON.

Forward Euler: simple, inaccurate and unstable

Suppose we are modeling a neuron that has nearly uniform transmembrane current
density. For our conceptual model of this cell, we also assume that its resting potential is
0 mV, its membrane conductance g is constant and linear, and that we are not injecting
any current into it. The techniques we use to understand and control error in simulations
of thislinear, passive model are immediately generalizable to active and nonlinear cases.

Conservation of charge in thismodel is described by Eq. 4.1, which ssimplifiesto

% KV =0 Eq. 4.19

where the rate constant k is the inverse of the membrane time constant 7, = g/c. The
anaytic solution of Eq. 4.19 is

Let us compare this to a numeric solution computed with the forward Euler method.

The forward Euler method is based on a simple approximation. From the initial
conditions we know the starting value of the dependent variable (V(0)), and the
differential equation that describes the model (Eg. 4.19) gives ustheinitial dope of the
solution (-kV(0)). The approximation assumes that the slope of the solution is constant for
ashort period of time. Then we can extrapolate from the value of V at time 0 to a new
value a brief interval into the future. Now we see why thisis called the "forward" Euler
method: we are starting from something that is already known and projecting into the
future. The forward Euler method is one of many integrators that calculate future values
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Page 8

entirely on the basis of present, and possibly also past, values; these are called "explicit"
integrators to distinguish them from "implicit" integrators, such as backward Euler and
Crank-Nicholson (see below), which involve future values in the cal cul ation.

In general terms, if a system is described by the differential equation
dv

—=f(V .t Eqg. 421
dt (V. 1)
then the forward Euler method approximates a solution by repeatedly applying
V(t+At)=V({)+ F(V(1),t) At Eq. 4.22
For this example, Eq. 4.22 becomes
V(t+At)=V (1) = kV(t) At Eq. 4.23
(cf. Eq. 4.16 with 6 = 0).
1 0.12 — error
0.8
06 analytic 0.08 I~
solution
b N\
\ 0.04 —
0.2 —forward\\ .\
Euler \
0 | T\ — 0 | | J
0 1 2 3 0 1 2 3

Figure 4.3. Left: anaytic solution to Eq. 4.19 (solid line with circles) and results
of the forward Euler method (squares) for V(0) =1, k=1/s,and At=0.5s
(modified from [Hines, 1997 #208]). Right: absolute error of the forward Euler
method with At = 0.5 (squares), 0.25 (circles), and 0.125 s (+).

The left panel of Fig. 4.3 shows the forward Euler solution obtained for rate
parameter k = 1/s (i.e. 1/second), initial condition V(0) = 1, and time interval At over
which we extrapolate, assuming the transmembrane ionic current is constant within each
interval. The current that is used for agiven interval is found from the value of the
voltage at the beginning of the interval (filled squares). This current determines the slope
of the line segment that |eads to the voltage at the next time step. The dashed line shows
the value of the voltage after the first time step as afunction of At. Corresponding values
for the analytic solution (solid line) are indicated by filled circles.

The issue of accuracy in numerical simulation is complex, and we discussit more
thoroughly later in this chapter (see Error). For the moment we only mention that the
forward Euler method has "first order accuracy," which means that the local error is

proportional to At. Thisis demonstrated in the right panel of Fig. 4.3, where the absolute
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difference between the analytic solution and the results of the forward Euler method is
plotted for At = 0.5, 0.25, and 0.125 s (squares, circles, and +, respectively). Cutting At by
afactor of 2 reduced error by very nearly haf (At was comparable to the model'stime
constant (1 s) so slight deviations from strict proportionality are to be expected).

Numerical instability

We have already broached this topic from atheoretical standpoint in the setting of a
uniform cable model (see Adding temporal discretization above), but it is still useful to
consider stability of numerical integration in the context of "simpler" compartmental
models. What would happen if the forward Euler method were applied to Eq. 4.19 using a
very large time step, e.g. At = 3 s? The smulation would become numerically unstable,
with the first step extrapolating down to V = -2, the second step goingtoV =-2 + 6 = 4,
and each successive step oscillating with geometrically increasing magnitude.

Simulations of the two compartment model on the left of Fig. 4.4 demonstrate an
important aspect of instability. Suppose the initial conditionisV = 0 in one compartment
and V = 2in the other. According to the analytic solution, at first the potentials in the two
compartments converge rapidly toward each other (time constant = 1/41 s), and later they
decay dowly toward O (timeconstant =1 3).

If we use the forward Euler method with At = 0.5 s, we realize that there will be a
great deal of trouble during the time where the voltages are changing rapidly. We might
imagine that we can deal with this by choosing a At that will carefully follow the time
course of the voltage changes, i.e. let At be small when they are changing rapidly, and
larger when they are changing slowly.

The results of this strategy are shown on the right of Fig. 4.4. After 0.2 swith At =
0.001 s, the two voltages have nearly come into equilibrium. Then we changed At to
0.2 s, which is small enough to follow the slow decay closely. Unfortunately, no matter
how small the difference between the voltages, the difference grows geometrically at
each time step. This happens even if the difference consists only of roundoff error,
because the time step used in the forward Euler method must never be more than twice
the smallest time constant in the system.

Linear algebra clarifies the notion of "time Earlier in this chapter (see Spatial
constant” and its relationship to stability. For a and temporal error in discretized
linear system with N compartments, there are ;Zﬁfﬁg;?gfsnf?rgimﬂm the
exactly N spatial patterns of voltage over all cylindrical cable with sealed ends
compartments such that only the amplitude of the took the form of cosine waves. The
pattern changes with time, while the shape of the decay ratesk, and k,, of that
pattern is preserved. The amplitudes of these theoretical discussion equal -1 times

tA, the corresponding eigenval ues.

patterns or "eigenfunctions' aregivenby € ',
where A, is called the eigenvalue of the ith eigenfunction. The real part of each

eigenvalue isthe reciprocal of one of the time constants of the solutions to the differential
equations that describe the system. The ith pattern decays exponentially to O if the real
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part of A, isnegative; if thereal part is positive, the amplitude grows catastrophically. If
A, has an imaginary component, the pattern oscillates with frequency ®, = Im(},). Ina
passive electrical system that contains only resistance and capacitance, all A; are real and
negative.

Our two compartment model has two such patterns. In one, the voltages in the two

compartments are identical; this pattern decays with the time course €' The other

pattern, in which the voltages in the two compartments are equal but have opposite sign,

decays with the much faster time course € .

2
15

0.05

0.5

Figure 4.4. Left: The two compartments of this model are connected by a small
axial resistance, so the membrane potentials are normally in quasi-equilibrium
with each other while at the same time decaying fairly slowly toward O.

Right: The forward Euler method (dashed lines) is numerically unstable
whenever At is greater than twice the smallest time constant. The analytic
solution (solid lines) is the sum of two exponentials with time constants 1 s and
1/41 s. The solution step size was 0.001 sfor the first 0.2 s, after which it
increased to 0.2 s. Modified from [Hines, 1997 #208].

The key ideaisthat aproblem involving N coupled differential equations can always
be transformed into a set of N independent equations, each of which is solved separately.
Numerical solution of these equations must use atime step At that is small enough for the
solution of each equation to be stable. Thiswhy stability criteria that involve At depend
on the smallest time constant.

If the ratio between the dowest and fastest time constantsis large, the system is said
to be stiff. Stiffnessis a serious problem because a simulation may haveto run for avery
long timein order to show changes governed by the slow time constant, yet a small At
has to be used to follow changes due to the fast time constant.

Signal sources may change the stability properties of a system by altering the time
constants that describeit. A current source (perfect current clamp) does not affect
stability because it does not affect the time constants. Any other signal source imposes a
load on the compartment to which it is attached, changing the time constants and the
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corresponding eigenfunctions. The more closely it approximates a voltage source (perfect
voltage clamp), the greater this effect will be.

Backward Euler: inaccurate but stable

The numerical stability problems of the forward Euler method can be avoided if the
equations are evaluated at timet + At, i.e. the approximate solution is found from

V(t+ At)=V(t)+ f(V(t+ At), t + At) At Eq. 4.24
whichis called the implicit or backward Euler method. This equation can be derived from
Taylor's series truncated at the At term but with t + At in place of t.

For our example with one compartment, the backward Euler method gives
V(t)

Eq. 4.25
1+ kAt

V(t+ At)=

(cf. Eq. 4.16 with © = 1). Figure 4.5 shows several iterations of Eq. 4.25. Each step moves
to anew point (t;,4, V(t;,4)) such that the slope there points back to the previous point
(4, V(t,)). If Atisvery large, the solution does not oscillate with geometrically increasing

amplitude like the forward Euler method, but instead converges geometrically toward the
steady state.

0.8

\ \ backward
Q Euler
0.6 — N

0.4

7

analytic
solution

0.2

Figure 4.5. Comparison of analytic solution to Eq. 4.19 (solid line with circles)
with results from the backward Euler method (Eq. 4.25, squares) for V(0) =1, k =
1/s, and At =1 s. At the end of each step, the slope at the new value (heavy lines)
points back to the beginning of the step. The dashed line shows the voltage after
the first time step as afunction of At. Modified from [Hines, 1997 #208].

The robust stability of the backward Euler method are readily demonstrated by
applying it to the two compartment model (Fig. 4.6). Notice that alarge At givesa
reasonable qualitative understanding of model behavior, even though the solution does

not follow the early rapid voltage changes. Furthermore the step size can be changed
according to how quickly the state variables are changing, yet the solution remains stable.
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The backward Euler method requires solution of a set of nonlinear simultaneous
eguations at each step. To compensate for this extra work, the step size needs to be as
large as possible while preserving good quantitative accuracy. Like the forward Euler
method, backward Euler has first order accuracy (see Error below), but it is more
practical for initial exploratory simulations since reasonable values of At produce fast
simulations that are almost always qualitatively correct, and, as we have seen here, tightly
coupled compartments do not generate large error oscillations but instead come quickly
into equilibrium because of its excellent stability.

2 2

[N

2]

n

At = 0.02
0.2

0 | | | | J 0 | | | | J
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 . 0.6 0.8 1
t

Figure 4.6. Simulation of the two compartment model of Fig. 4.4 using the
backward Euler method. Left: At =0.2 s, much larger than the fast time
congtant. Right: At was initially 0.02 s, small enough to follow the first time
congtant closely. After 0.1 s, At increased to 0.2 s but the solution remained
stable. Thin lines are analytic solution, thick lines are backward Euler solution.
Modified from [Hines, 1997 #208].

Crank-Nicholson: stable and more accurate

The centra difference or Crank-Nicholson method [Crank, 1947 #672] is an implicit
integrator that is equivalent to advancing by one half step with backward Euler and then
advancing by another half step with forward Euler (Fig. 4.7). The value at the end of each
step is along a line determined by the estimated dope at the midpoint of the step. The
local error of this method is proportional to the square of the step size, so for agiven At
we can expect alarge accuracy increase. In fact, simulation of our one compartment
model with At =1 s (Fig. 4.7) is much more accurate than the forward Euler ssimulation

with At= 0.5 s (Fig. 4.3).

A most convenient feature of the central difference method is that the amount of
computationa work for the extra accuracy beyond the backward Euler method istriviad,

since after computing V(t + At/2) with backward Euler, we just have
At
V(t+ A =2V(t+ =) - V(1) Eq. 4.26
so the extra accuracy does not cost extra computations of the model functions.
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Figure 4.7. Simulations of the one compartment model with the Crank-Nicholson
method, which uses the slope at the midpoint of the step (short thick lines) to
determine the new value (squares). These are almost indistinguishable from the
analytic solution (solid line with circles). The dashed line shows the voltage after the
first time step as a function of At. Modified from [Hines, 1997 #208].

One might well ask what effect the forward Euler half step has on numerical stability.
The left panel in Fig. 4.8 shows the solution for the two compartment model of Fig. 4.4

computed using the central difference method with At much larger than the fast time
constant. The sequence of a backward Euler half step followed by aforward Euler half

step approximates an exponential decay by

V(t+At) =V (1)

1+ 0.5kAt

(cf. Eq. 4.16 with 8 = 0.5). As At becomes very
large, the step multiplier approaches -1 from
above, so the solution oscillates with decreasing
amplitude. Technically speaking the Crank-
Nicholson method is stable because the error
oscillations decay with time.

This example demonstrates that artifactual
large amplitude oscillations may result if the time
step istoo large. Such oscillations can affect
simulations of models that involve voltage clamps

To prevent oscillations in the numeric
solution for amodel of a cylindrical
cable, the normalized incrementsin
time (AT = At/ ) and space (AX =
AX/A, where Ax is the distance between
adjacent nodes and A is the DC length
constant) must satisfy the relationship
AT/AX < 1/2 (see chapter 8 in Crank [ ,
1979 #377]).

or in which very small resistances couple adjacent segments. However, in some cases
oscillations can be minimized by using small At while the solution contains alarge
amplitude component that is changing rapidly, and increasing At after the slower

components dominate the solution (Fig. 4.8 right).
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0.02
0.2

At =

15

Figure 4.8. Simulations of the two compartment model using the Crank-Nicholson
method. Left: Significant error oscillations can appear when the simulation has a
large amplitude component with atime constant much smaller than At. However, the
simulation is numerically stable because the oscillation amplitude decreases at each
step. Right: At wasinitially 0.02 s, i.e. smaller than the fastest time constant
(~0.0244 ), so the simulation followed the rapid collapse of the fast component.
After 0.1 s, Atincreased to 0.2 s; this provoked oscillations, but their amplitude is
only asmall fraction of the total response and decays rapidly, so the trgectories
appear smooth. Thin lines are analytic solution, thick lines are Crank-Nicholson
solution. Modified from [Hines, 1997 #208].

Efficient handling of nonlinearity

Nonlinear equations generally need to be solved iteratively to maintain second order
accuracy. However, voltage-dependent membrane properties, which are typically
formulated in analogy to Hodgkin-Huxley (HH) type channels, allow the cable equation
to be cast in alinear form that can be solved without iterations yet is still second order
correct. A direct solution of the voltage equations at each time stept — t + At using the
linearized membrane current 1(V,t) = g (V - E) is sufficient as long as the Sope
conductance g and the effective reversal potential E are known to second order at time
t + 0.5At. HH type channels are easy to solve at t + 0.5At since the conductanceis a
function of state variablesthat can be computed using a separate time step offset by 0.5At
with respect to the voltage equation time step. That is, to integrate a state from t - 0.5At to
t + 0.5At we only require a second order correct value for the voltage-dependent rates at
the midpoint timet.

Figures 4.9 and 10 illustrate the differences between the unstaggered and staggered
time step approaches. The left panel of Fig. 4.9 shows membrane potential v and the
gating variable m from an action potential simulation computed with the ordinary, i.e.
unstaggered, implementation of the Crank-Nicholson method. The superior accuracy
achieved with staggered time stepsis apparent in Fig. 4.10. The middle panels of these
two figures zoom in on the solutions between 2.0 and 2.2 msto reveal the sequence of
calculations. The right panels demonstrate that using staggered time steps turns a system
of differential equationswith nonlinear coupling into a linear system of decoupled
eguations, so that second order accuracy is achieved without having to resort to iterations.
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Figure 4.9. Simulated response of a 100 um? patch of membrane with HH
channelsto a 0.025 nA current lasting 0.5 ms, computed with the ordinary
(unstaggered) Crank-Nicholson method using time step At = 0.1 ms. Left: The
spike was noticeably delayed compared to the standard for accuracy (dashed
traces, computed with Crank-Nicholson using staggered time steps and At =
0.001 ms). Similar errors were observed in h and n (traces omitted for clarity).
Middle: A magnified view of these solutions from 2.0 to 2.2 ms. Dots mark the
individual values computed by the unstaggered Crank-Nicholson method. The
unstaggered method advances the solution in two stages. First the new membrane
potential v(t + At) is computed from the values of v, m, h, and n at t. Then the new
values of m, h, and n are computed ana ytically from their values at t and the
average of the old and new membrane potentials (v(t) + v(t+At)) / 2. Right: The
absolute error of vand mis proportional to the integration time step At, i.e. the
solution has only first order accuracy.

For HH equations in a single compartment, using staggered time steps converts four
simultaneous nonlinear equations at each step to four independent linear equations that
have the same order of accuracy. Since the voltage-dependent rates use the voltage at the
midpoint of the integration step, integration of channel states can be done analytically
with just a single addition and multiplication and two table lookup operations. While this
efficient scheme achieves second order accuracy, the tradeoff is that the tables depend on
the value of At and must be recomputed whenever At changes.
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Figure 4.10. Simulated action potential from the same model asin Fig. 4.9, but
computed with Crank-Nicholson using staggered time steps. Left: The solution
with At = 0.1 ms was amost indistinguishable from the standard for accuracy.
Similar improvements were observed in h and n. Right: An expanded view of
these solutions, with dots marking the values computed with At = 0.1 ms. First
the valuesof m, h, and nat t + 0.5At are computed analytically from their values
at t - 0.5At and the membrane potential v at t. Then the values of m, h, and n at
t + 0.5At are used to update v from t to t + At. Right: Plots of the absolute error
of v and m show that the error is proportional to the square of the integration
time step At, i.e. using staggered time steps increases solution accuracy to
second ordey.

Adaptive integration: fast or accurate, occasionally both

Thereisawide variety of problems for which an adaptive time step method might
have much higher performance than a fixed step method, e.g. At could grow very large
when all states are varying slowly, as during interspike intervals. On the other hand, in
problems involving propagating action potentials or networks of cells, it may happen that
some state somewhere in the system is always changing quickly. In such cases At is
always small in order to follow whichever stateis varying fastest. Thusit is often not
clear in advance that the increased overhead of an adaptive time step method will be
repaid by an occasional series of long time steps.

Implementational considerations

The variable order variable time step integrator CV ODE was written by Cohen and
Hindmarsh [ Cohen, 1994 #512] to solve ordinary differential equation (ODE) initid
value problems of the form
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y'=f(y,t) Eq. 4.28a-c

y(0) =Yy,

y € RN

where y” isthefirst derivative of y with respect to t, and bold faceis used to signify
vectors (lower case) and matrices (upper case). Since there are many different adaptive
integrators, it is worthwhile to review the reasons why CVODE is particularly relevant to
NEURON.

1.

2.

CVODE employs Backward Differentiation Formula (BDF) methods suitable for stiff
problems, which are common in neuronal modeling.

CVODE was easily interfaced to the existing NEURON structure. It would be neither
convenient nor efficient to gather all of the equations for every compartment and
every membrane mechanism into one huge bag and throw it at a solver. The interface
between ODE solver and the definition and setup of equations that are already
distributed among membrane mechanisms requires a map between the interna
NEURON states and the ODE state vector y, as well as a map between the internal
computationsfor f and the ODE state derivative vector y’. Programming an efficient

map between the distributed internal Jacobian (J = of/dy) evaluation and a sparse
matrix representation is possible but complex. The CVODE solver obviates this
problem since it alows programmers to define their own problem-dependent linear
solvers. This means NEURON can exploit the existing block structure of the Jacobian
matrix and reuse the local block solversthat are already distributed within the
membrane mechanism objects.

CVODE (and DA SPK --see below) allows a sophisticated balance between accuracy
of solution of M y = b and solution time by supporting the preconditioned iterative
Krylov method, which requires one to only supply asolver for Py = b, where P isin

some sense an approximation to M such that P1 M is approximately the identity
matrix and is chosen so that computation of the inverse of P is much faster than
computation of the inverse of M. Small off-diagonal elementsin the Jacobian are
usually ignored for Gaussian elimination efficiency, but can occasionally have an
adverse effect on stability and thereby limit the effective time step. It is not yet clear
which method is more robust when such off-diagonal terms are ignored in the context
of nerve simulations: the Krylov method, or direct use of the approximate Jacobian in
CVODE.

Finally, CVODE was implemented using encapsul ated data structures, so it was
conceptually smpleto place it in an object-oriented class wrapper for usein
implementing alocal variable time step method. An important pre-existing feature of
CVODE that helped support local variable time steps was the ability to efficiently
retreat to any time within the previous integration interval.
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Unfortunately, models that contain linear circuits and extracellular fields cannot be
expressed, or at least are not easy to express, in the form shown in Eg. 4.28. Such models
take the form

Cy'= f(y,t) Eq. 4.29a-c
y(0) =1y,

y e RN

where some rows in the C matrix may be O (introduction of algebraic equations), and the
nonzero rows may have off-diagonal elements (capacitors between nodes). In principle
one could use the singular value decomposition of C to recast the system as

z'=g(z,x,1) Eq. 4.30aand b

0=h(z, x,t)

and satisfy the latter constraint directly whenever f is calculated. Thisis what NEURON
does with the zero area nodes at the ends of sections, where membrane potential is
governed by an algebraic equation rather than an ODE, without too much trouble and
with no loss of efficiency. However, in practice f(y, t) is given by an algorithm which one
cannot multiply by a matrix. Also the sparse structure of f is generaly lost in the
transformation, making g much more dense and hence less efficient to solve.

For these reasons, when extracellular or linear circuit mechanisms are present and a
variable step integration method is requested, the fast CVODE method is replaced by the
dower but more robust DASPK method of Brown, Hindmarsh, and Petzold [Brown,
1994 #675], which isavailablefromht t p: / / netli b. org.

The user's perspective

A key feature of using CVODE isthat one does not set the integration step size, but
instead specifies tolerance criteriafor local relative and absolute errors. The solver then
adjusts At and the local error order of the implicit difference approximation (from first

order up to O(Dt%)) so that the local error for each state is less than the sum of itsrelative
and absol ute error tolerances.

Figure 4.11 illustrates the performance of CVODE in simulations of the two
compartment model using two different values for the local absolute error tolerance.
CVODE is capable of ahigh degree of accuracy, but caution must be exercised in setting
the error tolerance, and it is a good idea to compare results against fixed time step
methods during (and even after) model development.

For amore biologically relevant example of how CVODE can reduce the time
necessary to produce accurate simulations, let us compare simulations of a neocortical
layer V pyramidal cell model [Mainen, 1996 #192] generated with the Crank-Nicholson
and CVODE integrators. The model was subjected to a 900 ms depolarizing current
applied to the soma, which evoked two bursts of spikes (Fig. 4.12 top). A series of
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simulations was run with the Crank-Nicholson method using progressively smaller At
until the time at which the last action potential crossed above 0 mV converged to a
constant value; this occurred for At < 0.01 ms, and a simulation performed with At =
0.01 ms took 340 seconds to complete on a2.2 GHz Pentium 4 PC with 512 K cache.
Solutions computed with CV ODE converged to the same zero crossing time of the last

spike, i.e. same global error, when absolute tolerance was 2.5 - 1073 for all states except
[Ca?'],, which had an absolute tolerance of 2.5 - 10°7; using these tolerances, the solution

runtime was 19 seconds. Thus CV ODE achieved the same accuracy as the most accurate
fixed time step solution, but with a runtime that was almost 20 times faster.

2 2

15 CVode.atol(0.005) 15 CVode.atol(0.1)

Figure 4.11. Simulations of the two compartment model using CV ODE. Left:
Filled circles on one of the traces mark the times at which CVODE cal cul ated

solutions. When the solution is changing rapidly, At isvery smal, but it grows
quite large when the solution changes slowly. If the local absolute error
tolerance is sufficiently strict (0.005 for this example), thereis no visible
difference between the computed and analytic solutions. Right: Thin lines are
the analytic solution, thick lines the CVV ODE solution. Increasing the error
tolerance allows CVODE to take larger steps, but spurious transients may occur
if the criterionistoo lax.

The bottom panel of Fig. 4.12 demonstrates the control that CV ODE exerted over At
throughout the entire simulation. When states were changing most rapidly, At fell to
values much smaller than 0.01 ms, but during the long interburst interval it increased to a
maximum of ~4.4 ms. The smallest steps were restricted to the onset and offset of the
injected current (t = 5 and 905 ms) and brief intervals starting just before the threshold
and ending shortly after the depolarized peak of each spike, as can be seenin an
expanded view of the transition from the interburst interval to the beginning of the second
burst (Fig. 4.13). The remarkable speedup by CVODE is due to the fact that At was much
larger than 0.01 msfor most of the simulation.
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Figure 4.12. Top: CVODE was used to compute somatic membrane potential in
amodel of aneocortical layer V pyramidal cell subjected to along depolarizing
current pulse; Crank-Nicholson method with At = 0.01 ms produced results that
are indistinguishable at the scale of this figure. Bottom: For most of the
simulation, CVODE used time steps much larger than 0.01 ms. The order of
integration (not shown) ranged from 2 to 5, most steps being second or third
order. Figure from [Hines, 2001 #568].

The only difficulty that CVODE introduced is an excessive literaness required for
interpretation of discrete functions. To see what this means, consider this strategy for
emulating a"ramp clamp": filling the elements of aVVect or with alinearly increasing
sequence of values and then using the Vect or classspl ay() method to drive the
command potential of avoltage clamp. Figure 4.14 shows this technique applied to a
single compartment model with HH currents that was clamped by an SEQ anp (series
resistancer s = 10% Q). The elements of aVect or were assigned the series of values
-65+0.125i for 0 < i < 401, i.e. alinear ramp that swept from -65 to -15 mV over the

course of 10 ms, assuming At = 0.025 ms. A second Vect or filled with the
corresponding times (0.025i) was used to insure that each command potential in the
sequence was applied at the proper time.

Simulations of this model using the implicit Euler method with a0.025 ms time step
display smoothly varying membrane potential and clamp current, even when examined at
the scale of individual time steps (Fig. 4.14 right). Thisis because the stream of values
delivered by the Vect or isequivalent to a second order piecewise linear function, i.e.
command potential itself varies smoothly with time.
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Figure 4.13. Top: An expanded view of the first spike in the second burst from Fig. 4.12. The
times of computed solutions are marked by + symbols. Bottom: At fell below 0.01 ms from just
before the threshold of each spike until shortly after its peak. Figure from [Hines, 2001 #568].
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Figure 4.14. Ramp clamp using the Vect or class's pl ay() method works well with
fixed At integration because command potentia is effectively a continuous function
of time. Top traces are membrane potentia, bottom traces are clamp current.
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Figure 4.15. Using Vect or . pl ay() with CVODE produces large capacitive transients in clamp
current (bottom traces) because the value sequence in the Vect or that drives command potential
istreated as afirst order step function. The local absolute error tolerance parameter at ol is0.001

inthissimulation and in Fig. 4.16.
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Figure 4.16. Vect or . pl ay() with interpolation workswell with CVODE because the Vect or
that drives command potential istreated as a piecewise linear function. See text for details.

However, under CVODE the stream must be considered afirst order equivalent step
function. Driving the voltage clamp with this step function makes membrane potential
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jump from one level to another and produces substantial capacitance current transients at
each step discontinuity (Fig. 4.15).

This problem has been addressed in NEURON 5.4 by adding a linear interpolation
option to the Vect or classspl ay() method. This option, which works both with fixed
At and CVODE, treats our two vectors asif they defined a piecewise linear function. This
means we can represent the ramp command used in :
this example by a pair of vectors whose elements gttgfdgtégeé&')iigi r‘]’é"a'n%ewi”
are-65, -15 and 0, 10, respectively. Simulation allow "continuous" play of asmooth
_results us_ng Vect or. pl ay() with Im_ear _ function defined by a Vect or .
interpolation under CVODE are shown in Fig. 4.16.

Error control

An important issue in adaptive integration is selection of appropriate values for local
error control. Variable time steps elevate the issue of "physiological accuracy"” (see Error
below) to alevel of high concern. Experience so far suggests that control of local
absolute error is much more important than control of local relative error. One can
specify an error criterion based on local relative error, but in neural modeling thereis
hardly ever areason to require increasing absolute accuracy around the O value of most
states, especially voltage.

The scale of statesis often a crucial consideration, in that the maximum absolute error
must be consistent with the desired resolution of each state. An extreme exampleisa
calcium pump model with pump density measured in [moles/cm?]. Here an appropriate
vaueis 10 1% [mole/cm?], and an allowable error of 0.01 is clearly nonsense. For this
reason, it is essential that each state that is badly scaled, e.g. [Caz’“]i measured in [mMM],
be given its own explicit maximum absolute error. NEURON accommodates this need by

allowing the user to set specific error criteriafor individual states that take precedence
over any global criterion.

NEURON's default error setting for CVODE is 10 puV for membrane potential and
0.1 nM for internal free calcium concentration, so that a simulation of the classica
Hodgkin-Huxley action potential at 6.3° C has accuracy comparable to a second order
correct simulation with fixed At = 25 ps.

Local variable time step method

NEURON provides a network connection (Net Con) class for network ssmulationsin
which cell to cell communication can be abstractly represented by the (possibly delayed)
delivery of logical events, as opposed to graded interaction via gap junctions or electrical
synapses (see Chapter 10). The notion of a cell driven by discrete input events naturally
suggests an expansion of the simulation domain wherein variable time step methods
provide substantial performance gains.

It may happen that only afew cellsin anetwork are active at any one time, but with a
global time step these active cells govern the time step for all (Fig. 4.17). NEURON's
local variable time step method merely uses a separate CVODE solver instance for each
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cell, thus integrating that cell's states with time steps governed only by those state
dynamics and the discrete input events.
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Figure 4.17. Integration with local variable time steps can significantly improve
computationa efficiency. The top figure shows a simple feedforward network
implemented with aNet St i martificial spiking cell (white) and a pair of single
compartment biophysical model neurons with Hodgkin-Huxley membrane (black and
red). All synapses are excitatory, with latencies between presynaptic spike and
postsynaptic conductance change shown in ms. The white cell produces a single spike at
t =0 ms. Thistriggers a spikein the black cell, but the red cell requires inputs from both
synapses to make it fire. The short vertical lines in the middle and bottom figures mark
the times at which solutions are computed using the global (middie) and loca (bottom)
variable time step methods. Note that, if rapid changes occur in any cell (e.g. onset of an
epsp, or the upstroke and peak of a spike), the global method forces extra computations
in al cels, even those in which nothing much is happening. This does not occur with the
local method. The total computational cost of a simulation depends chiefly on the total
number of times that new STATEs are calculated. The global method evaluated f(y) (see
Eq. 4.29a) 177 times, calculating 8 STATES each time (4 STATES per cell), for atotal of
1416; the local method required 253 eva uations of f(y), but these were in individual
cells so only 4 STATEs were calculated each time, and the local method's total was 1012.
Therefore the global method was ~1.4 times more costly than the local method.
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All cellsare always on alist ordered by their current time and all outstanding events
areon alist ordered by their delivery time. These lists are implemented as splay treesto
minimize insertion and removal times (proportional to the log of the size of the list), and
the least time element can be accessed in constant time. The last fact that prepares our
arenafor action isthat a CVODE instance can, without integrating equations, retreat from
its current time to any time back to the beginning of its previous time step.

The network simulation advances in time by checking the cell and event liststo find
the least time cell or event, whichever isfirst. If acell isfirst, that cell isintegrated
according to its current time step, and moved to alocation on the cell list appropriate to
itsnew time. If an event isfirst, it is delivered to the proper cell. That cell retreats to the
delivery time and becomes the least time cell, and the event is removed from the list and
discarded.

It is easy to devise networks in which the speed improvement of the local time step
approach is arbitrarily great. e.g. chains of neurons. However, this method yields no
benefit in periods of synchronous activity. If events are extremely numerous, neither the
local nor the global variable time step method improves simulation speed. When multiple
events per reasonable At arrive regularly, fixed time step integration nicely aggregates all
eventsin a step without regard to their temporal microstructure, whereas variable step
methods' scrupulous handling of each event is out of all proportion to the conceptual
approximation of the network.

The choice of methods is thus dependent on the problem and the user's intent. To
encourage the exploration that is necessary to determine which method may be best
suited for a particular application, NEURON allows any of itsfixed or variable time step
methods to be used with no changes to the user-level specification of the problem.

The local variable time step method considerably increases the complexity of the
underlying communication between interpreter and solver with respect to recording
results. With aglobal time step, whether fixed or variable, the f advance() function (see
Chapter 7) has a clear and precise meaning, i.e. the exit time differs from the entry time
by the interval At. The problem isthat, with the local variable time step, each cell hasits
own time stream, so each recorded variable must be mapped to the appropriate time
stream. This problem is solved by the CVode classsrecor d( ) , which records both a
variable and its associated times into apair of Vect or s.

Discrete event simulations

One limiting case of the variable step simulation style isthe "event-driven" or
discrete event simulation, in which cells jump from event to event. Here asingle
compartment is used merely as a stage in which the voltage never changes (the natural
time step isinfinite), and the "cells" are represented by point processes that receive
events from, and produce eventsto, the Net Con instances. A large variety of useful
artificial spiking cells (e.g. integrate and fire, firing frequency dependent on input), as
well as mechanisms of use-dependent synaptic plasticity, are susceptible to discrete event
simulation because their equations can be solved analytically, so that "cell" state needs
only to be computed at the event. This topic is discussed more thoroughly in Chapter 10.
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Error

The total or global error in a simulation is a combination of errors from two sources.
The local error emerges from the extrapolation process within atime step. For the
backward Euler method thisis easily analyzed with Taylor's series truncated at the term
proportional to At.

At?

V(LHAD) = V(1) + VI(tHAL) At = V7 (1%) —- = At

where t <t*<t+At.

The forward and backward Euler methods both ignore second and higher order terms,
so the error at each step is proportional to At2. Integrating over atime interval T requires
T/At steps, so the error that accumulates in thisinterval is on the order of At2T/At, i.e. the
local error for the Euler methods is proportional to At. Applying asimilar analysisto the

Crank-Nicholson method finds that itslocal error is proportional to At2. Therefore we can
always decrease the local error of these fixed step methods as much as we like by
reducing At.

The second contribution to total error comes from the cumulative effect of past errors,
which have moved the computed solution away from the trgjectory of the analytic
solution. Thus, if our computer solution has a nonzero total error at timet,, then even if

we could solve the equations exactly from that time forward using the state values at t; as

our initial condition, the future solution will be inaccurate because we are on a different
trajectory. This means that the second component of total error depends on the dynamics
of the system itself.

Thetotal error of asimulation is therefore not easy to analyze. For the one and two
compartment models we have examined in this chapter, all trgjectories end up at the same
steady state, so total error tends to decrease with time, but not all systems behave like
this. Particularly treacherous are systems with chaotic behavior, in which, once the
computed solution diverges even dightly from the proper trgectory, it subsequently
moves rapidly away from the original and the time evolution becomes totally different.

Chaos is not the only circumstance that may produce high sensitivity to numerical
error. Consider the Hodgkin-Huxley membrane action potentials elicited by two current
stimuli, one near threshold and the other twice as strong. The left panel of Fig. 4.18
shows action potentials computed with the backward Euler method using time steps of 25
and 5 ps, the Crank-Nicholson method using At = 25 ps, and CVODE using local
absolute error tolerance = 0.01. For the strong stimulus, all three integration methods
produced nearly identical results. However, the backward Euler method displayed a
noticeable error when the 25 s time step was used to compute the response to the weak
stimulus (dashed line). The weak stimulus allowed membrane potential to hover near
spike threshold, so that a small error due to the time step could grow into alarge error in
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the time of occurrence of the action potential. The error was much smaller in the
simulation computed with At =5 ps.

However, behavior near threshold is highly sensitive to ailmost any factor, beit a
parameter of the numerical integration method (e.g. At or AX) or a parameter of the model
itself. Thisis seen in the right panel of Fig. 4.18, where all solutions were computed with
CVODE (loca absolute error tolerance = 0.01) and the sodium channel density 9y, was

varied by only 1%. This small variation of 9y, did almost nothing to the response to the

strong stimulus, but its effect on the latency of the spike elicited by the weak stimulus
was comparable to the integration error of the backward Euler method with At = 25 ps.
This demonstrates that it isimportant to know the sensitivity of results to every model
parameter, and At isjust one more parameter that is added as a condition of being able to

run smulations on a digital computer.
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Figure 4.18. Simulations of Hodgkin-Huxley membrane action potentials
elicited by 0.3 ms current stimuli with amplitude of 0.0225 or 0.045 mA/cm?2.

Left: Sengitivity to integration time step. For each stimulus amplitude,
responses were computed using CVODE (loca absolute error tolerance = 0.01),

Crank-Nicholson (At = 25 ps), and backward Euler (At = 25 and 5 ps). The
backward Euler solution with 25 s time step showed a noticeable error. Right:

Sensitivity to variation in 9y . All traces were computed with CVODE (local
absol ute error tolerance = 0.01). Peak sodium conductance was 0.12 S/cm?
(solid lines) + 1% (dotted and dashed lines). The three traces elicited with the
large stimulus are indistinguishable in this graph.
Using extremely small At might seem to be the best way to reduce error. However,
computers represent real numbers as floating point numbers with a fixed number of
digits, so if you keep adding 102° to 1 you may always get a value of 1, even after

repeating the process 102° times. Operations that involve the difference of similar
numbers, as when differences are substituted for derivatives, are especially prone to such
roundoff error. Consequently thereis alimit to the accuracy improvement that can be

achieved by decreasing At.
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Generaly speaking, it would be desirable to use what might be called "physiological”
values of At, i.e. time steps that give a good representation of the state trgjectories without
having a numerical accuracy that is orders of magnitude better than the accuracy of our
physiologica measurements (which is generally not as good as 5%, and seldom better).
The question is not so much how large the error of asimulation isrelative to the analytic
solution, but whether the simulation error leads us to trgectories that are significantly
different from the set of trajectories defined by the error in our parameters. Insofar as
removal of any source of error has value, there is atemptation to treat the model
equations as sacred runes which must be solved to an arbitrarily high precision.
Nevertheless, determining the meaning of a simulation run requires judgment. A
misplaced emphasis on numerical accuracy should not obscure the fact that qualitative
results may be quite sufficient. We agree with John Moore, our mentor and colleague,
who isfond of quoting R. Hamming: "The purpose of computing is insight, not numbers’
[Hamming, 1987 #720].

Summary of NEURON's integration methods

NEURON offers the user a choice of several different integration methods. For any
particular problem, the best way to determine which is the method of choiceisto run
comparison simulations with several values of At or local error tolerance to see which
executes most quickly while achieving the desired accuracy. In performing such trials,
one must remember that the stability properties of asimulation depend on the entire
system that is being modeled. Because of interactions between "biological" components
and any "nonbiological" elements, such as stimulators or voltage clamps, the time
constants of the entire system may be different from those of the biological components
alone. A current source (perfect current clamp) does not affect stability because it does
not change the time constants. Any other signal source imposes aload on the
compartment to which it is attached, changing time constants and potentially introducing
troublesome stiffness. The more closely a signal source approximates a voltage source
(perfect voltage clamp), the greater this effect will be.

Fixed time step integrators

Implicit integrators are used as NEURON's fixed time step methods. Thisisin part
because of their superior stability compared to explicit integrators [Dahlquist, 1974
#673].

Default: backward Euler

NEURON's default integration method is backward Euler, afixed step first order
implicit scheme that produces good qualitative results with large time steps when
extremely stiff ODEs and even algebraic equations are present in the system, e.g. models
that involve voltage clamps. Because of its robust stability, it can be used with extremely
large time steps to find the steady state solution for alinear ("passive") system.
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Crank-Nicholson

When the global parameter secondor der isset to 2, NEURON uses avariant of the
Crank-Nicholson method. This has local error proportional to At? and is therefore
particularly accurate for small time steps.

In implicit integration methods, all current balance equations must be solved
simultaneously. The backward Euler agorithm does not resort to iteration to deal with
nonlinearities, since its numerical error is proportional to At anyway. The special feature
of the Crank-Nicholson variant isits use of a staggered time step algorithm to avoid
iteration of nonlinear equations (see Efficiency in the section Crank-Nicholson: stable
and more accurate above). This converts the current balance part of the problem to one
that requires only the solution of simultaneous linear equations, making the
computational cost per time step almost identical to the backward Euler method.

The second order fixed time step method works with HH-type Ohm's law channels,
but its accuracy isreally only first order when the instantaneous current-voltage relation
of the channelsis nonlinear or when channel gating model s are expressed with kinetic
schemes (the SOLVE scherme METHOD spar se statement in NMODL solveskinetic
schemes using the fully implicit method). Accuracy is also formally first order for models
involving changing ion concentration, though that is a negligible issue when dt is small
enough to accurately follow voltage changes.

Although the Crank-Nicholson method is formally stable, models with tiff equations
require small At to avoid numerical oscillations (Fig. 4.8). It isunusable in the presence
of voltage clamps, extracellular mechanisms, or linear circuits, since the solution of
algebraic equations gives results with large numerical oscillations.

Adaptive integrators

NEURON's adaptive integrators free the user from having to choose an integration
step size. Instead, they automatically adjust integration order and At so that the solution
satisfies a user-specified error criterion. While this may be the most salient feature of
these methods, there are several reasons why they may be preferable to fixed step
integrators:

e Adaptive integrators usually require less time for a given degree of accuracy.

e They avoid the problem of "empty temporal resolution” (many solution points when
nothing is happening) that occurs with fixed time step integration.

e Currents, voltages, and conductances are all known to the same accuracy at the same
time, unlike the staggered Crank-Nicholson method.

e Eventsoccur at their actual timesinstead of being constrained to multiples of At. For
example, with fixed time steps, current step discontinuities are only first order correct
unless they are defined to lie on time step boundaries. Precise timing may be
particularly important in network simulations.
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Switching between fixed and variable time step methods is as easy as a button press
(NEURON Main Menu / Tools / VariableStepControl / Use variable dt) and does not
affect any GUI tools. Plots of expressions vs. time still look the same, and Vect or
recording of temporal streams still works. There is no need to change model descriptions,
or at least to change the statements that define the equations. Ease of switching is crucial
since relative performance between high overhead variable step and low overhead fixed
step methods ranges widely. For example, smulation of the demonstration models by
Mainen and Sejnowski [ , 1996 #192] slowed down by afactor of 2 or sped up by afactor
of 7, depending on number of spikesin asimulation run and whether there were long
intervals in which no state changed rapidly.

CVODE

CVODE handles any kind of model description involving DERI VATI VE or KI NETI C
representations of gating states, ion accumulation/diffusion, or nonlinear current-voltage
relations. It does not work with models that involve extracellular mechanisms, linear
circuits, perfect voltage clamps, or capacitors between nodes. Each cell in a network
simulation may have its own local time step, but time steps must be global if there are
gap junctions between different cells. Cell mechanisms that have analytical solutions (e.g.
integrate and fire artificial spiking cells) can be implemented in away that allows discrete
event simulations.

DASPK

The DASPK method is suitable for models that involve extracellular mechanisms,
linear circuits, perfect voltage clamps, or capacitors between nodes. However, there is no
local variable step variant of DASPK.
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