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Chapter 11

Modeling networks

NEURON was initialy developed to handle neuronal models in which complex
membrane properties and extended geometry play important roles [Hines, 1989 #61; ,
1993 #104; , 1995 #22]. However, as the research interests of experimental and
theoretical neuroscientists evolved, NEURON has been revised accordingly. Since the
early 1990s it has been used to model networks of biological neurons (e.g. [Destexhe,
1993 #166][L ytton, 1997 #260][Sohal, 2000 #487]). Thiswork stimulated the
development of powerful strategies that increase the convenience and efficiency of
creating, managing, and exercising such models [Destexhe, 1994 #267][Lytton, 1996
#206][Hines, 2000 #323]. Increasing research activity on networks of spiking neurons
(e.g. [Maas, 1999 #610][Riecke, 1997 #556]) prompted further enhancements to
NEURON, such asinclusion of an event delivery system and development of the Net Con
(network connection) class (see Chapter 10).

Consequently, since the latter 1990s, NEURON has been capable of efficient
simulations of networks that may include biophysical model neurons and/or artificial
spiking neurons. Biophysical model neurons are built around
representations of the biophysical mechanisms that are involved What could be more
in neuronal function, so they have sections, density mechanisms, ,‘.’%mr%rggécgg?m,, ,
and synapses (see Chapter 5). A synapse onto a biophysical '
model cell isapoint process with a NET_RECEI VE block that
affects membrane current (e.g. ExpSyn) or a second messenger (see Chapter 10). The
membrane potential of abiophysical model cell is governed by complex, interacting
nonlinear mechanisms, and spatial nonuniformities may also be present, so numerical
integration is required to advance the solution in time.

Aswediscussed in Chapter 10, artificial spiking neurons are actually point processes
with aNET_RECEI VE block that callsnet _event () (eg. I nt Fi rel). An artificial
neuron has a "membrane state variable" with very ssimple dynamics, and spaceisnot a
factor, so the time course of the integration state is known analytically and it isrelatively
easy to compute when the next spike will occur. Since artificial neurons do not need
numerical integration, they can be used in discrete event simulations that run several
orders of magnitude faster than ssmulations involving biophysical model cells. Their
simplicity also makesit very easy to work with them. Consequently, artificia spiking
neurons are particularly useful for prototyping network models.

In this chapter we present an example of how to build network models by combining
the strengths of the GUI and hoc programming. The GUI tools for creating and
managing network models are most appropriate for exploratory simulations of small nets.
Once you have set up and tested a small network with the GUI, aclick of abutton creates
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ahoc file that contains reusable cell class definitions and procedures. This eliminates the
laborious, error-prone task of writing "boilerplate” code. Instead, you can just combine
NEURON's automatically generated code with your own hoc programming to quickly
construct large scale nets with complex architectures. Of course, network models can be
constructed entirely by writing hoc code, and NEURON's WWW site contains linksto a
tutorial for doing just that (Gillies and Sterratt, 2004). However, by taking advantage of
GUI shortcuts, you'll save valuable time that can be used to do more research with your
models.

Building a simple network with the GUI

Regardless of whether you use the GUI or write hoc code, creating and using a
network model involves these basic steps:

1. Definethetypes of célls.
Create each cell in the network.
Connect the cells.

A w D

Set up instrumentation for adjusting model parameters and recording and/or
displaying simulation results.

5. Set up controls for running simulations.

We will demonstrate this process by constructing a network model that can be used to
examine the contributions of synaptic, cellular, and network properties to the emergence
of synchronous and/or correlated firing patterns.

Conceptual model

The conceptual model isafully connected network, i.e. each cell projects to al other
cells, but not to itself (Fig. 11.1 left). All conduction delays and synaptic latencies are
identical.

The cells are spontaneously active integrate and fire neurons, similar to those that we
discussed in Chapter 10. All cells have the same time constant and firing threshold, but
in isolation each has its own natural interspike interval (1SlI), and the I SIs of the
population are distributed uniformly over afixed range (Fig. 11.1 right).

Figure 11.2 illustrates the dynamics of these cells. Each spike is followed by a " post-
spike" hyperpolarization of the membrane state variable m, which then decays
monoexponentially toward a suprathreshold level. When m reaches threshold (1), it
triggers another spike and the cycle repeats. A synaptic input hyperpolarizes the cell and
prolongs the ISl in which it occurred, shifting subsequent spikes to later times. Each input
produces the same hyperpolarization of m, regardless of wherein the ISl it falls. Even so,
the shift of the spike train depends on the timing of the input. If it arrives shortly after a
spike, the additional hyperpolarization decays quickly and the spike train shifts by only a
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small amount (Fig. 11.2 left). Aninput that arrives latein the ISl can cause a much larger
shift in the subsequent spike train (Fig. 11.2 right).

Our task isto create amodel that will allow usto examine how synaptic weight,
membrane time constant and natural firing frequency, number of cells and conduction
latency interact to produce synchronized or correlated spiking in this network.
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Figure 11.1. Left: An example of afully connected net. Thin lines indicate reciprocal connections
between each pair of cells, and thick lines mark projections from one cell to its targets. Right:
When disconnected from each other, every cell hasits own natural firing frequency.
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Figure 11.2. Time course of the membrane state variable min the absence (thin traces) and
presence (thick traces) of an inhibitory input. Notice that m follows a monoexponential
"depolarizing” time course which carriesit toward a suprathreshold level. When mreaches 1, a
spikeistriggered and misreset to O ("post-spike hyperpolarization™). An inhibitory synaptic
event causes the same hyperpolarizing shift of m no matter wherein the ISl it arrives, but its
effect on later spike times depends on its relative positionin the [SI. Left: Inhibitory events that
occur early in the ISl decay quickly, so following spikes are shifted to dightly later times. Right:
An inhibitory event that occurs late in the S| has alonger lasting effect and causes a greater
delay of the subsequent spike train.

Adding a new artificial spiking cell to NEURON

Before we start to build this network, we need to add anew kind of artificial spiking
cell to NEURON. Our model will use cells whose membrane state variable mis governed
by the equation

dm _
Ta+m—moo Eqg. 11.3
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wherem_ > 1and is set to avaue that produces spontaneous firing with the desired ISl

Aninput event with weight w adds instantaneously to m, and if mreaches or exceeds the
threshold value of 1, the cell "fires,” producing an output event and returning mto 0. We
will call thisthe | nt er val Fi r e model, and the NMODL code for it isshownin
Listing 11.1. I nt er val Fi r e has essentialy the same dynamicsas| nt Fi r el, but
because its membrane state relaxes toward a suprathreshold value, it usesafireti me()
function to compute the time of the next spike (see discussionsof I nt Fi rel and

I nt Fi re2 inChapter 10).

NEURCON {
ARTIFIQ AL CELL Interval Fire
RANGE tau, m i nvl

}

PARAMETER {
tau = 5 (ns) <le-9, 1e9>
invl = 10 (ns) <le-9, 1e9>

ASS| G\ED {
m

m nf
tO( ns)

INITIAL {
mnf = 1/(1 - exp(-invl/tau)) : so natural spike interval is invl
m=20
t0 =t
net _send(firetine(), 1)

NET_RECEI VE (W) {
m=
t0 =t
if (flag == 0) {
m=m+ w
if (m>1) {
m=20

net _event (t)

net _nove(t+firetime())
} else {
net _event (t)
m=20
} net _send(firetine(), 1)
}

FUNCTION firetime()(ns) { : m< 1 and mnf > 1
firetime = tau*log((mnf-m/(mnf - 1))
}
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FUNCTI ON M

N M) {
}M=mnf+(

m- mnf)*exp(-(t - t0)/tau)

Listing 11.1. NMODL implementation of | nt er val Fi re. Figures 11.1 (right)
and 11.3 illustrate its operation.

Creating a prototype net with the GUI

After we compile the codein Listing 11.1 (see Chapter 9), when we launch nr ngui
these lines should appear at the end of NEURON's startup message
Addi ti onal mechanisnms fromfiles
invlfire. nmod

to reassure us that what was defined ini nvl fi re. nod--i.e. thel nt erval Fi re cell
class-is now available. We are ready to use the GUI to build and test a prototype net.

1. Define the types of cells

Thisinvolves using the existing cell classes to create the types of cells that we will
employ in our network. Our network contains artificial spiking cells, so we need an
ArtCellGUI tool, which we get by clicking on Build / NetWork Cell / Artificial Cell in the
NEURON Main Menu toolbar (Fig. 11.3).

| Fite  Eetit | Buitd| Tools Graph Veector Window |

single compartment

Cell Builder

IetvoidGLl From Cell Builder
MetWaork Builder Artificial Cell
Linear Circuit

Channel Builder

Figure 11.3. Using the NEURON Main Menu to bring up an ArtCellGUI tool.

The gray areain the lower left corner of the ArtCellGUI tool displays alist of the
types of artificial spiking cells that will be available to the NetWork Builder. It starts out
empty because we haven't done anything yet (Fig. 11.4). To remedy this, click on New
and scroll down to select IntervalFire (Fig. 11.5 left), and then rel ease the mouse button.
The Artificial Cell types list now contains a new item called IntervalFire, and the right
panel of the ArtCellGUI tool shows the user-settable parametersfor this cell type
(Fig. 11.5 right). These default values are fine for our initial exploratory simulations, so
well leave them asis.

However, thereis one small change that will make it easier to use the NetWork
Builder: IntervalFire is a big word, and the NetWork Builder's canvasisrelatively small.
So let's give our cell type a short, unique name, like IF (see Figures 11.6 and 7).
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Using Current Selection...
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Artificial Cell types

MNew | “ariables for selected Cell type appear here

Figure 11.4. The ArtCellGUI tool starts with an empty Avrtificial Cell types list.
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Figure 11.5. Click on New / IntervalFire to add it to the Artificial Cell types list.

Figure 11.6. Changing the name of one of the Artificial Cell types.

To change the name of one of the Artificial Cell types, select it (if it isn't
already selected) and then click on the Rename button.

This pops up awindow with astring editor field. Click in thefield . . .

Using Current Selection...

Fename
|

Y
Clone

Remove
Artificial Cell types

IntervalFire E

Rename the artificial cell type

Imk

|Accept4—'|| Cancel I
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Rename the artificial cell type

... change the name to IF, and then click the Accept button. [F

|Accept4:'|| Cancel I
X

Close Hide

Mew | IF -- IntervalFire

Using Current Selection.., || tau (ms) 5 ;i
Renarne invl {ms) J . [10 31

Clone

Remove
Artificial Cell types

I”:— Y

Figure 11.7. The ArtCellGUI tool after renaming the cell type. The right panel
shows that IF is based on the IntervalFire class.

Now that we have configured the ArtCellGUI tool, it would be a good ideato save
everything to a session file with NEURON Main Menu / File / save session (also see
Fig. 1.23 and Save the model cell in Chapter 1). If you like, you may hide the
ArtCellGUI tool by clicking on Hide just above the drag bar, but don't close it--the
NetWork Builder will need it to exist.

2. Create each cell in the network

Having specified the cell typesthat will be used in the network, we are ready to use
the NetWork Builder to create each cdll in the network and connect them to each other.
Actualy, well just be creating the specification of each cell in the net; no cells arereally
created and there is no network until the Create button in the NetWork Builder is ON.

To get aNetWork Builder, click on NEURON Main Menu / Build / NetWork Builder
(Fig. 11.8).

[ NEURON Main Menu
|canify

[ Fite  Ectit

Buitd I fools Graph Vector Windowl

single compartment
Cell Builder
MNetWork Cell

etiork Builder
Linear Circuit
Channel Builder

Figure 11.8. Bringing up a NetWork Builder.
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The NetWork Builder'sdrag bar reveals that thistool is an instance of the Net Gui class
(seeFig. 11.9).

The right panel of a NetWork Builder is a canvas for laying out the network. The
"palette” for this canvasisamenu of the cell types that were created with the ArtCellGUI
tool. These names appear aong the upper left edge of the canvas (for this example, a
limited palette indeed: IF isthe only cell type). Context-dependent hints are displayed at
the top of the canvas.

The left panel of a NetWork Builder contains a set of buttons that control its operation.
When aNetWork Builder isfirst created, its Locate radio button is automatically ON.
This means that the NetWork Builder isready for usto create new cells. We do this by
merely following the hint (Fig. 11.10). Notice that the cell names are generated by
concatenating the base name (name of the cell type) with a number that starts at O and
increases by 1 for each new cell. We'll say more about this below in 7. A word about

cell names.

X

Close Hide

# Locate Create a new cell by dragging from the list on the left

~ Sre-> Tar IF Place & new cell over another to replace the old one

~ Source tove a cell to a new location

~s _Targets Cells dragged of the view are discarded

~ larget
Sources

Show all edges

Weights

Delays

Haoc File
Create

SpikePlot

Show Cell Map

Figure 11.9. A new NetWork Builder.

Figure 11.10. Creating new cells in the NetWork Builder.

= EE0

Close Hide
To create a new cdll, click on one of theitemsin * éocateT
. . . . Fc-= |ar
the palette (in this example, the only item is IF) ¥ Source I Create IF at (-154,121)
and hold the mouse button down . . . s _Targets
~ larget
Sources
E’Show all edges

| etGLI[]

Close Hide
while dragging the new cell to a convenient # Locate
location on the canvas. Release the mouse N L Move IF0 to (-14,73)
button, and you will see anew cell labeled IFO. ~ _Targets

S " Taurces

E’Show all edges 1
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After you create a second IF cell, the NetWork
Builder should look like this.
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Close Hide

& Locate
~ Src-> Tar IF
~ Source
~s largets
~ larget
Sources
Show all edges

IFO IF1

If you released the mouse button while the cursor was still close to one of the palette
items, the new cell will be hard to select since palette item sel ection takes precedence
over selection of acell. If this happens, just select Translate in the canvas's secondary
menu (the canvasisjust amodified graph!) and then left click on the canvas and drag it
to the right (if you have a three button mouse, or a mouse with a scroll wheel, don't
bother with the canvas's menu--just click on the middle button or scroll wheel and drag
the canvas). Thiswill pull the cell out from under the palette items, which never move
from their position along the left edge of the canvas. Finaly, click on one of the radio
buttons (Locate, Src -> Tar, etc.) and continue working with the NetWork Builder.

3. Connect the cells

Connecting the cells entails two closely related tasks: setting up the network's
architecture, and specifying the delays and weights of these connections.

Setting up network architecture

To set up the architecture, we click on the Src -> Tar radio button, read the new hint
in the canvas, and do what it says (Fig. 11.11).

Figure 11.11. Setting up network architecture.

Clicking on the Src -> Tar button brings out a
new hint.

So we click on IFO and hold the mouse button

down while dragging the cursor toward IF1. A
thin "rubber band" line will stretch from IFO to
the cursor.

When the cursor is on top of IF1, the rubber
band becomes a thick black line, and the hint
changes to the message shown here.
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Hide

To complete the attachment, we just release the Close
mouse button. The projection ("edge") from IFO v Locate
to IF1 will appear as athin line with a dight S
bend near its midpoint. The O marks the target ~ _Targets
end of this connection. > G

Show all edges

| MetGLI[D)

Attached Target IF1 to Source IFO

[

Hide

~ Locate
& Src->Tar
~ Source
~s largets
~ larget
Sources
Show all edges

Making the reciprocal connection requiresonly
that we click on IF1, drag to IFO, and release the
mouse button.

Thisisagood time to save everything to a session file.

Specifying delays and weights

Attached Target IFO to Source IF1

|FEF= =5

The default initial value of all synaptic weightsisO0, i.e. a presynaptic cell will have
no effect on its postsynaptic targets. The NetWork Builder has a specia tool that we can

use to change the weights to what we want (Fig. 11.12).

Figure 11.12. Setting the synaptic weights.

Clicking on the Weights button in the NetWork Builder . . .

... brings up atool for specifying synaptic weights. The top of this
tool has anumeric field with its associated spinner and button
(labeled Weight). The value in the numeric field can be set in the
usua ways (direct entry, using the spinner, etc.), but note the
arrows, which suggest other possibilities.

The bottom of the weights tool contains two panels that list the
weights of all synaptic connections (aka "edges" in network theory).
Clicking on a connection in the I eft list copies from the connection
to the numeric field, and clicking on a connection in the right list
copies from the numeric field to the connection.

= [REENE)]
Close Hide

. Locate
& Src-» Tar
< source
. largets
. larget

Sources
Show all edges
Weights

Attached Te

IFoe————=5F -

IFO-=IF1 0
IF1-=IF0 0

IFO-=IF1 0
IF1-=IF0 O
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Close Hide

----- QTN [

For this example, let's make both synapses have aweight of -0.1 IF0-=IF1 0 IFo-=IF1 D
(mild inhibition). First we change Weight to-0.1 . . . IRlzIED Y IR12IR0. 0

... and then we click on IFO->IF1 and IF1->IFO intheright panel. || " |_weight [T =
We're finished when the weights tool looks like this. IFo-=IF1 0.1 IF0-=IF1 -0.1

. . . . S IF1-=IF -0, IF1-=IF -0,
Now we can close this window. If we need it again, clicking on the o R

NetWork Builder's Weights button will bring it back.

All delays are 1 ms by default, which isfine for our purposes. If we wanted to change
this to something else, we would click on the NetWork Builder's Delays button (see
Fig. 11.9) to bring up atool for setting delays. The delay tool works just like the weight
tool.

At this point, the ArtCellGUI tool plus the NetWork Builder together constitute a
complete specification of our network model. We should definitely save another session
file before doing anything el se!

Now we have a decision to make. We could use the NetWork Builder to create ahoc
file that, when executed, would create an instance of our network model. A better choice
isto use the GUI to test our model. If there are any problems with what we have done so
far, thisisagood time to find out and make the necessary corrections.

However, before we can run tests, there must first be something to test. We have a
network specification, but no network. Aswe pointed out earlier in 2. Create each cell
in the network, the network doesn't really exist yet. Clicking on the Create button in the
NetWork Builder fixes that (Fig. 11.13).

4. Set up instrumentation

We want to see what our network does, and to explore how its behavior is affected by
model parameters. Clicking on the SpikePlot button in the NetWork Builder brings up a
tool that will show the input and output spike trains (Fig. 11.14).

We already know how to adjust model parameters. With the NetWork Builder we can
change synaptic weights and delays, and the IF cells' properties can be changed with the
ArtCellGUI tool. Suddenly, we realize that both IF cells will have the same time constant
and firing rate. No problem--our goal is to combine the strengths of the GUI and hoc. We
will take care of thislater, by combining the hoc code that the NetWork Builder generates
with our own hoc code. Using afew linesof hoc, we can easily assign unique firing

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 11



The NEURON Book: Chapter 11 November 18, 2004

rates across the entire population of IF cells. And if we insisted on sticking with GUI
tools to the bitter end, we could just bring up a PointProcessGroupManager (NEURON
Main Menu / Tools / Point Processes / Managers / Point Group), which would allow us
to control the attributes of each cell in our network individually.

| MetGLIO] = [x]
Close Hide
~~ Locate ~ Locate
: ggcu;:eTar : g[rj%;:eTar Attached Target IFD to Source IF1
~ largets ~s largets
~ larget ~ larget
Sources Sources e
Show all edges Show all edges I !
Weights Weights
Delays Delays
Haoc File Haoc File
Create Create
SpikePlot SpikePlot
Show Cell hap Show Cell Map

Figure 11.13. Left: Toggling the Create button ON causes the network
specification to be executed. Right: Once Create is ON, the representation of
the network is available for NEURON's computational engineto usein a

simulation.
| MetGLI[D]
Close
~~ Locate Piot
& Src-> Tar | .0 |
s Source Spikes
s _Targets Freq YWindow (ms) [T00 ;i
~ larget
Sources Hist Bin (ms) IN—E
Show all edges ID_ =
Weights ar ”:;
Delays
Hoc File 2
Create
SpikePlot 1k
Show Cell hap
0 | | | | |
n 1 2 a2 A c

Figure 11.14. The NetWork Builder's SpikePlot button (left) brings up atool for
displaying and analyzing spike trains (right).
5. Set up controls for running simulations

At aminimum, we need a RunControl panel (NEURON Main Menu / Tools /
RunControl, as shown in 5. Set up controls for running the simulation in Chapter 1).
Also, since our network contains only artificial spiking neurons, we can use adaptive
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integration to achieve extremely fast, discrete event smulations. We'll need a
VariableTimeStep panel (NEURON Main Menu / Tools / VariableStepControl
(Fig. 11.15)), which makes it easy to choose between fixed time step or adaptive
integration (Fig. 11.16).

[ NEURON Main Menu
|canify
| Fite Fdit Buitd

?'oof.sl Graph Vector andowl

RunControl
RunButtan
’}VariabIeStepCmtroI
Point Processes
Distributed hMechanisms
Fitting
Impedance
kodel View

Figure 11.15. Bringing up a VariableTimeStep pandl.

Figure 11.16. Toggling adaptive integration ON and OFF.

& variableTimestep

The VariableTimeStep panel's Use variable dt checkbox is empty, [ Use variable dt
which means that adaptive integration is off. |/Absolute Tolerance [ 0001 (3

To turn adaptive integration ON, we click on the Use variable dt [yl Use variable dt
checkbox. .’ [o.007 |

| Atol Scale Tnoll Detalls I

The check mark in the Use variable dt checkbox tells us that

|8 Use variable dt

adaptive integration is ON. Clicking on this checkbox again will [AbsaueTakranee]m oo (3l

turn it back OFF so that fixed time steps are used.

I| Atol Scale Tnoll Detalls I

Adaptive integration can use either global or local time steps, each of which has its
own particular strengths and weaknesses (see Adaptive integrators in Chapter 7). The
VariableTimeStep panel's default setting isto use global time steps, which is best for
models of single cells or perfectly synchronous networks. Our toy network has two
identical cells connected by identical synapses, so we would expect them to fire
synchronously. However, when we build our net with hoc code, the cellswill all have
different natura firing frequencies, and who can tell in advance that they will achieve
perfect synchrony? Besides, thisisatutorial, so let's use local time steps (Fig. 11.17).
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Figure 11.17. Toggling between global and local time st

To specify whether to use global or local time steps,
wefirst click on the VariableTimeStep pandl's Details

(8 Use variable dt

Absolute Tolerance [ _] [0.001 F |

November 18, 2004

DS.

iableTimestep

button.

We are concerned with the Local step checkbox,
which is empty. To activate the use of local variable

time steps. . .

current model type: <*ODE*> DAE
ODE model allows any method
DAE model allows implicit fixed step or daspk

Implicit Fixed Step
C-M Fixed Step
Cvode

Daspk

Local step

DAE and daspk require sparse solver, cvode requires tree solver

znd order threshold (for variable step)

hle=b tree solver
Ix=h sparse solver

... wejust click on the Local step checkbox . . .

current model type: <*ODE*> DAE

ODE model allows any method

DAE model allows implicit fixed step or daspk
Implicit Fixed Step
C-M Fixed Step
Cvode

Daspk
Local step
DAE and daspk require sparse solver, cvode requires tree solver

hle=b tree solver
Ix=h sparse solver

D znd order threshold (for variable step)

... and now each cdl in our network will advance
with its own time step. If we want to restore global
time steps, we can just click on the Cvode button.
Now we can close this panel; should we need it again,
we only haveto click on the VariableTimeStep panel's
Details button.

current model type: <*ODE*> DAE
ODE model allows any method
DAE model allows implicit fixed step or daspk

Implicit Fixed Step
C-M Fixed Step
Cvode

Daspk

Local step

DAE and daspk require sparse solver, cvode requires tree solver
hle=b tree solver
Ix=h sparse solver

znd order threshold (for variable step)
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After rearrangement, the various windows we have created should look something
like Fig. 11.18. The tools we used to specify the network are on the left, smulation
controls are in the middle, and the display of smulation resultsis on the right. Quick,

saveit to asession file!l
EECEE || =] spikePioio] for NetDatalo] E
Close Hide Close Hide Close Hide
New IF -- IntervalFire Init (m\fjd—'lj Fes &l | Plot |
Using Current Selection...|| tau (ms) [5 =it & Run Spikes
Rename il (ms) | |1D |ﬁ| Stop Freg Window (ms) |1DD ;i
Clone S E 6l (i) = |5—|§ Hist Bin (ms]) 0.1 ;i
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Figure 11.18. The completed model with controls for running simulations and
displaying results.

6. Run a simulation

Thisisamost too easy. Clicking on Init & Run in the RunControl panel, we see--
nothing! Well, ailmost nothing. Thet field in the RunControl panel shows us that time
advanced from 0 to 5 ms, but there were no spikes. A glance at the ArtCellGUI tool tells
uswhy: invl is5 ms, which meansthat our cellswon't fire their first spikes for another

5 ms. Let's change Tstop to 200 ms so we'll get alot of spikes, and try again. Thistime
we're successful (Fig. 11.19).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 15



The NEURON Book: Chapter 11 November 18, 2004

SpikeFPlot[0] for MetDatafn]

Freq Window (ms) |1DD ;i
Hist Bin (ms] |D.1 ;i
u IF1

ar IFo

1

n cn 100 1Cn 200

0

Figure 11.19. The SpikePlot shows the spike trains generated by the cellsin our
network model. Note that rasters correspond to cell names from top to bottom,
and that the raster for cell i is plotted along theliney =i + 1.

7. Caveats and other comments

Changing the properties of an existing network

Aswe saw in this example, the ArtCellGUI tool is used to specify what artificial
spiking cell types are available to a Network Builder. The same ArtCellGUI tool can be
used to adjust the parameters of those cells, and such changes take effect immediately,
even if the network already exists (i.e. even if the Network Builder's Create button is
ON).

The NetReadyCellGUI tool (NEURON Main Menu / Build / Network Cell / From Cell
Builder) is used to configure biophysical model cell typesfor use with a Network Builder.
In fact, we would use a separate NetReadyCellGUI instance for each different type of
biophysical model cell we wanted to use in the net. The NetReadyCellGUI tool hasits
own CellBuilder for specifying topology, geometry, and biophysical properties, plus a
SynapseTypes tool for adding synaptic mechanisms to the cell (see the tutorial at
htt p: / / waw. neur on. yal e. edu/ neur on/ docs/ net bui | d/ mai n. ht m ). However,
changes made with a NetReadyCellGUI tool do not affect an existing network; instead, it
IS necessary to save a session file, exit NEURON, restart and reload the session file.

What about changes to the network itself? Any changes whatsoever can be madein
the Network Builder, aslong as its Create button is OFF. Once it is ON, some changes are
possible (e.g. adding new cells and synaptic connections to an existing network), but
additional actions may be required (a pre-existing SpikePlot will not show spike trains
from new cells), and thereis arisk of introducing a mismatch between one's conceptual
model and what is actually in the computer. The best policy isto toggle Create OFF (see
Fig. 11.20), make whatever changes are needed, save everything to a session file, exit
NEURON, and then restart and load the new session file.
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"Create” cannot be turned back on without exiting MEURGN

| Stay on | | Turn offl

Figure 11.20. Trying to turn Create OFF brings up this window, which offers
the opportunity to change one's mind. Select Turn off if it is necessary to make
substantial changesto an existing network in the NetWork Builder.

A word about cell names

Aswe mentioned abovein 2. Create each cell in the network, the cell names that
appear in the NetWork Builder are generated automatically by concatenating the name of
the cell type with a sequence of numbers that starts at O and increases by 1 for each
additional cell. But that's only part of the story. These are really only short "nicknames,"”
astratagem for preventing the NetWork Builder and its associated tools from being
cluttered with long character strings.

Thisisfine aslong as the NetWork Builder does everything we want. But suppose we
need to use one of NEURON's other GUI tools, or we have to write some hoc code that
refersto one of our model's cells? For example, we might have a network that includes a
biophysical model neuron, and we want to see the time course of somatic membrane
potential. In that case, it is absolutely necessary to know the actual cell names.

That's where the NetWork Builder's Cell Map comes in. Clicking on Show Cell Map
brings up asmall window that often needs to be widened by clicking and dragging on its
left or right margin (Fig. 11.21). Now we realize that, when we used the ArtCellGUI tool
to create an IF cell "type," we were actually specifying anew cell class whose nameisa
concatenation of our "type" (IF), an underscore character, and the name of the root class
(the name of the class that we based IF on, which was IntervalFire).

IFO IF_IntervalFire[0] A
IF1 IF_IntervalFire[1]

Figure 11.21. The Cell Map for our toy network. See text for details.

Combining the GUI and programming

Creating a hoc file from the NetWork Builder

Having tested our prototype model, we are now ready to write ahoc file that can be
mined for reusable code. Clicking on the Hoc File button in the NetWork Builder brings
up atool that looks much like what we used to specify file name and location when
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saving asession file. Once we're satisfied with our choices, clicking on thistool's "Open"
button writes the hoc file (yes, the button should say Close). Thisfile, which we will call
pr ot ot ype. hoc, ispresented in Listing 11.2, and executing it would recreate the toy
network that we just built with the NetWork Builder.

[/l NetGJ default section. Artificial cells, if any, are located here.
create acell _hone_
access acel |l _hone

/I Network cel |l tenpl ates
[IAtificial cells
/l 1FIntervalFre

begintenpl ate IF IntervalFre
public pp, connect2target, x, y, z, position, is_art
external acell hone
objref pp
proc init() {
acell _hone_ pp = newliInterval Fre(.5)

func is_art() { return 1}

proc connect 2target () { $02 = new Net Con(pp, $ol) }
proc position(){x=$1 y=$2 z=$3}

endtenpl ate IF IntervalFre

/I Network specification interface

objref cells, nclist, netcon
{cells = newlList() nclist = newlList()}

func cel | _append() {cells.append($0l) $ol.position($2, $3, $4)
} return cells.count - 1

func n%_append() {//srcindex, tarcelindex, synindex

if ($3>=0) {

cel | s. obj ect ($1) . connect 2t ar get (cel | s. obj ect ($2). synl i st. obj ect ($3), \
net con)

netcon. wei ght = $4  netcon. del ay = $5

}el se{
cel I's. obj ect ($1) . connect 2t ar get (cel | s. obj ect ($2) . pp, net con)
netcon. wei ght = $4  netcon. del ay = $5

ncl i st. append( net con)
return nclist.count - 1

}

/I Network instantiation

FO */ cell_append(new I F Interval Fire

/* | , -149, 73, 0)
[* IFL */ cell_append(new | F_ Interval Fire
/* 1F

/* 1

. -67, 73, 0)

—~

1->1F0 */  nc_append(1, O, -1,
FO->1F1 */  nc_append(0, 1, -1,

Listing 11.2. Clicking on the Hoc File button in the NetWork Builder produces a
file which we have called pr ot ot ype. hoc.
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A quick glance over the entire listing reveal s that pr ot ot ype. hoc isorganized into
severa parts, which are introduced by one or more lines of descriptive comments. Let us
consider each of these in turn, to see how it works and think about what we might reuse
to make a network of any size we like.

NetGUI default section

Thefirst part of the file createsacel | _home_ and make this the default section.
What is a section doing in amodel that contains artificial spiking cells? Remember that
artificial spiking cells are basically point processes (see Artificial spiking cells in
Chapter 10), and just like other point processes, they must be attached to a section.
Suddenly the meaning of thecomment Artificial cells, if any, are
| ocat ed her e becomesclear: acel | _home_ ismerely a"host" for artificia spiking
cells. It has no biophysical mechanisms of its own, so it introduces negligible
computational overhead.

Network cell templates

The NetWork Builder and its associated tools make extensive use of object-oriented
programming. Each cell in the network is an instance of acell class, and thisis where the
templates that declare these classes are |ocated (templates and other aspects of object-
oriented programming in NEURON are discussed in Chapter 13).

The comments that precede the templates contain alist of the cell class names. Our
toy network uses only one cell class, so pr ot ot ype. hoc contains only one template,
which definesthe | F_I nt er val Fi r e class. When biophysical model cells are present,
they are declared first. Thus, if we had a NetWork Builder whose pal ette contained a
biophysical model cell type called pyr, and an artificial spiking cell type S that was
derived from the Net St i mclass, the corresponding cell classes would be called
pyr_Cel | andS_Net St i m and the header in the exported hoc file would read

/I Network cell tenplates
/1 pyr_Cel |
[ITArtificial cells

/1 S NetStim

Functions and procedures with the same names as those contained in the
| F_I nt erval Fi r e template will be found in every cell class used by a NetWork Builder
(although some of their internal details may differ). Thefirst of theseisi ni t (), whichis
executed automatically whenever anew instance of thel F_| nterval Fi re classis
created. Thisin turn creates a new instance of the | nt er val Fi r e class that will be
associated withtheacel | _hone_ section. As an aside, we should mention that thisis an
example of how the functionality of a basic object class can be enhanced by wrapping it
inside atemplate in order to define a new class with additional features, i.e. an example
of emulating inheritance in hoc (see Polymorphism and Inheritance in Chapter 13).

The remaining f uncsand pr ocsare public so they can be called from outside the
template. If we ever need to determine which elementsin a network are artificial spiking
cells and which are biophysical model cells, i s_art () isclearly theway todoit. The
nextisconnect 2t ar get () , which looks useful for setting up network connections, but
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it turns out that the hoc code we write ourselves won't call this directly (see Network
specification interface below). Thelastisposi t i on() which can be used to specify
unique xyz coordinates for each instance of this cell. The coordinates themselves are
public (accessible from outside the template--see Chapter 13 for more about accessing
variables, f uncsand pr ocsdeclared in atemplate). Position may seem an arcane
attribute for an artificial spiking neuron, but it is helpful for algorithmically creating
networks in which connectivity or synaptic weight are functions of location or distance
between cells.

Network specification interface

These are the variables and functions that we will actually call from our own hoc
code. These are intended to offer us a uniform, compact and convenient syntax for setting
up our own network. That is, they serve as a"programming interface" between the code
we write and the lower level code that accomplishes our ultimate aims.

The purpose of the first two linesin this part of pr ot ot ype. hoc isevident if we
keep in mind that the NetWork Builder implements a network model with objects, some
of which represent cells while others represent the connections between them. The Li st
classisthe programmer's workhorse for managing collections of objects, soitis
reasonabl e that our network model will be packaged into two Li st scalled cel | s and
nclist.

The functions that add new elementsto these Li st sarecel | _append() and
nc_append() , respectively. Thefirst argument tocel | _append() isanobj ref that
points to anew cell that isto be added to the list, and the remaining arguments are the
xyz coordinates that are to be assigned to that cell. Thenc_append() function uses an
if . . . elsetodeal properly with either biophysical model cells or artificial spiking
cells. In either case, itsfirst two arguments are integers that indicate which elementsin
cel | s arethe obj r ef sthat correspond to the pre- and postsynaptic cells, and the last
two arguments are the synaptic weight and delay. If the postsynaptic cell is abiophysical
model cell, one or more synaptic mechanisms will have been attached to it (see the
tutorial at ht t p: / / waw. neur on. yal e. edu/ neur on/ docs/ net bui | d/ nai n. htni ). In
this case, the third argument to nc_append() isanonnegative integer that specifies
which synaptic mechanism isto be the target of the new Net Con. If instead the
postsynaptic cell isan artificial spiking cell, the argument isjust -1.

Network instantiation

So far everything has been quite generic, in the sense that we can use it to create cells
and assembl e them into whatever network architecture we desire. In other words, the
code up to this point is exactly the reusable code that we needed. The statementsin the
"network instantiation" group are just a concrete example of how to use it to spawn a
particular number of cellsand link them with a specific network of connections. Let's
make a copy of pr ot ot ype. hoc, cal it net def s. hoc, andtheninsert// at the
beginning of each of last four lines of net def s. hoc so they persist as areminder of
how to call cel I _append() and nc_append() but won't be executed. We are now
ready to use net def s. hoc to help us build our own networks.
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Exploiting the reusable code

Where should we begin? A good way to start is by imagining the overall organization
of the entire program at the "big picture” level. We'll need the GUI library, the class
definitions and other code in net def s. hoc, code to specify the network model itself,
and code that sets up controls for adjusting model parameters, running s mulations, and
displaying simulation results. Following our recommended practices of modular
programming and separating model specification from user interface (see Elementary
project management in Chapter 6), we turn thisinformal outlineintoani ni t. hoc
filethat pulls al these pieces together (Listing 11.3).
| oad_file("nrngui.hoc")
| oad file("netdefs.hoc") // code fromNetVérk Buil der-generated hoc file

| oad file("makenet.hoc") // specifies network
load file("rig.hoc") // for adjusting nodel parans and running siml ations

Listing 11.3. Thei ni t . hoc for our own network program.

For now, we can comment out the last two lineswith// so we can test
net def s. hoc by usng NEURON to executei ni t . hoc. and then typing afew
commands at the oc> prompt (user entriesare Cour i er bol d while theinterpreter's
output isplain Cour i er).
Addi ti onal mechanisns fromfil es
invlfire.nod
1
1
oc>objref foo
oc>foo = new I F_Interval Fire()
oc>f oo

I F_Interval Fire[O]
oc>

So far so good. We are ready to apply the strategy of iterative program development (see
Iterative program development in Chapter 6) to fill in the details.

Thefirst detail is how to create a network of a specific size. If we call the number of
cellsncel |, then thisloop

for i=0, ncell-1 {
cell _append(new IF_Interval Fire(), i, 0, 0)

will make them for us, and this nested loop
for i=0, ncell-1 for j=0, ncell-1if (i !'=7j) {
nc_append(i, j, -1, 0, 1)

will attach them to each other. A first stab at embedding both of these in aprocedure
which takes a single argument that specifies the size of the net is
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proc createnet() { local i, |

ncell = $1
for i=0, $1-1
cell _append(new IF_Interval Fire(), i, 0, 0)
}
for i=0, $1-1 for j=0, $1-1 if (i !'=7j) {
nc_append(i, j, -1, 0, 1)

}

and that's what we put in the first version of nakenet . hoc.

We can test this by uncommenting thel oad_fi | e( " makenet. hoc") linein

i nit.hoc,using NEURON to executei ni t . hoc., and then typing afew commands at
the oc> prompt.

oc>cr eat enet ( 2)
oc>ncel
2
oc>print cells, nclist
List[8] List[9]
oc>print cells.count, nclist.count
22
oc>for i=0,1 print cells.object(i), nclist.object(i)
I F_Interval Fire[ 0] Net Con[O]
IF_Interval Fire[1] Net Con[1]
oc>

So it works. But almost immediately awish list of improvements comes to mind. In
order to try networks of different sizes, welll be calling cr eat enet () more than once
during asingle session. Asit stands, repeated callsto cr eat enet () just tack more and
more new cells and connections onto the ends of thecel | s and ncl i st lists. Also,
cr eat enet () should be protected from nonsense arguments (a network should have at

least two cells).
We can add these fixes by changingncel | = $1 to
if ($1<2) { $1 =2}
ncell = $1

nclist.renmove_all ()
cells.remove_all ()

The first line ensures our net will have two or more cells. The last two linesuse the Li st
classsrenove_al | () topurgecel | s andncl i st . Of course we check this

oc>cr eat enet (1)
oc>ncel

2
oc>cr eat enet ( 2)
oc>ncel

2
oc>cr eat enet ( 3)
oc>ncel

3
oc>

which is exactly what should happen.
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What else should go into makenet . hoc? How about procedures that make it easy to
change the properties of the cells and connections? For example, this

proc delay() { local i
del = $1

for i=0, nclist.count-1 {
nclist.object(i).delay = $1
}
}

lets us set all synaptic delays to the same value by calling del ay() with an appropriate
argument. Similar pr ocs can take care of weights and cellular time constants. Setting
|Sl's seems more complicated at first, but after a few fal se starts we come up with
proc interval () { local i, x, dx
low = $1
high = $2
X = | ow
dx = (high - low/(cells.count-1)
for i=0, cells.count-1 {
cells.object(i).pp.invl = x
X += dx
}
}
Thisassignsthel owISl tothefirst cell incel | s, thehi gh ISl tothelast cell incel | s,
and evenly spaced intermediate values to the other cells.

Does that mean the first cell isthe fastest spiker, and the last is the Slowest? Only if
we are careful about the argument sequence when we call i nt er val () . For that matter,
what prevents us from calling i nt er val () with one or both arguments < 0? Come to
think of it, some of our other pr ocs might also benefit by being protected from nonsense
arguments. For example, we might protect against negative delays by changing

del = $1
inproc delay() to

if ($1<0) $1=0
del = $1

and we could insert similar argument-trapping code into other pr oc s as necessary.

However, it makes more sense to try to identify a common task that can be split out
into a separate function that can be called by any pr oc that needsit. It may help to
tabulate the vulnerable variables and their restrictions.

Variable Restriction

ncel | >2
tau >0
| owlSl >0
hi gh 1Sl > | owlS
del >0

Most of these are "greater than or equal to" restrictions, the two holdouts being t au and
| owISl. After amoment we realize that there are practical lower limits to these
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variables--say 0.1 msfor t au and 1 msfor | ow|Sl--so "greater than or equal to"
restrictions can be applied to all.

The final version of makenet . hoc (Listing 11.4) contains all of these refinements.
The statements at the very end create a network by calling our revised pr ocs.

/-k

returns value >= $2

for bulletproofing procs agai nst nonsense argumnents
*/

f
T 5iked) ¢
$1=$2

return $1

(11111111 create a network /111111111
/] argument is desired nunber of cells

proc createnet() 5 | ocal i,
$1 = ge($1,2) // force net to have at |east two cells
ncell = $1
/1l so we can nmake a new net wi thout having to exit and restart
nclist.renmove_all ()
cells.remove_all ()
for i=0, $1-1 {

cell _append(new IF_Interval Fire(), i, 0, 0)

for i=0, $1-1 for j=0, $1-1 if (i !=1]j)
/1 let weight be O0; we'll give it a nonzero val ue el sewhere
nc_append(i, j, -1, 0, 1)

objref netcon // |eave no |oose ends (see nc_append())

}
(11111111 specify paraneters [/1111111]

/1 call this settau() to avoid conflict wth scalar tau

proc settau() { local i
$1 = ge($1,0.1) // mn tauis 0.1 ns
tau = $1

for i=0, cells.count-1 {
cells.object(i).pp.tau = $1
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/] args are low and hi gh

proc interval () { local i, x, dx
$1 = ge($1,1) // minlowlISl is 1 ns
$2 = ge($2, $1)

low = $1
hi gh = $2
X = | ow

dx = (high - low/(cells.count-1)
for i=0, cells.count-1 {

cells.object(i).pp.invl = x
X += dXx
}
}
proc weight() { local i
w = $1
for i=0, nclist.count-1 {
nclist.object(i).weight = $1
}
}

proc delay() { local i
$1 = ge($1,0) // min del is O ns
del = $1
for i=0, nclist.count-1 {
} nclist.object(i).delay = $1
}

(111117111 actually make net and set paraneters /////1/1]]

creat enet ( 2)
settau(10)

i nterval (10, 11)
wei ght (0)

del ay(1)

Listing 11.4. Fina implementation of nakenet . hoc.

Time for more tests!

oc>del

0

oc>{del ay(-1) print del}
0

oc>{del ay(3) print del}
3

oc>cr eat enet (4)
oc>ncel
4
oc>del
3
oc>

Of course we can and should test the other pr ocs, especidly i nterval ().
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Our attention now shifts to creating the user interface for adjusting model parameters,
controlling simulations, and displaying results. To evoke the metaphor of an experimental
rig, thisisplaced inafilecalledri g. hoc.

Aninitial implementation of ri g. hoc might look like this
load_file("runctl.ses") // RunControl and Variabl eTi neStep

xpanel (" Model paramneters")

xval ue("Veight","w', 1,"weight(w", 0, 0)

xval ue("Delay (ns)","del", 1,"delay(del)", 0, 0)

xval ue("Cell tinme constant (ns)","tau”, 1,"settau(tau)", 0, O
xval ue(" Shortest natural 1S","low', 1,"interval (low high)",
xval ue("Longest natural ISI","high", 1,"interval (low high)",
xpanel (500, 400)

In the spirit of taking advantage of every shortcut the GUI offers, the first statement loads
asession file that recreates a RunControl and a VariableTimeStep panel configured for
the desired ssimulation duration (Tstop = 500 ms) and integration method (adaptive
integration with local time steps). The other statements set up a panel with numeric fields
and controls for displaying and adjusting model parameters. This implementation of

ri g. hoc lacks two important features: a graph that displays spike trains, and the ability
to change the number of cellsin the network.

b, o)
0, 0)

To prepare to record and plot spike trains, we can insert the following code right after
thel oad_file() statement:

objref netcon, vec, spikes, nil, graster

proc preprasterplot() {
spi kes = new List()
for i=0,cells.count()-1 {
vec = new Vector ()
netcon = new Net Con(cel |l s.object(i).pp, nil)
net con. r ecor d(vec)
spi kes. append(vec)

objref netcon, vec

graster = new G aph(0)
} graster.view(0, O, tstop, cells.count(), 300, 105, 300.48, 200.32)

preprast erpl ot ()

For each cell in the net, this creates anew Vect or , usesthe Net Con classsrecor d()
method to record the time of that cell's spikesinto the Vect or , and appends the Vect or
to aLi st . After the end of thef or loop that iterates over the cells, the net con and vec
obj r ef spoint to the last Net Con and Vect or that were created, exposing them to
possible interference if we ever do anything that reuses these obj r ef names. The

obj ref netcon, vec statement breaks the link between them and the objects, thereby
preventing such undesirable effects.

The last two statementsin pr epr ast er pl ot () create aG aph and placeitat a
desired |ocation on the screen. How can we tell what the numeric values should be for the
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argumentsinthegr ast er. vi ew() statement? By creating agraph (NEURON Main
Menu / Graph / Voltage axis will do), dragging it to the desired location, saving it to a
session file al by itself, and then stealing the argument list from that session file's
save_w ndow_. vi ew() statement--being careful to change the third and fourth
arguments so that the x and y axes span the correct range of values. No cut and try
guesswork for usl While we're at it, we might as well use the same strategy to fix the
location for our model parameter panel, but now we only need the fifth and sixth
argumentsto vi ew( ) , which are the screen coordinates where the G aph is positioned.
For my monitor, this means the second xpanel statement becomes xpanel ( 300, 370) .

Running a new test, we find that our user interface looks like Fig. 11.22. Everything
isin theright place, and time advances when we click on Init & Run, but no rasters are

plotted.
= RunContral |_|X =|Graph[0] »-50:550 y-02:2.2 (%]
Close Hide Close Hidle
Init (mv) < _1 [55 | .
Init & Run

15

Stop
Continue til (ms) «

Continue for (ms) 4

Single Step

Weight ID—E
Del 1
Real Time (3) elay (ms) | 1| =l
= Cell time constant (ms) |1D ;i
= VariableTimest x
= - I—E Shortest natural 151 10 |
Close Hide
z s werkhis o Longest natural 15| ||j |H ;i
Absolute Tolerance [ [000T 3]

I| Atol Scale Tooll Details I

Figure 11.22. The user interface after thefirst revisiontori g. hoc, in which
we added pr epr ast er pl ot ().

For each cell we need to draw a sequence of short vertical lineson gr ast er whose x
coordinates are the times at which that cell fired. To help ustell one cell's spikes from
another's, the vertical placement of their rasters should correspond to their ordinal
positionincel | s. We can do this by inserting the following codeintori g. hoc, right
after the call to pr epr ast er pl ot () . Thefirst thing that pr oc showr ast er () doesis
to clear any previous rasters off the G aph. Then, for each cell in turn, it uses three
Vect or class methodsin succession: c¢() to createaVect or that has as many elements
as the number of spikesthat the cell fired, fi Il () tofill those elements with an integer
that is one more than the ordinal position of that cell incel | s, and mar k() to mark the
firing times.
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objref spikey

proc showraster() {
graster.erase_all ()
for i = 0,cells.count()-1 {
spi key = spi kes.object(i).c
spi key. fill(i+1)
spi key. mark(graster, spikes.object(i), "|", 6)

objref spikey

Testing once again, we run a simulation and then type showr ast er () at theoc>
prompt, and sure enough, there are the spikes. We change the longest natural 1Sl to
20 ms, run another simulation, and type showr ast er () once more, and it works again.

All thistyping is tedious. Why not customize ther un() procedure so that it
automatically calls showr ast er () after each simulation? Adding this
proc run()
stdinit()

conti nuerun(tstop)
showr ast er ()

totheend of ri g. hoc doesthejob (see An outline of the standard run system in
Chapter 7: How to control simulations).

Another test and we are overcome with satisfaction--it works. Then we change Tstop
to 200 ms, run asimulation, and are disappointed that the raster plot's x axis does not
rescal e to match the new Tstop. One simple fix for thisisto use acustomi ni t ()
procedure that sets the raster plot to the correct size during initialization (see Default
initialization in the standard run system: stdinit() and init() in Chapter 8). Sowe
insert this

proc init() {
finitialize(v_ini
graster.erase_all
graster.size(0,ts
if (cvode. active(
cvode.re_init()
} else {
fcurrent()

t)
R)p, 0,cells.count())
)) A

frecord_init()

}

right after our custom r un( ) . Notice that this also rescales they axis, which will be
helpful when we finally add the ability to change the number of cellsin the network.

Success upon success! It works!

We can finally get around to changing the number of cells. Let's think this out
carefully before doing anything. We'll need a new control in the xpanel , to show how
many cells there are and let us specify a new number. That's easy--just put thisline

xval ue(" Nunber of cells","ncell”, 1,"recreate(ncell)", 0, 0)
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right after xpanel (" Model paraneters") sothat when we change the value of
ncel |, weautomatically call anew procedure called r ecr eat e() that will throw away
the old cells and their connections, and create a new set of each.

But what goesinr ecr eat e() ? We'll want the new cells and connections to have the
same properties as the old ones. And we'll have to replace the old raster plot with anew
one, complete with all the Net Cons and Vect or s that it uses to record spikes. So
recr eat e() should be

proc recreate() {
creat enet ($1)
settau(tau)
i nterval (1 ow, high)
wei ght (w)
del ay(del)
preprasterplot()

}

A good place for thisis right before the xpanel 's code.

So now we have completed ri g. hoc (see Listing 11.5). The parameter panel has all
the right buttons (Fig. 11.23) so it is easy to explore the effects of parameter changes
(Fig. 11.24). How to develop an understanding of what accounts for these effectsis
beyond the scope of this chapter, but we can offer one hint: run some simulations of a net
containing only 2 or 3 cells, using fixed time steps, and plot their membrane state
variables (actually their Mfunctions).

[T user interface /111111111
load_file("runctl.ses") // RunControl and Variabl eTi neStep

/1l prepare to record and display spi ke trains
objref netcon, vec, spikes, nil, graster

proc preprasterplot() {
spi kes = new List()
for i=0,cells.count()-1 {
vec = new Vector ()
netcon = new Net Con(cel |l s.object(i).pp, nil)
net con. r ecor d(vec)
spi kes. append(vec)

objref netcon, vec

graster = new QG aph(0)
graster.view(0, O, tstop, cells.count(), 300, 105, 300.48, 200.32)

}
prepr ast erpl ot ()
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objref spi key

proc show aster() {
graster.erase all ()
for i =0,cells.count()-1 {
spi key = spi kes.object(i).c
spi key. fill (i+1)
spi key. mar k(graster, spikes.object(i), "|", 6)

objref spi key

}
/1 destroys existing net and makes a new one
/1 also spawns a new spi ke train raster plot
/1l called only if we need a different nunber of cells
proc recreate() {

creat enet ($1)

settau(tau)

i nterval (I ow, high)

wei ght (w)
del ay(del)
preprast erpl ot ()
}
xpanel (" Model paramneters")
xval ue(" Nunber of cells","ncell”, 1, "recreate(ncell)", 0, 0)

xval ue("Veight","w', 1,"weight(w", 0, 0)

xval ue("Delay (ns)","del", 1,"delay(del)", 0, 0)

xval ue("Cell tinme constant (ns)","tau”, 1,"settau(tau)”, 0, 0)

xval ue(" Shortest natural 1S9","low', 1 "interval(low high)", 0, 0)
xval ue("Longest natural 1SI","high", 1,"interval (low, high)", 0, 0)

xpanel (300, 370)
[HTT1TEETT customrun() and init() / /11111111

proc run() {
stdinit()
cont i nuer un('t st op)
showaster() // showresults at the end of each sinmulation

proc init() {
finitialize(v_in
graster.erase_all
graster.size(0,ts
if (cvode. acti ve(
cvode.re_init()
} else {
fcurrent ()

p,0,cells.count()) // rescale x and y axes

t)
()
top,
)) |

frecord_init()

Listing 11.5. Complete implementation of ri g. hoc.
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Figure 11.23. The parameter panel after addition of a control for changing the

number of cells.

Figure 11.24. Simulations of afully connected network with 10 cells whose natural 1Sls are spaced

uniformly over the range 10-15 ms. The rasters are arranged with 1SIsin descending order from top to

bottom.
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