
November 18, 2004 The NEURON Book: Chapter 11

Chapter 11
Modeling networks

NEURON was initially developed to handle neuronal models in which complex
membrane properties and extended geometry play important roles [Hines, 1989 #61; ,
1993 #104; , 1995 #22]. However, as the research interests of experimental and
theoretical neuroscientists evolved, NEURON has been revised accordingly. Since the
early 1990s it has been used to model networks of biological neurons (e.g. [Destexhe,
1993 #166][Lytton, 1997 #260][Sohal, 2000 #487]). This work stimulated the
development of powerful strategies that increase the convenience and efficiency of
creating, managing, and exercising such models [Destexhe, 1994 #267][Lytton, 1996
#206][Hines, 2000 #323]. Increasing research activity on networks of spiking neurons
(e.g. [Maas, 1999 #610][Riecke, 1997 #556]) prompted further enhancements to
NEURON, such as inclusion of an event delivery system and development of the Net Con
(network connection) class (see Chapter 10).

Consequently, since the latter 1990s, NEURON has been capable of efficient
simulations of networks that may include biophysical model neurons and/or artificial
spiking neurons. Biophysical model neurons are built around
representations of the biophysical mechanisms that are involved
in neuronal function, so they have sections, density mechanisms,
and synapses (see Chapter 5). A synapse onto a biophysical
model cell is a point process with a NET_RECEI VE block that
affects membrane current (e.g. ExpSyn) or a second messenger (see Chapter 10). The
membrane potential of a biophysical model cell is governed by complex, interacting
nonlinear mechanisms, and spatial nonuniformities may also be present, so numerical
integration is required to advance the solution in time.

As we discussed in Chapter 10, artificial spiking neurons are actually point processes
with a NET_RECEI VE block that calls net _event () (e.g. I nt Fi r e1). An artificial
neuron has a "membrane state variable" with very simple dynamics, and space is not a
factor, so the time course of the integration state is known analytically and it is relatively
easy to compute when the next spike will occur. Since artificial neurons do not need
numerical integration, they can be used in discrete event simulations that run several
orders of magnitude faster than simulations involving biophysical model cells. Their
simplicity also makes it very easy to work with them. Consequently, artificial spiking
neurons are particularly useful for prototyping network models.

In this chapter we present an example of how to build network models by combining
the strengths of the GUI and hoc programming. The GUI tools for creating and
managing network models are most appropriate for exploratory simulations of small nets.
Once you have set up and tested a small network with the GUI, a click of a button creates

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

What could be more
oxymoronic than
"real model neuron"?

The NEURON Book: Chapter 11 November 18, 2004

a hoc file that contains reusable cell class definitions and procedures. This eliminates the
laborious, error-prone task of writing "boilerplate" code. Instead, you can just combine
NEURON's automatically generated code with your own hoc programming to quickly
construct large scale nets with complex architectures. Of course, network models can be
constructed entirely by writing hoc code, and NEURON's WWW site contains links to a
tutorial for doing just that (Gillies and Sterratt, 2004). However, by taking advantage of
GUI shortcuts, you'll save valuable time that can be used to do more research with your
models.

Building a simple network with the GUI
Regardless of whether you use the GUI or write hoc code, creating and using a

network model involves these basic steps:

1. Define the types of cells.

2. Create each cell in the network.

3. Connect the cells.

4. Set up instrumentation for adjusting model parameters and recording and/or
displaying simulation results.

5. Set up controls for running simulations.

We will demonstrate this process by constructing a network model that can be used to
examine the contributions of synaptic, cellular, and network properties to the emergence
of synchronous and/or correlated firing patterns.

Conceptual model
The conceptual model is a fully connected network, i.e. each cell projects to all other

cells, but not to itself (Fig. 11.1 left). All conduction delays and synaptic latencies are
identical.

The cells are spontaneously active integrate and fire neurons, similar to those that we
discussed in Chapter 10. All cells have the same time constant and firing threshold, but
in isolation each has its own natural interspike interval (ISI), and the ISIs of the
population are distributed uniformly over a fixed range (Fig. 11.1 right).

Figure 11.2 illustrates the dynamics of these cells. Each spike is followed by a "post-
spike" hyperpolarization of the membrane state variable m, which then decays
monoexponentially toward a suprathreshold level. When m reaches threshold (1), it
triggers another spike and the cycle repeats. A synaptic input hyperpolarizes the cell and
prolongs the ISI in which it occurred, shifting subsequent spikes to later times. Each input
produces the same hyperpolarization of m, regardless of where in the ISI it falls. Even so,
the shift of the spike train depends on the timing of the input. If it arrives shortly after a
spike, the additional hyperpolarization decays quickly and the spike train shifts by only a

Page 2 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 18, 2004 The NEURON Book: Chapter 11

small amount (Fig. 11.2 left). An input that arrives late in the ISI can cause a much larger
shift in the subsequent spike train (Fig. 11.2 right).

Our task is to create a model that will allow us to examine how synaptic weight,
membrane time constant and natural firing frequency, number of cells and conduction
latency interact to produce synchronized or correlated spiking in this network.

0 20 40 60 80 100
ms

Cell

1

3

5

0

2

4

Figure 11.1. Left: An example of a fully connected net. Thin lines indicate reciprocal connections
between each pair of cells, and thick lines mark projections from one cell to its targets. Right:
When disconnected from each other, every cell has its own natural firing frequency.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1
IntervalFire[0].M

ms
0 10 20 30 40

0

0.2

0.4

0.6

0.8

1
IntervalFire[0].M

50
ms

Figure 11.2. Time course of the membrane state variable m in the absence (thin traces) and
presence (thick traces) of an inhibitory input. Notice that m follows a monoexponential
"depolarizing" time course which carries it toward a suprathreshold level. When m reaches 1, a
spike is triggered and m is reset to 0 ("post-spike hyperpolarization"). An inhibitory synaptic
event causes the same hyperpolarizing shift of m no matter where in the ISI it arrives, but its
effect on later spike times depends on its relative position in the ISI. Left: Inhibitory events that
occur early in the ISI decay quickly, so following spikes are shifted to slightly later times. Right:
An inhibitory event that occurs late in the ISI has a longer lasting effect and causes a greater
delay of the subsequent spike train.

Adding a new artificial spiking cell to NEURON
Before we start to build this network, we need to add a new kind of artificial spiking

cell to NEURON. Our model will use cells whose membrane state variable m is governed
by the equation

� dm
dt

�
m � m � Eq. 11.3

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

The NEURON Book: Chapter 11 November 18, 2004

where m � > 1 and is set to a value that produces spontaneous firing with the desired ISI.

An input event with weight w adds instantaneously to m, and if m reaches or exceeds the
threshold value of 1, the cell "fires," producing an output event and returning m to 0. We
will call this the I nt er val Fi r e model, and the NMODL code for it is shown in
Listing 11.1. I nt er val Fi r e has essentially the same dynamics as I nt Fi r e1, but
because its membrane state relaxes toward a suprathreshold value, it uses a f i r et i me()
function to compute the time of the next spike (see discussions of I nt Fi r e1 and
I nt Fi r e2 in Chapter 10).

NEURON {
 ARTI FI CI AL_CELL I nt er val Fi r e
 RANGE t au, m, i nvl
}

PARAMETER {
 t au = 5 (ms) <1e- 9, 1e9>
 i nvl = 10 (ms) <1e- 9, 1e9>
}

ASSI GNED {
 m
 mi nf
 t 0(ms)
}

I NI TI AL {
 mi nf = 1/ (1 - exp(- i nvl / t au)) : so nat ur al spi ke i nt er val i s i nvl
 m = 0
 t 0 = t
 net _send(f i r et i me() , 1)
}

NET_RECEI VE (w) {
 m = M()
 t 0 = t
 i f (f l ag == 0) {
 m = m + w
 i f (m > 1) {
 m = 0
 net _event (t)
 }
 net _move(t +f i r et i me())
 } el se {
 net _event (t)
 m = 0
 net _send(f i r et i me() , 1)
 }
}

FUNCTI ON f i r et i me() (ms) { : m < 1 and mi nf > 1
 f i r et i me = t au* l og((mi nf - m) / (mi nf - 1))
}

Page 4 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 18, 2004 The NEURON Book: Chapter 11

FUNCTI ON M() {
 M = mi nf + (m - mi nf) * exp(- (t - t 0) / t au)
}

Listing 11.1. NMODL implementation of I nt er val Fi r e. Figures 11.1 (right)
and 11.3 illustrate its operation.

Creating a prototype net with the GUI
After we compile the code in Listing 11.1 (see Chapter 9), when we launch nr ngui

these lines should appear at the end of NEURON's startup message

Addi t i onal mechani sms f r om f i l es
 i nvl f i r e. mod

to reassure us that what was defined in i nvl f i r e. mod--i.e. the I nt er val Fi r e cell
class--is now available. We are ready to use the GUI to build and test a prototype net.

1. Define the types of cells
This involves using the existing cell classes to create the types of cells that we will

employ in our network. Our network contains artificial spiking cells, so we need an
ArtCellGUI tool, which we get by clicking on Build / NetWork Cell / Artificial Cell in the
NEURON Main Menu toolbar (Fig. 11.3).

Figure 11.3. Using the NEURON Main Menu to bring up an ArtCellGUI tool.

The gray area in the lower left corner of the ArtCellGUI tool displays a list of the
types of artificial spiking cells that will be available to the NetWork Builder. It starts out
empty because we haven't done anything yet (Fig. 11.4). To remedy this, click on New
and scroll down to select IntervalFire (Fig. 11.5 left), and then release the mouse button.
The Artificial Cell types list now contains a new item called IntervalFire, and the right
panel of the ArtCellGUI tool shows the user-settable parameters for this cell type
(Fig. 11.5 right). These default values are fine for our initial exploratory simulations, so
we'll leave them as is.

However, there is one small change that will make it easier to use the NetWork
Builder: IntervalFire is a big word, and the NetWork Builder's canvas is relatively small.
So let's give our cell type a short, unique name, like IF (see Figures 11.6 and 7).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

The NEURON Book: Chapter 11 November 18, 2004

Figure 11.4. The ArtCellGUI tool starts with an empty Artificial Cell types list.

Figure 11.5. Click on New / IntervalFire to add it to the Artificial Cell types list.

Figure 11.6. Changing the name of one of the Artificial Cell types.

To change the name of one of the Artificial Cell types, select it (if it isn't
already selected) and then click on the Rename button.

This pops up a window with a string editor field. Click in the field . . .

Page 6 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 18, 2004 The NEURON Book: Chapter 11

 . . . change the name to IF, and then click the Accept button.

Figure 11.7. The ArtCellGUI tool after renaming the cell type. The right panel
shows that IF is based on the IntervalFire class.

Now that we have configured the ArtCellGUI tool, it would be a good idea to save
everything to a session file with NEURON Main Menu / File / save session (also see
Fig. 1.23 and Save the model cell in Chapter 1). If you like, you may hide the
ArtCellGUI tool by clicking on Hide just above the drag bar, but don't close it--the
NetWork Builder will need it to exist.

2. Create each cell in the network
Having specified the cell types that will be used in the network, we are ready to use

the NetWork Builder to create each cell in the network and connect them to each other.
Actually, we'll just be creating the specification of each cell in the net; no cells are really
created and there is no network until the Create button in the NetWork Builder is ON.

To get a NetWork Builder, click on NEURON Main Menu / Build / NetWork Builder
(Fig. 11.8).

Figure 11.8. Bringing up a NetWork Builder.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

The NEURON Book: Chapter 11 November 18, 2004

The NetWork Builder's drag bar reveals that this tool is an instance of the Net Gui class
(see Fig. 11.9).

The right panel of a NetWork Builder is a canvas for laying out the network. The
"palette" for this canvas is a menu of the cell types that were created with the ArtCellGUI
tool. These names appear along the upper left edge of the canvas (for this example, a
limited palette indeed: IF is the only cell type). Context-dependent hints are displayed at
the top of the canvas.

The left panel of a NetWork Builder contains a set of buttons that control its operation.
When a NetWork Builder is first created, its Locate radio button is automatically ON.
This means that the NetWork Builder is ready for us to create new cells. We do this by
merely following the hint (Fig. 11.10). Notice that the cell names are generated by
concatenating the base name (name of the cell type) with a number that starts at 0 and
increases by 1 for each new cell. We'll say more about this below in 7. A word about
cell names.

Figure 11.9. A new NetWork Builder.

Figure 11.10. Creating new cells in the NetWork Builder.

To create a new cell, click on one of the items in
the palette (in this example, the only item is IF)
and hold the mouse button down . . .

while dragging the new cell to a convenient
location on the canvas. Release the mouse
button, and you will see a new cell labeled IF0.

Page 8 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 18, 2004 The NEURON Book: Chapter 11

After you create a second IF cell, the NetWork
Builder should look like this.

If you released the mouse button while the cursor was still close to one of the palette
items, the new cell will be hard to select since palette item selection takes precedence
over selection of a cell. If this happens, just select Translate in the canvas's secondary
menu (the canvas is just a modified graph!) and then left click on the canvas and drag it
to the right (if you have a three button mouse, or a mouse with a scroll wheel, don't
bother with the canvas's menu--just click on the middle button or scroll wheel and drag
the canvas). This will pull the cell out from under the palette items, which never move
from their position along the left edge of the canvas. Finally, click on one of the radio
buttons (Locate, Src -> Tar, etc.) and continue working with the NetWork Builder.

3. Connect the cells
Connecting the cells entails two closely related tasks: setting up the network's

architecture, and specifying the delays and weights of these connections.

Setting up network architecture

To set up the architecture, we click on the Src -> Tar radio button, read the new hint
in the canvas, and do what it says (Fig. 11.11).

Figure 11.11. Setting up network architecture.

Clicking on the Src -> Tar button brings out a
new hint.

So we click on IF0 and hold the mouse button
down while dragging the cursor toward IF1. A
thin "rubber band" line will stretch from IF0 to
the cursor.

When the cursor is on top of IF1, the rubber
band becomes a thick black line, and the hint
changes to the message shown here.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

The NEURON Book: Chapter 11 November 18, 2004

To complete the attachment, we just release the
mouse button. The projection ("edge") from IF0
to IF1 will appear as a thin line with a slight
bend near its midpoint. The O marks the target
end of this connection.

Making the reciprocal connection requires only
that we click on IF1, drag to IF0, and release the
mouse button.

This is a good time to save everything to a session file.

Specifying delays and weights

The default initial value of all synaptic weights is 0, i.e. a presynaptic cell will have
no effect on its postsynaptic targets. The NetWork Builder has a special tool that we can
use to change the weights to what we want (Fig. 11.12).

Figure 11.12. Setting the synaptic weights.

Clicking on the Weights button in the NetWork Builder . . .

 . . . brings up a tool for specifying synaptic weights. The top of this
tool has a numeric field with its associated spinner and button
(labeled Weight). The value in the numeric field can be set in the
usual ways (direct entry, using the spinner, etc.), but note the
arrows, which suggest other possibilities.

The bottom of the weights tool contains two panels that list the
weights of all synaptic connections (aka "edges" in network theory).
Clicking on a connection in the left list copies from the connection
to the numeric field, and clicking on a connection in the right list
copies from the numeric field to the connection.

Page 10 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 18, 2004 The NEURON Book: Chapter 11

For this example, let's make both synapses have a weight of -0.1
(mild inhibition). First we change Weight to -0.1 . . .

 . . . and then we click on IF0->IF1 and IF1->IF0 in the right panel.
We're finished when the weights tool looks like this.

Now we can close this window. If we need it again, clicking on the
NetWork Builder's Weights button will bring it back.

All delays are 1 ms by default, which is fine for our purposes. If we wanted to change
this to something else, we would click on the NetWork Builder's Delays button (see
Fig. 11.9) to bring up a tool for setting delays. The delay tool works just like the weight
tool.

At this point, the ArtCellGUI tool plus the NetWork Builder together constitute a
complete specification of our network model. We should definitely save another session
file before doing anything else!

Now we have a decision to make. We could use the NetWork Builder to create a hoc
file that, when executed, would create an instance of our network model. A better choice
is to use the GUI to test our model. If there are any problems with what we have done so
far, this is a good time to find out and make the necessary corrections.

However, before we can run tests, there must first be something to test. We have a
network specification, but no network. As we pointed out earlier in 2. Create each cell
in the network, the network doesn't really exist yet. Clicking on the Create button in the
NetWork Builder fixes that (Fig. 11.13).

4. Set up instrumentation
We want to see what our network does, and to explore how its behavior is affected by

model parameters. Clicking on the SpikePlot button in the NetWork Builder brings up a
tool that will show the input and output spike trains (Fig. 11.14).

We already know how to adjust model parameters. With the NetWork Builder we can
change synaptic weights and delays, and the IF cells' properties can be changed with the
ArtCellGUI tool. Suddenly, we realize that both IF cells will have the same time constant
and firing rate. No problem--our goal is to combine the strengths of the GUI and hoc . We
will take care of this later, by combining the hoc code that the NetWork Builder generates
with our own hoc code. Using a few lines of hoc, we can easily assign unique firing

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 11

The NEURON Book: Chapter 11 November 18, 2004

rates across the entire population of IF cells. And if we insisted on sticking with GUI
tools to the bitter end, we could just bring up a PointProcessGroupManager (NEURON
Main Menu / Tools / Point Processes / Managers / Point Group), which would allow us
to control the attributes of each cell in our network individually.

Figure 11.13. Left: Toggling the Create button ON causes the network
specification to be executed. Right: Once Create is ON, the representation of
the network is available for NEURON's computational engine to use in a
simulation.

Figure 11.14. The NetWork Builder's SpikePlot button (left) brings up a tool for
displaying and analyzing spike trains (right).

5. Set up controls for running simulations
At a minimum, we need a RunControl panel (NEURON Main Menu / Tools /

RunControl, as shown in 5. Set up controls for running the simulation in Chapter 1).
Also, since our network contains only artificial spiking neurons, we can use adaptive

Page 12 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 18, 2004 The NEURON Book: Chapter 11

integration to achieve extremely fast, discrete event simulations. We'll need a
VariableTimeStep panel (NEURON Main Menu / Tools / VariableStepControl
(Fig. 11.15)), which makes it easy to choose between fixed time step or adaptive
integration (Fig. 11.16).

Figure 11.15. Bringing up a VariableTimeStep panel.

Figure 11.16. Toggling adaptive integration ON and OFF.

The VariableTimeStep panel's Use variable dt checkbox is empty,
which means that adaptive integration is off.

To turn adaptive integration ON, we click on the Use variable dt
checkbox.

The check mark in the Use variable dt checkbox tells us that
adaptive integration is ON. Clicking on this checkbox again will
turn it back OFF so that fixed time steps are used.

Adaptive integration can use either global or local time steps, each of which has its
own particular strengths and weaknesses (see Adaptive integrators in Chapter 7). The
VariableTimeStep panel's default setting is to use global time steps, which is best for
models of single cells or perfectly synchronous networks. Our toy network has two
identical cells connected by identical synapses, so we would expect them to fire
synchronously. However, when we build our net with hoc code, the cells will all have
different natural firing frequencies, and who can tell in advance that they will achieve
perfect synchrony? Besides, this is a tutorial, so let's use local time steps (Fig. 11.17).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

The NEURON Book: Chapter 11 November 18, 2004

Figure 11.17. Toggling between global and local time steps.

To specify whether to use global or local time steps,
we first click on the VariableTimeStep panel's Details
button.

We are concerned with the Local step checkbox,
which is empty. To activate the use of local variable
time steps . . .

 . . . we just click on the Local step checkbox . . .

 . . . and now each cell in our network will advance
with its own time step. If we want to restore global
time steps, we can just click on the Cvode button.

Now we can close this panel; should we need it again,
we only have to click on the VariableTimeStep panel's
Details button.

Page 14 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 18, 2004 The NEURON Book: Chapter 11

After rearrangement, the various windows we have created should look something
like Fig. 11.18. The tools we used to specify the network are on the left, simulation
controls are in the middle, and the display of simulation results is on the right. Quick,
save it to a session file!

Figure 11.18. The completed model with controls for running simulations and
displaying results.

6. Run a simulation
This is almost too easy. Clicking on Init & Run in the RunControl panel, we see--

nothing! Well, almost nothing. The t field in the RunControl panel shows us that time
advanced from 0 to 5 ms, but there were no spikes. A glance at the ArtCellGUI tool tells
us why: invl is 5 ms, which means that our cells won't fire their first spikes for another
5 ms. Let's change Tstop to 200 ms so we'll get a lot of spikes, and try again. This time
we're successful (Fig. 11.19).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 15

The NEURON Book: Chapter 11 November 18, 2004

Figure 11.19. The SpikePlot shows the spike trains generated by the cells in our
network model. Note that rasters correspond to cell names from top to bottom,
and that the raster for cell i is plotted along the line y = i + 1.

7. Caveats and other comments

Changing the properties of an existing network

As we saw in this example, the ArtCellGUI tool is used to specify what artificial
spiking cell types are available to a Network Builder. The same ArtCellGUI tool can be
used to adjust the parameters of those cells, and such changes take effect immediately,
even if the network already exists (i.e. even if the Network Builder's Create button is
ON).

The NetReadyCellGUI tool (NEURON Main Menu / Build / Network Cell / From Cell
Builder) is used to configure biophysical model cell types for use with a Network Builder.
In fact, we would use a separate NetReadyCellGUI instance for each different type of
biophysical model cell we wanted to use in the net. The NetReadyCellGUI tool has its
own CellBuilder for specifying topology, geometry, and biophysical properties, plus a
SynapseTypes tool for adding synaptic mechanisms to the cell (see the tutorial at
ht t p: / / www. neur on. yal e. edu/ neur on/ docs/ net bui l d/ mai n. ht ml). However,
changes made with a NetReadyCellGUI tool do not affect an existing network; instead, it
is necessary to save a session file, exit NEURON, restart and reload the session file.

What about changes to the network itself? Any changes whatsoever can be made in
the Network Builder, as long as its Create button is OFF. Once it is ON, some changes are
possible (e.g. adding new cells and synaptic connections to an existing network), but
additional actions may be required (a pre-existing SpikePlot will not show spike trains
from new cells), and there is a risk of introducing a mismatch between one's conceptual
model and what is actually in the computer. The best policy is to toggle Create OFF (see
Fig. 11.20), make whatever changes are needed, save everything to a session file, exit
NEURON, and then restart and load the new session file.

Page 16 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 18, 2004 The NEURON Book: Chapter 11

Figure 11.20. Trying to turn Create OFF brings up this window, which offers
the opportunity to change one's mind. Select Turn off if it is necessary to make
substantial changes to an existing network in the NetWork Builder.

A word about cell names

As we mentioned above in 2. Create each cell in the network, the cell names that
appear in the NetWork Builder are generated automatically by concatenating the name of
the cell type with a sequence of numbers that starts at 0 and increases by 1 for each
additional cell. But that's only part of the story. These are really only short "nicknames,"
a stratagem for preventing the NetWork Builder and its associated tools from being
cluttered with long character strings.

This is fine as long as the NetWork Builder does everything we want. But suppose we
need to use one of NEURON's other GUI tools, or we have to write some hoc code that
refers to one of our model's cells? For example, we might have a network that includes a
biophysical model neuron, and we want to see the time course of somatic membrane
potential. In that case, it is absolutely necessary to know the actual cell names.

That's where the NetWork Builder's Cell Map comes in. Clicking on Show Cell Map
brings up a small window that often needs to be widened by clicking and dragging on its
left or right margin (Fig. 11.21). Now we realize that, when we used the ArtCellGUI tool
to create an IF cell "type," we were actually specifying a new cell class whose name is a
concatenation of our "type" (IF), an underscore character, and the name of the root class
(the name of the class that we based IF on, which was IntervalFire).

Figure 11.21. The Cell Map for our toy network. See text for details.

Combining the GUI and programming

Creating a hoc file from the NetWork Builder
Having tested our prototype model, we are now ready to write a hoc file that can be

mined for reusable code. Clicking on the Hoc File button in the NetWork Builder brings
up a tool that looks much like what we used to specify file name and location when

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 17

The NEURON Book: Chapter 11 November 18, 2004

saving a session file. Once we're satisfied with our choices, clicking on this tool's "Open"
button writes the hoc file (yes, the button should say Close). This file, which we will call
pr ot ot ype. hoc , is presented in Listing 11.2, and executing it would recreate the toy
network that we just built with the NetWork Builder.

/ / Net GUI def aul t sect i on. Ar t i f i ci al cel l s, i f any, ar e l ocat ed her e.
 cr eat e acel l _home_
 access acel l _home_

/ / Net wor k cel l t empl at es
/ / Ar t i f i ci al cel l s
/ / I F_I nt er val Fi r e

begi nt empl at e I F_I nt er val Fi r e
publ i c pp, connect 2t ar get , x, y, z, posi t i on, i s_ar t
ext er nal acel l _home_
obj r ef pp
pr oc i ni t () {
 acel l _home_ pp = new I nt er val Fi r e(. 5)
}
f unc i s_ar t () { r et ur n 1 }
pr oc connect 2t ar get () { $o2 = new Net Con(pp, $o1) }
pr oc posi t i on() { x=$1 y=$2 z=$3}
endt empl at e I F_I nt er val Fi r e

/ / Net wor k speci f i cat i on i nt er f ace

obj r ef cel l s, ncl i st , net con
{ cel l s = new Li st () ncl i st = new Li st () }

f unc cel l _append() { cel l s. append($o1) $o1. posi t i on($2, $3, $4)
r et ur n cel l s. count - 1

}

f unc nc_append() { / / sr ci ndex, t ar cel i ndex, syni ndex
 i f ($3 >= 0) {
 cel l s. obj ect ($1) . connect 2t ar get (cel l s. obj ect ($2) . synl i st . obj ect ($3) , \
 net con)
 net con. wei ght = $4 net con. del ay = $5
 } el se{
 cel l s. obj ect ($1) . connect 2t ar get (cel l s. obj ect ($2) . pp, net con)
 net con. wei ght = $4 net con. del ay = $5
 }
 ncl i st . append(net con)
 r et ur n ncl i st . count - 1
}

/ / Net wor k i nst ant i at i on

 / * I F0 * / cel l _append(new I F_I nt er val Fi r e() , - 149, 73, 0)
 / * I F1 * / cel l _append(new I F_I nt er val Fi r e() , - 67, 73, 0)
 / * I F1 - > I F0 * / nc_append(1, 0, - 1, - 0. 1, 1)
 / * I F0 - > I F1 * / nc_append(0, 1, - 1, - 0. 1, 1)

Listing 11.2. Clicking on the Hoc File button in the NetWork Builder produces a
file which we have called pr ot ot ype. hoc .

Page 18 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 18, 2004 The NEURON Book: Chapter 11

A quick glance over the entire listing reveals that pr ot ot ype. hoc is organized into
several parts, which are introduced by one or more lines of descriptive comments. Let us
consider each of these in turn, to see how it works and think about what we might reuse
to make a network of any size we like.

NetGUI default section

The first part of the file creates acel l _home_ and make this the default section.
What is a section doing in a model that contains artificial spiking cells? Remember that
artificial spiking cells are basically point processes (see Artificial spiking cells in
Chapter 10), and just like other point processes, they must be attached to a section.
Suddenly the meaning of the comment Ar t i f i c i al cel l s, i f any, ar e
l ocat ed her e becomes clear: acel l _home_ is merely a "host" for artificial spiking
cells. It has no biophysical mechanisms of its own, so it introduces negligible
computational overhead.

Network cell templates

The NetWork Builder and its associated tools make extensive use of object-oriented
programming. Each cell in the network is an instance of a cell class, and this is where the
templates that declare these classes are located (templates and other aspects of object-
oriented programming in NEURON are discussed in Chapter 13).

The comments that precede the templates contain a list of the cell class names. Our
toy network uses only one cell class, so pr ot ot ype. hoc contains only one template,
which defines the I F_I nt er val Fi r e class. When biophysical model cells are present,
they are declared first. Thus, if we had a NetWork Builder whose palette contained a
biophysical model cell type called pyr, and an artificial spiking cell type S that was
derived from the Net St i m class, the corresponding cell classes would be called
pyr _Cel l and S_Net St i m, and the header in the exported hoc file would read

/ / Net wor k cel l t empl at es
/ / pyr _Cel l
/ / Ar t i f i c i al cel l s
/ / S_Net St i m

Functions and procedures with the same names as those contained in the
I F_I nt er val Fi r e template will be found in every cell class used by a NetWork Builder
(although some of their internal details may differ). The first of these is i ni t () , which is
executed automatically whenever a new instance of the I F_I nt er val Fi r e class is
created. This in turn creates a new instance of the I nt er val Fi r e class that will be
associated with the acel l _home_ section. As an aside, we should mention that this is an
example of how the functionality of a basic object class can be enhanced by wrapping it
inside a template in order to define a new class with additional features, i.e. an example
of emulating inheritance in hoc (see Polymorphism and Inheritance in Chapter 13).

The remaining f uncs and pr ocs are public so they can be called from outside the
template. If we ever need to determine which elements in a network are artificial spiking
cells and which are biophysical model cells, i s_ar t () is clearly the way to do it. The
next is connect 2t ar get () , which looks useful for setting up network connections, but

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 19

The NEURON Book: Chapter 11 November 18, 2004

it turns out that the hoc code we write ourselves won't call this directly (see Network
specification interface below). The last is posi t i on() which can be used to specify
unique xyz coordinates for each instance of this cell. The coordinates themselves are
public (accessible from outside the template--see Chapter 13 for more about accessing
variables, f uncs and pr ocs declared in a template). Position may seem an arcane
attribute for an artificial spiking neuron, but it is helpful for algorithmically creating
networks in which connectivity or synaptic weight are functions of location or distance
between cells.

Network specification interface

These are the variables and functions that we will actually call from our own hoc
code. These are intended to offer us a uniform, compact and convenient syntax for setting
up our own network. That is, they serve as a "programming interface" between the code
we write and the lower level code that accomplishes our ultimate aims.

The purpose of the first two lines in this part of pr ot ot ype. hoc is evident if we
keep in mind that the NetWork Builder implements a network model with objects, some
of which represent cells while others represent the connections between them. The Li st
class is the programmer's workhorse for managing collections of objects, so it is
reasonable that our network model will be packaged into two Li st s called cel l s and
ncl i s t .

The functions that add new elements to these Li st s are cel l _append() and
nc_append() , respectively. The first argument to cel l _append() is an obj r ef that
points to a new cell that is to be added to the list, and the remaining arguments are the
xyz coordinates that are to be assigned to that cell. The nc_append() function uses an
i f . . . el se to deal properly with either biophysical model cells or artificial spiking
cells. In either case, its first two arguments are integers that indicate which elements in
cel l s are the obj r ef s that correspond to the pre- and postsynaptic cells, and the last
two arguments are the synaptic weight and delay. If the postsynaptic cell is a biophysical
model cell, one or more synaptic mechanisms will have been attached to it (see the
tutorial at ht t p: / / www. neur on. yal e. edu/ neur on/ docs/ net bui l d/ mai n. ht ml). In
this case, the third argument to nc_append() is a nonnegative integer that specifies
which synaptic mechanism is to be the target of the new Net Con. If instead the
postsynaptic cell is an artificial spiking cell, the argument is just -1.

Network instantiation

So far everything has been quite generic, in the sense that we can use it to create cells
and assemble them into whatever network architecture we desire. In other words, the
code up to this point is exactly the reusable code that we needed. The statements in the
"network instantiation" group are just a concrete example of how to use it to spawn a
particular number of cells and link them with a specific network of connections. Let's
make a copy of pr ot ot ype. hoc , call it net def s. hoc, and then insert / / at the
beginning of each of last four lines of net def s. hoc so they persist as a reminder of
how to call cel l _append() and nc_append() but won't be executed. We are now
ready to use net def s. hoc to help us build our own networks.

Page 20 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 18, 2004 The NEURON Book: Chapter 11

Exploiting the reusable code
Where should we begin? A good way to start is by imagining the overall organization

of the entire program at the "big picture" level. We'll need the GUI library, the class
definitions and other code in net def s. hoc, code to specify the network model itself,
and code that sets up controls for adjusting model parameters, running simulations, and
displaying simulation results. Following our recommended practices of modular
programming and separating model specification from user interface (see Elementary
project management in Chapter 6), we turn this informal outline into an i ni t . hoc
file that pulls all these pieces together (Listing 11.3).

l oad_f i l e(" nr ngui . hoc")
l oad_f i l e(" net def s. hoc") / / code f r om Net Wor k Bui l der - gener at ed hoc f i l e
l oad_f i l e(" makenet . hoc") / / speci f i es net wor k
l oad_f i l e(" r i g. hoc") / / f or adj ust i ng model par ams and r unni ng si mul at i ons

Listing 11.3. The i ni t . hoc for our own network program.

For now, we can comment out the last two lines with / / so we can test
net def s. hoc by using NEURON to execute i ni t . hoc. and then typing a few
commands at the oc> prompt (user entries are Courier bold while the interpreter's
output is plain Cour i er).

Addi t i onal mechani sms f r om f i l es
 i nvl f i r e. mod

1
1

oc>objref foo
oc>foo = new IF_IntervalFire()
oc>foo

I F_I nt er val Fi r e[0]
oc>

So far so good. We are ready to apply the strategy of iterative program development (see
Iterative program development in Chapter 6) to fill in the details.

The first detail is how to create a network of a specific size. If we call the number of
cells ncel l , then this loop

 f or i =0, ncel l - 1 {
 cel l _append(new I F_I nt er val Fi r e() , i , 0, 0)
 }

will make them for us, and this nested loop

 f or i =0, ncel l - 1 f or j =0, ncel l - 1 i f (i ! = j) {
 nc_append(i , j , - 1, 0, 1)
 }

will attach them to each other. A first stab at embedding both of these in a procedure
which takes a single argument that specifies the size of the net is

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 21

The NEURON Book: Chapter 11 November 18, 2004

pr oc cr eat enet () { l ocal i , j
 ncel l = $1
 f or i =0, $1- 1 {
 cel l _append(new I F_I nt er val Fi r e() , i , 0, 0)
 }
 f or i =0, $1- 1 f or j =0, $1- 1 i f (i ! = j) {
 nc_append(i , j , - 1, 0, 1)
 }
}

and that's what we put in the first version of makenet . hoc .

We can test this by uncommenting the l oad_f i l e(" makenet . hoc") line in
i ni t . hoc , using NEURON to execute i ni t . hoc., and then typing a few commands at
the oc> prompt.

oc>createnet(2)
oc>ncell

2
oc>print cells, nclist

Li st [8] Li st [9]
oc>print cells.count, nclist.count

2 2
oc>for i=0,1 print cells.object(i), nclist.object(i)
I F_I nt er val Fi r e[0] Net Con[0]
I F_I nt er val Fi r e[1] Net Con[1]
oc>

So it works. But almost immediately a wish list of improvements comes to mind. In
order to try networks of different sizes, we'll be calling cr eat enet () more than once
during a single session. As it stands, repeated calls to cr eat enet () just tack more and
more new cells and connections onto the ends of the cel l s and ncl i s t lists. Also,
cr eat enet () should be protected from nonsense arguments (a network should have at
least two cells).

We can add these fixes by changing ncel l = $1 to

i f ($1<2) { $1 = 2 }
ncel l = $1
ncl i s t . r emove_al l ()
cel l s . r emove_al l ()

The first line ensures our net will have two or more cells. The last two lines use the Li st
class's r emove_al l () to purge cel l s and ncl i s t . Of course we check this

oc>createnet(1)
oc>ncell

2
oc>createnet(2)
oc>ncell

2
oc>createnet(3)
oc>ncell

3
oc>

which is exactly what should happen.

Page 22 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 18, 2004 The NEURON Book: Chapter 11

What else should go into makenet . hoc? How about procedures that make it easy to
change the properties of the cells and connections? For example, this

pr oc del ay() { l ocal i
 del = $1
 f or i =0, ncl i s t . count - 1 {
 nc l i s t . obj ect (i) . del ay = $1
 }
}

lets us set all synaptic delays to the same value by calling del ay() with an appropriate
argument. Similar pr ocs can take care of weights and cellular time constants. Setting
ISIs seems more complicated at first, but after a few false starts we come up with

pr oc i nt er val () { l ocal i , x, dx
 l ow = $1
 hi gh = $2
 x = l ow
 dx = (hi gh - l ow) / (cel l s . count - 1)
 f or i =0, cel l s . count - 1 {
 cel l s . obj ect (i) . pp. i nv l = x
 x += dx
 }
}

This assigns the l ow ISI to the first cell in cel l s , the hi gh ISI to the last cell in cel l s ,
and evenly spaced intermediate values to the other cells.

Does that mean the first cell is the fastest spiker, and the last is the slowest? Only if
we are careful about the argument sequence when we call i nt er val () . For that matter,
what prevents us from calling i nt er val () with one or both arguments < 0? Come to
think of it, some of our other pr ocs might also benefit by being protected from nonsense
arguments. For example, we might protect against negative delays by changing

del = $1

in pr oc del ay() to

i f ($1<0) $1=0
del = $1

and we could insert similar argument-trapping code into other pr ocs as necessary.

However, it makes more sense to try to identify a common task that can be split out
into a separate function that can be called by any pr oc that needs it. It may help to
tabulate the vulnerable variables and their restrictions.

Variable Restriction
ncel l

�
 2

t au > 0
l ow ISI > 0
hi gh ISI

�
 l ow ISI

del
�

 0

Most of these are "greater than or equal to" restrictions, the two holdouts being t au and
l ow ISI. After a moment we realize that there are practical lower limits to these

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 23

The NEURON Book: Chapter 11 November 18, 2004

variables--say 0.1 ms for t au and 1 ms for l ow ISI--so "greater than or equal to"
restrictions can be applied to all.

The final version of makenet . hoc (Listing 11.4) contains all of these refinements.
The statements at the very end create a network by calling our revised pr ocs.

/ *
r et ur ns val ue >= $2
f or bul l et pr oof i ng pr ocs agai nst nonsense ar gument s
* /

f unc ge() {
 i f ($1<$2) {
 $1=$2
 }
 r et ur n $1
}

/ / / / / / / / / / c r eat e a net wor k / / / / / / / / / /

/ / ar gument i s desi r ed number of cel l s

pr oc cr eat enet () { l ocal i , j
 $1 = ge($1, 2) / / f or ce net t o have at l east t wo cel l s
 ncel l = $1
 / / so we can make a new net wi t hout hav i ng t o exi t and r est ar t
 nc l i s t . r emove_al l ()
 cel l s . r emove_al l ()
 f or i =0, $1- 1 {
 cel l _append(new I F_I nt er val Fi r e() , i , 0, 0)
 }
 f or i =0, $1- 1 f or j =0, $1- 1 i f (i ! = j) {
 / / l et wei ght be 0; we' l l gi ve i t a nonzer o val ue el sewher e
 nc_append(i , j , - 1, 0, 1)
 }
 obj r ef net con / / l eave no l oose ends (see nc_append())
}

/ / / / / / / / / / speci f y par amet er s / / / / / / / / / /

/ / cal l t hi s set t au() t o avoi d conf l i ct wi t h scal ar t au

pr oc set t au() { l ocal i
 $1 = ge($1, 0. 1) / / mi n t au i s 0. 1 ms
 t au = $1
 f or i =0, cel l s . count - 1 {
 cel l s . obj ect (i) . pp. t au = $1
 }
}

Page 24 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 18, 2004 The NEURON Book: Chapter 11

/ / ar gs ar e l ow and hi gh

pr oc i nt er val () { l ocal i , x, dx
 $1 = ge($1, 1) / / mi n l ow I SI i s 1 ms
 $2 = ge($2, $1)
 l ow = $1
 hi gh = $2
 x = l ow
 dx = (hi gh - l ow) / (cel l s . count - 1)
 f or i =0, cel l s . count - 1 {
 cel l s . obj ect (i) . pp. i nv l = x
 x += dx
 }
}

pr oc wei ght () { l ocal i
 w = $1
 f or i =0, ncl i s t . count - 1 {
 nc l i s t . obj ect (i) . wei ght = $1
 }
}

pr oc del ay() { l ocal i
 $1 = ge($1, 0) / / mi n del i s 0 ms
 del = $1
 f or i =0, ncl i s t . count - 1 {
 nc l i s t . obj ect (i) . del ay = $1
 }
}

/ / / / / / / / / / act ual l y make net and set par amet er s / / / / / / / / / /

cr eat enet (2)
set t au(10)
i nt er val (10, 11)
wei ght (0)
del ay(1)

Listing 11.4. Final implementation of makenet . hoc .

Time for more tests!

oc>del
0
oc>{delay(-1) print del}
0
oc>{delay(3) print del}
3
oc>createnet(4)
oc>ncell

4
oc>del
3
oc>

Of course we can and should test the other pr ocs, especially i nt er val () .

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 25

The NEURON Book: Chapter 11 November 18, 2004

Our attention now shifts to creating the user interface for adjusting model parameters,
controlling simulations, and displaying results. To evoke the metaphor of an experimental
rig, this is placed in a file called r i g. hoc .

An initial implementation of r i g. hoc might look like this

l oad_f i l e(" r unct l . ses") / / RunCont r ol and Var i abl eTi meSt ep

xpanel (" Model par amet er s")
xval ue(" Wei ght " , " w" , 1, " wei ght (w) " , 0, 0)
xval ue(" Del ay (ms) " , " del " , 1, " del ay(del) " , 0, 0)
xval ue(" Cel l t i me const ant (ms) " , " t au" , 1, " set t au(t au) " , 0, 0)
xval ue(" Shor t est nat ur al I SI " , " l ow" , 1, " i nt er val (l ow, hi gh) " , 0, 0)
xval ue(" Longest nat ur al I SI " , " hi gh" , 1, " i nt er val (l ow, hi gh) " , 0, 0)
xpanel (500, 400)

In the spirit of taking advantage of every shortcut the GUI offers, the first statement loads
a session file that recreates a RunControl and a VariableTimeStep panel configured for
the desired simulation duration (Tstop = 500 ms) and integration method (adaptive
integration with local time steps). The other statements set up a panel with numeric fields
and controls for displaying and adjusting model parameters. This implementation of
r i g. hoc lacks two important features: a graph that displays spike trains, and the ability
to change the number of cells in the network.

To prepare to record and plot spike trains, we can insert the following code right after
the l oad_f i l e() statement:

obj r ef net con, vec, spi kes, ni l , gr ast er

pr oc pr epr ast er pl ot () {
 spi kes = new Li st ()
 f or i =0, cel l s. count () - 1 {
 vec = new Vect or ()
 net con = new Net Con(cel l s. obj ect (i) . pp, ni l)
 net con. r ecor d(vec)
 spi kes. append(vec)
 }
 obj r ef net con, vec

 gr ast er = new Gr aph(0)
 gr ast er . vi ew(0, 0, t st op, cel l s. count () , 300, 105, 300. 48, 200. 32)
}

pr epr ast er pl ot ()

For each cell in the net, this creates a new Vect or , uses the Net Con class's r ecor d()
method to record the time of that cell's spikes into the Vect or , and appends the Vect or
to a Li st . After the end of the f or loop that iterates over the cells, the net con and vec
obj r ef s point to the last Net Con and Vect or that were created, exposing them to
possible interference if we ever do anything that reuses these obj r ef names. The
obj r ef net con, vec statement breaks the link between them and the objects, thereby
preventing such undesirable effects.

The last two statements in pr epr ast er pl ot () create a Gr aph and place it at a
desired location on the screen. How can we tell what the numeric values should be for the

Page 26 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 18, 2004 The NEURON Book: Chapter 11

arguments in the gr ast er . v i ew() statement? By creating a graph (NEURON Main
Menu / Graph / Voltage axis will do), dragging it to the desired location, saving it to a
session file all by itself, and then stealing the argument list from that session file's
save_wi ndow_. v i ew() statement--being careful to change the third and fourth
arguments so that the x and y axes span the correct range of values. No cut and try
guesswork for us! While we're at it, we might as well use the same strategy to fix the
location for our model parameter panel, but now we only need the fifth and sixth
arguments to vi ew() , which are the screen coordinates where the Gr aph is positioned.
For my monitor, this means the second xpanel statement becomes xpanel (300, 370) .

Running a new test, we find that our user interface looks like Fig. 11.22. Everything
is in the right place, and time advances when we click on Init & Run, but no rasters are
plotted.

Figure 11.22. The user interface after the first revision to r i g. hoc , in which
we added pr epr ast er pl ot () .

For each cell we need to draw a sequence of short vertical lines on gr ast er whose x
coordinates are the times at which that cell fired. To help us tell one cell's spikes from
another's, the vertical placement of their rasters should correspond to their ordinal
position in cel l s . We can do this by inserting the following code into r i g. hoc , right
after the call to pr epr ast er pl ot () . The first thing that pr oc showr ast er () does is
to clear any previous rasters off the Gr aph. Then, for each cell in turn, it uses three
Vect or class methods in succession: c() to create a Vect or that has as many elements
as the number of spikes that the cell fired, f i l l () to fill those elements with an integer
that is one more than the ordinal position of that cell in cel l s , and mar k() to mark the
firing times.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 27

The NEURON Book: Chapter 11 November 18, 2004

obj r ef spi key

pr oc showr ast er () {
 gr ast er . er ase_al l ()
 f or i = 0, cel l s . count () - 1 {
 spi key = spi kes. obj ect (i) . c
 spi key. f i l l (i +1)
 spi key. mar k(gr ast er , spi kes. obj ect (i) , " | " , 6)
 }
 obj r ef spi key
}

Testing once again, we run a simulation and then type showr ast er () at the oc>
prompt, and sure enough, there are the spikes. We change the longest natural ISI to
20 ms, run another simulation, and type showr ast er () once more, and it works again.

All this typing is tedious. Why not customize the r un() procedure so that it
automatically calls showr ast er () after each simulation? Adding this

pr oc r un() {
 st di ni t ()
 cont i nuer un(t s t op)
 showr ast er ()
}

to the end of r i g. hoc does the job (see An outline of the standard run system in
Chapter 7: How to control simulations).

Another test and we are overcome with satisfaction--it works. Then we change Tstop
to 200 ms, run a simulation, and are disappointed that the raster plot's x axis does not
rescale to match the new Tstop. One simple fix for this is to use a custom i ni t ()
procedure that sets the raster plot to the correct size during initialization (see Default
initialization in the standard run system: stdinit() and init() in Chapter 8). So we
insert this

pr oc i ni t () {
 f i ni t i al i ze(v_i ni t)
 gr ast er . er ase_al l ()
 gr ast er . s i ze(0, t s t op, 0, cel l s. count ())
 i f (cvode. act i ve()) {
 cvode. r e_i ni t ()
 } el se {
 f cur r ent ()
 }
 f r ecor d_i ni t ()
}

right after our custom r un() . Notice that this also rescales the y axis, which will be
helpful when we finally add the ability to change the number of cells in the network.

Success upon success! It works!

We can finally get around to changing the number of cells. Let's think this out
carefully before doing anything. We'll need a new control in the xpanel , to show how
many cells there are and let us specify a new number. That's easy--just put this line

xval ue(" Number of cel l s" , " ncel l " , 1, " r ecr eat e(ncel l) " , 0, 0)

Page 28 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 18, 2004 The NEURON Book: Chapter 11

right after xpanel (" Model par amet er s") so that when we change the value of
ncel l , we automatically call a new procedure called r ecr eat e() that will throw away
the old cells and their connections, and create a new set of each.

But what goes in r ecr eat e() ? We'll want the new cells and connections to have the
same properties as the old ones. And we'll have to replace the old raster plot with a new
one, complete with all the Net Cons and Vect or s that it uses to record spikes. So
r ecr eat e() should be

pr oc r ecr eat e() {
 cr eat enet ($1)
 set t au(t au)
 i nt er val (l ow, hi gh)
 wei ght (w)
 del ay(del)
 pr epr ast er pl ot ()
}

A good place for this is right before the xpanel 's code.

So now we have completed r i g. hoc (see Listing 11.5). The parameter panel has all
the right buttons (Fig. 11.23) so it is easy to explore the effects of parameter changes
(Fig. 11.24). How to develop an understanding of what accounts for these effects is
beyond the scope of this chapter, but we can offer one hint: run some simulations of a net
containing only 2 or 3 cells, using fixed time steps, and plot their membrane state
variables (actually their M functions).

/ / / / / / / / / / user i nt er f ace / / / / / / / / / /

l oad_f i l e(" r unct l . ses") / / RunCont r ol and Var i abl eTi meSt ep

/ / pr epar e t o r ecor d and di spl ay spi ke t r ai ns
obj r ef net con, vec, spi kes, ni l , gr ast er

pr oc pr epr ast er pl ot () {
 spi kes = new Li st ()
 f or i =0, cel l s. count () - 1 {
 vec = new Vect or ()
 net con = new Net Con(cel l s. obj ect (i) . pp, ni l)
 net con. r ecor d(vec)
 spi kes. append(vec)
 }
 obj r ef net con, vec

 gr ast er = new Gr aph(0)
 gr ast er . vi ew(0, 0, t st op, cel l s. count () , 300, 105, 300. 48, 200. 32)
}

pr epr ast er pl ot ()

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 29

The NEURON Book: Chapter 11 November 18, 2004

obj r ef spi key

pr oc showr ast er () {
 gr ast er . er ase_al l ()
 f or i = 0, cel l s. count () - 1 {
 spi key = spi kes. obj ect (i) . c
 spi key. f i l l (i +1)
 spi key. mar k(gr ast er , spi kes. obj ect (i) , " | " , 6)
 }
 obj r ef spi key
}

/ / dest r oys exi st i ng net and makes a new one
/ / al so spawns a new spi ke t r ai n r ast er pl ot
/ / cal l ed onl y i f we need a di f f er ent number of cel l s

pr oc r ecr eat e() {
 cr eat enet ($1)
 set t au(t au)
 i nt er val (l ow, hi gh)
 wei ght (w)
 del ay(del)
 pr epr ast er pl ot ()
}

xpanel (" Model par amet er s")
xval ue(" Number of cel l s" , " ncel l " , 1, " r ecr eat e(ncel l) " , 0, 0)
xval ue(" Wei ght " , " w" , 1, " wei ght (w) " , 0, 0)
xval ue(" Del ay (ms) " , " del " , 1, " del ay(del) " , 0, 0)
xval ue(" Cel l t i me const ant (ms) " , " t au" , 1, " set t au(t au) " , 0, 0)
xval ue(" Shor t est nat ur al I SI " , " l ow" , 1, " i nt er val (l ow, hi gh) " , 0, 0)
xval ue(" Longest nat ur al I SI " , " hi gh" , 1, " i nt er val (l ow, hi gh) " , 0, 0)
xpanel (300, 370)

/ / / / / / / / / / cust om r un() and i ni t () / / / / / / / / / /

pr oc r un() {
 st di ni t ()
 cont i nuer un(t st op)
 showr ast er () / / show r esul t s at t he end of each si mul at i on
}

pr oc i ni t () {
 f i ni t i al i ze(v_i ni t)
 gr ast er . er ase_al l ()
 gr ast er . si ze(0, t st op, 0, cel l s. count ()) / / r escal e x and y axes
 i f (cvode. act i ve()) {
 cvode. r e_i ni t ()
 } el se {
 f cur r ent ()
 }
 f r ecor d_i ni t ()
}

Listing 11.5. Complete implementation of r i g. hoc .

Page 30 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 18, 2004 The NEURON Book: Chapter 11

Figure 11.23. The parameter panel after addition of a control for changing the
number of cells.

Figure 11.24. Simulations of a fully connected network with 10 cells whose natural ISIs are spaced
uniformly over the range 10-15 ms. The rasters are arranged with ISIs in descending order from top to
bottom.

A: With all synaptic weights 0, cell firing is
asynchronous and uncorrelated.

B: Mild inhibitory coupling (weight -0.2) with a delay
of 1 ms silences the slowest cells and reduces the
firing rates of the others. There is a suggestion of
spike clustering, but no obvious synchrony or strong
correlation.

C: Increasing synaptic delay to 8 ms allows the
slowest cells to escape from inhibition and results in
strong correlation.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 31

The NEURON Book: Chapter 11 November 18, 2004

D: Close examination reveals that spikes are not
synchronous, but lag progressively across the
population with increasing natural ISI.

Page 32 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 18, 2004 The NEURON Book: Chapter 11

References

Web site retrieved 11/8/2004. NEURON Tutorial by Andrew Gillies and David Sterratt.
http://www.anc.ed.ac.uk/school/neuron/

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 33

