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Chapter 10

Synaptic transmission and artificial spiking cells

In NEURON, acell model isaset of differential equations. Network models consist
of cell models and the connections between them. Some forms of communication
between cells, e.g. graded synapses, gap junctions, and ephaptic interactions, require
more or less complete representations of the underlying biophysical mechanisms. In these
cases, coupling between cellsis achieved by adding terms that refer to one cell's variables
into equations that belong to a different cell. Thefirst part of this chapter describes the
PO NTER syntax that makes this possible in NEURON.

The same approach can be used for detailed mechanistic models of spike-triggered
transmission, which entails spike initiation and propagation to the presynaptic terminal,
transmitter release, ligand-receptor interactions on the postsynaptic cell, and
somatodendritic integration. However, it is far more efficient to use the widespread
practice of treating spike propagation from the trigger zone to the synapse as a delayed
logical event. The second part of this chapter tells how the Net Con (network connection)
class supports this event-based style of communication.

In the last part of this chapter, we use event-based communication to smplify
representation of the neurons themselves, creating highly efficient implementations of
artificial spiking cells, e.g. integrate and fire "neurons.” Artificia spiking cells are very
convenient sources of spike trains for driving synaptic mechanisms attached to
biophysical neuron models. Networks that consist entirely of artificial spiking cells run
hundreds of times faster than their biophysical counterparts, so they are particularly
suitable for prototyping network models. They are also excellent tools in their own right
for studying the functional consequences of network architectures and synaptic plasticity
rules. In Chapter 11 we demonstrate network models that involve various combinations
of biophysical and artificial neuron models.

Modeling communication between cells

Experiments have demonstrated many kinds of interactions between neurons, but for
most cells the principal avenues of communication are gap junctions and synapses. Gap
junctions and synapses generate localized ionic currents, so in NEURON they are
represented by point processes (see Point processes in Chapter 5, and Example 9.2: a
localized shunt and Example 9.3: an intracellular stimulating electrode in
Chapter 9).

The point processes used to represent gap junctions and synapses must produce a
change at one location in the model that depends on information (membrane potential,
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ca!cium concentration, the oqcurren_ce_of_ a Mode s with LONG TUDI NAL_DI FFUSI ON
spike) from some other location. Thisisin might also be considered "nonlocal," but
sharp contrast to the examples we discussed in their dependence on concentration in
Chapter 9, all of which are"local" inthe sense | adjacent segmentsis handled automatically
that an instance of amechanism at aparticular | o the NMODL transitor.

location on the cell depends only on the

STATEs and PARAVETERS of that model at that location. They may also depend on
voltage and ionic variables, but these also are at that location and automatically available
to the model. To see how to do this, we will examine models of graded synaptic
transmission, gap junctions, and spike-triggered synaptic transmission.

Example 10.1: graded synaptic transmission

A minimal conceptual model of graded synaptic transmission is that neurotransmitter
isreleased continuoudy at arate that depends on something in the presynaptic terminal,
and that this causes some change in the postsynaptic cell. For the sake of discussion, let's

say this something is [Ca?"] ore the concentration of free calcium in the presynaptic
terminal. We will also assume that the transmitter changes an ionic conductance in the

postsynaptic cell.
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Figure 10.1. Membrane potential in the immediate neighborhood of a
postsynaptic conductance depends on the synaptic current (1), the currents

through the local membrane capacitance and ionic conductances (I . and ;)
and the axial current arriving from adjacent regions of the cell (1,).

From the standpoint of the postsynaptic cell, a conductance-change synapse might
look like Fig. 10.1, where g, E, and | ; are the synaptic conductance, equilibrium
potential, and current, respectively. The effect of graded synaptic transmission on the
postsynaptic cell is expressed in Equation 10.1.

dv
m — 2+
o dt tlhion=1a~ (Vm_ Es) ' gs([ca ]pre) Fag. 10.1

Thisisthe charge balance equation for the electrical vicinity of the postsynaptic region.
The terms on the left hand side are the usual local capacitive and ionic transmembrane
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currents. The first term on the right hand side is the current that enters the postsynaptic
region from adjacent parts of the cell, which NEURON takes care of automatically. The
second term on the right hand side expresses the effect of the ligand-gated channels. The
current through these channels is the product of two factors. The first factor is merely the
local electrochemical gradient for ion flow. The second factor is a conductance term that
depends on the calcium concentration at some other location.

We already know that a localized conductance isimplemented in NEURON with a
point process, and that such a mechanism is automatically able to access al the local
variables that it needs (in this case, the local membrane potential and the synapse's
equilibrium potential). But the calcium concentration in the presynaptic terminal is
nonlocal, and that poses a problem; furthermore, it islikely to change with every
fadvance().

We could try inserting ahoc statement like this into the main computational loop
sonmedendrite.syn. capre = precell.bouton.cai (1)

At each time step, this would update the variable capr e in the synaptic mechanism syn
attached to the postsynaptic section sonmedendr i t e, making it equal to the free calcium
concentration cai at the 1 end of the bout on section in the presynaptic cell pr ecel | .
However, this statement would have to be reinterpreted at each f advance( ) , which
might slow down the simulation considerably.

If what happensto th_e postsynaptic c_ell depgands onthe POl NTER variables are not
moment-to-moment details of what is going on inthe limited to point processes.
presynaptic terminal, it isfar more efficient tousea Distributed mechanisms can
PO NTERvariable (see Listing 10.1). In NMODL, a al'so use POl NTERS, dthough
POl NTER variable holds a reference to another variable. possibly for very different
The specific referenceis defined by ahoc statement, aswe | PUPOS&
shall see below.

G aded synaptic transm ssion
NEURON {

PO NT_PROCESS GradSyn
PO NTER capre

RANGE e, k, g, i
NONSPECI FI C_CURRENT i
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ASS| GNED {

v () |
capre (nmM : presynaptic [Ca]

g (ug)
i (nA)

Listing 10.1. gr adsyn. nod

The NEURON block

The PO NTER statement in the NEURON block declares that capr e refersto some
other variable that may belong to a noncontiguous segment, possibly even in a different
section; below we show how to attach this to the free calcium concentrationin a
presynaptic terminal. The synaptic strength is not specified by a peak conductance, but in

terms of a "transfer function scale factor" k, which has units of (US/mM3).

The BREAKPO NT block

The synaptic conductance g is proportional to the cube of capr e and does not
saturate. Thisis similar to the calcium dependence of synaptic conductance in a model
described by De Schutter et al. [ , 1993 #717].

Usage

After creating a new instance of the G adSyn point process, we link its PO NTER
variable to the variable at some other location we want it to follow with hoc statements,
eg.

objref syn
sonmedendrite syn = new G adSyn(0. 8)
set poi nter syn.cp, precell.bouton.cai(0.5)

The second statement attaches an instance of the G adSyn mechanism, called syn, to
sonedendr i t e. Thethird statement uses set poi nt er to assert that the synaptic
conductance of syn will be governed by cai inthe middle of asection called bout on
that is part of cell precel | . Of course this assumes that the presynaptic section
precel | . bout on contains a calcium accumulation mechanism.

Figure 10.2 shows ssimulation results from amodel of graded synaptic transmission.
In this model, the presynaptic terminal pr ecel | isal pm diameter hemisphere with
voltage-gated calcium current cachan (cachan. nod in c: nrnxx\ exanpl es\ nr ni v\ nnodl
under MSWindows or nr n-x. x/ shar e/ exanpl es/ nrni v/ nnodl under UNIX) and a
calcium accumul ation mechanism that includes diffusion, buffering, and a pump (cdp,
discussed in Example 9.9: a calcium pump). The postsynaptic cell isa passive single

compartment with surface area 100 pm?, C,=1 pf/cm?, and T,=30ms. A G adSyn
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synapse with transfer function scale factor k = 0.2 uSYmM3 is attached to the postsynaptic
cell, and presynaptic membrane potential is driven between -70 and -30 mV by a sinusoid
with a period of 400 ms. The time course of presynaptic [Cal; and synaptic conductance

show clipping of the negative phases of the sine wave; the postsynaptic membrane
potential shows less clipping because of filtering by membrane capacitance.

preterm.v(0.5)

mv
-50
-70
0 400 800 1200
ms
preterm.cai(0.5)
0.06
mM
0.03
0
0 400 800 1200
ms
GradSyn[0].g9
5e-5
us
0 | |
0 400 800 1200
ms
postcell.v(0.5)
-30
mV
-50
-70
0 400 800 1200

ms

Figure 10.2. Graded synaptic transmission. Top two graphs: Presynaptic
membrane potential pr et er m v was "clamped" to -70-20cos(21t/400) mV/,
producing a periodic increase of [Ca]; (pr et er m cai isthe concentration just

inside the cell membrane) with clipping of the negative peaks. Bottom two
graphs: The synaptic conductance GradSyn[0].g shows even more clipping of
the negative phases of the sinusoid, but membrane capacitance smoothes the
time course of postsynaptic membrane potential.

Example 10.2: a gap junction

The current that passes through a gap junction depends on the moment-to-moment
fluctuations of voltage on both sides of the junction. This can be handled by a pair of
point processes on the two sides that use PO NTERs to monitor each other's voltage, asin
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sectionl gapl = new Gap(x1)

section2 gap2 = new Gap(x2)

setpoi nter gapl.vpre, section2.v(x2)

set poi nter gap2.vpre, sectionl.v(x1l)
Conservation of charge requires the use of two point processes: one drains current from
one side of the gap junction, and the other delivers an equal current to the other side.

Listing 10.2 presents the NMODL specification of a point process that can be used to
implement ohmic gap junctions.
NEURON {
PO NT_PROCESS Gap
PO NTER vgap
RANGE r, |
NONSPECI FI C_CURRENT i

}
PARAVETER { r = 1e10 (negohm }

ASSI GNED {
v (mllivolt)
vgap (mllivolt)
i (nanoanp)

BREAKPO NT { i = (v - vgap)/r }
Listing 10.2. gap. nmod

This implementation can cause spurious oscillations if the coupling between the two
voltagesistoo tight (i.e. if theresistancer istoo low) because it degrades the Jacobian
matrix of the system equations. While it does introduce off-diagonal terms to couple the
nodes on either side of the gap junction, it fails to add the conductance of the gap junction
to the terms on the main diagonal. The result is an approximate Jacobian, which makes
numeric integration effectively a modified Euler method, instead of the fully implicit or
Crank-Nicholson methods which are numerically more robust. Consequently, results are
satisfactory only if coupling isloose (i.e. if r islarge compared to the total conductance
of the other ohmic paths connected to the affected nodes). If oscillations do occur, their
amplitude can be reduced by decreasing dt , and they can be eliminated by using
CVODE. In such cases, it may be preferable to implement gap junctions iswith the
Li near Mechani smclass (e.g. by using the LinearCircuitBuilder), which sets up the
diagonal and off-diagonal terms of the Jacobian properly so that smulations are
completely stable.

Usage

The following hoc code use this mechanism to set up a model of a gap junction
between two cells. The Gap mechanisms allow current to flow between the internal node
at the 1 end of a and the internal node at the O end of b.

create a, b
access a

forall {nseg=10 L=1000 di am=10 i nsert hh}
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objref g 2]
for i=0,1 {
gli] = new Gap()
gli].r =3
}
a g[0].10c(0.9999) // just inside "distal" end of a
b g[1].10oc(0.0001) // ]USt i nside "proximal" end of b
setpointer g[0].vgap, b.v(0.0001)
setpointer g[1l].vgap, a.v(0.9999)

Modeling spike-triggered synaptic transmission:
an event-based strategy

Prior to NEURON 4.1, model descriptions of synaptic transmission could only use
PO NTER variables to obtain their presynaptic information. This required adetailed
piecing together of individual components that was acceptable for models with only a
few synapses. Models of larger networks required users to exert considerable
administrative effort to create mechanisms that handle synaptic delay, exploit potentially
great simulation efficiencies offered by smplified models of synapses, and maintain
information about network connectivity.

The experience of NEURON usersin creating special strategies for managing
network simulations (e.g. [ Destexhe, 1994 #267][Lytton, 1996 #206]) stimulated the
development of NEURON's network connection (Net Con) class and event delivery
system. Instances of the Net Con class manage the delivery of presynaptic "spike" events
to synaptic point processes via the event delivery system. Thisworks for all of
NEURON's integrators, including the local variable time step method in which each cell
isintegrated with atime step appropriate to its own state changes. Model descriptions of
synapses never need to queue events, and there is no need for heroic efforts to make them
work properly with adaptive integration. These features offer enormous convenience to
users who are interested in models that involve synaptic transmission at any level of
complexity from single cell to large networks.

Conceptual model

In its most basic form, the physical system that we want to represent consists of a
presynaptic neuron with a spike initiation zone that gives rise to an axon, which leadsto a
terminal that makes a synaptic connection onto a postsynaptic cell (Fig. 10.3). Our
conceptual model of spike-triggered transmission isthat arrival of a spike at the
presynaptic terminal has some effect (e.g. a conductance change) in the postsynaptic cell
that is described by a differential equation or kinetic scheme. Details of what goes on at
the spike initiation zone are assumed to be unimportant--all that mattersis whether a
spike has, or has not, reached the presynaptic terminal. This conceptual model lets us take
advantage of special features of NEURON that allow extremely efficient computation.
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pre

post

Figure 10.3. Cartoon of a synaptic connection (filled circle) between a
presynaptic cell pre and a postsynaptic cell post.

A first approach to implementing a computational representation of our conceptual
model might be something like the top of Fig. 10.4. We would monitor membrane
potential at the presynaptic terminal for spikes (watch for threshold crossing). When a
spike is detected, we wait for an appropriate delay (latency of transmitter release plus
diffusion time) and then notify the synaptic mechanism that it's time to go into action. For
this simple example, we have assumed that synaptic transmission ssimply causes a
conductance change in the postsynaptic cell. It is also possible to implement more
complex mechanisms that include representations of processes in the presynaptic terminal
(e.g. processes involved in use-dependent plasticity).

We can speed things up alot by leaving out the axon and presynaptic terminal
entirely, i.e. instead of computing the propagation of the action potential along the axon,
just monitor the spike initiation zone. Once a spike occurs, we wait for atotal delay equal
to the sum of the conduction latency and the synaptic latency, and then activate the
postsynaptic conductance change (Fig. 10.4 bottom).

Complete
representation
of propagation Spike Synaptic g Postsynaptic
from spike init. detector latency region
zone through
axon to terminal
Delay
Spike Spi conduction .
Ly pike Postsynaptic
initiation latency gsg >
zone detector + region
synaptic
latency

Figure 10.4. Computational implementation of amodel of spike-triggered
synaptic transmission. Top: The basic ideais that a presynaptic spike causes
some change in the postsynaptic cell. Bottom: A more efficient version doesn't
bother computing conduction in the presynaptic axon.
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The Net Con class

Let's step back from this problem for a moment and think about the bottom diagram
in Fig. 10.4. The "spike detector" and "delay” in the middle of this diagram are the seed
of an ideafor agenera strategy for dealing with synaptic connections. In fact, the
Net Con object classis used to apply this strategy in defining the synaptic connection
between a source and a target.

A Net Con object connects a presynaptic variable, such as voltage, to a target point
process (here a synapse) with arbitrary delay and weight. If the presynaptic variable
crossest hr eshol d inapositive direction at timet , then at time t +del ay a special
NET_RECEI VE procedure in the target point process is called and receives the wei ght
information. Each Net Con can haveitsownt hr eshol d, del ay, and wei ght , i.e. these
parameters are stream-specific. The only constraint on del ay isthat it be nonnegative.
Thereisno limit on the number of events that can be "in the pipeling," and thereisno
loss of events under any circumstances. Events always arrive at the target at the interval
del ay after the time they were generated.

When you create aNet Con object, at a minimum you must specify the source
variable and the target. The source variable is generally the membrane potential of the
currently accessed section, as shown here. The target is a point process that contains a
NET_RECEI VE block (see Listing 10.3 below).

section netcon = new NetCon(&v(x), target, thresh, del, wt)

Threshold, delay, and weight are optional; their defaults are shown here, and they can be
specified after the Net Con object has been constructed.

netcon.threshold = 10 // nmVv

netcon.delay =1 /[l ms

netcon.weight = 0 /'l uS

The weight associated with a Net Con object is actually the first element of aweight

vector. The number of elementsin the weight vector depends on the number of
arguments in the NET_RECEI VE statement of the NMODL source code that defines the
point process. We will return to thisin Example 10.5: use-dependent synaptic
plasticity and Example 10.6: saturating synapses.

NEURON's event-based approach to implementing communication between cells
reduces the computational burden of network simulations tremendously, because it
supports efficient, unlimited divergence and convergence (fan-out and fan-in). To
understand why, first consider divergence. What if apresynaptic cell projects to multiple
postsynaptic targets (Fig. 10.5 top)? Easy enough--just add a Net Con object for each
target (Fig. 10.5 bottom). Thisis computationally efficient because threshold detection is
done on a"per source" basis, rather than a"per Net Con" basis. That is, if multiple
Net Cons have the same source with the samet hr eshol d, they all share asingle
threshold detector. The source variable is checked only once per time step and, when it
crossest hr eshol d in the positive direction, events are generated for each connecting
Net Con object. Each of these Net Cons can have its own weight and delay, and the target
mechanisms can belong to different classes.
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Page 10

Now consider convergence. Suppose a neuron receives multiple inputs that are
anatomically close to each other and of the same type (Fig. 10.6 top). In other words,
we're assuming that each synapse has its postsynaptic action through the same kind of
mechanism (i.e. it hasidentical kinetics, and (in the case of conductance-change
synapses) the same equilibrium potential). We can represent this by connecting multiple
Net Con objects to the same postsynaptic point process (Fig. 10.6 bottom). Thisyields
large efficiency improvements because a single set of synaptic equations can be shared
by many input streams (one input stream per connecting Net Con instance). Of course,
these synapses can have different strengths and latencies, because each Net Con object
has its own weight and delay.

Spike ) .
ot Spike Postsynaptic
initiation Delay 0 gsg >
zone detector region 0
Postsynaptic
Delay 1 gsg region 1

Figure 10.5. Efficient divergence. Top: A single presynaptic neuron projects to two
different target synapses. Bottom: Computational model of this circuit uses multiple
Net Conswith asingle threshold detector that monitors a common source.

Path 0
""""" Path 1

Spike : .
Nl veod Spike Postsynaptic
initiation Delay 0 gsg >
zone 0 detector 0 region
Spike .
v Spike
initiation Delay 1
zone 1 detector 1

Figure 10.6. Efficient convergence. Top: Two different presynaptic cells make synaptic
connections of the same class that are electrically close to each other. Bottom:
Computational model of this circuit uses multiple Net Consthat share asingle
postsynaptic mechanism (single equation handles multiple input streams).
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Having seen the rationale for using events to implement models of synaptic
transmission, we are ready to examine some point processes that include a
NET_RECE! VE block and can be used as synaptic mechanisms in network models.

Example 10.3: synapse with exponential decay

Many kinds of synapses produce a synaptic conductance that increases rapidly and
then declines gradually with first order kinetics, e.g. AMPAergic excitatory synapses.
This can be modeled by an abrupt change of conductance, which istriggered by arrival of
an event, and then decays with asingle time constant.

The NMODL code that implements such a mechanism is shown in Listing 10.3. This
mechanism is similar to NEURON's built in ExpSyn. Calling it ExpSyn1 alows usto
test and modify it without conflicting with NEURON's built-in ExpSyn.

The synaptic conductance of this mechanism summates not only when events arrive
from a single presynaptic source, but also when they arrive from different places
(multiple input streams). This mechanism handles both situations by defining asingle
conductance state g which is governed by adifferential equation whose solution is

t—t )/t
o) =gltge °
event.

, where 9(t,) isthe conductance at the time of the most recent

expsynl. nod

NEURON {
PO NT_PROCESS ExpSynl
RANGE tau, e, i
NONSPECI FI C_CURRENT i

}

PARAMETER {
tau = 0.1

(s)
e =0 (ml

livol t)

}

ASSI GNED {
v (mllivolt)
i (nanoanp)
STATE { g (m crosienens) }

INNTIAL { g = 0 }

BREAKPO NT {
SOLVE state METHOD cnexp
i=g*(v - e)
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DERI VATI VE state { g' = -g/tau }

NET_RECEI VE(wei ght (m crosi enens)) {
} g = g + weight

Listing 10.3. expsynl. nod

The BREAKPO NT block

The BREAKPO NT block of this mechanism isits main computational block. This
contains the SOLVE statement that tells how states will be integrated. The cnexp method
is used because the kinetics of ExpSyn1 are described by a differential equation of the
formy” =1(y), wheref(y) islinear in y (see also The DERI VATI VE block in Example
9.4: avoltage-gated current in Chapter 9). The BREAKPO NT block ends with an
assignment statement that sets the value of the synaptic current.

The DERI VATI VE block

The DERI VATI VE block contains the differential equation that describes the time
course of the synaptic conductance g: afirst order decay with time constant t au.

The NET_RECEI VE block

The NET_RECEI VE block contains the code that specifies what happens in response
to presynaptic activation. Thisis called by the Net Con event delivery system when an
event arrives at this point process.

S0 suppose we have amodel with an ExpSyn1 point process that is the target of a
Net Con. Imagine that the Net Con detects a presynaptic spike at time t . What happens

next?

ExpSynil's con_ductance g _conFi nues to follow Aswe mentioned in Chapter 9, earlier
a smooth exponential decay with time constant versions of NEURON had to change g
tau until timet +del ay, wheredel ay isthedelay | withastate_di scontinuity()
associated with the Net Con object. At this point, statement. Thisis no longer necessary.

an event is delivered to the ExpSyn1. Just before
entry to the NET_RECE! VE block, NEURON makes al STATEs, v, and values assigned in
the BREAKPQO NT block consistent at t +del ay. Then the code in the NET_RECE!I VE
block is executed, making the synaptic conductance suddenly jump up by the amount
specified by the Net Con'sweight.

Usage

Suppose we wanted to set up a synaptic connection between two cellsusing an
ExpSynl mechanism, asin Fig. 10.7. This could be done with the following hoc code,
which aso illustrates the use of aLi st of Net Con objects as a means for keeping track
of the synaptic connectionsin a network.
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dend[3]

cell[20] axon 3
O >@ cell[5]

Figure 10.7. Schematic of a synaptic connection between two cells.

/] keep connectivity in a list of NetCon objects
objref ncl
ncl = new List()

/] attach an ExpSynl point process called syn
I to the 0.3 location on dend[3] of cell[5]
objref syn

cell[5].dend[3] syn = new ExpSynl1(0.3)

/1 presynaptic v is cell[20].axon.v(1)

/1 connect this to syn via a new Net Con object

I and add the NetCon to the |ist ncl

cel I [20] . axon ncl . append(new Net Con(&v(1), \
syn, threshold, delay, weight)

precell[0] 1 L1 11
precell[1] 1 L 111
ExpSyn1[0].g
0.002
0.001
0
0 50 100 150
—-68 — postcell.soma.v(0.5)

I
0 50 100 150

Figure 10.8. Simulation results from the mode shown in Fig. 10.6. Note stream-specific synaptic
weights and temporal summation of synaptic conductance and membrane potential.

Figure 10.8 shows results of a smulation of two input streams that converge onto a
single ExpSyn1 attached to a postsynaptic cell, asin the diagram at the top of Fig. 10.6.
The presynaptic firing times are indicated by the rasterslabeled pr ecel | [ 0] and
precel | [ 1] . The synaptic conductance and postsynaptic membrane potential (middie
and bottom graphs) display stream-specific synaptic weights, and also show temporal
summation of inputs within an individual stream and between inputs on multiple streams.
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Example 10.4: alpha function synapse

With afew small changes, we can extend ExpSyn1 to implement an alphafunction
synapse. We only need to replace the differential equation with the two state kinetic

scheme
STATE { a (mcrosienens) g (m crosienens) }
KINETI C state {
~a<->g (1/tau, 0)
~g->(1l/tau)
}

and change the NET_RECEI VE block to

NET_RECEI VE(wei ght (m crosi enens)) {

} a = a + weight*exp(1)
The factor exp( 1) = eisincluded so that an isolated event produces a peak conductance
of magnitude wei ght , which occurs at timet au after the event. Since this mechanism
involvesaKl NETI C block instead of a DERI VAT VE block, we must also change the
integration method specified by the SOLVE statement from cnexp to spar se.

The extracomputational complexity of using a kinetic scheme is offset by the fact
that, no matter how many Net Con streams connect to this model, the computation time
required to integrate STATE g remains constant. Some increase of efficiency can be
gained by recasting the kinetic scheme astwo linear differential equations

DERI VATI VE state {

.a' = -altaul
..b" = -b/tau
..g =b - a

}

which are solved by the cnexp method (thisis what NEURON's built in Exp2Syn
mechanism does). Ast aul approachest au, g approaches an apha function (although
the factor by which wei ght must be multiplied approaches infinity; see f act or inthe
next example). Also, there are now two state discontinuities in the NET_RECEI VE block
NET_RECEI VE(wei ght (m crosi enens)) {
a = a + weight*factor
b =Db + weight*factor

}

Example 10.5: use-dependent synaptic plasticity

Here the alpha function synapse is extended to implement a form of use-dependent
synaptic plasticity. Each presynaptic event initiates two distinct processes: direct
activation of ligand-gated channels, which causes a transient conductance change, and
activation of a mechanism that in turn modulates the conductance change produced by
successive synaptic activations. In this example we presume that modulation depends on
the postsynaptic increase of a second messenger, which we will call "G protein” for
illustrative purposes. We must point out that this example is entirely hypothetical, and
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that it is quite different from models described by others [ Destexhe, 1995 #168] in which
the G protein itself gates the ionic channels.

For this mechanism it is essential to distinguish each stream into the generalized
synapse, since each stream has to maintain its own [G] (concentration of activated G
protein). That is, streams are independent of each other in terms of the effect on [G], but
their effects on synaptic conductance show linear superposition.

gsyn. nod

NEURON {
PO NT_PROCESS GSyn
RANGE t aul, tau2, e, i
RANGE Gt aul, Gtau2, G nc
NONSPECI FI C_CURRENT i

RANGE ¢
}
UNI TS {
(nA) = (nanoanp)
(V) = (mllivolt)
(umho) = (m cromnho)
PARAMETER {
taul =1 (ms)
tau2 = 1.05 (rs)
Gaul = 20 (ns)
Gau2 =21 (ns)
d nc =1
e =0 (mv)
}
ASSI GNED {
vo(nmV)
i (nA)
g (umho)
factor
G act or
STATE {
A (unho)
B (unho)
I NITIAL {
LOCAL tp
A=0
B=20
tp = (taul*tauZ)/;tauZ - taul) * log(tau2/taul)
factor = -exp(-tp/taul) + exp(-tp/tau2)
factor = 1/factor
tp = (Gaul*Gau2)/(Gau2 - Gaul) * log(Gau2/ G aul)
G actor = -exp(-tp/Gaul) + exp(-tp/&au2)
G actor = 1/ & actor
}
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BREAKPO NT {
SOLVE state METHOD cnexp
g=B- A
i =g*(v - e)
DERI VATI VE state {
A = -Altaul
B = -B/tau2

}

NET_RECEIl VE(wei ght (umho), w, Gl, &, t0 (ms)) {
Gl = Gl*exp(-(t-t0)/ G aul)
& = K*exp(-(t-t0)/ X au2)
Gl = Gl + Gnc*E act or
@ =& + Gnc*GE act or
t0 =t
w=weight*(1 + & - Gl)
A=A+ wfactor
B =B + wfactor

}

Listing 10.4. gsyn. nod

The NET_RECEI VE block

The conductance of the ligand-gated ion channel uses the differential equation
approximation for an apha function synapse. The peak synaptic conductance depends on
the value of [G] at the moment of synaptic activation. A similar, albeit much dower,

a pha function approximation describes the time course of [G]. These processes peak
approximately t aul and G aul after delivery of an event, respectively.

The peak synaptic conductance elicited by an individual event is specified in the
NET_RECEI VE block, wherew = wei ght *( 1+G2- GL) describes how the effective
weight of the synapse is modified by [G]. Even though conductance isintegrated, [G] is
needed only at discrete event times so it can be computed analytically from the elapsed
time since the prior synaptic activation. The | NI TI AL block sets up the factors that are
needed to make the peak changes equal to the values of wand G nc.

Notethat G1 and & are not STATES in this mechanism. They are not even variables
in this mechanism, but instead are "owned" by the particular Net Con instance that
delivered the event. Each Net Con object instance
keeps an array (the weight vector) whose size equals On initialization, all elements of the
the number of argumentsto NET_RECE! VE, and the weight vector other than the first one
arguments to NET_RECE! VE are really referencesto | e automatically set to 0. However,
the elements of this array. Unlike the argumentstoa | 3MET_RECE VE g(':ﬁd;nrg‘i{“ga(‘;’aen' ts
PROCEDURE or FUNCTI ONblock, which are"call by | conain statements that assign
value," the arguments to a NET_RECEI VE block are nonzero values to Net Con "states."
"call by reference." Therefore assgnment statements | Suchan 1 NI TI AL block is executed

ingsyn. nod's NET_RECEI VE block can changethe | whenfinitialize() iscaled.
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values of variables that belong to the Net Con object, and this means that the Net Con's
weight vector can be used to hold stream-specific state information. In the context of this
particular example, each connection hasits own [G], so gsyn uses "stream-specific
plasticity" to represent "synapse-specific plasticity."

S1_1 1

S2 1

L1
le-4~ GSyn[0].g9
uS
5e-5 [\
0 ] ]
0 20 40 60 80
ms

Figure 10.9. Simulation results from the model shown in Fig. 10.6 when the
synaptic mechanism is GSyn. Note stream-specific use-dependent plasticity.

To illustrate the operation of this mechanism, imagine the network of Fig. 10.6 with a
single GSyn driven by the two spike trains shown in Fig. 10.9. This emulates two
synapses that are electrotonically close to each other, but with separate pools of [G]. The
train with spikes at 5 and 45 ms (S1) shows some potentiation of the second conductance
transient, but the train that starts at 15 ms with a200 Hz burst of three spikes displays a
large initial potentiation that is even larger when tested after a 40 msinterval.

Example 10.6: saturating synapses

Several authors (e.g. [Destexhe, 1994 #267], [Lytton, 1996 #206]) have used synaptic
transmission mechanisms based on a simple conceptual model of transmitter-receptor
interaction:

[0

C+T O Eqg. 10.2

—

B

where transmitter T binds to a closed receptor channel C to produce an open channel O.
In this conceptual model, spike-triggered transmitter release produces a transmitter
concentration in the synaptic cleft that is approximated by a rectangular pulse with a
fixed duration and magnitude (Fig. 10.10). A "large excess of transmitter" is assumed, so
that while transmitter is present (the "onset" state, "ligand binding to channel") the
postsynaptic conductance increases toward a maximum value with a single time constant
U(a T + ). After the end of the transmitter pulse (the "offset" state, "ligand-channel
complex dissociating"), the conductance decays with time constant 1/p3. Further details of

saturating mechanisms are covered by [Destexhe, 1994 #267][Destexhe, 1994 #266] and
[Lytton, 1996 #206].
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Figure 10.10. A saturating synapse model. A single presynaptic spike (top
trace) causes a pulse of transmitter in the synaptic cleft with fixed duration
(Cdur) and concentration (middle trace). This elicits arapid increase of
postsynaptic conductance followed by a dower decay (bottom trace). A high
frequency burst of spikes produces a sustained elevation of transmitter that

persists until Cdur after the last spike and causes saturation of the postsynaptic
conductance.

There is an ambiguity when one or more spikes arrive on a single stream during the
onset state triggered by an earlier spike: should the mechanism ignore the "extra' spikes,
concatenate onset states to make the transmitter pulse longer without increasing its
concentration, or increase (summate) the transmitter concentration? Summation of
transmitter requires the onset time constant to vary with transmitter concentration. This
places transmitter summation outside the scope of the Destexhe/L ytton model, which
assumes a fixed time constant for the onset state. We resolve this ambiguity by choosing
concatenation, so that repetitive impulses on one stream produce a saturating conductance
change (Fig. 10.10). However, conductance changes elicited by separate streams will
summate.

A mode of the form used in Examples 10.4 and 10.5 can capture the idea of
saturation, but the separate onset/offset formulation requires keeping track of how much
"material” isin the onset or offset state. The mechanismin Listing 10.5 implements an
effective strategy for doing this. A noteworthy feature of this model is that the event
delivery system serves as more than a conduit for receiving inputs from other cells:
discrete events are used to govern the duration of synaptic activation, and are thus an
integral part of the mechanism itself.

anpa. nod

NEURON {
PO NT_PROCESS AMPA S
RANGE ¢
NONSPECI FI C_CURRENT i
G.CBAL Cdur, Al pha, Beta, Erev, Rinf, Rtau

}

UNI TS {
(nA) = (‘nanoanp)
(V) = (mllivolt)
(umho) = (m cromnho)
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PARAMETER {
Cdur = 1.0 (ns) transmtter duration (rising phase)
Al pha = 1.1 (/ms) forward (binding) rate
Beta = 0.19 (/ns) backward (di ssociation) rate
Erev =0 (V) equi librium potenti al
ASSI GNED {
v (V) : postsynaptic voltage
[ (nA) : current = g*(v - Erev)
g (umho) : conductance
Rtau (ns) . tinme constant of channel binding
Rinf : fraction of open channels if xmr is present "forever"

synon : sumof weights of all synapses in the "onset" state

STATE { Ron Roff } : initialized to O by default

: Ron and Roff are the total conductances of all synapses
that are in the "onset"” (transmtter pulse ON)
and "offset” (transmtter pulse OFF) states, respectively

INITIAL {
synon = 0
Rt au 1/ (Al pha + Beta)
Ri nf Al pha / (Al pha + Beta)

}

BREAKPO NT {
SCLVE rel ease METHOD cnexp
g = (Ron + Rof f)*1(umho)
i = g*(v - Erev)

DERI VATI VE r el ease {
Ron' = (synon*Rinf - Ron)/Rtau
Roff' = -Beta*Roff

}

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 19



The NEURON Book: Chapter 10 October 20, 2004

NET_RECEI VE(wei ght, on, r0, t0 (ns)) {
: flag is an inplicit argunment of NET_RECEIVE, nornmally O
if (flag == 0)
. a spike arrived, start onset state if not already on
if ('on) {
: this synapse joins the set of synapses in onset state
synon = synon + wei ght
roO = rO*exp(-Beta*(t - t0)) : rO at start of onset state
Ron = Ron + r0
Roff = Roff - rO
t0 =t
on =1
: cone again in Cdur with flag =1
net _send( Cdur, 1)
} else {
already in onset state, so nove offset tine
net _nove(t + Cdur)

}

}
if (flag ==
: "turn off transmtter”
i.e. this synapse enters the offset state
synon = synon - wei ght
: r0 at start of offset state
ro = weight*Rinf + (r0 - weight*R nf)*exp(-(t - t0)/Rtau)
Ron = Ron - r0
Rof f Roff + r0
to =
on =

o1l

Listing 10.5. anpa. nod

The PARAMETER block

The actual value of the transmitter concentration in the synaptic cleft during the onset
state is unimportant to this model, aslong as it remains constant. To simplify the
mechanism, we assume transmitter concentration to be dimensionless, with a numeric
value of 1. This allows us to specify the forward rate constant Al pha in units of 1/ms.

The STATE block

This mechanism has two STATES. Ron isthe total conductance of all synapses that are
in the onset state, and Rof f isthetotal conductance of all synapsesthat are in the offset
state. These are declared without units, so a units factor will have to be applied elsewhere
(in this example, thisis done in the BREAKPO NT block).

The | NI TI AL block

At the start of a simulation, we assume that all channels are closed and no transmitter
is present at any synapse. Theinitial values of Ron, Rof f , and synon must therefore
be 0. Thisinitialization happens automatically for STATES and does not require explicit
specification in the | NI TI AL block, but synon needs an assignment statement.
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Thel NI TI AL block aso calculates Rt au and Ri nf . Rt au is the time constant for
equilibration of the closed (free) and open (ligand-bound) forms of the postsynaptic
receptors when transmitter is present in the synaptic cleft. Ri nf isthe open channel
fraction if transmitter is present forever.

The BREAKPO NT and DERI VATI VE blocks

The total conductance is numerically equal to Ron+Rof f . The* 1(umho) factor is
included for dimensional consistency.

The DERI VATI VE block specifies the first order differential equations that govern
these STATES. The meaning of each termin

Roff' = - Bet a*Rof f
isobvious, andin
Ron' = (synon*Rinf - Ron)/Rtau
the product synon* Ri nf isthe valuethat Ron approaches with increasing time.

The NET_RECEI VE block

The NET_RECEI VE block performs the task of switching each synapse between its
onset and offset states. In broad outline, if an external event (an event generated by the
Net Con's source passing threshold) arrives at timet to start an onset, the NET_RECEI VE
block generates an event that it sendsto itself. This self-event will be delivered at time
t +Cdur , where Cdur isthe duration of the transmitter
pulse. Arrival of the self-event is the signal to switch "External event” and "input event”
the synapse back to the offset state. If another external | &€ Synonyms. We will use the
event arrives from the same Net Con before the self- fcgrnrzlttﬁ:m as clarity dictates when

. . g them with self-events.
event does, the self-event is moved to a new time that
isCdur inthe future. Thus resetting to the offset state
can happen only if an interval of Cdur passes without new external events arriving.

To accomplish this strategy, the NET_RECEI VE block must distinguish an external
event from a self-event. It does this by " e is"call by value" unfike th
i e event flag is"call by value," unlike the
_expl (.)I FI ng the fact that every event has an explicit arguments that are declared inside
|mpl icit argument caledf | ag, the value of the parentheses of the NET_RECEI VE()
Wh| Ch IS automatlcal Iy O fOI’ an eXteI’na| a/ent statement, which are"call By reference.”

Handling of external events

Arrival of an external event causes execution of the statements inside the
if (flag==0){} clause. These beginwithif (! on), which testswhether this
synapse should switch to the onset state.

Switching to the onset state involves keeping track of how much "material™ isin the
onset and offset states. This requires moving the synapse's channels into the pool of
channels that are exposed to transmitter, which simply means adding the synapse's
wei ght to synon. Also, the conductance of this synapse, which had been decaying with
rate constant 1/ Bet a, must now start to grow with rate constant Rt au. Thisis done by
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computing r 0, the synaptic conductance at the present timet , and then adding r 0 to Ron
and subtracting it from Rof f . Next the value of t 0 is updated for future use, and on is set
to 1 to signify that the synapse is in the onset state. The last statement insidei f (! on){}
isnet _send( Cdur, nspi ke) , which generates a self-event with delay given by the first
argument and flag value given by the second argument. All the explicit arguments of this
self-event will have the values of this particular Net Con, so when this self-event returns
we will know how much "material" to switch from the onset to the offset state.

Theel se {} clausetakes care of what happensif another external event arrives
while the synapse is still in the onset state. The net _nove(t +Cdur) statement moves
the self-event to anew time that is Cdur inthe future (relative to the arrival time of the
new external event). In other words, this prolongs synaptic activation until Cdur after the
most recent external event.

Handling of self-events

When the self-event isfinally delivered, it triggers an offset. We know it is a self-
event becauseitsf | ag is 1. Once again we keep track of how much "material” isin the
onset and offset states, but now we subtract the synapse's wei ght from synon to remove
the synapse's channels from the pool of channels that are exposed to transmitter.
Likewise, the conductance of this synapse, which was growing with rate constant Rt au,
must now begin to decay with rate constant 1/ Bet a. Finally, the value of t 0 is updated
and on isreset to 0.

Artificial spiking cells

NEURON's event delivery system was created with the primary aim of making it
easier to represent synaptic connections between biophysical model neurons. However,
the event delivery system turns out to be quite useful for implementing a wide range of
mechanisms that require actions to be taken after a delay. The saturating synapse model
presented above is just one example of this.

The previous section aso showed how spike-triggered synaptic transmission makes
extensive use of the network connection class to define connections between cells. The
typical Net Con object watches a source cell for the occurrence of a spike, and then, after
some delay, delivers aweighted event to atarget synaptic mechanism, i.e. itisa
metaphor for axonal spike propagation. More generally, a Net Con object can be regarded
as achannel on which a stream of events generated at a source istransmitted to a target.
The target can be a point process, a distributed mechanism, or an artificial neuron (e.g. an
integrate and fire model). The effect of events on atarget is specified in NMODL by
statementsin a NET_RECEI VE block, which is called only when an event has been
delivered.

The event delivery system also opens up alarge domain of ssimulationsin which
certain types of artificial spiking cells, and networks of them, can be simulated hundreds
of times faster than with numerical integration methods. Discrete event simulation is
possible when al the state variables of amodel cell can be computed analytically from a
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new set of initial conditions. That is, if an event occurs at time t,, all state variables must
be computable from the state values and time t, of the previous event. Since

computations are performed only when an event occurs, total computation timeis
proportional to the number of events delivered and independent of the number of cells,
number of connections, or problem time. Thus handling 100,000 spikesin one hour for
100 cells takes the same time as handling 100,000 spikesin 1 second for 1 cell.

Artificial spiking cells are implemented in NEURON as point processes, but unlike
ordinary point processes, they can serve as targets and sources for Net Con objects. They
can be targets because they have a NET_RECEI VE block, which specifies how incoming
events from one or more Net Con objects are handled, and details the calculations
necessary to generate outgoing events. They can aso be sources because the same
NET_RECE! VE block generates discrete output events which are delivered through one or
more Net Con objects to targets.

The following examples analyze the three broad classes of integrate and fire cells that
are built into NEURON. In order to emphasize how the event delivery system isused to
implement the dynamics of these mechanisms, we have omitted many details from the
NMODL listings. Ellipsesindicate elisions, and listings include italicized pseudocode
where necessary for clarity. Complete source code for all three of these cell classesis
provided with NEURON.

Example 10.7: I nt Fi r el, a basic integrate and fire model

The simplest integrate and fire mechanism built into NEURON is| nt Fi rel, which
has a membrane state variable m (anal ogous to membrane potential) which decays toward
0 with time constant T.

T%—T+m=0 Eqg. 10.3

Aninput event of weight w adds instantaneously to m, and if mreaches or exceeds the
threshold value of 1, the cell "fires,” producing an output event and returning mto O.
Negative weights are inhibitory while positive weights are excitatory. Thisis analogous
to acell with amembrane time constant T that is very long compared to the time course
of individual synaptic conductance changes. Every synaptic input to such a cell shifts
membrane potential to anew level in atime that is much shorter than t, and each cell
firing erases al traces of prior inputs. Listing 10.6 presents an initial implementation of
IntFirel.

NEURON {

ARTI FICIAL_CELL IntFirel
RANGE tau, m

}
PARAMVETER { tau = 10 (ns) }
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ASSI GNED {
m
t0 (ns)
I NI TIAL {

m=20
t0 =0

—

(w) {
(-(t - t0)/tau)

Listing 10.6. A basic implementation of I nt Fi rel.

The NEURON block

As the introduction to this section mentions, artificial spiking cells are implemented
in NEURON as point processes. The keyword ARTI FI Cl AL_CELL isin fact asynonym
for PO NT_PROCESS, but we use it as a deliberate reminder that this model has a
NET_RECE! VE block, lacks a BREAKPO NT block, and does not have to be associated
with a section location or numerical integrator. Unlike other point processes, an artificia
cell isisolated from the usual things that link mechanisms to each other: it does not refer
to membrane potential v or any ions, and it does not use POl NTER variables. Instead, the
"outside" can affect it only by sending it discrete events, and it can only affect the
"outside" by sending discrete events.

The NET_RECEI VE block

The mechanisms we have seen so far use BREAKPO NT and KI NETI C or
DERI VATI VE blocks to specify the calculations that are performed during atime step dt ,
but an artificial cell model does not have these blocks. Instead, calculations only take
place when a new event arrives, and these are performed in the NET_RECEI VE block.

When aNet Con deliversanew eventto an | nt Fi r el cell, the present value of mis
computed analytically and then mis incremented by the weight w of the event. According
to the NET_RECEI VE block, the present value of mis found by applying an exponential
decay to the value it had immediately after the previous event; therefore the code contains
variable t 0 which keeps track of the last event time.

If an input event drives mto or above threshold, thenet _event (t) statement
notifies all Net Cons, for which this point processis the source, that it fired a spike at
timet (theargument tonet _event () can beany time at or later than the current
timet ). Then the cell resets mto 0. The code in Listing 10.6 imposes no limit on firing
frequency--if aNet Con with del ay of 0 and awei ght of 1.1 has such an artificial cell
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as both its source and target, the system will behave "properly,” in the sense that events
will be generated and delivered without time ever advancing. It is easy to prevent the
occurrence of such arunaway stream of events (see Adding a refractory period below).

There is no threshold test overhead at every dt because | nt Fi r el has no variable
for Net Consto watch. That is, this artificial spiking cell does not need the usual test for
local membrane potential v to cross Net Con. t hr eshol d, whichis essential at every
time step for event generation with biophysical neuron models. Furthermore the event
delivery system only places the earliest event to be delivered on the event queue. When
that timefinally arrives, all targets whose Net Cons have the same source and delay get
the event delivery, and longer delay streams are put back on the event queue to await
their specific delivery time.

Enhancements to the basic mechanism

Visualizing the membrane state variable

The membrane state variable mis difficult to plot in an understandable manner, since
it is represented in the computer by a variable mthat remains unchanged over the interval
between input events regardless of how many numerical integration steps were performed
in that interval. Consequently malways has the value that was calculated after the last
event was received, and plots of it ook like astaircase (Fig. 10.11 left), with no apparent
decay or indication of what the value of mwas just before the event.

r IntFire1[0].m r IntFire1[0].M 1 IntFire1[0].M
0.8 - —I 0.8 0.8
0.6 — 0.6 — 0.6 —
0.4 0.4 0.4
0.2 0.2 0.2
0 | | | 0 | | J 0 J
0 10 20 30 0 10 20 30 0 30
ms ms ms

Figure 10.11. Response of an I nt Fi r el cell with T = 10 msto input events with weight
=0.8arrivingatt =5, 22, and 25 ms (arrows). The third input initiates a "spike." Left:
The variable mis evaluated only when anew event arrives, so its plot looks like a
staircase. A function can beincluded in | nt Fi r el's mod file (see text) to better indicate
the time course of the membrane state variable m. Center: Plotting thisfunction during a
simulation with fixed dt (0.025 ms here) demonstrates the decay of m between events.
Right: In avariable time step simulation, m appearsto follow a sequence of linear ramps.
This artifact is a consequence of the efficiency of adaptive integration, which computed
analytical solutions at only afew instants, so the Graph tool could only draw lines from
instant to instant.

This can be partially repaired by adding a function

FUNCTI ON M)
M= ntexp(-(t - t0)/tau)
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that returns the present value of the membrane state variable m. This gives nice
trajectories when fixed time step integration is used (Fig. 10.11 center). However, the
natural step with the variable step method is the interspike interval itself, unless
intervening events occur in other cells (e.g. 1 ms before the second input event in

Fig. 10.11 right). At least the integration step function f advance() returns 10° ms
before and after the event to properly indicate the discontinuity in M

Adding arefractory period

It is easy to add arelative refractory period by initializing mto a negative value after
the cell fires (alternatively, a depolarizing afterpotential can be emulated by initializing m
to avaluein therange (0,1)). However, incorporating an absol ute refractory period
requires self-events.

Suppose we want to limit the maximum firing rate to 200 spikes per second, which
corresponds to an absolute refractory period of 5 ms. To specify the duration of the
refractory period, we use avariable named r ef r ac, which is declared and assigned a
value of 5 msin the PARAMETER block. Adding the statement RANGE r ef r ac to the
NEURON block alows usto adjust this parameter from the interpreter and graphical
interface. We also use avariable to keep track of whether the point processisin the
refractory period or not. The name we choose for this variable is the egponymous
refractory, andit isdeclared in the ASSI GNED block and initialized to a value of O
("false”) inthe | NI TI AL block.

The NET_RECEI VE implementation is then

NET_RECEI VE (w) {
if (refractory == 0) {
m = nmrexp(-(t - t0)/tau)
m=m+ w
t0 =t
if (m>1) {
net _event (t)
refractoryfz
[ e

net _send( refractory)

}
} elseif (flag == 1)
. self-event arrived, so term nate refractory period
refractory = 0
m=20
t0 =t
} : else ignore the external event

}
If refract ory equalsO, the cell accepts external events (i.e. events delivered by a
Net Con) and calculates the state variable mand whether to fire the cell. When the cell
firesaspike, ref ract ory is set to 1 and further externa events are ignored until the end
of therefractory period (Fig. 10.12).

Recall from the saturating synapse example that the f | ag variable that accompanies
an external event is 0. If this mechanism receives an event with anonzero f | ag, it must
be a self-event, i.e. an event generated by acall tonet _send() when the cell fired. The
net _send(interval, flag) statement placesan event into the delivery system asan
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"echo" of the current event, i.e. it will come back to the sender after the specified
i nt erval withthe specified f | ag. In this case we aren't interested in the weight but
only thef | ag. Arriva of this self-event means that the refractory period is over.

The top of Fig. 10.12 shows the response of thismodel to atrain of input stimuli.
Tempora summation triggers a spike on the fourth input. The fifth input arrives during
the refractory interval and has no effect.

1
refractory I/
0 ! ! | J
0 5 10 15 20
ms
2r IntFire1[0].M
15+
1=
0.5
0 | 1 1 11 J
0 5 10 15 20
ms
2~ )
IntFire1[0].M
1
) | | | J
5 10 15 20
ms
-1

Figure 10.12. Response of an | nt Fi r el cell with a5 msrefractory interva to a
run of inputs a 3 msintervals (arrows), each with weight = 0.4. Top: The cell
accepts inputs when r ef r act ory == 0. The fourth input (at 11 ms) drives the
cell above threshold. Thistriggers an output event, increasesr ef ract ory to 1
(top trace), and function M which reflects the membrane state variable m, jumps
to 2. During the 5 ms refractory period, Mdecays gradually, but the cell is
unresponsive to further inputs (note that the input at 14 ms produces no change
in the membrane state variable). At 16 msr ef r act or y fallsto 0, making the
cell once again responsive to inputs, and Malso returns to O until the next
external event arrives. Bottom: After modifying the function Mto generate
rectangular pulses that emulate a spike followed by postspike hyperpolarization.

I mproved presentation of the membrane state variable

The performance in the top of Fig. 10.12 is satisfactory, but the model could be
further improved by one relatively minor change. Asit stands the Mfunction shows an
exponential decay during the refractory period, whichis at best distracting and irrelevant
to the operation of the model, and potentially misleading at worst. It would be better for M
to follow a stereotyped time course, e.g. a brief positive pulse followed by alonger

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 27



The NEURON Book: Chapter 10 October 20, 2004

negative pulse. Thiswould not be confused with the subthreshold operation of the model,
and it might be more suggestive of an action potential.

The most direct way to do thisisto make Mtake different actions depending on
whether or not the model is "spiking." One possibility is
FUNCTI ON M) {
if (refractory == 0)
M= ntexp(-(t - t0)/tau)
} else if (refractory == 1) {
if (t -t0<0.5 {

2
} else {
-1
}
}
}

which is exactly what the built-in | nt Fi r el model does. The bottom of Fig. 10.12
shows the time course of this revised function.

This demonstrates how visualization of cell operation can be enhanced by ssimple
calculations of patterns for the spiking and refractory trajectories, with no overhead for
cellsthat are not plotted. We must emphasize that the simulation calculations are analytic
and performed only at event arrival, regardless of the refinements we introduced for the
purpose of esthetics.

e
o

Sending an event to oneself to trigger deferred computation involves very little
overhead, yet it alows elaborate cal culations to be performed much more efficiently than
if they were executed on aper dt basis. Self-events are heavily exploited in the
implementation of | nt Fi re2 and | nt Fi r e4, which both offer greater kinetic
complexity than I nt Fi rel.

Example 10.8: | nt Fi re2, firing rate proportional to input

Thel nt Fi re2 model, likel nt Fi r el, has a membrane state variable m that follows
first order kinetics with time constant 1., However, an input event to | nt Fi r e2 does not

affect mdirectly. Instead it produces a discontinuous change in a synaptic current state
variable i. Between events, i decays with its own time constant T, toward a steady "bias"

value specified by the parameter i,. That is,
d . .
Tsa+|=|b Eq 10.4

where an input event causesi to change abruptly by w (Fig. 10.13 top). Thiscurrent i
drivesm, i.e.

Tm%—T+m=i Eqg. 10.5
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where 1, < T.. Thus an input event produces a gradual change in mthat is described by
two time constants and approximates an alpha function if T, = 1. When mcrosses a

threshold of 1 in a positive direction, the cell fires, misreset to 0, and integration
resumes immediately, as shown in the bottom of Fig. 10.13. Note that i is not reset to 0,
i.e.unlikel nt Firel, firing of an | nt Fi r e2 cell does not obliterate all traces of prior

synaptic activation.

2 — IntFire2[0].! ib=0.2
w=14

15+

1

0.5

0 | | ]

0 50 100 150

ms
1 — IntFire2[0].M

0.8 —

0.6 —

0.4

0.2

0 I I J
0 50 100 150
ms

Figure 10.13. Top: Time course of synaptic current i inan | nt Fi re2 cell with
T,=20msand 1,,= 10 ms. This cell has bias current i,, = 0.2 and receives

inputs with weight w= 1.4 at t = 50 and 100 ms. Bottom: The membrane state
variable mof thiscell isinitially 0 and approaches the value of i, (0.2 in this

example) with time constant 1, The first synaptic input produces a
subthreshold response, but temporal summation drives m abovethreshold at t =
109.94 ms. This resets mto 0 and integration resumes.
Depending on its parameters, | nt Fi r e2 can emulate awide range of relationships
between input pattern and firing rate. Itsfiring rateis~i/ 1, if i is>> 1 and changes

sowly comparedto T,

The parameter i, is analogous to the combined effect of a baseline level of synaptic
drive plus abias current injected through an electrode. The requirement that T, <T_is

equivaent to asserting that the membrane time constant is faster than the decay of the
current produced by an individual synaptic activation. Thisis plausible for slow
inhibitory inputs, but where fast excitatory inputs are concerned an alternative
interpretation can be applied: each input event signals an abrupt increase (followed by an
exponential decline) in the mean firing rate of one or more afferents that produce brief
but temporally overlapping postsynaptic currents. The resulting change of i isthe moving
average of these currents.
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The nt Fi r e2 mechanism is amenable to discrete event simulation because
Egns. 10.4 and 10.5 have anaytic solutions. If the last input event was at time t, and the

valuesof i and mimmediately after that event werei(ty) and m(t,), then their subsequent
time course is given by

—(t=t )/t
(O =iy+iltg)-iyle O Eq. 106
and
T —(t—t )/t
m(t)=ib+[i(to)—ib] ° e (=1l
TS_ Tm
. e Eq. 10.7
E)—i =it —i S 0o/ Tm
+im(ty) — i, [I(o) |b] p—— e

Implementation in NMODL

The core of the NMODL implementation of | nt Fi re2 isthefunctionfireti me(),
which is discussed below. This function projects when mwill equal 1 based on the
present values of i, i, and m, assuming that no new input events arrive. The value

returned by firetime() is 10° if the cell will never fire with no additional input. Note
that if i, > 1 the cell fires spontaneously even if no input events occur.

INITIAL {

nét;sénd(firetine(args), 1)

NET_RECEI VE (w) {

if (flag==1) { : time to fire
net _event(t)
m=20

net _send(firetinme(args), 1)
} else {
update m
if (m>=1)
net_nove(t) : the time to fire i s now
} else {

nét;nbve(firetine(args) + 1)

update t0 and
}

Listing 10.7. Key excerptsfromint fi re2. nod
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Thel NI TI AL block inI nt Fi re2 callsfiretime() and usesthe returned value to
put a self-event into the delivery system. The strategy, which is spelled out in the
NET_RECE! VE block, isto respond to external events by moving the delivery time of the
self-event back and forth with the net _nmove() function. When the self-event isfinally
delivered (potentially never), net _event () iscalled to signal that this cell isfiring.
Notice that external events always have an effect on the value of i, and are never
ignored--and shouldn't be, even if we introduced a refractory period in which we refused
to integrate m.

Thefunctionfiretime() returnsthefirstt= 0 for which

—t/Tm

—t/
a+be TS+(c—a—b)e =1 Eqg. 10.8

where the parameters a, b and ¢ are defined by the coefficientsin Eq. 10.7. If thereisno

such t the function returns 10°. This represents the time of the next cell firing, relative to
the time t, of the most recent synaptic event.

Sincefiretime() must be executed on every input event, it isimportant to
minimize the number of Newton iterations needed to calculate the next firing time. For
this we use a strategy that depends on the behavior of the function

f(x)=a+bx"+(c—a-b)x Eq. 10.9a

—t/'rm
where X =€ Eq. 10.9b
r=v./7g
over thedomain 0<x< 1. Notethat c< listhevalueof f, at x=0(i.e. a t = »). The
function f, is either linear in x (if b = 0) or convex up (b > 0) or down (b < 0) with no
inflection points. Sincer < 1, f; istangent to the y axis for any nonzero b (i.e. f,"(0) is
infinite).

15— a=0.2
b=4 c=09
r=0.5
1
f,()

0.5

1.5 a=15
c=03
r=05

b=-2.4

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 10.14. Plots of f; and f, computed for r = 0.5. See text for details.

The left panel of Fig. 10.14 illustrates the qualitative behavior of f, fora< 1. Itis

easy to analytically compute the maximum in order to determine if thereis a solution to
f,(x) = 1. If asolution exists, f; will be concave downward so Newton iterations starting

at x = 1 will underestimate the firing time.
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For a> 1, asolution is guaranteed (Fig. 10.14 middle). However, starting Newton
iterations at X = 1 isinappropriate if the slope there is more negative than ¢ - 1 (straight

—t/
dashed linein Fig. 10.14 middle). In that case, the transformation X = € s isused,

giving the function
f2(x)=a+bx+(c—a—b)x1/r Eq. 10.9c

and the Newton iterations begin at x = 0 (Fig. 10.14 right).

These computations are performed over regionsin which f, and f,, are relatively

linear, sothefiretinme() function usualy requires only two or three Newton iterations
to converge to the next firing time. The only exception is when f; has a maximum that is

just slightly larger than 1, in which case it may be agood idea to stop after a couple of
iterations and issue a self-event. The advantage of this would be the deferral of a costly
series of iterations, allowing an interval in which another externa event might arrive that
would force computation of a new projected firing time. Such an event, whether
excitatory or inhibitory, would likely make it easier to compute the next firing time.

Example 10.9: | nt Fi r e4, different synaptic time constants

I nt Fi r e2 can emulate an input-output relationship with more complex dynamics
than | nt Fi r el does, but it is somewhat restricted because its response to every external
event, whether excitatory or inhibitory, has the same kinetics. As we pointed out in the
discussion of | nt Fi r e2, it is possible to interpret excitatory eventsin away that
partially sidesteps thisissue. However, experimentally observed synaptic excitation tends
to be faster than inhibition (e.g. [Destexhe, 1998 #278]) so a more flexible integrate and
fire mechanism is needed.

Thel nt Fi r e4 mechanism addresses this need. Its dynamics are specified by four

time constants: 1, for afast excitatory current, T, and 1, for aslower inhibitory current,
1 2

and 1, for the even slower leaky "membrane” which integrates these currents. When the

membrane state variable mreaches 1, the cell "fires," producing an output event and
returning mto 0. This does not affect the other states of the model.

The differential equationsthat govern| nt Fi r e4 are

% = —k_e Eq. 10.10
ﬁ =—K. i Eg. 10.11
dt 1
d,
= = _ki2|2+ ail'1 Eg. 10.12
%—Tz—kmm+aee+ai2i2 Eqg. 10.13
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where each k is arate constant that equals the reciprocal of the corresponding time
congtant, and itisassumed that k, >k >k >k (i.e 1,<T, <71, <T,). Aninput event
1 2 1 2
with weight w> 0 (i.e. an excitatory event) adds instantaneously to the excitatory current
e. Equations 10.11 and 12, which define the inhibitory current i,,, are based on the
reaction scheme
ki ki
Lo Eq. 10.14

Pl P bath

in which an input event with weight w < O (i.e. an inhibitory event) adds instantaneously

toi,;. The constants a, & , and a, are chosen to normalize the response of the states e, i,
1 2

i,, and mto input events (Fig. 10.15). Therefore an input with weight w, > 0 (an

"excitatory” input) produces apeak e of w, and amaximum "membrane potential” m of

w,. Likewise, an input with weight w; < 0 (an "inhibitory" input) produces an inhibitory

current i, with aminimum of w; and drives mto aminimum of w.. Details of the analytic

solution to these equations are presented in Appendix Al: Mathematical analysis of
IntFire4.

-0.5-

Figure 10.15. Left: Current generated by a single input event with weight 0.5
(e) or -0.5 (i,). Right: The corresponding response of m. Parameters were

T,=3, ril =5, Tiz =10, andrm=30ms.

I nt Fired4,likel nt Fi re2, finds the next firing time through successive
approximation. However, | nt Fi r e2 generally iteratesto convergence every time an
input event isreceived, whereas | nt Fi r e4'salgorithm implement a series of deferred
Newton iterations by exploiting the downward convexity of the membrane potential
trajectory and using NEURON's event delivery system. The result is an alternating
sequence of self-events and single Newton iterations that converges to the correct firing
time, yet remains computationally efficient in the face of heavy input event traffic.

Thisisillustrated in Fig. 10.16. If an event arrives at time t,, values of e(ty), i,(ty), i,
(tp), and m(t)) are calculated analytically. Should m(t,) be subthreshold, the self-event is
moved to anew approximate firing time t, that is based on the slope approximation to m
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t=ty+ (L-m(ty) / m(ty) if m(ty)>0 Eq. 10.15
or
o if M (t)<0

(Fig. 10.16 left and middle). If instead m(t;) reaches threshold, the cell "fires" so that

net _event () iscaled (producing an output event that is picked up by all Net Consfor
which this cell isa source) and misreset to 0. The self-event is then moved to an
approximate firing time that is computed from Eq. 10.15 using the values assigned to m
and m" immediately after the "spike" (Fig. 10.16 right).

Page 34

Figure 10.16. Excerpts from simulations of | nt Fi r e4 cells showing time
course of m. Arrival of an event (arrow = external event, vertical dotted line =
self-event) triggers a Newton iteration. Slanted dashed lines are slope
approximations to mimmediately after an event. Left: Although Eq. 10.15
yieldsafinitet;, thisinput istoo weak for the cell to fire. Middle: Herem' <0

immediately after an input event, so both t; and the true firing time are infinite.

Right: The slope approximation following the excitatory input is not shown, but
it obvioudly crosses threshold before the actual firing time (asterisk). Following
the "spike" misreset to 0 but bounces back up because of persistent excitatory

current. This dies away without eliciting a second spike, even though t; is finite

(dashed line).

/ 0.99 — y

06 0.975

!

Figure 10.17. These magnified views of the trajectory from the right panel of
Fig. 10.16 indicate how rapidly the event-driven Newton iterations converge to
the next firing time. In this simulation, spike threshold was reached in four
iterations after the excitatory input (arrow). The first two iterations are evident
in the left panel, and additional magnification of the circled region revea s the
last two iterations (right panel).
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The justification for this approach stems from several considerations. The first of
theseisthat t; is never later than the true firing time. This assertion, which we provein

Appendix A1, isof central importance because the ssimulation would otherwise bein
error.

Another consideration is that successive approximations must converge rapidly to the
true firing time, in order to avoid the overhead of alarge number of self-events. Using the
dope approximation to mis equivalent to the Newton method for solving m(t) =1, so
convergence is slow only when the maximum value of miscloseto 1. The codein
I nt Fi r e4 guards against missing "real” firings when mis asymptotic to 1, because it
actualy testsform > 1 - eps, wherethe default value of eps is 10°. This
convergence tolerance eps Is a user-settable GLOBAL parameter, so one can easily
augment or override this protection.

Finally, the use of a series of self-eventsis superior to carrying out a complete
Newton method solution because it is most likely that external events will arrive in the
interval between firing times. Each externa event would invalidate the previous
computation of firing time and force arecalculation. This might be acceptable for the
I nt Fi r e2 mechanism with its efficient convergence, but the complicated dynamics of
I nt Fi r e4 suggest that the cost would be too high. How many iterations should be
carried out per self-event is an experimental question, since the self-event overhead
depends partly on the number of outstanding eventsin the event queue.

Other comments regarding artificial spiking cells

NEURON's event delivery system has been used to create many more kinds of
artificial spiking neurons than the three classes that we have just examined. Specific
examples include pacemakers, bursting cells, models with various forms of use-
dependent synaptic plasticity, continuous or quantal stochastic variation of synaptic
weight, and an "IntFire3" with a bias current and time constants T, > T, > T,.
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