
October 20, 2004 The NEURON Book: Chapter 10

Chapter 10
Synaptic transmission and artificial spiking cells

In NEURON, a cell model is a set of differential equations. Network models consist
of cell models and the connections between them. Some forms of communication
between cells, e.g. graded synapses, gap junctions, and ephaptic interactions, require
more or less complete representations of the underlying biophysical mechanisms. In these
cases, coupling between cells is achieved by adding terms that refer to one cell's variables
into equations that belong to a different cell. The first part of this chapter describes the
POI NTER syntax that makes this possible in NEURON.

The same approach can be used for detailed mechanistic models of spike-triggered
transmission, which entails spike initiation and propagation to the presynaptic terminal,
transmitter release, ligand-receptor interactions on the postsynaptic cell, and
somatodendritic integration. However, it is far more efficient to use the widespread
practice of treating spike propagation from the trigger zone to the synapse as a delayed
logical event. The second part of this chapter tells how the Net Con (network connection)
class supports this event-based style of communication.

In the last part of this chapter, we use event-based communication to simplify
representation of the neurons themselves, creating highly efficient implementations of 
artificial spiking cells, e.g. integrate and fire "neurons." Artificial spiking cells are very
convenient sources of spike trains for driving synaptic mechanisms attached to
biophysical neuron models. Networks that consist entirely of artificial spiking cells run
hundreds of times faster than their biophysical counterparts, so they are particularly
suitable for prototyping network models. They are also excellent tools in their own right
for studying the functional consequences of network architectures and synaptic plasticity
rules. In Chapter 11 we demonstrate network models that involve various combinations
of biophysical and artificial neuron models.

Modeling communication between cells
Experiments have demonstrated many kinds of interactions between neurons, but for

most cells the principal avenues of communication are gap junctions and synapses. Gap
junctions and synapses generate localized ionic currents, so in NEURON they are
represented by point processes (see Point processes in Chapter 5, and Example 9.2: a
localized shunt and Example 9.3: an intracellular stimulating electrode in
Chapter 9).

The point processes used to represent gap junctions and synapses must produce a
change at one location in the model that depends on information (membrane potential,
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calcium concentration, the occurrence of a
spike) from some other location. This is in
sharp contrast to the examples we discussed in
Chapter 9, all of which are "local" in the sense
that an instance of a mechanism at a particular
location on the cell depends only on the
STATEs and PARAMETERs of that model at that location. They may also depend on
voltage and ionic variables, but these also are at that location and automatically available
to the model. To see how to do this, we will examine models of graded synaptic
transmission, gap junctions, and spike-triggered synaptic transmission.

Example 10.1: graded synaptic transmission
A minimal conceptual model of graded synaptic transmission is that neurotransmitter

is released continuously at a rate that depends on something in the presynaptic terminal,
and that this causes some change in the postsynaptic cell. For the sake of discussion, let's
say this something is [Ca2+]pre, the concentration of free calcium in the presynaptic

terminal. We will also assume that the transmitter changes an ionic conductance in the
postsynaptic cell.
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Figure 10.1. Membrane potential in the immediate neighborhood of a
postsynaptic conductance depends on the synaptic current (Is), the currents

through the local membrane capacitance and ionic conductances (Ic and I ion),

and the axial current arriving from adjacent regions of the cell (Ia).

From the standpoint of the postsynaptic cell, a conductance-change synapse might
look like Fig. 10.1, where gs, Es, and Is are the synaptic conductance, equilibrium

potential, and current, respectively. The effect of graded synaptic transmission on the
postsynaptic cell is expressed in Equation 10.1. 
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pre � Eq. 10.1

This is the charge balance equation for the electrical vicinity of the postsynaptic region.
The terms on the left hand side are the usual local capacitive and ionic transmembrane

Page 2 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

Models with LONGI TUDI NAL_DI FFUSI ON
might also be considered "nonlocal," but
their dependence on concentration in
adjacent segments is handled automatically
by the NMODL translator.



October 20, 2004 The NEURON Book: Chapter 10

currents. The first term on the right hand side is the current that enters the postsynaptic
region from adjacent parts of the cell, which NEURON takes care of automatically. The
second term on the right hand side expresses the effect of the ligand-gated channels. The
current through these channels is the product of two factors. The first factor is merely the
local electrochemical gradient for ion flow. The second factor is a conductance term that
depends on the calcium concentration at some other location.

We already know that a localized conductance is implemented in NEURON with a
point process, and that such a mechanism is automatically able to access all the local
variables that it needs (in this case, the local membrane potential and the synapse's
equilibrium potential). But the calcium concentration in the presynaptic terminal is
nonlocal, and that poses a problem; furthermore, it is likely to change with every
f advance( ) .

We could try inserting a hoc statement like this into the main computational loop

somedendr i t e. syn. capr e = pr ecel l . bout on. cai ( 1)

At each time step, this would update the variable capr e in the synaptic mechanism syn
attached to the postsynaptic section somedendr i t e, making it equal to the free calcium
concentration cai  at the 1 end of the bout on section in the presynaptic cell pr ecel l .
However, this statement would have to be reinterpreted at each f advance( ) , which
might slow down the simulation considerably. 

If what happens to the postsynaptic cell depends on the
moment-to-moment details of what is going on in the
presynaptic terminal, it is far more efficient to use a
POI NTER variable (see Listing 10.1). In NMODL, a
POI NTER variable holds a reference to another variable.
The specific reference is defined by a hoc  statement, as we
shall see below. 

:  Gr aded synapt i c  t r ansmi ss i on

NEURON {
  POI NT_PROCESS Gr adSyn
  POI NTER capr e
  RANGE e,  k ,  g,  i
  NONSPECI FI C_CURRENT i
}

UNI TS {
  ( nA)  = ( nanoamp)
  ( mV)  = ( mi l l i vol t )
  ( uS)  = ( mi cr os i emens)
  ( mol ar )  = ( 1/ l i t er )
  ( mM)  = ( mi l l i mol ar )
}

PARAMETER {
  e = 0  ( mV)  :  r ever sal  pot ent i al
  k = 0. 02  ( uS/ mM3)
}
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ASSI GNED {
  v  ( mV)
  capr e ( mM)   :  pr esynapt i c  [ Ca]
  g  ( uS)
  i   ( nA)
}

BREAKPOI NT {
  g = k* capr e^ 3
  i  = g* ( v -  e)
}

Listing 10.1. gr adsyn. mod

The NEURON block

The POI NTER statement in the NEURON block declares that capr e refers to some
other variable that may belong to a noncontiguous segment, possibly even in a different
section; below we show how to attach this to the free calcium concentration in a
presynaptic terminal. The synaptic strength is not specified by a peak conductance, but in
terms of a "transfer function scale factor" k, which has units of (µS/mM3).

The BREAKPOINT block

The synaptic conductance g is proportional to the cube of capr e and does not
saturate. This is similar to the calcium dependence of synaptic conductance in a model
described by De Schutter et al. [ , 1993 #717]. 

Usage

After creating a new instance of the Gr adSyn point process, we link its POI NTER
variable to the variable at some other location we want it to follow with hoc  statements,
e.g.

obj r ef  syn
somedendr i t e syn = new Gr adSyn( 0. 8)
set poi nt er  syn. cp,  pr ecel l . bout on. cai ( 0. 5)

The second statement attaches an instance of the Gr adSyn mechanism, called syn, to
somedendr i t e. The third statement uses set poi nt er  to assert that the synaptic
conductance of syn will be governed by cai  in the middle of a section called bout on
that is part of cell pr ecel l . Of course this assumes that the presynaptic section
pr ecel l . bout on contains a calcium accumulation mechanism.

Figure 10.2 shows simulation results from a model of graded synaptic transmission.
In this model, the presynaptic terminal pr ecel l  is a 1 µm diameter hemisphere with
voltage-gated calcium current cachan (cachan. mod in c: nr nxx\ exampl es\ nr ni v\ nmodl
under MSWindows or nr n- x. x/ shar e/ exampl es/ nr ni v/ nmodl  under UNIX) and a
calcium accumulation mechanism that includes diffusion, buffering, and a pump (cdp,
discussed in Example 9.9: a calcium pump). The postsynaptic cell is a passive single
compartment with surface area 100 µm2, Cm = 1 µf/cm2, and τm = 30 ms. A Gr adSyn
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synapse with transfer function scale factor k = 0.2 µS/mM3 is attached to the postsynaptic
cell, and presynaptic membrane potential is driven between -70 and -30 mV by a sinusoid
with a period of 400 ms. The time course of presynaptic [Ca] i and synaptic conductance

show clipping of the negative phases of the sine wave; the postsynaptic membrane
potential shows less clipping because of filtering by membrane capacitance. 
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Figure 10.2. Graded synaptic transmission. Top two graphs: Presynaptic
membrane potential pr et er m. v  was "clamped" to -70-20cos(2πt/400) mV,
producing a periodic increase of [Ca] i (pr et er m. cai  is the concentration just

inside the cell membrane) with clipping of the negative peaks. Bottom two
graphs: The synaptic conductance GradSyn[0].g shows even more clipping of
the negative phases of the sinusoid, but membrane capacitance smoothes the
time course of postsynaptic membrane potential.

Example 10.2: a gap junction
The current that passes through a gap junction depends on the moment-to-moment

fluctuations of voltage on both sides of the junction. This can be handled by a pair of
point processes on the two sides that use POI NTERs to monitor each other's voltage, as in 
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sect i on1 gap1 = new Gap( x1)
sect i on2 gap2 = new Gap( x2)
set poi nt er  gap1. vpr e,  sect i on2. v( x2)
set poi nt er  gap2. vpr e,  sect i on1. v( x1)

Conservation of charge requires the use of two point processes: one drains current from
one side of the gap junction, and the other delivers an equal current to the other side.

Listing 10.2 presents the NMODL specification of a point process that can be used to
implement ohmic gap junctions.

NEURON {
  POI NT_PROCESS Gap
  POI NTER vgap
  RANGE r ,  i
  NONSPECI FI C_CURRENT i
}

PARAMETER {  r  = 1e10 ( megohm)  }

ASSI GNED {
  v ( mi l l i vol t )
  vgap ( mi l l i vol t )
  i  ( nanoamp)
}

BREAKPOI NT {  i  = ( v  -  vgap) / r  }

Listing 10.2. gap. mod

This implementation can cause spurious oscillations if the coupling between the two
voltages is too tight (i.e. if the resistance r  is too low) because it degrades the Jacobian
matrix of the system equations. While it does introduce off-diagonal terms to couple the
nodes on either side of the gap junction, it fails to add the conductance of the gap junction
to the terms on the main diagonal. The result is an approximate Jacobian, which makes
numeric integration effectively a modified Euler method, instead of the fully implicit or
Crank-Nicholson methods which are numerically more robust. Consequently, results are
satisfactory only if coupling is loose (i.e. if r  is large compared to the total conductance
of the other ohmic paths connected to the affected nodes). If oscillations do occur, their
amplitude can be reduced by decreasing dt , and they can be eliminated by using
CVODE. In such cases, it may be preferable to implement gap junctions is with the
Li near Mechani sm class (e.g. by using the LinearCircuitBuilder), which sets up the
diagonal and off-diagonal terms of the Jacobian properly so that simulations are
completely stable.

Usage

The following hoc  code use this mechanism to set up a model of a gap junction
between two cells. The Gap mechanisms allow current to flow between the internal node
at the 1 end of a and the internal node at the 0 end of b.

cr eat e a, b
access a

f or al l  { nseg=10 L=1000 di am=10 i nser t  hh}
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obj r ef  g[ 2]
f or  i =0, 1 {
  g[ i ]  = new Gap( )
  g[ i ] . r  = 3
}

a g[ 0] . l oc( 0. 9999)   / /  j ust  i nsi de " di s t al "  end of  a
b g[ 1] . l oc( 0. 0001)   / /  j ust  i nsi de " pr ox i mal "  end of  b
set poi nt er  g[ 0] . vgap,  b. v( 0. 0001)
set poi nt er  g[ 1] . vgap,  a. v( 0. 9999)

Modeling spike-triggered synaptic transmission:
an event-based strategy
Prior to NEURON 4.1, model descriptions of synaptic transmission could only use

POI NTER variables to obtain their presynaptic information. This required a detailed
piecing together of individual components that was acceptable for models with only a
few synapses. Models of larger networks required users to exert considerable
administrative effort to create mechanisms that handle synaptic delay, exploit potentially
great simulation efficiencies offered by simplified models of synapses, and maintain
information about network connectivity.

The experience of NEURON users in creating special strategies for managing
network simulations (e.g. [Destexhe, 1994 #267][Lytton, 1996 #206]) stimulated the
development of NEURON's network connection (Net Con) class and event delivery
system. Instances of the Net Con class manage the delivery of presynaptic "spike" events
to synaptic point processes via the event delivery system. This works for all of
NEURON's integrators, including the local variable time step method in which each cell
is integrated with a time step appropriate to its own state changes. Model descriptions of
synapses never need to queue events, and there is no need for heroic efforts to make them
work properly with adaptive integration. These features offer enormous convenience to
users who are interested in models that involve synaptic transmission at any level of
complexity from single cell to large networks. 

Conceptual model

In its most basic form, the physical system that we want to represent consists of a
presynaptic neuron with a spike initiation zone that gives rise to an axon, which leads to a
terminal that makes a synaptic connection onto a postsynaptic cell (Fig. 10.3). Our
conceptual model of spike-triggered transmission is that arrival of a spike at the
presynaptic terminal has some effect (e.g. a conductance change) in the postsynaptic cell
that is described by a differential equation or kinetic scheme. Details of what goes on at
the spike initiation zone are assumed to be unimportant--all that matters is whether a
spike has, or has not, reached the presynaptic terminal. This conceptual model lets us take
advantage of special features of NEURON that allow extremely efficient computation. 
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pre

post

Figure 10.3. Cartoon of a synaptic connection (filled circle) between a
presynaptic cell pre and a postsynaptic cell post.

A first approach to implementing a computational representation of our conceptual
model might be something like the top of Fig. 10.4. We would monitor membrane
potential at the presynaptic terminal for spikes (watch for threshold crossing). When a
spike is detected, we wait for an appropriate delay (latency of transmitter release plus
diffusion time) and then notify the synaptic mechanism that it's time to go into action. For
this simple example, we have assumed that synaptic transmission simply causes a
conductance change in the postsynaptic cell. It is also possible to implement more
complex mechanisms that include representations of processes in the presynaptic terminal
(e.g. processes involved in use-dependent plasticity).

We can speed things up a lot by leaving out the axon and presynaptic terminal
entirely, i.e. instead of computing the propagation of the action potential along the axon,
just monitor the spike initiation zone. Once a spike occurs, we wait for a total delay equal
to the sum of the conduction latency and the synaptic latency, and then activate the
postsynaptic conductance change (Fig. 10.4 bottom).
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Complete
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axon to terminal

Spike
initiation
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Postsynaptic
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Figure 10.4. Computational implementation of a model of spike-triggered
synaptic transmission. Top: The basic idea is that a presynaptic spike causes
some change in the postsynaptic cell. Bottom: A more efficient version doesn't
bother computing conduction in the presynaptic axon.
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The NetCon class

Let's step back from this problem for a moment and think about the bottom diagram
in Fig. 10.4. The "spike detector" and "delay" in the middle of this diagram are the seed
of an idea for a general strategy for dealing with synaptic connections. In fact, the
Net Con object class is used to apply this strategy in defining the synaptic connection
between a source and a target. 

A Net Con object connects a presynaptic variable, such as voltage, to a target point
process (here a synapse) with arbitrary delay and weight. If the presynaptic variable
crosses t hr eshol d in a positive direction at time t , then at time t +del ay  a special
NET_RECEI VE procedure in the target point process is called and receives the wei ght
information. Each Net Con can have its own t hr eshol d, del ay , and wei ght , i.e. these
parameters are stream-specific. The only constraint on del ay  is that it be nonnegative.
There is no limit on the number of events that can be "in the pipeline," and there is no
loss of events under any circumstances. Events always arrive at the target at the interval
del ay  after the time they were generated.

When you create a Net Con object, at a minimum you must specify the source
variable and the target. The source variable is generally the membrane potential of the
currently accessed section, as shown here. The target is a point process that contains a
NET_RECEI VE block (see Listing 10.3 below). 

section netcon = new Net Con( &v( x) ,  target,  thresh,  del,  wt)

Threshold, delay, and weight are optional; their defaults are shown here, and they can be
specified after the Net Con object has been constructed. 

netcon. t hr eshol d = 10 / /  mV
netcon. del ay = 1      / /  ms
netcon. wei ght  = 0     / /  uS

The weight associated with a Net Con object is actually the first element of a weight
vector. The number of elements in the weight vector depends on the number of
arguments in the NET_RECEI VE statement of the NMODL source code that defines the
point process. We will return to this in Example 10.5: use-dependent synaptic
plasticity and Example 10.6: saturating synapses.

NEURON's event-based approach to implementing communication between cells
reduces the computational burden of network simulations tremendously, because it
supports efficient, unlimited divergence and convergence (fan-out and fan-in). To
understand why, first consider divergence. What if a presynaptic cell projects to multiple
postsynaptic targets (Fig. 10.5 top)? Easy enough--just add a Net Con object for each
target (Fig. 10.5 bottom). This is computationally efficient because threshold detection is
done on a "per source" basis, rather than a "per Net Con" basis. That is, if multiple
Net Cons have the same source with the same t hr eshol d, they all share a single
threshold detector. The source variable is checked only once per time step and, when it
crosses t hr eshol d in the positive direction, events are generated for each connecting
Net Con object. Each of these Net Cons can have its own weight and delay, and the target
mechanisms can belong to different classes.
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Now consider convergence. Suppose a neuron receives multiple inputs that are
anatomically close to each other and of the same type (Fig. 10.6 top). In other words,
we're assuming that each synapse has its postsynaptic action through the same kind of
mechanism (i.e. it has identical kinetics, and (in the case of conductance-change
synapses) the same equilibrium potential). We can represent this by connecting multiple
Net Con objects to the same postsynaptic point process (Fig. 10.6 bottom). This yields
large efficiency improvements because a single set of synaptic equations can be shared
by many input streams (one input stream per connecting Net Con instance). Of course,
these synapses can have different strengths and latencies, because each Net Con object
has its own weight and delay.

Path 0

Path 1

Spike
initiation
zone

Spike
detector Delay 0 gs

Postsynaptic
region 0

Delay 1 gs
Postsynaptic
region 1

Figure 10.5. Efficient divergence. Top: A single presynaptic neuron projects to two
different target synapses. Bottom: Computational model of this circuit uses multiple
Net Cons with a single threshold detector that monitors a common source.
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Figure 10.6. Efficient convergence. Top: Two different presynaptic cells make synaptic
connections of the same class that are electrically close to each other. Bottom:
Computational model of this circuit uses multiple Net Cons that share a single
postsynaptic mechanism (single equation handles multiple input streams).
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Having seen the rationale for using events to implement models of synaptic
transmission, we are ready to examine some point processes that include a
NET_RECEI VE block and can be used as synaptic mechanisms in network models.

Example 10.3: synapse with exponential decay
Many kinds of synapses produce a synaptic conductance that increases rapidly and

then declines gradually with first order kinetics, e.g. AMPAergic excitatory synapses.
This can be modeled by an abrupt change of conductance, which is triggered by arrival of
an event, and then decays with a single time constant. 

The NMODL code that implements such a mechanism is shown in Listing 10.3. This
mechanism is similar to NEURON's built in ExpSyn. Calling it ExpSyn1 allows us to
test and modify it without conflicting with NEURON's built-in ExpSyn.

The synaptic conductance of this mechanism summates not only when events arrive
from a single presynaptic source, but also when they arrive from different places
(multiple input streams). This mechanism handles both situations by defining a single
conductance state g which is governed by a differential equation whose solution is

g
�
t ��� g

�
t0 � e

�
t � t0

�����
, where g

�
t0 �  is the conductance at the time of the most recent

event.

:  expsyn1. mod

NEURON {
  POI NT_PROCESS ExpSyn1
  RANGE t au,  e,  i
  NONSPECI FI C_CURRENT i
}

PARAMETER {
  t au = 0. 1  ( ms)
  e   = 0    ( mi l l i vol t )
}

ASSI GNED {  
  v  ( mi l l i vol t )
  i   ( nanoamp)
}

STATE {  g ( mi cr os i emens)  }

I NI TI AL {  g = 0 }

BREAKPOI NT {
  SOLVE st at e METHOD cnexp
  i  = g* ( v -  e)
}
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DERI VATI VE st at e {  g'  = - g/ t au }

NET_RECEI VE( wei ght  ( mi cr osi emens) )  {
  g = g + wei ght
}

Listing 10.3. expsyn1. mod

The BREAKPOINT block

The BREAKPOI NT block of this mechanism is its main computational block. This
contains the SOLVE statement that tells how states will be integrated. The cnexp method
is used because the kinetics of ExpSyn1 are described by a differential equation of the
form y´ = f(y), where f(y) is linear in y (see also The DERIVATIVE block in Example
9.4: a voltage-gated current in Chapter 9). The BREAKPOI NT block ends with an
assignment statement that sets the value of the synaptic current.

The DERIVATIVE block

The DERI VATI VE block contains the differential equation that describes the time
course of the synaptic conductance g: a first order decay with time constant t au.

The NET_RECEIVE block

The NET_RECEI VE block contains the code that specifies what happens in response
to presynaptic activation. This is called by the Net Con event delivery system when an
event arrives at this point process. 

So suppose we have a model with an ExpSyn1 point process that is the target of a
Net Con. Imagine that the Net Con detects a presynaptic spike at time t . What happens
next?

ExpSyn1's conductance g continues to follow
a smooth exponential decay with time constant
t au until time t +del ay , where del ay  is the delay
associated with the Net Con object. At this point,
an event is delivered to the ExpSyn1. Just before
entry to the NET_RECEI VE block, NEURON makes all STATEs, v , and values assigned in
the BREAKPOI NT block consistent at t +del ay . Then the code in the NET_RECEI VE
block is executed, making the synaptic conductance suddenly jump up by the amount
specified by the Net Con's weight. 

Usage

Suppose we wanted to set up a synaptic connection between two cells using an
ExpSyn1 mechanism, as in Fig. 10.7. This could be done with the following hoc  code,
which also illustrates the use of a Li st  of Net Con objects as a means for keeping track
of the synaptic connections in a network.
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Figure 10.7. Schematic of a synaptic connection between two cells.

/ /  keep connect i v i t y  i n a l i s t  of  Net Con obj ect s
obj r ef  nc l
nc l  = new Li st ( )

/ /  at t ach an ExpSyn1 poi nt  pr ocess cal l ed syn
/ /    t o t he 0. 3 l ocat i on on dend[ 3]  of  cel l [ 5]
obj r ef  syn
cel l [ 5] . dend[ 3]  syn = new ExpSyn1( 0. 3)

/ /  pr esynapt i c  v i s  cel l [ 20] . axon. v( 1)
/ /  connect  t hi s  t o syn v i a a new Net Con obj ect
/ /    and add t he Net Con t o t he l i s t  ncl
cel l [ 20] . axon ncl . append( new Net Con( &v( 1) ,  \
         syn,  t hr eshol d,  del ay,  wei ght )

precell[0]

precell[1]

0 50 100 150
−70

−69

−68 postcell.soma.v(0.5)

0 50 100 150

0.001

0.002

0

ExpSyn1[0].g

Figure 10.8. Simulation results from the model shown in Fig. 10.6. Note stream-specific synaptic
weights and temporal summation of synaptic conductance and membrane potential.

Figure 10.8 shows results of a simulation of two input streams that converge onto a
single ExpSyn1 attached to a postsynaptic cell, as in the diagram at the top of Fig. 10.6.
The presynaptic firing times are indicated by the rasters labeled pr ecel l [ 0]  and
pr ecel l [ 1] . The synaptic conductance and postsynaptic membrane potential (middle
and bottom graphs) display stream-specific synaptic weights, and also show temporal
summation of inputs within an individual stream and between inputs on multiple streams.
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Example 10.4: alpha function synapse
With a few small changes, we can extend ExpSyn1 to implement an alpha function

synapse. We only need to replace the differential equation with the two state kinetic
scheme

STATE {  a ( mi cr os i emens)  g ( mi cr os i emens)  }
KI NETI C st at e {
  ~ a <- > g ( 1/ t au,  0)
  ~ g - > ( 1/ t au)
}

and change the NET_RECEI VE block to 

NET_RECEI VE( wei ght  ( mi cr osi emens) )  {
  a = a + wei ght * exp( 1)
}

The factor exp( 1)  = e is included so that an isolated event produces a peak conductance
of magnitude wei ght , which occurs at time t au after the event. Since this mechanism
involves a KI NETI C block instead of a DERI VATI VE block, we must also change the
integration method specified by the SOLVE statement from cnexp to spar se.

The extra computational complexity of using a kinetic scheme is offset by the fact
that, no matter how many Net Con streams connect to this model, the computation time
required to integrate STATE g remains constant. Some increase of efficiency can be
gained by recasting the kinetic scheme as two linear differential equations

DERI VATI VE st at e {
. . a'  = - a/ t au1
. . b'  = - b/ t au
. . g = b -  a
}

which are solved by the cnexp method (this is what NEURON's built in Exp2Syn
mechanism does). As t au1 approaches t au, g approaches an alpha function (although
the factor by which wei ght  must be multiplied approaches infinity; see f act or  in the
next example). Also, there are now two state discontinuities in the NET_RECEI VE block

NET_RECEI VE( wei ght  ( mi cr osi emens) )  {
  a = a + wei ght * f act or
  b = b + wei ght * f act or
}

Example 10.5: use-dependent synaptic plasticity
Here the alpha function synapse is extended to implement a form of use-dependent

synaptic plasticity. Each presynaptic event initiates two distinct processes: direct
activation of ligand-gated channels, which causes a transient conductance change, and
activation of a mechanism that in turn modulates the conductance change produced by
successive synaptic activations. In this example we presume that modulation depends on
the postsynaptic increase of a second messenger, which we will call "G protein" for
illustrative purposes. We must point out that this example is entirely hypothetical, and

Page 14 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved



October 20, 2004 The NEURON Book: Chapter 10

that it is quite different from models described by others [Destexhe, 1995 #168] in which
the G protein itself gates the ionic channels.

For this mechanism it is essential to distinguish each stream into the generalized
synapse, since each stream has to maintain its own [G] (concentration of activated G
protein). That is, streams are independent of each other in terms of the effect on [G], but
their effects on synaptic conductance show linear superposition.

:  gsyn. mod

NEURON {
  POI NT_PROCESS GSyn
  RANGE t au1,  t au2,  e,  i
  RANGE Gt au1,  Gt au2,  Gi nc
  NONSPECI FI C_CURRENT i
  RANGE g
}

UNI TS {
  ( nA)    = ( nanoamp)
  ( mV)    = ( mi l l i vol t )
  ( umho)  = ( mi cr omho)
}

PARAMETER {
  t au1   = 1  ( ms)
  t au2   = 1. 05    ( ms)
  Gt au1  = 20   ( ms)
  Gt au2  = 21   ( ms)
  Gi nc   = 1
  e      = 0    ( mV)
}

ASSI GNED {
  v  ( mV)
  i   ( nA)
  g  ( umho)
  f act or
  Gf act or
}

STATE {
  A  ( umho)
  B  ( umho)
}

I NI TI AL {
  LOCAL t p
  A = 0
  B = 0
  t p = ( t au1* t au2) / ( t au2 -  t au1)  *  l og( t au2/ t au1)
  f act or  = - exp( - t p/ t au1)  + exp( - t p/ t au2)
  f act or  = 1/ f act or
  t p = ( Gt au1* Gt au2) / ( Gt au2 -  Gt au1)  *  l og( Gt au2/ Gt au1)
  Gf act or  = - exp( - t p/ Gt au1)  + exp( - t p/ Gt au2)
  Gf act or  = 1/ Gf act or
}
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BREAKPOI NT {
  SOLVE st at e METHOD cnexp
  g = B -  A
  i  = g* ( v -  e)
}

DERI VATI VE st at e {
  A'  = - A/ t au1
  B'  = - B/ t au2
}

NET_RECEI VE( wei ght  ( umho) ,  w,  G1,  G2,  t 0 ( ms) )  {
  G1 = G1* exp( - ( t - t 0) / Gt au1)
  G2 = G2* exp( - ( t - t 0) / Gt au2)
  G1 = G1 + Gi nc* Gf act or
  G2 = G2 + Gi nc* Gf act or
  t 0 = t

  w = wei ght * ( 1 + G2 -  G1)
  A = A + w* f act or
  B = B + w* f act or
}

Listing 10.4. gsyn. mod

The NET_RECEIVE block

The conductance of the ligand-gated ion channel uses the differential equation
approximation for an alpha function synapse. The peak synaptic conductance depends on
the value of [G] at the moment of synaptic activation. A similar, albeit much slower,
alpha function approximation describes the time course of [G]. These processes peak
approximately t au1 and Gt au1 after delivery of an event, respectively.

The peak synaptic conductance elicited by an individual event is specified in the
NET_RECEI VE block, where w = wei ght * ( 1+G2- G1)  describes how the effective
weight of the synapse is modified by [G]. Even though conductance is integrated, [G] is
needed only at discrete event times so it can be computed analytically from the elapsed
time since the prior synaptic activation. The I NI TI AL block sets up the factors that are
needed to make the peak changes equal to the values of w and Gi nc .

Note that G1 and G2 are not STATEs in this mechanism. They are not even variables
in this mechanism, but instead are "owned" by the particular Net Con instance that
delivered the event. Each Net Con object instance
keeps an array (the weight vector) whose size equals
the number of arguments to NET_RECEI VE, and the
arguments to NET_RECEI VE are really references to
the elements of this array. Unlike the arguments to a 
PROCEDURE or FUNCTI ON block, which are "call by
value," the arguments to a NET_RECEI VE block are
"call by reference." Therefore assignment statements
in gsyn. mod's NET_RECEI VE block can change the
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values of variables that belong to the Net Con object, and this means that the Net Con's
weight vector can be used to hold stream-specific state information. In the context of this
particular example, each connection has its own [G], so gsyn uses "stream-specific
plasticity" to represent "synapse-specific plasticity." 

0 20 40 60
0

Sµ
1e−4

80
ms

5e−5

GSyn[0].g

S1

S2

Figure 10.9. Simulation results from the model shown in Fig. 10.6 when the
synaptic mechanism is GSyn. Note stream-specific use-dependent plasticity.

To illustrate the operation of this mechanism, imagine the network of Fig. 10.6 with a
single GSyn driven by the two spike trains shown in Fig. 10.9. This emulates two
synapses that are electrotonically close to each other, but with separate pools of [G]. The
train with spikes at 5 and 45 ms (S1) shows some potentiation of the second conductance
transient, but the train that starts at 15 ms with a 200 Hz burst of three spikes displays a
large initial potentiation that is even larger when tested after a 40 ms interval.

Example 10.6: saturating synapses
Several authors (e.g. [Destexhe, 1994 #267], [Lytton, 1996 #206]) have used synaptic

transmission mechanisms based on a simple conceptual model of transmitter-receptor
interaction:

C � T
�
�

�

�

O Eq. 10.2

where transmitter T binds to a closed receptor channel C to produce an open channel O.
In this conceptual model, spike-triggered transmitter release produces a transmitter
concentration in the synaptic cleft that is approximated by a rectangular pulse with a
fixed duration and magnitude (Fig. 10.10). A "large excess of transmitter" is assumed, so
that while transmitter is present (the "onset" state, "ligand binding to channel") the
postsynaptic conductance increases toward a maximum value with a single time constant
1/(α T + β). After the end of the transmitter pulse (the "offset" state, "ligand·channel
complex dissociating"), the conductance decays with time constant 1/β. Further details of
saturating mechanisms are covered by [Destexhe, 1994 #267][Destexhe, 1994 #266] and
[Lytton, 1996 #206].
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g

xmtr

Cdur Cdur

Figure 10.10. A saturating synapse model. A single presynaptic spike (top
trace) causes a pulse of transmitter in the synaptic cleft with fixed duration
(Cdur) and concentration (middle trace). This elicits a rapid increase of
postsynaptic conductance followed by a slower decay (bottom trace). A high
frequency burst of spikes produces a sustained elevation of transmitter that
persists until Cdur after the last spike and causes saturation of the postsynaptic
conductance.

There is an ambiguity when one or more spikes arrive on a single stream during the
onset state triggered by an earlier spike: should the mechanism ignore the "extra" spikes,
concatenate onset states to make the transmitter pulse longer without increasing its
concentration, or increase (summate) the transmitter concentration? Summation of
transmitter requires the onset time constant to vary with transmitter concentration. This
places transmitter summation outside the scope of the Destexhe/Lytton model, which
assumes a fixed time constant for the onset state. We resolve this ambiguity by choosing
concatenation, so that repetitive impulses on one stream produce a saturating conductance
change (Fig. 10.10). However, conductance changes elicited by separate streams will
summate.

A model of the form used in Examples 10.4 and 10.5 can capture the idea of
saturation, but the separate onset/offset formulation requires keeping track of how much
"material" is in the onset or offset state. The mechanism in Listing 10.5 implements an
effective strategy for doing this. A noteworthy feature of this model is that the event
delivery system serves as more than a conduit for receiving inputs from other cells:
discrete events are used to govern the duration of synaptic activation, and are thus an
integral part of the mechanism itself.

:  ampa. mod

NEURON {
  POI NT_PROCESS AMPA_S
  RANGE g
  NONSPECI FI C_CURRENT i
  GLOBAL Cdur ,  Al pha,  Bet a,  Er ev,  Ri nf ,  Rt au
}

UNI TS {
  ( nA)    = ( nanoamp)
  ( mV)    = ( mi l l i vol t )
  ( umho)  = ( mi cr omho)
}
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PARAMETER {
  Cdur   = 1. 0   ( ms)   :  t r ansmi t t er  dur at i on ( r i s i ng phase)
  Al pha = 1. 1   ( / ms)  :  f or war d ( bi ndi ng)  r at e
  Bet a  = 0. 19  ( / ms)  :  backwar d ( di ssoci at i on)  r at e
  Er ev  = 0     ( mV)   :  equi l i br i um pot ent i al
}

ASSI GNED {
  v     ( mV)    :  post synapt i c  vol t age
  i      ( nA)    :  cur r ent  = g* ( v  -  Er ev)
  g     ( umho)  :  conduct ance
  Rt au  ( ms)    :  t i me const ant  of  channel  bi ndi ng
  Ri nf   :  f r act i on of  open channel s i f  xmt r  i s  pr esent  " f or ever "
  synon :  sum of  wei ght s of  al l  synapses i n t he " onset "  s t at e
}

STATE {  Ron Rof f  }   :  i ni t i al i zed t o 0 by def aul t
:  Ron and Rof f  ar e t he t ot al  conduct ances of  al l  synapses 
:    t hat  ar e i n t he " onset "  ( t r ansmi t t er  pul se ON)
:    and " of f set "  ( t r ansmi t t er  pul se OFF)  s t at es,  r espect i vel y

I NI TI AL {
  synon = 0
  Rt au = 1 /  ( Al pha + Bet a)
  Ri nf  = Al pha /  ( Al pha + Bet a)
}

BREAKPOI NT {
  SOLVE r el ease METHOD cnexp
  g = ( Ron + Rof f ) * 1( umho)
  i  = g* ( v -  Er ev)
}

DERI VATI VE r el ease {
  Ron'  = ( synon* Ri nf  -  Ron) / Rt au
  Rof f '  = - Bet a* Rof f
}
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NET_RECEI VE( wei ght ,  on,  r 0,  t 0 ( ms) )  {
  :  f l ag i s  an i mpl i c i t  ar gument  of  NET_RECEI VE,  nor mal l y  0
  i f  ( f l ag == 0)  {
    :  a spi ke ar r i ved,  s t ar t  onset  s t at e i f  not  al r eady on
    i f  ( ! on)  {
      :  t hi s synapse j oi ns t he set  of  synapses i n onset  st at e
      synon = synon + wei ght
      r 0 = r 0* exp( - Bet a* ( t  -  t 0) )  :  r 0 at  s t ar t  of  onset  s t at e
      Ron = Ron + r 0
      Rof f  = Rof f  -  r 0
      t 0 = t
      on = 1
      :  come agai n i n Cdur  wi t h f l ag = 1
      net _send( Cdur ,  1)
    }  el se {
      :  al r eady i n onset  s t at e,  so move of f set  t i me
      net _move( t  + Cdur )
    }
  }
  i f  ( f l ag == 1)  {
    :  " t ur n of f  t r ansmi t t er "
    :  i . e.  t hi s synapse ent er s t he of f set  s t at e
    synon = synon -  wei ght
    :  r 0 at  s t ar t  of  of f set  s t at e
    r 0 = wei ght * Ri nf  + ( r 0 -  wei ght * Ri nf ) * exp( - ( t  -  t 0) / Rt au)
    Ron = Ron -  r 0
    Rof f  = Rof f  + r 0
    t 0 = t
    on = 0
  }
}

Listing 10.5. ampa. mod

The PARAMETER block

The actual value of the transmitter concentration in the synaptic cleft during the onset
state is unimportant to this model, as long as it remains constant. To simplify the
mechanism, we assume transmitter concentration to be dimensionless, with a numeric
value of 1. This allows us to specify the forward rate constant Al pha in units of 1/ms.

The STATE block

This mechanism has two STATEs. Ron is the total conductance of all synapses that are
in the onset state, and Rof f  is the total conductance of all synapses that are in the offset
state. These are declared without units, so a units factor will have to be applied elsewhere
(in this example, this is done in the BREAKPOI NT block).

The INITIAL block

At the start of a simulation, we assume that all channels are closed and no transmitter
is present at any synapse. The initial values of Ron, Rof f , and synon must therefore
be 0. This initialization happens automatically for STATEs and does not require explicit
specification in the I NI TI AL block, but synon needs an assignment statement.
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The I NI TI AL block also calculates Rt au and Ri nf . Rt au is the time constant for
equilibration of the closed (free) and open (ligand-bound) forms of the postsynaptic
receptors when transmitter is present in the synaptic cleft. Ri nf  is the open channel
fraction if transmitter is present forever.

The BREAKPOINT and DERIVATIVE blocks

The total conductance is numerically equal to Ron+Rof f . The * 1( umho)  factor is
included for dimensional consistency. 

The DERI VATI VE block specifies the first order differential equations that govern
these STATEs. The meaning of each term in 

Rof f '  = - Bet a* Rof f

is obvious, and in 

Ron'  = ( synon* Ri nf  -  Ron) / Rt au

the product synon* Ri nf  is the value that Ron approaches with increasing time. 

The NET_RECEIVE block

The NET_RECEI VE block performs the task of switching each synapse between its
onset and offset states. In broad outline, if an external event (an event generated by the
Net Con's source passing threshold) arrives at time t  to start an onset, the NET_RECEI VE
block generates an event that it sends to itself. This self-event will be delivered at time
t +Cdur , where Cdur  is the duration of the transmitter
pulse. Arrival of the self-event is the signal to switch
the synapse back to the offset state. If another external
event arrives from the same Net Con before the self-
event does, the self-event is moved to a new time that
is Cdur  in the future. Thus resetting to the offset state
can happen only if an interval of Cdur  passes without new external events arriving.

To accomplish this strategy, the NET_RECEI VE block must distinguish an external
event from a self-event. It does this by
exploiting the fact that every event has an
implicit argument called f l ag, the value of
which is automatically 0 for an external event. 

Handling of external events

Arrival of an external event causes execution of the statements inside the
i f  ( f l ag==0) { }  clause. These begin with i f  ( ! on) , which tests whether this
synapse should switch to the onset state.

Switching to the onset state involves keeping track of how much "material" is in the
onset and offset states. This requires moving the synapse's channels into the pool of
channels that are exposed to transmitter, which simply means adding the synapse's
wei ght  to synon. Also, the conductance of this synapse, which had been decaying with
rate constant 1/ Bet a, must now start to grow with rate constant Rt au. This is done by
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computing r 0, the synaptic conductance at the present time t , and then adding r 0 to Ron
and subtracting it from Rof f . Next the value of t 0 is updated for future use, and on is set
to 1 to signify that the synapse is in the onset state. The last statement inside i f  ( ! on) { }
is net _send( Cdur , nspi ke) , which generates a self-event with delay given by the first
argument and flag value given by the second argument. All the explicit arguments of this
self-event will have the values of this particular Net Con, so when this self-event returns
we will know how much "material" to switch from the onset to the offset state.

The el se { }  clause takes care of what happens if another external event arrives
while the synapse is still in the onset state. The net _move( t +Cdur )  statement moves
the self-event to a new time that is Cdur  in the future (relative to the arrival time of the
new external event). In other words, this prolongs synaptic activation until Cdur  after the
most recent external event.

Handling of self-events

When the self-event is finally delivered, it triggers an offset. We know it is a self-
event because its f l ag is 1. Once again we keep track of how much "material" is in the
onset and offset states, but now we subtract the synapse's wei ght  from synon to remove
the synapse's channels from the pool of channels that are exposed to transmitter.
Likewise, the conductance of this synapse, which was growing with rate constant Rt au,
must now begin to decay with rate constant 1/ Bet a. Finally, the value of t 0 is updated
and on is reset to 0.

Artificial spiking cells
NEURON's event delivery system was created with the primary aim of making it

easier to represent synaptic connections between biophysical model neurons. However,
the event delivery system turns out to be quite useful for implementing a wide range of
mechanisms that require actions to be taken after a delay. The saturating synapse model
presented above is just one example of this. 

The previous section also showed how spike-triggered synaptic transmission makes
extensive use of the network connection class to define connections between cells. The
typical Net Con object watches a source cell for the occurrence of a spike, and then, after
some delay, delivers a weighted event to a target synaptic mechanism, i.e. it is a
metaphor for axonal spike propagation. More generally, a Net Con object can be regarded
as a channel on which a stream of events generated at a source is transmitted to a target.
The target can be a point process, a distributed mechanism, or an artificial neuron (e.g. an
integrate and fire model). The effect of events on a target is specified in NMODL by
statements in a NET_RECEI VE block, which is called only when an event has been
delivered.

The event delivery system also opens up a large domain of simulations in which
certain types of artificial spiking cells, and networks of them, can be simulated hundreds
of times faster than with numerical integration methods. Discrete event simulation is
possible when all the state variables of a model cell can be computed analytically from a
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new set of initial conditions. That is, if an event occurs at time t1, all state variables must

be computable from the state values and time t0 of the previous event. Since

computations are performed only when an event occurs, total computation time is
proportional to the number of events delivered and independent of the number of cells,
number of connections, or problem time. Thus handling 100,000 spikes in one hour for
100 cells takes the same time as handling 100,000 spikes in 1 second for 1 cell.

Artificial spiking cells are implemented in NEURON as point processes, but unlike
ordinary point processes, they can serve as targets and sources for Net Con objects. They
can be targets because they have a NET_RECEI VE block, which specifies how incoming
events from one or more Net Con objects are handled, and details the calculations
necessary to generate outgoing events. They can also be sources because the same
NET_RECEI VE block generates discrete output events which are delivered through one or
more Net Con objects to targets.

The following examples analyze the three broad classes of integrate and fire cells that
are built into NEURON. In order to emphasize how the event delivery system is used to
implement the dynamics of these mechanisms, we have omitted many details from the
NMODL listings. Ellipses indicate elisions, and listings include italicized pseudocode
where necessary for clarity. Complete source code for all three of these cell classes is
provided with NEURON.

Example 10.7: IntFire1, a basic integrate and fire model
The simplest integrate and fire mechanism built into NEURON is I nt Fi r e1, which

has a membrane state variable m (analogous to membrane potential) which decays toward
0 with time constant τ. 

� dm
dt

�
m � 0 Eq. 10.3

An input event of weight w adds instantaneously to m, and if m reaches or exceeds the
threshold value of 1, the cell "fires," producing an output event and returning m to 0.
Negative weights are inhibitory while positive weights are excitatory. This is analogous
to a cell with a membrane time constant τ that is very long compared to the time course
of individual synaptic conductance changes. Every synaptic input to such a cell shifts
membrane potential to a new level in a time that is much shorter than τ, and each cell
firing erases all traces of prior inputs. Listing 10.6 presents an initial implementation of
I nt Fi r e1.

NEURON {
  ARTI FI CI AL_CELL I nt Fi r e1
  RANGE t au,  m
}

PARAMETER {  t au = 10 ( ms)  }
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ASSI GNED {
  m
  t 0 ( ms)
}

I NI TI AL {
  m = 0
  t 0 = 0
}

NET_RECEI VE ( w)  {
  m = m* exp( - ( t  -  t 0) / t au)
  m = m + w
  t 0 = t
  i f  ( m > 1)  {
    net _event ( t )
    m = 0
  }
}

Listing 10.6. A basic implementation of I nt Fi r e1.

The NEURON block

As the introduction to this section mentions, artificial spiking cells are implemented
in NEURON as point processes. The keyword ARTI FI CI AL_CELL is in fact a synonym
for POI NT_PROCESS, but we use it as a deliberate reminder that this model has a
NET_RECEI VE block, lacks a BREAKPOI NT block, and does not have to be associated
with a section location or numerical integrator. Unlike other point processes, an artificial
cell is isolated from the usual things that link mechanisms to each other: it does not refer
to membrane potential v  or any ions, and it does not use POI NTER variables. Instead, the
"outside" can affect it only by sending it discrete events, and it can only affect the
"outside" by sending discrete events.

The NET_RECEIVE block

The mechanisms we have seen so far use BREAKPOI NT and KI NETI C or
DERI VATI VE blocks to specify the calculations that are performed during a time step dt ,
but an artificial cell model does not have these blocks. Instead, calculations only take
place when a new event arrives, and these are performed in the NET_RECEI VE block.

When a Net Con delivers a new event to an I nt Fi r e1 cell, the present value of m is
computed analytically and then m is incremented by the weight w of the event. According
to the NET_RECEI VE block, the present value of m is found by applying an exponential
decay to the value it had immediately after the previous event; therefore the code contains
variable t 0 which keeps track of the last event time.

If an input event drives m to or above threshold, the net _event ( t )  statement
notifies all Net Cons, for which this point process is the source, that it fired a spike at
time t  (the argument to net _event ( )  can be any time at or later than the current
time t ). Then the cell resets m to 0. The code in Listing 10.6 imposes no limit on firing
frequency--if a Net Con with del ay  of 0 and a wei ght  of 1.1 has such an artificial cell
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as both its source and target, the system will behave "properly," in the sense that events
will be generated and delivered without time ever advancing. It is easy to prevent the
occurrence of such a runaway stream of events (see Adding a refractory period below). 

There is no threshold test overhead at every dt  because I nt Fi r e1 has no variable
for Net Cons to watch. That is, this artificial spiking cell does not need the usual test for
local membrane potential v to cross Net Con. t hr eshol d, which is essential at every
time step for event generation with biophysical neuron models. Furthermore the event
delivery system only places the earliest event to be delivered on the event queue. When
that time finally arrives, all targets whose Net Cons have the same source and delay get
the event delivery, and longer delay streams are put back on the event queue to await
their specific delivery time.

Enhancements to the basic mechanism

Visualizing the membrane state variable

The membrane state variable m is difficult to plot in an understandable manner, since
it is represented in the computer by a variable m that remains unchanged over the interval
between input events regardless of how many numerical integration steps were performed
in that interval. Consequently m always has the value that was calculated after the last
event was received, and plots of it look like a staircase (Fig. 10.11 left), with no apparent
decay or indication of what the value of m was just before the event. 
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Figure 10.11. Response of an I nt Fi r e1 cell with τ = 10 ms to input events with weight
= 0.8 arriving at t = 5, 22, and 25 ms (arrows). The third input initiates a "spike." Left:
The variable m is evaluated only when a new event arrives, so its plot looks like a
staircase. A function can be included in I nt Fi r e1's mod file (see text) to better indicate
the time course of the membrane state variable m. Center: Plotting this function during a
simulation with fixed dt  (0.025 ms here) demonstrates the decay of m between events.
Right: In a variable time step simulation, m appears to follow a sequence of linear ramps.
This artifact is a consequence of the efficiency of adaptive integration, which computed
analytical solutions at only a few instants, so the Graph tool could only draw lines from
instant to instant.

This can be partially repaired by adding a function 

FUNCTI ON M( )  {
  M = m* exp( - ( t  -  t 0) / t au)
}
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that returns the present value of the membrane state variable m. This gives nice
trajectories when fixed time step integration is used (Fig. 10.11 center). However, the
natural step with the variable step method is the interspike interval itself, unless
intervening events occur in other cells (e.g. 1 ms before the second input event in
Fig. 10.11 right). At least the integration step function f advance( )  returns 10-9 ms
before and after the event to properly indicate the discontinuity in M.

Adding a refractory period

It is easy to add a relative refractory period by initializing m to a negative value after
the cell fires (alternatively, a depolarizing afterpotential can be emulated by initializing m
to a value in the range (0,1)). However, incorporating an absolute refractory period
requires self-events.

Suppose we want to limit the maximum firing rate to 200 spikes per second, which
corresponds to an absolute refractory period of 5 ms. To specify the duration of the
refractory period, we use a variable named r ef r ac , which is declared and assigned a
value of 5 ms in the PARAMETER block. Adding the statement RANGE r ef r ac  to the
NEURON block allows us to adjust this parameter from the interpreter and graphical
interface. We also use a variable to keep track of whether the point process is in the
refractory period or not. The name we choose for this variable is the eponymous
r ef r act or y , and it is declared in the ASSI GNED block and initialized to a value of 0
("false") in the I NI TI AL block. 

The NET_RECEI VE implementation is then

NET_RECEI VE ( w)  {
  i f  ( r ef r act or y == 0)  {
    m = m* exp( - ( t  -  t 0) / t au)
    m = m + w
    t 0 = t
    i f  ( m > 1)  {
      net _event ( t )
      r ef r act or y = 1
      net _send( r ef r ac,  r ef r act or y)
    }
  }  el se i f  ( f l ag == 1)  {  
    :  sel f - event  ar r i ved,  so t er mi nat e r ef r act or y per i od
    r ef r act or y = 0
    m = 0
    t 0 = t
  }  :  el se i gnor e t he ext er nal  event
}

If r ef r act or y equals 0, the cell accepts external events (i.e. events delivered by a
Net Con) and calculates the state variable m and whether to fire the cell. When the cell
fires a spike, r ef r act or y  is set to 1 and further external events are ignored until the end
of the refractory period (Fig. 10.12).

Recall from the saturating synapse example that the f l ag variable that accompanies
an external event is 0. If this mechanism receives an event with a nonzero f l ag, it must
be a self-event, i.e. an event generated by a call to net _send( )  when the cell fired. The
net _send( i nt er val ,  f l ag)  statement places an event into the delivery system as an
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"echo" of the current event, i.e. it will come back to the sender after the specified
i nt er val  with the specified f l ag. In this case we aren't interested in the weight but
only the f l ag. Arrival of this self-event means that the refractory period is over.

The top of Fig. 10.12 shows the response of this model to a train of input stimuli.
Temporal summation triggers a spike on the fourth input. The fifth input arrives during
the refractory interval and has no effect.

refractory
0

1

0 5 10 15 20
ms

IntFire1[0].M

0 5 10 15 20
ms

0.5

1.5

2

0

1

IntFire1[0].M

0 5 10 15

−1

0

1

2

20
ms

Figure 10.12. Response of an I nt Fi r e1 cell with a 5 ms refractory interval to a
run of inputs at 3 ms intervals (arrows), each with weight = 0.4. Top: The cell
accepts inputs when r ef r act or y  == 0. The fourth input (at 11 ms) drives the
cell above threshold. This triggers an output event, increases r ef r act or y to 1
(top trace), and function M, which reflects the membrane state variable m, jumps
to 2. During the 5 ms refractory period, M decays gradually, but the cell is
unresponsive to further inputs (note that the input at 14 ms produces no change
in the membrane state variable). At 16 ms r ef r act or y  falls to 0, making the
cell once again responsive to inputs, and M also returns to 0 until the next
external event arrives. Bottom: After modifying the function M to generate
rectangular pulses that emulate a spike followed by postspike hyperpolarization.

Improved presentation of the membrane state variable

The performance in the top of Fig. 10.12 is satisfactory, but the model could be
further improved by one relatively minor change. As it stands the M function shows an
exponential decay during the refractory period, which is at best distracting and irrelevant
to the operation of the model, and potentially misleading at worst. It would be better for M
to follow a stereotyped time course, e.g. a brief positive pulse followed by a longer
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negative pulse. This would not be confused with the subthreshold operation of the model,
and it might be more suggestive of an action potential. 

The most direct way to do this is to make M take different actions depending on
whether or not the model is "spiking." One possibility is 

FUNCTI ON M( )  {
  i f  ( r ef r act or y == 0)  {
    M = m* exp( - ( t  -  t 0) / t au)
  }  el se i f  ( r ef r act or y == 1)  {
    i f  ( t  -  t 0 < 0. 5)  {
      M = 2
    }  el se {
      M = - 1
    }
  }
}

which is exactly what the built-in I nt Fi r e1 model does. The bottom of Fig. 10.12
shows the time course of this revised function.

This demonstrates how visualization of cell operation can be enhanced by simple
calculations of patterns for the spiking and refractory trajectories, with no overhead for
cells that are not plotted. We must emphasize that the simulation calculations are analytic
and performed only at event arrival, regardless of the refinements we introduced for the
purpose of esthetics.

Sending an event to oneself to trigger deferred computation involves very little
overhead, yet it allows elaborate calculations to be performed much more efficiently than
if they were executed on a per dt  basis. Self-events are heavily exploited in the
implementation of I nt Fi r e2 and I nt Fi r e4, which both offer greater kinetic
complexity than I nt Fi r e1.

Example 10.8: IntFire2, firing rate proportional to input
The I nt Fi r e2 model, like I nt Fi r e1, has a membrane state variable m that follows

first order kinetics with time constant τm. However, an input event to I nt Fi r e2 does not

affect m directly. Instead it produces a discontinuous change in a synaptic current state
variable i. Between events, i decays with its own time constant τs toward a steady "bias"

value specified by the parameter ib. That is, 

�

s
di
dt

�
i � ib Eq. 10.4

where an input event causes i to change abruptly by w (Fig. 10.13 top). This current i
drives m, i.e. 

�

m
dm
dt

�
m � i Eq. 10.5
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where τm < τs. Thus an input event produces a gradual change in m that is described by

two time constants and approximates an alpha function if τm ≈ τs. When m crosses a

threshold of 1 in a positive direction, the cell fires, m is reset to 0, and integration
resumes immediately, as shown in the bottom of Fig. 10.13. Note that i is not reset to 0,
i.e. unlike I nt Fi r e1, firing of an I nt Fi r e2 cell does not obliterate all traces of prior
synaptic activation.
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0
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ms
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w = 1.4

IntFire2[0].I
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ms

0

0.2
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0.6

0.8

1 IntFire2[0].M

Figure 10.13. Top: Time course of synaptic current i in an I nt Fi r e2 cell with
τs = 20 ms and τm = 10 ms. This cell has bias current ib = 0.2 and receives

inputs with weight w = 1.4 at t = 50 and 100 ms. Bottom: The membrane state
variable m of this cell is initially 0 and approaches the value of ib (0.2 in this

example) with time constant τm. The first synaptic input produces a

subthreshold response, but temporal summation drives m above threshold at t =
109.94 ms. This resets m to 0 and integration resumes.

Depending on its parameters, I nt Fi r e2 can emulate a wide range of relationships
between input pattern and firing rate. Its firing rate is ~ i / τm if i is >> 1 and changes

slowly compared to τm. 

The parameter ib is analogous to the combined effect of a baseline level of synaptic

drive plus a bias current injected through an electrode. The requirement that τm < τs is

equivalent to asserting that the membrane time constant is faster than the decay of the
current produced by an individual synaptic activation. This is plausible for slow
inhibitory inputs, but where fast excitatory inputs are concerned an alternative
interpretation can be applied: each input event signals an abrupt increase (followed by an
exponential decline) in the mean firing rate of one or more afferents that produce brief
but temporally overlapping postsynaptic currents. The resulting change of i is the moving
average of these currents.
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The I nt Fi r e2 mechanism is amenable to discrete event simulation because
Eqns. 10.4 and 10.5 have analytic solutions. If the last input event was at time t0 and the

values of i and m immediately after that event were i(t0) and m(t0), then their subsequent

time course is given by 

i
�
t � � i b

� �
i
�
t0 � � i b

	 e
� � t � t0

��� �
s Eq. 10.6

and 

m
�
t � � ib

���
i
�
t0 � � i b � �

s
�

s � �

m

e
� � t � t0

��� �
s           

���
m
�
t0 � � i b � �

i
�
t0 � � ib � �

s
�

s � �

m � e
� � t � t0

�	� �
m

Eq. 10.7

Implementation in NMODL

The core of the NMODL implementation of I nt Fi r e2 is the function f i r et i me( ) ,
which is discussed below. This function projects when m will equal 1 based on the
present values of ib, i, and m, assuming that no new input events arrive. The value

returned by f i r et i me( )  is 109 if the cell will never fire with no additional input. Note
that if ib > 1 the cell fires spontaneously even if no input events occur.

I NI TI AL {
   .  .  .
  net _send( f i r et i me( args) ,  1)
}

NET_RECEI VE ( w)  {
   .  .  .
  i f  ( f l ag == 1)  {  :  t i me t o f i r e
    net _event ( t )
    m = 0
     .  .  .
    net _send( f i r et i me( args) ,  1)
  }  el se {
     .  .  .
    update m
    i f  ( m >= 1)  {
      net _move( t )  :  t he t i me t o f i r e i s now
    }  el se {
       .  .  .
      net _move( f i r et i me( args)  + t )
    }
  }
  update t0 and i
}

Listing 10.7. Key excerpts from i nt f i r e2. mod
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The I NI TI AL block in I nt Fi r e2 calls f i r et i me( )  and uses the returned value to
put a self-event into the delivery system. The strategy, which is spelled out in the
NET_RECEI VE block, is to respond to external events by moving the delivery time of the
self-event back and forth with the net _move( )  function. When the self-event is finally
delivered (potentially never), net _event ( )  is called to signal that this cell is firing.
Notice that external events always have an effect on the value of i, and are never
ignored--and shouldn't be, even if we introduced a refractory period in which we refused
to integrate m. 

The function f i r et i me( )  returns the first t ≥ 0 for which 

a
�

b e
� t
� �

s � �
c � a � b � e

� t
� �

m � 1 Eq. 10.8

where the parameters a, b and c are defined by the coefficients in Eq. 10.7. If there is no
such t the function returns 109. This represents the time of the next cell firing, relative to
the time t0 of the most recent synaptic event. 

Since f i r et i me( )  must be executed on every input event, it is important to 
minimize the number of Newton iterations needed to calculate the next firing time. For
this we use a strategy that depends on the behavior of the function 

f 1

�
x � � a

�
b x r � �

c � a � b � x Eq. 10.9a

where x � e�
t
���

m

r � �

m

�
�

s

Eq. 10.9b

over the domain 0 < x ≤ 1. Note that c < 1 is the value of f1 at x = 0 (i.e. at t = ∞). The

function f1 is either linear in x (if b = 0) or convex up (b > 0) or down (b < 0) with no

inflection points. Since r < 1, f1 is tangent to the y axis for any nonzero b (i.e. f1´(0) is

infinite). 
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Figure 10.14. Plots of f1 and f2 computed for r = 0.5. See text for details.

The left panel of Fig. 10.14 illustrates the qualitative behavior of f1 for a ≤ 1. It is

easy to analytically compute the maximum in order to determine if there is a solution to
f1(x) = 1. If a solution exists, f1 will be concave downward so Newton iterations starting

at x = 1 will underestimate the firing time.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 31



The NEURON Book: Chapter 10 October 20, 2004

For a > 1, a solution is guaranteed (Fig. 10.14 middle). However, starting Newton
iterations at x = 1 is inappropriate if the slope there is more negative than c - 1 (straight

dashed line in Fig. 10.14 middle). In that case, the transformation x � e
� t
� �

s  is used,
giving the function 

f 2

�
x � � a

�
b x

� �
c � a � b � x 1

�
r Eq. 10.9c

and the Newton iterations begin at x = 0 (Fig. 10.14 right).

These computations are performed over regions in which f1 and f2 are relatively

linear, so the f i r et i me( )  function usually requires only two or three Newton iterations
to converge to the next firing time. The only exception is when f1 has a maximum that is

just slightly larger than 1, in which case it may be a good idea to stop after a couple of
iterations and issue a self-event. The advantage of this would be the deferral of a costly
series of iterations, allowing an interval in which another external event might arrive that
would force computation of a new projected firing time. Such an event, whether
excitatory or inhibitory, would likely make it easier to compute the next firing time.

Example 10.9: IntFire4, different synaptic time constants
I nt Fi r e2 can emulate an input-output relationship with more complex dynamics

than I nt Fi r e1 does, but it is somewhat restricted because its response to every external
event, whether excitatory or inhibitory, has the same kinetics. As we pointed out in the
discussion of I nt Fi r e2, it is possible to interpret excitatory events in a way that
partially sidesteps this issue. However, experimentally observed synaptic excitation tends
to be faster than inhibition (e.g. [Destexhe, 1998 #278]) so a more flexible integrate and
fire mechanism is needed. 

The I nt Fi r e4 mechanism addresses this need. Its dynamics are specified by four
time constants: τe for a fast excitatory current, τi

1
 and τi

2
 for a slower inhibitory current,

and τm for the even slower leaky "membrane" which integrates these currents. When the

membrane state variable m reaches 1, the cell "fires," producing an output event and
returning m to 0. This does not affect the other states of the model.

The differential equations that govern I nt Fi r e4 are 

de
dt

� � kee Eq. 10.10

di1
dt

� � k i1
i1

Eq. 10.11

di2
dt

� � k i 2
i 2
�

ai1
i1

Eq. 10.12

dm
dt

� � kmm
�

aee
�

ai 2
i2 Eq. 10.13
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where each k is a rate constant that equals the reciprocal of the corresponding time
constant, and it is assumed that ke > ki

1
 > ki

2
 > km (i.e. τe < τi

1
 < τi

2
 < τm). An input event

with weight w > 0 (i.e. an excitatory event) adds instantaneously to the excitatory current
e. Equations 10.11 and 12, which define the inhibitory current i2, are based on the

reaction scheme 

i1
�

ki 1

i2
�

ki 2

bath Eq. 10.14

in which an input event with weight w < 0 (i.e. an inhibitory event) adds instantaneously
to i1. The constants ae, ai

1
, and ai

2
 are chosen to normalize the response of the states e, i1,

i2, and m to input events (Fig. 10.15). Therefore an input with weight we > 0 (an

"excitatory" input) produces a peak e of we and a maximum "membrane potential" m of

we. Likewise, an input with weight wi < 0 (an "inhibitory" input) produces an inhibitory

current i2 with a minimum of wi and drives m to a minimum of wi. Details of the analytic

solution to these equations are presented in Appendix A1: Mathematical analysis of
IntFire4.
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Figure 10.15. Left: Current generated by a single input event with weight 0.5
(e) or -0.5 (i2). Right: The corresponding response of m. Parameters were

τe = 3, τi
1
 = 5, τi

2
 = 10, and τm = 30 ms.

I nt Fi r e4, like I nt Fi r e2, finds the next firing time through successive
approximation. However, I nt Fi r e2 generally iterates to convergence every time an
input event is received, whereas I nt Fi r e4's algorithm implement a series of deferred
Newton iterations by exploiting the downward convexity of the membrane potential
trajectory and using NEURON's event delivery system. The result is an alternating
sequence of self-events and single Newton iterations that converges to the correct firing
time, yet remains computationally efficient in the face of heavy input event traffic.

This is illustrated in Fig. 10.16. If an event arrives at time t0, values of e(t0), i1(t0), i2
(t0), and m(t0) are calculated analytically. Should m(t0) be subthreshold, the self-event is

moved to a new approximate firing time tf that is based on the slope approximation to m 
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tf = t0 + (1 - m(t0)) / m´(t0)  if  m´(t0) > 0 Eq. 10.15

or
∞  if  m´(t0) ≤ 0                           

(Fig. 10.16 left and middle). If instead m(t0) reaches threshold, the cell "fires" so that

net _event ( )  is called (producing an output event that is picked up by all Net Cons for
which this cell is a source) and m is reset to 0. The self-event is then moved to an
approximate firing time that is computed from Eq. 10.15 using the values assigned to m
and m´ immediately after the "spike" (Fig. 10.16 right).

1 1

0

Figure 10.16. Excerpts from simulations of I nt Fi r e4 cells showing time
course of m. Arrival of an event (arrow = external event, vertical dotted line =
self-event) triggers a Newton iteration. Slanted dashed lines are slope
approximations to m immediately after an event. Left: Although Eq. 10.15
yields a finite tf , this input is too weak for the cell to fire. Middle: Here m´ < 0

immediately after an input event, so both tf and the true firing time are infinite.

Right: The slope approximation following the excitatory input is not shown, but
it obviously crosses threshold before the actual firing time (asterisk). Following
the "spike" m is reset to 0 but bounces back up because of persistent excitatory
current. This dies away without eliciting a second spike, even though tf is finite

(dashed line).

1
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1
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Figure 10.17. These magnified views of the trajectory from the right panel of
Fig. 10.16 indicate how rapidly the event-driven Newton iterations converge to
the next firing time. In this simulation, spike threshold was reached in four
iterations after the excitatory input (arrow). The first two iterations are evident
in the left panel, and additional magnification of the circled region reveals the
last two iterations (right panel). 
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The justification for this approach stems from several considerations. The first of
these is that tf is never later than the true firing time. This assertion, which we prove in

Appendix A1, is of central importance because the simulation would otherwise be in
error.

Another consideration is that successive approximations must converge rapidly to the
true firing time, in order to avoid the overhead of a large number of self-events. Using the
slope approximation to m is equivalent to the Newton method for solving m(t) = 1, so
convergence is slow only when the maximum value of m is close to 1. The code in
I nt Fi r e4 guards against missing "real" firings when m is asymptotic to 1, because it
actually tests for m > 1 -  eps , where the default value of eps  is 10-6. This
convergence tolerance eps  is a user-settable GLOBAL parameter, so one can easily
augment or override this protection.

Finally, the use of a series of self-events is superior to carrying out a complete
Newton method solution because it is most likely that external events will arrive in the
interval between firing times. Each external event would invalidate the previous
computation of firing time and force a recalculation. This might be acceptable for the
I nt Fi r e2 mechanism with its efficient convergence, but the complicated dynamics of
I nt Fi r e4 suggest that the cost would be too high. How many iterations should be
carried out per self-event is an experimental question, since the self-event overhead
depends partly on the number of outstanding events in the event queue.

Other comments regarding artificial spiking cells
NEURON's event delivery system has been used to create many more kinds of

artificial spiking neurons than the three classes that we have just examined. Specific
examples include pacemakers, bursting cells, models with various forms of use-
dependent synaptic plasticity, continuous or quantal stochastic variation of synaptic
weight, and an "IntFire3" with a bias current and time constants τm > τi > τe. 
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