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Appendix Al

Mathematical analysis of IntFire4

Thel nt Fi r e4 mechanismisan artificial spiking cell with afast, monoexponentially
decaying excitatory current e and a slower biexponential (similar to alpha function)
inhibitory current i,, that are summed by an even slower leaky integrator. It fires when the
membrane state mreaches 1; after firing, only the membrane state returnsto 0. The
dynamicsof I nt Fi r e4 are specified by four time constants--t for the excitatory current,

T, and T, fortheinhibitory current, and 1 for the leaky integrator--and it is assumed

th;t T, < Tzil < Tiz <1, However, the differential equationsthat govern | nt Fi re4 are
more conveniently written in terms of rate constants, i.e.
% =—k.e Eg. Al.l
& = k. | Eq. Al1.2
dt 1
di, _ _
E=—ki2|2+ 3 iy Eq. A1.3
dm

i —kmm+ a.e+ aizl2

where each rate constant k is the reciprocal of the corresponding time constant, and k>
kil > ki2 > k. Aninput event adds its weight w instantaneously to e or i, depending on

Eq. Al.4

whether w is > 0 (excitatory) or < 0 (inhibitory), respectively. The statese, iy, i,, and m
are normalized by the constants a,, &, , and &, , so that an excitatory weight w, drives e
1 2

and mto a maximum of w,, and an inhibitory weight w; drivesi,, i,, and mto aminimum
of w; (see Fig. 10.15).

This system of equations can be solved by repeatedly making use of the fact that the
solution to
k,t

%=—k1y+ae ? Eg. ALl5
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k kot

-k, t —k,t -
y=y,e "+be '—e ?) Eq. A16

wherey,isthevaueof yatt=0, and b=a/ (k, - k;). Note that when a> 0 and k, > k;,
we may conclude that b > 0.
The solutionto Egns. A1.1-Al14is

e(t)=e,e ° o Eq. A1.7
. . —kKi (t_to)
i, (t) = |1Oe ! Eq. A18
_ ok tt) k() K (t-ty)
|2(t)=|20e z +bil|1(e z —e ) Eq. A19
—k_(t—t
m(t) = mye ml 1)
—k_(t—t —k_(t—t
+b, (e ml 0)—e el 0)) &
+b (e_km(t_to)— e_kiz(t_to)) i
'2 % Eq. AL.10
—k(t—ty) ki (t=tg)
+b b (e -e °? )iy
2 1 0
ki —k —K (t—t)
B M k-t K ()
bizbil—ki e (e e )|10
1

where
t,isthetime of the most recent input event
1., 1, ,and m, arethevaluesof e, i, i,, and mimmediately after that event
€ 12, My vl y
was handled

IntFired uses self-events to successively approximate the firing time. At initialization,

aself-event isissued that will return at t = 10° ms (i.e. never). Arrival of anew event at
time t,, o, CaUses the following sequence of actions:

e The current values of the states e, i, i, and m are calculated analytically from Eqns.
Al1.7-A1.10.

e Thevauesof g, , i, , and m, are updated to the current values of e, i,, i, and m,
0 0

and the value of tjisupdated tot,, -

e Ifm>1-¢,thecell firesand misreset to 0.
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e If the event was a self-event, the next firing time is estimated and anew self-event is
issued that will return at that time.

e If the event was an input event, then depending on whether it was excitatory or
inhibitory (i.e. weight w < 0 or > 0), wis instantaneously added to e or i,, respectively.
That done, the next firing time is estimated, and the yet-outstanding self-event is
moved to that time.

The next firing time is approximated from the values of mand its derivative
immediately after the event is handled. If m(t;)' < O, then the estimated firing timeis set

to 109, i.e. never. If m(ty)' > O, the estimated firing timeis (1-m(t,))/m(ty)". In the
following sections we prove that this strategy produces an estimate that is never later than
the true firing time; otherwise, the simulation would be in error.

From a practical perspective, it isaso important that successive approximations
converge rapidly to the true firing time, to avoid the overhead of alarge number of self
events. Since the slope approximation is equivaent to Newton's method for finding the t
at whichm= 1, we only expect dow convergence when the maximum value of mis close
to 1. Using a sequence of self-eventsis superior to carrying out a complete Newton
method solution for the firing time, because it is most likely that external (input) events
will arrive in the interval between firing times, invalidating the computation of the next
firing time. The number of iterations that should be carried out per self-event remains an
experimental question, because self-event overhead depends partly on the number of
outstanding events in the event queue. A single Newton iteration generally takes longer
than the overhead associated with self-events.

Proof that the estimate is never later
than the true firing time

For notational clarity, we will use my and m,’ to refer to the values of mand m'

immediately after the event is handled. The proof consists of two major parts. First we
show that if my'< O, then m(t) remains < 1. Then we show that if my' > 0, then (1-my)/my’

underestimates the firing time. This|latter part is divided into the cases m,<0, and m>0.
First, however, we present a useful lemma.

Lemma:
If

k;>k,>k Eq. A1.11
-k, t
ft)=eXl—e * Eq. AL1.12
—k t _kzt
f(t)=e " —e Eq. A1.13
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then

falt) _ fo(t)
k— Kk~ k— K

Eq. Al.14

foralt=>= 0.

Proof:
First notethat f,(0) = f,(0) =0 sothelemmaholdsat t = 0. Also note that
f,'(0)=k,—k and f,'(0)=k,— k soboth sides of the inequality we are trying to
prove havedopelatt=0.

. —k t —k t —k,t P o —K 2
Next considert > 0. e >e >e soitissafeto divideby e —e :

and we can write

() fy(t) k=
k;—k  k,—k  f,t)

fL(t) k—k

-1
f,(t) k— K

Eq. AL.15

2
Analyzing the right hand side of this equation, we see that theratio (k,— k) /f,(t) is
positive. Also, (k,— k)/(k,— k) < 1. Furthermore, f, and f, arepostive, and since

—k,t
e Kl—_e 2 then f,/f, <1 Thusthe expression inside the parenthesesis negative,

and the entire right hand side of Eg. A1.16 is< 0. This completes the proof of the lemma
Note that Eg. A1.15 can be expressed as

2

Also, inthe limit as k, approaches k, we have

ot
0
k,— K

Eq. A1.17

Part 1: if my’ < 0, then m(t) remains <1

We now provethat if my'< O, then m(t) remains < 1 (i.e. the firing time isinfinity)
regardless of g, iy, or i,. Since we aretrying to predict the trajectory of m based on the

values of mand m' immediately following the most recent event, it will be advantageous
to think in terms of the time that has elapsed since that event, i.e. relative time, rather
than absolute time. Therefore we substitute t for t - t,, and rewrite Eq. A1.10 as
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2 0 Eq. A1.18

ki —k —k t

| m —k t i
—b b 22— (e M—e )i
P kil_ km( ) 1

From the lemma we see that the sum of the last two major terms on the right hand

sideis < 0. Factoring out the common multiplier bizbilil from these termsleaves the
0
expression
ki —k —k; t
i m  —k_t i
—e T)- (e M-e )
i, m

- - -y : > : > - - b b i - - <

whlch|sp05|t|vebecausekIl k12 k., However, the multiplier i, itself is< 0

becausei1 is< Owhilebi andbi are both > 0.
0

1 2
Thus
m(t) < moe_krnt
+ b, (e_k”‘t— e_ket) € Eq. A1.19
+ biZ(e_kmt— e_kizt) iy

The last term hereis negative (except a t = t,, whereit is 0), and we can use our lemma
again to replace it with something that is not so negative, i.e.

0 Eg. A1.20

Rewriting this as
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—Kk_t
m(t) <mge "
-k t -kt ) Eq. A1.21
+ 1 (e "—e °)(aeytai,)
ke— krn 2 40
wenotethataeeo+a1 i2 ism0'+kmm0,so
2 70
—k_t
m
m(t) <mge
kK k.t —k.t
m
tr—k (e Te T)mg Eq. AL22
e m
k.t —k.t
+ X 1k (e m—e °)my
e ™m

We have stipulated that m,’ < 0, so the last term is < 0 and we can remove it and write

—k_t k k.t -kt
m(t) <myle " +k—mk (e ™M—e ) Eq. A1.23

Since m, < 1, we only have to prove that the bracketed expression is < 1. Clearly itis
1 when t = 0. Factoring this expression gives

whose derivativeis

or

ke_ km

whichisO at t = 0 and negative for t > 0. A function that is1 at t = 0 and has a negative
derivative for t > 0 must be < 1 for t> 0.

This completes Part 1 of the proof. Next we prove that, if my' > 0, thefirst Newton
iteration estimate (1 - my) / my' is never later than the true firing time.

Part 2:ifm'>0,1-m/m'underestimates the firing time

Page 6

Thelast thing to do isto prove that, if m,y" > 0, the Newton iteration (1 - my) / my' is
never later than the firing time. We start from Eqg. A1.22, but since we now stipulate that
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my' > 0, the last term is positive. According to our lemma, we can replace it with the

—k_t
largerterm te ™ m,' to get

) m, Eq. A1.24

Consider the case where m, > 0. The sum of the first two termsis < my and the third
termis<t mo', 0

m(t) < my+ my' t Eq. A1.25
and the Newton iteration underestimates the firing time.

Now consider case where m, < 0. The second term of Eq. A1.24 is < 0 so we can
throw it out and write
—k_t
m(t) < (my+m,' t)e ™ Eq. A1.26
We complete our proof by applying a geometric interpretation to thisinequality. The
value of t at which the liney(t) = my + my tintersectsy = 1 isthe estimated firing time

found by a Newton iteration. Equation A1.24 shows that the tragjectory of the membrane
state variable runs at or below that line. Consequently, the Newton iteration
underestimates the true firing time.
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