The NEURON Book

N.T. Carnevale¹ and M.L. Hines² Departments of ¹Psychology and ²Computer Science Yale University, New Haven, CT ted.carnevale@yale.edu michael.hines@yale.edu

Who should read this book

This book is about how to use the NEURON simulation environment to construct and apply empirically-based models of neurons and neural networks. It is written primarily for neuroscience investigators, teachers, and students, but readers with a background in the physical sciences or mathematics who have some knowledge about brain cells and circuits and are interested in computational modeling will also find it helpful. The emphasis is on the most productive use of NEURON as a means for testing hypotheses that are founded on experimental observations, and for exploring ideas that may lead to the design of new experiments. Therefore the book uses a problem–solving approach, with many working examples that readers can try for themselves.

What this book is, and is not, about

Formulating a *conceptual model* is an attempt to capture the essential features that underlie some particular function. This necessarily involves simplification and abstraction of real–world complexities. Even so, one may not necessarily understand all implications of the conceptual model. To evaluate a conceptual model it is often necessary to devise a hypothesis or test in which the behavior of the model is compared against a prediction. *Computational models* are useful for performing such tests. The conceptual model and the hypothesis should determine what is included in a computational model and what is left out. This book is not about how to come up with conceptual models or hypotheses, but instead focuses on how to use NEURON to create and use computational models as a means for evaluating conceptual models.

What to read, and why

The first chapter conveys a basic idea of NEURON's primary domain of application by guiding the reader through the construction and use of a model neuron. This exercise is based entirely on NEURON's GUI, and requires no programming ability or prior experience with NEURON whatsoever.

The second chapter considers the role of computational modeling in neuroscience research from a general perspective. Chapters 3 and 4 focus on aspects of applied mathematics and numerical methods that are particularly relevant to computational neuroscience. Chapter 5 discusses the concepts and strategies that are used in NEURON to simplify the task of representing neurons, which (at least at the level of synapses and cells) are distributed and continuous in space and time, in a digital computer, where

neither time nor numeric values are continuous. Chapter 6 returns to the topic of model construction, emphasizing the use of programming.

Chapters 7 and 8 provide "inside information" about NEURON's standard run and initialization systems, so that readers can make best use of their features and customize them to meet special modeling needs. Chapter 9 shows how to use the NMODL programming language to add new biophysical mechanisms to NEURON. This theme continues in Chapter 10, which starts with mechanisms of communication between cells (gap junctions, graded and spike–triggered synaptic transmission), and moves on to models of artificial spiking neurons (e.g. integrate and fire cells). The first half of Chapter 11 is a tutorial on NEURON's GUI tools for creating simple network models, and the second half shows how to use the strengths of the GUI and hoc programming to create more complex networks.

Chapter 12 discusses the elementary features of the hoc programming language itself. Chapter 13 describes the object-oriented extensions that have been added to hoc. These extensions have greatly facilitated construction of NEURON's GUI tools, and they can also be very helpful in many other complex programming tasks such as creating and managing network models. Chapter 14 presents an example of how to use object oriented programming to increase the functionality of NEURON.

Table of contents

Note: page numbers in each chapter start from 1.

Chapter 1. A tour of the NEURON simulation environment

Modeling and understanding	1
Introducing NEURON	1
1. State the question	2
2. Formulate a conceptual model	2
3. Implement the model in NEURON	4
Start NEURON and bring up a CellBuilder	5
Enter the specifications of the model cell	6
Topology	6
Subsets	8
Geometry	10
Biophysics	12
Save the model cell	14
Execute the model specification	16
4. Instrument the model	17

Signal sources	17
Signal monitors	19
5. Set up controls for running the simulation	22
6. Save model with instrumentation and run control	22
7. Run the simulation experiment	24
8. Analyze results	27

Chapter 2. Principles of neural modeling

Why model?	1
From physical system to computational model	1
Conceptual model: a simplified representation of a physical system	1
Computational model: an accurate representation of a conceptual model	2
An example	3

Chapter 3. Expressing conceptual models in mathematical terms

Chemical reactions	1
Flux and conservation in kinetic schemes	2
Stoichiometry, flux, and mole equivalents	3
Compartment size	5
Scale factors	7
Electrical circuits	8
Cables	14

Chapter 4. Essentials of numerical methods for neural modeling

Spatial and temporal error in discretized cable equations	1
Analytic solutions: continuous in time and space	2
Spatial discretization	4
Adding temporal discretization	6
Numerical integration methods	7
Forward Euler: simple, inaccurate and unstable	7
Numerical instability	9
Backward Euler: inaccurate but stable	11

Crank–Nicholson: stable and more accurate	12
Efficient handling of nonlinearity	14
Adaptive integration: fast or accurate, occasionally both	16
Implementational considerations	17
The user's perspective	18
Error control	23
Local variable time step method	23
Discrete event simulations	25
Error	26
Summary of NEURON's integration methods	28
Fixed time step integrators	28
Default: backward Euler	28
Crank–Nicholson	29
Adaptive integrators	29
CVODE	30
DASPK	30
Chapter 5. Representing neurons with a digital computer	
	1
Chapter 5. Representing neurons with a digital computer	1 2
Chapter 5. Representing neurons with a digital computer Discretization	
Chapter 5. Representing neurons with a digital computer Discretization How NEURON separates anatomy and biophysics from purely numerical issues	2
Chapter 5. Representing neurons with a digital computer Discretization How NEURON separates anatomy and biophysics from purely numerical issues Sections and section variables	2 3
Chapter 5. Representing neurons with a digital computer Discretization How NEURON separates anatomy and biophysics from purely numerical issues Sections and section variables Range and range variables	2 3 4
Chapter 5. Representing neurons with a digital computer Discretization How NEURON separates anatomy and biophysics from purely numerical issues Sections and section variables Range and range variables Segments	2 3 4 5
Chapter 5. Representing neurons with a digital computer Discretization How NEURON separates anatomy and biophysics from purely numerical issues Sections and section variables Range and range variables Segments Implications and applications of this strategy	2 3 4 5 6
Chapter 5. Representing neurons with a digital computer Discretization How NEURON separates anatomy and biophysics from purely numerical issues Sections and section variables Range and range variables Segments Implications and applications of this strategy Spatial accuracy	2 3 4 5 6 6
Chapter 5. Representing neurons with a digital computer Discretization How NEURON separates anatomy and biophysics from purely numerical issues Sections and section variables Range and range variables Segments Implications and applications of this strategy Spatial accuracy A practical test of spatial accuracy	2 3 4 5 6 6 7
Chapter 5. Representing neurons with a digital computer Discretization How NEURON separates anatomy and biophysics from purely numerical issues Sections and section variables Range and range variables Segments Implications and applications of this strategy Spatial accuracy A practical test of spatial accuracy How to specify model properties	2 3 4 5 6 6 7 8
Chapter 5. Representing neurons with a digital computer Discretization How NEURON separates anatomy and biophysics from purely numerical issues Sections and section variables Range and range variables Segments Implications and applications of this strategy Spatial accuracy A practical test of spatial accuracy How to specify model properties Which section do we mean?	2 3 4 5 6 6 7 8 8
Chapter 5. Representing neurons with a digital computer Discretization How NEURON separates anatomy and biophysics from purely numerical issues Sections and section variables Range and range variables Segments Implications and applications of this strategy Spatial accuracy A practical test of spatial accuracy How to specify model properties Which section do we mean? 1. Dot notation	2 3 4 5 6 6 7 8 8 8 8
Chapter 5. Representing neurons with a digital computer Discretization How NEURON separates anatomy and biophysics from purely numerical issues Sections and section variables Range and range variables Segments Implications and applications of this strategy Spatial accuracy A practical test of spatial accuracy How to specify model properties Which section do we mean? 1. Dot notation 2. Stack of sections	2 3 4 5 6 6 7 8 8 8 8 8 9

A section may have only one parent	10
The root section	11
Attach sections at 0 or 1 for accuracy	11
Checking the tree structure with topology()	11
Viewing topology with a Shape window	12
How to specify geometry	12
Stylized specification	13
3–D specification	13
Avoiding artifacts	15
How to specify biophysical properties	18
Distributed mechanisms	18
Point processes	19
User-defined mechanisms	20
Working with range variables	21
Iterating over nodes	21
Linear taper	21
How changing nseg affects range variables	22
Choosing a spatial grid	24
A consideration of intent and judgment	24
Discretization guidelines	27
The d–lambda rule	28
Chapter 6. How to build and use models of individual cells	
GUI vs. hoc code: which to use, and when?	1
Hidden secrets of the GUI	2
Implementing a model with hoc	2
Topology	3
Geometry	5
Biophysics	5
Testing the model implementation	5
An aside: how does our model implementation in hoc compare with the output of the CellBuilder?	7
Instrumenting a model with hoc	10

Instrumenting a model with hoc

Setting up simulation control with hoc	11
Testing simulation control	12
Evaluating and using the model	12
Combining hoc and the GUI	12
No NEURON Main Menu toolbar?	13
Default section? We ain't got no default section!	13
Strange Shapes?	14
The barbed wire model	14
The case of the disappearing section	17
Graphs don't work?	20
Conflicts between hoc code and GUI tools	21
Elementary project management	23

Chapter 7. How to control simulations

Simulation control with the GUI	1
The standard run system	3
An outline of the standard run system	4
fadvance()	4
advance()	4
step()	5
steprun() and continuerun()	5
run()	6
Details of fadvance()	7
The fixed step methods: implicit Euler and Crank-Nicholson	8
Adaptive integrators and discrete events	12
Incorporating graphs and new objects into the plotting system	16

Chapter 8. How to initialize simulations

State variables and STATEs	1
Basic initialization in NEURON: finitialize()	3
Default initialization in the standard run library: stdinit() and init()	5
INITIAL blocks in NMODL	6
Default initialization of STATEs	7

Ion concentrations and equilibrium potentials	7
Initializing concentrations in hoc	10
Examples of custom initializations	11
Initializing to a particular "resting potential"	11
Initializing to steady state	13
Initializing to a desired state	14
Initializing by changing the model	14
Details of the mechanism	15
Initializing the mechanism	17

Chapter 9. How to expand NEURON's library of mechanisms

Overview of NMODL	1
Example 9.1: a passive "leak" current	2
Example 9.2: a localized shunt	7
Example 9.3: an intracellular stimulating electrode	10
Example 9.4: a voltage–gated current	12
Example 9.5: a calcium-activated voltage-gated current	19
Example 9.6: extracellular potassium accumulation	24
General comments about kinetic schemes	28
Example 9.7: kinetic scheme for a voltage-gated current	30
Example 9.8: calcium diffusion with buffering	35
Example 9.9: a calcium pump	44
Models with discontinuities	48
Discontinuities in PARAMETERs	48
Time dependent PARAMETER changes	49
Discontinuities in STATEs	50

Chapter 10. Synaptic transmission and artificial spiking cells

Modeling communication between cells	1
Example 10.1: graded synaptic transmission	2
Example 10.2: a gap junction	5
Modeling spike-triggered synaptic transmission: an event-based strategy	7
Conceptual model	7

The NetCon class	8
Example 10.3: synapse with exponential decay	10
Example 10.4: alpha function synapse	13
Example 10.5: Use-dependent synaptic plasticity	14
Example 10.6: saturating synapses	17
Artificial spiking cells	21
Example 10.7: IntFire1, a basic integrate and fire model	21
Example 10.8: IntFire2, firing rate proportional to input	27
Example 10.9: IntFire4, different synaptic time constants	31
Other comments regarding artificial cells	34

Chapter 11. Modeling networks

Note: this chapter is in an early draft, so we present its outline.

Building a simple network with the GUI

Conceptual model of recurrent inhibition:

Motoneuron with excitatory afferent and Renshaw cell

Design of the computational model:

Represent the motoneuron with a biophysical model

Represent the afferent spike train and Renshaw cell with artificial cell models

Use the event delivery system to represent axonal conduction delays and synaptic latency

Implementing the computational model

Specifying the motoneuron model: the NetReadyCellGUI tool

Specifying the afferent spike train and the Renshaw cell: the ArtCellGUI tool

Specifying the network connections and creating the net: the NetGUI tool (Network Builder)

Running a simulation and plotting spike trains

Combining the GUI and programming to build a complex network model

Conceptual model of inhibitory synchronization

The cells: spontaneously spiking neurons with a range of natural firing frequencies

Network architecture: fully connected inhibitory net

Design of the computational model

Represent the cells with artificial spiking neurons

Use the event delivery system to represent axonal conduction delays and synaptic latency

Implementing the computational model

Using the ArtCellGUI tool to create a hoc file that defines the basic cell class

Using the NetGUI tool to create a hoc file that contains the basic procedures needed to manage connectivity and display results

Exploiting the GUI–generated code by writing a handful of procedures that spawn cell instances, set up the connections between them, and display simulation results

Chapter 12. hoc -- NEURON's interpreter

The interpreter in \$NEURONHOME/bin/\$CPU	2
Constructing programs that contain the interpreter	3
The stand–alone interpreter	4
Starting the interpreter	4
Error handling	4
Syntax	7
Names	7
Variables	9
Expressions	10
Statements	11
Comments	12
Flow control	12
Functions and procedures	13
Arguments	14
Call by value vs. call by reference	15
Local variables	15
Recursive functions	15
Input and output	16
Editing	17

Chapter 13. Object-oriented programming

Object vs. class	1
The object model in hoc	1
Objects and object references	2
Declaring an object reference	2
Creating and destroying an object	2
Using an object reference	3
Defining an object template	3
Direct commands	4
Initializing variables in an object	4
Keyword names	5
Object references vs. object names	5
An example of the didactic use of object names	6
Using objects to solve programming problems	7
Dealing with collections or sets	7
Arrays	7
Example: emulating an array of strings	7
Lists	8
Example: a stack of objects	8
Encapsulating code	9
Polymorphism and inheritance	10
Chapter 14. How to modify NEURON itself	
Graphical interface programming	1
General issues	2
A pattern for defining a template	3
Enclosing the GUI tool in a single window	4
Saving the window to a session	6
Tool-specific development	9
Plotting	9
Handling events	13
Finishing up	15

Finishing up