
June 9, 2003 The NEURON Book

The NEURON Book
N.T. Carnevale1 and M.L. Hines2

Departments of 1Psychology and 2Computer Science
Yale University, New Haven, CT

ted.carnevale@yale.edu
michael.hines@yale.edu

Who should read this book
This book is about how to use the NEURON simulation environment to construct and

apply empirically−based models of neurons and neural networks. It is written primarily
for neuroscience investigators, teachers, and students, but readers with a background in
the physical sciences or mathematics who have some knowledge about brain cells and
circuits and are interested in computational modeling will also find it helpful. The
emphasis is on the most productive use of NEURON as a means for testing hypotheses
that are founded on experimental observations, and for exploring ideas that may lead to
the design of new experiments. Therefore the book uses a problem−solving approach,
with many working examples that readers can try for themselves.

What this book is, and is not, about
Formulating a conceptual model is an attempt to capture the essential features that

underlie some particular function. This necessarily involves simplification and
abstraction of real−world complexities. Even so, one may not necessarily understand all
implications of the conceptual model. To evaluate a conceptual model it is often
necessary to devise a hypothesis or test in which the behavior of the model is compared
against a prediction. Computational models are useful for performing such tests. The
conceptual model and the hypothesis should determine what is included in a
computational model and what is left out. This book is not about how to come up with
conceptual models or hypotheses, but instead focuses on how to use NEURON to create
and use computational models as a means for evaluating conceptual models.

What to read, and why
The first chapter conveys a basic idea of NEURON’s primary domain of application

by guiding the reader through the construction and use of a model neuron. This exercise
is based entirely on NEURON’s GUI, and requires no programming ability or prior
experience with NEURON whatsoever.

The second chapter considers the role of computational modeling in neuroscience
research from a general perspective. Chapters 3 and 4 focus on aspects of applied
mathematics and numerical methods that are particularly relevant to computational
neuroscience. Chapter 5 discusses the concepts and strategies that are used in NEURON
to simplify the task of representing neurons, which (at least at the level of synapses and
cells) are distributed and continuous in space and time, in a digital computer, where

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Book June 9, 2003

neither time nor numeric values are continuous. Chapter 6 returns to the topic of model
construction, emphasizing the use of programming. 

Chapters 7 and 8 provide "inside information" about NEURON’s standard run and
initialization systems, so that readers can make best use of their features and customize
them to meet special modeling needs. Chapter 9 shows how to use the NMODL
programming language to add new biophysical mechanisms to NEURON. This theme
continues in Chapter 10, which starts with mechanisms of communication between cells
(gap junctions, graded and spike−triggered synaptic transmission), and moves on to
models of artificial spiking neurons (e.g. integrate and fire cells). The first half of
Chapter 11 is a tutorial on NEURON’s GUI tools for creating simple network models,
and the second half shows how to use the strengths of the GUI and hoc programming to
create more complex networks.

Chapter 12 discusses the elementary features of the hoc programming language
itself. Chapter 13 describes the object−oriented extensions that have been added to hoc.
These extensions have greatly facilitated construction of NEURON’s GUI tools, and they
can also be very helpful in many other complex programming tasks such as creating and
managing network models. Chapter 14 presents an example of how to use object oriented
programming to increase the functionality of NEURON. 

Table of contents
Note: page numbers in each chapter start from 1.

Chapter 1. A tour of the NEURON simulation environment
Modeling and understanding 1

Introducing NEURON 1

1. State the question 2

2. Formulate a conceptual model 2

3. Implement the model in NEURON 4

Start NEURON and bring up a CellBuilder 5

Enter the specifications of the model cell 6

Topology 6

Subsets 8

Geometry 10

Biophysics 12

Save the model cell 14

Execute the model specification 16

4. Instrument the model 17

Page 2 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved



June 9, 2003 The NEURON Book

Signal sources 17

Signal monitors 19

5. Set up controls for running the simulation 22

6. Save model with instrumentation and run control 22

7. Run the simulation experiment 24

8. Analyze results 27

Chapter 2. Principles of neural modeling
Why model? 1

From physical system to computational model 1

Conceptual model: a simplified representation of a physical system 1

Computational model: an accurate representation of a conceptual model 2

An example 3

Chapter 3. Expressing conceptual models in mathematical
terms

Chemical reactions 1

Flux and conservation in kinetic schemes 2

Stoichiometry, flux, and mole equivalents 3

Compartment size 5

Scale factors 7

Electrical circuits 8

Cables 14

Chapter 4. Essentials of numerical methods for neural
modeling

Spatial and temporal error in discretized cable equations 1

Analytic solutions: continuous in time and space 2

Spatial discretization 4

Adding temporal discretization 6

Numerical integration methods 7

Forward Euler: simple, inaccurate and unstable 7

Numerical instability 9

Backward Euler: inaccurate but stable 11

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved Page 3



The NEURON Book June 9, 2003

Crank−Nicholson: stable and more accurate 12

Efficient handling of nonlinearity 14

Adaptive integration: fast or accurate, occasionally both 16

Implementational considerations 17

The user’s perspective 18

Error control 23

Local variable time step method 23

Discrete event simulations 25

Error 26

Summary of NEURON’s integration methods 28

Fixed time step integrators 28

Default: backward Euler 28

Crank−Nicholson 29

Adaptive integrators 29

CVODE 30

DASPK 30

Chapter 5. Representing neurons with a digital computer
Discretization 1

How NEURON separates anatomy and biophysics from purely numerical issues 2

Sections and section variables 3

Range and range variables 4

Segments 5

Implications and applications of this strategy 6

Spatial accuracy 6

A practical test of spatial accuracy 7

How to specify model properties 8

Which section do we mean? 8

1. Dot notation 8

2. Stack of sections 9

3. Default section 9

How to set up model topology 10

No loops of sections 10

Page 4 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved



June 9, 2003 The NEURON Book

A section may have only one parent 10

The root section 11

Attach sections at 0 or 1 for accuracy 11

Checking the tree structure with topology() 11

Viewing topology with a Shape window 12

How to specify geometry 12

Stylized specification 13

3−D specification 13

Avoiding artifacts 15

How to specify biophysical properties 18

Distributed mechanisms 18

Point processes 19

User−defined mechanisms 20

Working with range variables 21

Iterating over nodes 21

Linear taper 21

How changing nseg affects range variables 22

Choosing a spatial grid 24

A consideration of intent and judgment 24

Discretization guidelines 27

The d−lambda rule 28

Chapter 6. How to build and use models of individual cells
GUI vs. hoc code: which to use, and when? 1

Hidden secrets of the GUI 2

Implementing a model with hoc 2

Topology 3

Geometry 5

Biophysics 5

Testing the model implementation 5

An aside: how does our model implementation in hoc compare 
with the output of the CellBuilder? 7

Instrumenting a model with hoc 10

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved Page 5



The NEURON Book June 9, 2003

Setting up simulation control with hoc 11

Testing simulation control 12

Evaluating and using the model 12

Combining hoc and the GUI 12

No NEURON Main Menu toolbar? 13

Default section? We ain’t got no default section! 13

Strange Shapes? 14

The barbed wire model 14

The case of the disappearing section 17

Graphs don’t work? 20

Conflicts between hoc code and GUI tools 21

Elementary project management 23

Chapter 7. How to control simulations
Simulation control with the GUI 1

The standard run system 3

An outline of the standard run system 4

fadvance() 4

advance() 4

step() 5

steprun() and continuerun() 5

run() 6

Details of fadvance() 7

The fixed step methods: implicit Euler and Crank−Nicholson 8

Adaptive integrators 13

Adaptive integrators and discrete events 14

Incorporating graphs and new objects into the plotting system 20

Chapter 8. How to initialize simulations
State variables and STATEs 1

Basic initialization in NEURON: finitialize() 3

Default initialization in the standard run library: stdinit() and init() 5

INITIAL blocks in NMODL 6

Page 6 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved



June 9, 2003 The NEURON Book

Default initialization of STATEs 7

Ion concentrations and equilibrium potentials 7

Initializing concentrations in hoc 10

Examples of custom initializations 11

Initializing to a particular "resting potential" 11

Initializing to steady state 13

Initializing to a desired state 14

Initializing by changing the model 14

Details of the mechanism 15

Initializing the mechanism 17

Chapter 9. How to expand NEURON’s library of mechanisms
Overview of NMODL 1

Example 9.1: a passive "leak" current 2

Example 9.2: a localized shunt 7

Example 9.3: an intracellular stimulating electrode 10

Example 9.4: a voltage−gated current 12

Example 9.5: a calcium−activated voltage−gated current 19

Example 9.6: extracellular potassium accumulation 24

General comments about kinetic schemes 28

Example 9.7: kinetic scheme for a voltage−gated current 30

Example 9.8: calcium diffusion with buffering 35

Example 9.9: a calcium pump 44

Models with discontinuities 48

Discontinuities in PARAMETERs 48

Time dependent PARAMETER changes 49

Discontinuities in STATEs 50

Chapter 10. Synaptic transmission and artificial spiking cells
Modeling communication between cells 1

Example 10.1: graded synaptic transmission 2

Example 10.2: a gap junction 5

Modeling spike−triggered synaptic transmission: an event−based strategy 7

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved Page 7



The NEURON Book June 9, 2003

Conceptual model 7

The NetCon class 8

Example 10.3: synapse with exponential decay 10

Example 10.4: alpha function synapse 13

Example 10.5: Use−dependent synaptic plasticity 14

Example 10.6: saturating synapses 17

Artificial spiking cells 21

Example 10.7: IntFire1, a basic integrate and fire model 21

Example 10.8: IntFire2, firing rate proportional to input 27

Example 10.9: IntFire4, different synaptic time constants 31

Other comments regarding artificial cells 34

Chapter 11. Modeling networks
Note: this chapter is in an early draft, so we present its outline.

Building a simple network with the GUI

Conceptual model of recurrent inhibition:

Motoneuron with excitatory afferent and Renshaw cell

Design of the computational model:

Represent the motoneuron with a biophysical model

Represent the afferent spike train and Renshaw cell with artificial cell
models

Use the event delivery system to represent axonal conduction delays and
synaptic latency

Implementing the computational model

Specifying the motoneuron model: the NetReadyCellGUI tool

Specifying the afferent spike train and the Renshaw cell: the ArtCellGUI
tool

Specifying the network connections and creating the net: the NetGUI tool
(Network Builder)

Running a simulation and plotting spike trains

Combining the GUI and programming to build a complex network model

Conceptual model of inhibitory synchronization

The cells: spontaneously spiking neurons with a range of natural firing
frequencies

Page 8 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved



June 9, 2003 The NEURON Book

Network architecture: fully connected inhibitory net

Design of the computational model

Represent the cells with artificial spiking neurons

Use the event delivery system to represent axonal conduction delays and
synaptic latency

Implementing the computational model

Using the ArtCellGUI tool to create a hoc file that defines the basic cell
class

Using the NetGUI tool to create a hoc file that contains the basic
procedures needed to manage connectivity and display results

Exploiting the GUI−generated code by writing a handful of procedures
that spawn cell instances, set up the connections between them, and
display simulation results

Chapter 12. hoc −− NEURON’s interpreter
The interpreter 2

Adding new mechanisms to the interpreter 2

The stand−alone interpreter 3

Starting the interpreter 3

Error handling 5

Syntax 6

Names 6

Variables 9

Expressions 9

Statements 10

Comments 11

Flow control 11

Functions and procedures 12

Arguments 13

Call by value vs. call by reference 14

Local variables 14

Recursive functions 15

Input and output 15

Editing 17

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved Page 9



The NEURON Book June 9, 2003

Chapter 13. Object−oriented programming
Object vs. class 1

The object model in hoc 1

Objects and object references 2

Declaring an object reference 2

Creating and destroying an object 2

Using an object reference 3

Defining an object template 3

Direct commands 4

Initializing variables in an object 4

Keyword names 5

Object references vs. object names 5

An example of the didactic use of object names 6

Using objects to solve programming problems 7

Dealing with collections or sets 7

Arrays 7

Example: emulating an array of strings 7

Lists 8

Example: a stack of objects 8

Encapsulating code 9

Polymorphism and inheritance 10

Chapter 14. How to modify NEURON itself
Graphical interface programming 1

General issues 2

A pattern for defining a template 3

Enclosing the GUI tool in a single window 4

Saving the window to a session 6

Tool−specific development 9

Plotting 9

Handling events 13

Finishing up 15

Page 10 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved


