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Who should read this book
This book is about how to use the NEURON simulation environment to construct and

apply empirically−based models of neurons and neural networks. It is written primarily
for neuroscience investigators, teachers, and students, but readers with a background in
the physical sciences or mathematics who have some knowledge about brain cells and
circuits and are interested in computational modeling will also find it helpful. The
emphasis is on the most productive use of NEURON as a means for testing hypotheses
that are founded on experimental observations, and for exploring ideas that may lead to
the design of new experiments. Therefore the book uses a problem−solving approach,
with many working examples that readers can try for themselves.

What this book is, and is not, about
Formulating a conceptual model is an attempt to capture the essential features that

underlie some particular function. This necessarily involves simplification and
abstraction of real−world complexities. Even so, one may not necessarily understand all
implications of the conceptual model. To evaluate a conceptual model it is often
necessary to devise a hypothesis or test in which the behavior of the model is compared
against a prediction. Computational models are useful for performing such tests. The
conceptual model and the hypothesis should determine what is included in a
computational model and what is left out. This book is not about how to come up with
conceptual models or hypotheses, but instead focuses on how to use NEURON to create
and use computational models as a means for evaluating conceptual models.

What to read, and why
The first chapter conveys a basic idea of NEURON’s primary domain of application

by guiding the reader through the construction and use of a model neuron. This exercise
is based entirely on NEURON’s GUI, and requires no programming ability or prior
experience with NEURON whatsoever.

The second chapter considers the role of computational modeling in neuroscience
research from a general perspective. Chapters 3 and 4 focus on aspects of applied
mathematics and numerical methods that are particularly relevant to computational
neuroscience. Chapter 5 discusses the concepts and strategies that are used in NEURON
to simplify the task of representing neurons, which (at least at the level of synapses and
cells) are distributed and continuous in space and time, in a digital computer, where
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neither time nor numeric values are continuous. Chapter 6 returns to the topic of model
construction, emphasizing the use of programming. 

Chapters 7 and 8 provide "inside information" about NEURON’s standard run and
initialization systems, so that readers can make best use of their features and customize
them to meet special modeling needs. Chapter 9 shows how to use the NMODL
programming language to add new biophysical mechanisms to NEURON. This theme
continues in Chapter 10, which starts with mechanisms of communication between cells
(gap junctions, graded and spike−triggered synaptic transmission), and moves on to
models of artificial spiking neurons (e.g. integrate and fire cells). The first half of
Chapter 11 is a tutorial on NEURON’s GUI tools for creating simple network models,
and the second half shows how to use the strengths of the GUI and hoc programming to
create more complex networks.

Chapter 12 discusses the elementary features of the hoc programming language
itself. Chapter 13 describes the object−oriented extensions that have been added to hoc.
These extensions have greatly facilitated construction of NEURON’s GUI tools, and they
can also be very helpful in many other complex programming tasks such as creating and
managing network models. Chapter 14 presents an example of how to use object oriented
programming to increase the functionality of NEURON. 
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