
June 6, 2003 The NEURON Book: Chapter 7

Chapter 7
How to control simulations

Simulation control with the GUI
The RunControl panel (Fig. 7.1 right) has several buttons and value editors (boxes

that contain numbers) that provide a basic set of controls for initializing, starting, and
stopping simulations. The actions listed in Table 7.1 are "defaults," i.e. the standard
behavior of the tool. These actions are all customizable, because the RunControl works
by calling procedures that are defined in hoc (see below) so you can always create a new
procedure with the same name that substitutes for the default code.

Fig. 7.1. Left: NEURON Main Menu / Tools / RunControl brings up a panel with
controls for running simulations. Right: The RunControl panel allows a great
deal of control over the execution of simulations. See text for details.

In learning to use the RunControl panel it may help to keep in mind that adjacent
controls have related functions. The three buttons at the top (Init, Init & Run, and Stop)
perform the most common operations: initializing, starting, and stopping simulations.
The next three (Continue til (ms), Continue for (ms), and Single Step) are particularly

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Chapter 7 June 7, 2003

helpful for exploratory dissection of the time sequence of events in dynamically complex
simulations.

Graphs created from the NEURON Main Menu respond appropriately to all of these
controls. Init erases unsaved traces from graphs whose x axis shows time, and makes all
other graphs (e.g. variables vs. anatomical location, phase plane plots) show initial
values, whereas Init & Run, Continue til, Continue for, and Single Step cause graphs to be
updated at intervals governed by Points plotted/ms and Quiet.

Table 7.1. Functions of the RunControl panel

Button Action

Init (mV) Sets time to 0, changes Vm throughout the model to the value displayed in the

adjacent value editor, initializes ionic concentrations, and sets biophysical
mechanisms (e.g. ionic conductances, pumps) to their corresponding steady−state
values.

Init & Run Same as the Init button, but then launches a simulation that runs until t equals
Tstop (see below). Graphs constructed from the NEURON Main Menu are
updated at a rate specified by Points plotted/ms and Quiet (see below).

Stop Stops a simulation at the end of a step.

Continue til (ms) Continues a simulation until t ≥ the value displayed in the adjacent value editor.
Graphs are updated according to Points plotted/ms (see below).

Continue for (ms) Continues a simulation for the amount of time displayed in the adjacent value
editor. Graphs are updated according to Points plotted/ms (see below).

Single Step Continues a simulation for one step and plots. A step is 1 / (Points plotted/ms)
milliseconds and consists of 1 / (dt · Points plotted/ms) calls to fadvance().

t (ms) No action. The adjacent numeric field shows model time during the course of a
simulation.

Tstop (ms) No action. Adjacent field is used to specify stop time for Init & Run.

dt (ms) No action. Adjacent field shows the fundamental integration time step used by
fadvance(). Values entered into this field editor are automatically rounded
down so that an integral multiple of fadvances make up a Single Step.

Points plotted/ms No action. Adjacent field is used to specify the number of times per millisecond
at which graphs are updated. Notice that reducing dt does not by itself increase
the number of points plotted. If 1 / (Points plotted/ms) is not an integral multiple
of dt, then dt is rounded down to the nearest integral fraction of
1 / (Points plotted/ms).

Quiet When checked, turns off graph updates during a simulation. This can speed
things up considerably, e.g. when using the Multiple Run Fitter in the presence of
a shape movie plot under MSWindows.

Real Time (s) No action. Adjacent field shows a running display of computation time, with a
resolution of 1 second.

Page 2 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved

June 6, 2003 The NEURON Book: Chapter 7

The standard run system
The Init & Run button of the RunControl panel is probably the user’s first contact

with the standard run system. The standard run system for version 5.4 is implemented in
the file

nrn−5.4/share/lib/hoc/stdrun.hoc (UNIX/Linux)

or

c:\nrn54\lib\hoc\stdrun.hoc (MSWindows)

which is interpreted with a number of other files when

load_file("nrngui.hoc")

is executed or the nrngui script or icon is launched. This system is a considerable
elaboration over the minimal "oscilloscope level" simulation

proc run() {
finitialize(−65)
fcurrent()
while (t < 5) {

fadvance()
}

}

which integrates a cell specification from t = 0 to t = 5 ms. The elaborations consist of
various parameters and hooks for starting and stopping the simulation and obtaining
information during the simulation run. Tools that involve the analysis of simulation
results, e.g. optimization tools such as the Multiple Run Fitter, assume the existence of a
run() procedure to carry out their evaluation of the difference between simulation result
and data.

Understanding a few aspects of the standard run system is necessary in order to be
able to write functions or objects that can work in the presence of this framework, or at
least do not vitiate it. It is generally much easier to work with and reuse components of
this system than attempt to recreate a great deal of existing functionality. Most users have
come to count on existing features that allow plotting of any variable during a run, or
easy switching between integration methods.

NEURON’s standard run system was designed with
the realization that research requirements are quite
varied, so no generic implementation will suffice in all
cases. Therefore an attempt was made to divide the run
process into as many elements as seemed reasonable in
order to make it easy for the user to replace any one of
them. In most cases a replacement procedure requires
only one or two specific code statements directed toward maintaining its standard
function. The standard run system has proven to be usable without changes in a wide
variety of situations, with the exception of the init() procedure for initialization (this
is discussed extensively in Chapter 8). Nevertheless, certain problems can only be

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

Be sure to load replacements of
standard functions after the
standard library. Otherwise the
library version will overwrite
your version instead of the other
way around.

The NEURON Book: Chapter 7 June 7, 2003

overcome by writing hoc code, or even low level C code, so it is helpful to have a tour
of the sequence of events that leads to an actual time step advance.

An outline of the standard run system
The chain of execution follows the outline

run()

stdinit()

init()

finitialize()

continuerun() or steprun()

step()

advance()

fadvance()

Each of these routines is very compact except for continuerun(), which employs
rarely used graphical interface functions to optimize both simulation speed and graph line
drawing so that the lines seem to be drawn in real time as the simulation progresses.
Let’s start with fadvance() and work up from there.

fadvance()

For now it suffices that fadvance() integrates all equations of the system from t to
t+dt and then replaces the value of t by t+dt; we will examine the details of this later.
The value of dt is either set by the user when the default fixed step integration method is
used, or chosen by the integrator if the variable step method is used.

advance()

The advance() routine

proc advance() {
fadvance()

}

provides the hook for doing any desired calculations before and/or after each time step.
With the default fixed step method, anything is allowed. That is, we may change any
state or any parameter, including dt. Each advance takes place as though it starts from a
new initial condition without any previous history. Things are not so easy with the
variable time step methods. Although it is safe to evaluate any variable and save it in an
array or write it to a file, changing a parameter or state is not allowed unless we execute
cvode.re_init() after the change. This is because CVODE saves state and derivative
information from previous steps and assumes that all coefficients and states are
differentiable up to its current order of accuracy. Changing a parameter or state
constitutes a new set of equations, which constitutes a new problem. The only way that
time−varying parameters may be simulated with variable step methods is in the context
of a model description.

Page 4 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved

June 6, 2003 The NEURON Book: Chapter 7

step()

advance() is called by the step() procedure, which is implemented as

proc step() {local i
if (using_cvode_) {

advance()
} else for i=1,nstep_steprun {

advance()
}
Plot()

}

The idea behind this function is that numerical accuracy may require a smaller time step
than needed for plotting. That is, the interval between plots (call it Dt) is an integral
multiple of the underlying fadvance() time step dt. This integral multiple is
calculated in a setdt() function which reduces dt if necessary to ensure that the Dt
steps lie on a dt boundary. The RunControl panel has a field editor labeled Points
plotted/ms which displays the value of the variable steps_per_ms. This value, along
with dt, is used to calculate nstep_steprun and perhaps modify dt whenever either
changes by calling setdt(). One can see that when CVODE is active, a step is just a
single advance. At the end of a step, the Plot() procedure iterates over all the Graphs
in the various plot lists that need to be updated during a simulation run. The purpose of
these lists is detailed later in this chapter; adding to one of these lists an object that can
carry out certain specific methods may be a more attractive way of recording results of a
simulation run than replacing proc step(), since objects can automatically add and
remove themselves from these lists.

steprun() and continuerun()

The step() procedure is called by the continuerun() and steprun()
procedures. steprun() is

proc steprun() {
step()
flushPlot()

}

which implements the action for the Single Step button of the RunControl. It ensures that
all the plot lists are flushed so that any deferred graph updates are performed.

continuerun() is called directly as an action by the Continue til and Continue for
buttons in the RunControl. The actions are continuerun(runStopAt) and
continuerun(t+runStopIn) respectively. continuerun() is quite complex, and it
is doubtful that anyone will want to replace it with something more complicated. It takes
a single argument which is the time at which the integration should stop.

Before every step(), continuerun() checks to see if the stoprun variable is
nonzero; if so it immediately breaks out of its loop. continuerun() sets stoprun to 0
on entry; stoprun is set nonzero if the user presses the Stop button on the RunControl.
stoprun is a global variable in C so it can be checked by any C or C++ class that can
carry out multiple runs and needs to properly clean up and return, e.g. optimization
routines such as the praxis optimizer. In designing any class that manages a family of

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

The NEURON Book: Chapter 7 June 7, 2003

runs, one must decide what to do when the user presses Stop. If stoprun becomes
nonzero but the class ignores it, the current simulation run will end and the next run in
the family will start.

continuerun() uses the stopwatch to count the seconds in a variable called
realtime while it is executing, and this
value is displayed in the Real Time field
editor. The resolution of the stopwatch is
one second, and after each second the
plots are flushed with a special method
that avoids redrawing the portions of lines
that are already plotted, all field editors
are updated if the values they are
watching have changed, and any
outstanding events are handled (otherwise
pressing the Stop button would have no
effect). Actually, to give more rapid
response to events, the doEvents()
function is called at every step for the
first two seconds and less often after that
to avoid overhead if steps are very fast.

When continuerun() has reached its stopping time, a full flush of all the plots is
done. Plots are flushed at intermediate times only if the variable stdrun_quiet is 0;
this variable is toggled by the Quiet checkbox in the RunControl. Drawing plots on the
screen is expensive and considerable speedup can often be seen if plotting is deferred to
the end of a run. However, it often seems worth the penalty to view the progress of a
simulation.

run()

The run() procedure

proc run() {
stdinit()
continuerun(tstop)

}

is invoked as an action by the Init & Run button to initialize the system and integrate up
to the value shown in the Tstop field editor of the RunControl. The initialization process
is discussed at length in Chapter 8, but we should note that stdinit()

proc stdinit() {
realtime=0
startsw()
setdt()
init()
initPlot()

}

calls init()

Page 6 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved

"On one side hung a very large oil−painting so
thoroughly besmoked, and every way defaced,
that in the unequal cross−lights by which you
viewed it, it was only by diligent study and a
series of systematic visits to it, and careful
inquiry of the neighbors, that you could any way
arrive at an understanding of its purpose. Such
unaccountable masses of shades and shadows,
that at first you almost thought some ambitious
young artist, in the time of the New England
hags, had endeavored to delineate chaos
bewitched. But by dint of much and earnest
contemplation, and oft repeated ponderings, and
especially by throwing open the little window
towards the back of the entry, you at last come to
the conclusion that such an idea, however wild,
might not be altogether unwarranted."

June 6, 2003 The NEURON Book: Chapter 7

proc init() {
finitialize(v_init)
fcurrent()

}

which is generally the only function in the system that needs to be replaced in order to
implement complex initialization strategies.

Details of fadvance()
The fadvance() function is implemented in nrn.../src/nrnoc/fadvance.c.

In one form or another, fadvance() has always been the workhorse of the NEURON
simulator, dating back to before NEURON’s progenitor CABLE and even prior to the
hoc interpreter, when all PDP8 FOCAL (FOrmula CALculator) functions had to begin
with the letter f. One could easily do
without an finitialize() function,
since the interpreter overhead for
computing steady states is small compared
to the computational effort of taking
tstop/dt steps to do a simulation. But
fast integration is most naturally carried
out in compiled code, which is on the
order of a hundred times faster than the
interpreter.

Extending NEURON’s numerical methods and simulation domain has been an
incremental process carried out over several years. It may help to understand the current
structure of fadvance() if we first consider how it evolved. The order of additions was
CVODE (variable order, variable time step integrator), NetCon (event delivery system),
LinearMechanism (overlay of algebraic equations onto the Jacobian), and DASPK
(differential algebraic solver). Each major increase in functionality reused as much of the
existing functions and program structure as possible, but a few functions needed small
changes so they could support both the old and new methods. These increases in
functionality also had to be usable with the least amount of effort on the part of the user.
For example, turning variable time step integration on or off can be done by clicking on a
checkbox in the NEURON Main Menu / Tools / VariableStepControl panel.

Our dissection of fadvance() follows its evolution by

� reviewing the details of what happens during classical fixed time step integration, i.e.
the fully implicit (backward Euler) and Crank−Nicholson methods. Topics examined
include the strategies that account for NEURON’s reputation for speed:

1. exploiting the tree topology of the branched nerve equations. Tree topologies
require exactly the same number of add/multiply/divide operations as a single
unbranched cable.

2. using a staggered time step to avoid Newton iterations of HH−like nonlinear
channels. This gives the second order Crank−Nicholson method the same
performance per time step as the first order implicit method.

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

"From the chocks it hangs in a slight festoon
over the bows, and is then passed inside the boat
again; and some ten or twenty fathoms (called
box−line) being coiled upon the box in the bows,
it continues its way to the gunwale still a little
further aft, and is then attached to the short−
warp −−the rope which is immediately
connected with the harpoon; but previous to that
connexion, the short−warp goes through sundry
mystifications too tedious to detail."

The NEURON Book: Chapter 7 June 7, 2003

3. using rate tables involving the value of dt. This optimizes the analytic integration
of channel states by trivial assignment statements like m=m+mexp*(minf−m).

� discussing the variable time step, variable order ordinary differential equation solvers.

� walking through the operation of the local variable time step method to learn how it
works and how it handles discrete events.

Many of these items are closely related to each other, so we must occasionally mention
later additions to complete the discussion of earlier ones.

The fixed step methods: implicit Euler and Crank−Nicholson
It is easiest to understand the reasons for the particular sequence of actions if we

focus on the second order correct Crank−Nicholson method (CVODE is inactive and the
global variable secondorder has the value of 2). Assume that, on entry to
fadvance(), the value of t is tentry, the voltages are second order correct at
tentry, and the gating states are second order correct at tentry + dt/2. This latter
assumption may seem odd, but we will learn how it helps accelerate integration.

When the Crank−Nicholson method is chosen, the purpose of fadvance() is to
integrate the voltages and states such that, on exit from fadvance(),

t = tentry + dt (call this texit)
v and concentrations are second order correct at texit
gating states are second order correct at texit + dt/2

and as a side effect
ionic currents are second order correct at texit − dt/2

Notice that these exit conditions satisfy the entry conditions for a subsequent call to
fadvance().

One might object that the entry assertions are not satisfied at t = 0 since the gating
states are second order correct at time 0, not time dt/2. We’ll discuss this in detail,
however second order correctness refers to the integrated error over a specific time
interval Dt as more and more dt steps are used. The local error over a single dt step for
second order correctness is proportional to dt3 and for first order correctness it is dt2.
So as long as dstate/dt = 0 at t = 0, as it must be in the steady state, the error associated
with using state(t = 0) as the value of state(t = dt/2) is itself proportional to dt2 and is a
once−only error which does not accumulate for each dt time step. If non−steady state
initializations are performed, then the gating states should be adjusted to their values
according to state = state + dstate/dt · dt/2.

For the default implicit and Crank−Nicholson methods, the sequence of operations
carried out by fadvance() is

1. Check to see if any voltages or other variables that are sources for NetCon objects
have reached threshold. Deliver any discrete events whose delivery time is earlier
than tentry+dt/2. With fixed step methods, events necessarily lie on time step
boundaries, so this certainly delivers all events outstanding at time tentry. The

Page 8 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved

June 6, 2003 The NEURON Book: Chapter 7

function that carries this out (NetCvode::deliver_net_events() in
nrn.../src/nrncvode/netcvode.cpp) first appends the value of state at
tentry to the corresponding Vector according to the list defined by the
cvode.record(&state, vec, tvec) statements. This list is most useful with
the local variable step method; indeed, the cvode.record method is the only good
way of keeping the proper association between local step state value and local t. Of
course, cvode.record also works with the fixed step methods. As of version 5.4,
Vectors that are played or recorded at specific times are handled as a sequence of
discrete events.

2. When Vector.play() is treated as an interpolated (continuous) function, values
are interpolated at time = tentry+dt/2. The syntax Vector.play(&var), which has
no specific time Vector or declared play interval, cannot be used by variable step
methods and is therefore deprecated. However, in case you find it in old code, we
mention that Vector.play(&var) makes var receive its value from the next Vector
element; thus the first fadvance() after finitialize() will assign
Vector.x[1] to var.

3. The matrix equation for voltage is set up with the global variable t = tentry+dt/2.
This is done by calling the function setup_tree_matrix() in
nrn.../src/nrnoc/treeset.c. Prior to version 5, NEURON was limited, as the
names of this function and file imply, to coupled voltage equations with the topology
of a tree structure, i.e. each voltage node had at most one parent node. This is not
only well−matched to neuronal structure, but also has the attractive property that
solution of linear equations with this structure by Gaussian elimination takes exactly
the same number of arithmetic operations as if the equations had the topology of an
unbranched cable with the same number of nodes. It is the tree structure which makes
the simulation time proportional to the number of voltage nodes. Speed suffers when
the topology is not equivalent to a tree, e.g. when gap junctions, linear circuits, or the
extracellular mechanism is present. Completely general graph structures have a worst
case Gaussian elimination time which is proportional to the cube of the number of
voltage nodes (see Chapter X).

The purpose of the setup_tree_matrix() function is to create the algebraic
equation for each node. In abstract terms we are setting the problem up as a matrix
equation in the form

M v t
entry

+∆ t = r.h.s. Eq. 7.1a

("r.h.s." = right hand side) for the implicit method, or

M v t
entry

+
∆ t

2
= r.h.s. Eq. 7.1b

for the Crank−Nicholson method. Tree structures are very similar to tridiagonal cable
equations. For unbranched cables the most straightforward description of the spatially
discrete cable equation has a row structure

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

The NEURON Book: Chapter 7 June 7, 2003

b
i
v

i�1
+ d

i
v

i
+ a

i
v

i+1
= r.h.s.

i
Eq. 7.2

and each coefficient and variable in the row is kept in a node structure (b, d, and a are
the subdiagonal ("below"), diagonal, and supradiagonal ("above") elements of M).
Generalization to a tree preserves the association of b, d, v, and r.h.s. in the node
equation. The only change is that Node.a (see next paragraph) refers to the matrix
element in the parent node equation.

Setup of the matrix equations begins by first checking a flag to see if any
diameters or section lengths have changed, and if so, recalculating the two connection
coefficients between a node and its parent. These connection coefficients are both
stored in the node. Node[i].b is the resistance between node i and its parent
divided by the area of the node. Node[i].a is the same thing but divided by the area
of the parent node. Next, the d and r.h.s. elements of all nodes are set to zero in
preparation for incrementally adding conductance and current contributions to them.
The a and b elements of the matrix generally do not change during a simulation.
Fortunately, they are not destroyed during Gaussian elimination and so only need to
be computed when the morphology changes.

At this point the membrane current and conductance contributions to the node
equations are added to r.h.s. and d respectively. This is done by calling the nrn_cur
functions of every mechanism in every node (pointers to these functions are kept in
the memb_func[type].current structure). These functions are the model
description translation of the BREAKPOINT block. Recall that the most common
usage of the BREAKPOINT block in a model description is to calculate channel
currents from the values of STATE variables and membrane potential v (see
Chapter 9). In the translation of a BREAKPOINT block, the SOLVE statement
information, which tells how to integrate the STATE variables, is segregated into a
nrn_state function (see step 6 below), and the remaining statements are used to
construct a nrn_current function which takes voltage as an argument. The
nrn_current function is called twice by the nrn_cur function, once with an
argument of v + 0.001 and then with an argument of v, in order to calculate the
numerical derivative di/dv as well as the current. The nrn_cur function then adds
the di/dv value to the diagonal element Node.d and the value of −i to the right
hand side element Node.rhs. The form of this expression follows from the current
conservation equation evaluated at t + ∆t

C
∆v

i

∆ t
+

di
i

dv
i

∆v
i
�∑

j

∆v
j
�∆v

i

area
i

r
ij

=� i
i

v
i

t +∑
j

v
j
� v

i

area
i

r
ij

Eq. 7.3

where

i
i

v
i

t+∆ t = i
i

v
i

t +∆v
i

di
i

dv
i

Eq. 7.4

Page 10 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved

June 6, 2003 The NEURON Book: Chapter 7

All terms that are proportional to ∆v go into the matrix (left) side of Eq. 7.1, and all
constant terms or product terms of v(t) go into the right hand side. If ∆vj refers to the

parent of node i, the coefficient 1/areai rij is the ith node’s b element (see Eq. 7.2); if

∆vj refers to a child, the coefficient is the child node’s a element.

4. The nrn_solve() function in nrn.../src/nrnoc/solve.c is called to solve
the voltage node equations. Normally these equations are tree−structured, which
allows use of triangularization and back substitution functions that are specifically
crafted to minimize pointer arithmetic overhead by taking advantage of the details of
our Node structure in nrn.../src/nrnoc/section.h. This step executes
approximately twice as fast as the more general sparse matrix Gaussian elimination
package necessary for non−tree structures. However this has less significance than it
appears since Gaussian elimination of tree structures takes much less than half the
time required to set up equations containing channel currents. On exit from
nrn_solve() the r.h.s. field of the Node structures contains the values of ∆v.

If secondorder is 2 then the
currents are updated with a call to
second_order_current, which uses
di_ion/dv along with ∆v to compute
the second order correct ionic currents at
tentry+dt/2. Therefore when
fadvance() returns and t is tentry
+ dt, the ionic currents are second order correct at t − dt/2. Note that individual
currents associated with particular channel mechanisms and available to the
interpreter as ASSIGNED variables are not updated to be second order correct. That
is, individual model description current variables are approximated by g(texit −
dt/2)*(v(texit−dt) − erev). Without special attention to this problem, model
descriptions of voltage clamp currents that are appropriate for the internal use made
of them during fadvance() would be complete nonsense when plotted, since they
do not take into account the large change between v(texit−dt) and v(texit).
For this reason, particularly stiff models such as voltage clamps are careful to
recalculate the current variable within the block called by the BREAKPOINT’s SOLVE
statement (see step 6 below), which occurs when the voltage values are at texit.

For fixed step methods, one should always compare plots of individual model
current and conductance variables with their time courses computed with smaller dt.
In some cases it may be useful for plotting to introduce a FUNCTION into the channel
model which uses the present values of t, v, and STATEs to return the consistent first
order values of those currents. Equivalently, one could call fcurrent() on return
from fadvance() (fcurrent() carries out step 3) to reevaluate the currents and
conductances at the present values of t, v, and STATEs.

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved Page 11

Nowadays, voltage clamp models are best
implemented as linear mechanisms. Voltage
and current states in such a model are
computed simultaneously with the membrane
potential, so the issues associated with
staggered time steps do not arise.

The NEURON Book: Chapter 7 June 7, 2003

With the variable step methods (see below), all variables have their appropriate
values at texit. One of the most significant benefits of the variable time step
methods is the ease of plotting current and conductance variables at the accuracy of
the underlying computation.

5. The voltages are updated using the equation v = v + r.h.s. for the implicit method and
v = v + 2 r.h.s. for the Crank−Nicholson method. The global variable t is set to
tentry + dt.

6. nonvint() is called, which integrates all states EXCEPT the voltages. This is done
by executing the nrn_state function for every mechanism in every segment of
every section (pointers to these functions are kept in the memb_func[type].state
structure). These functions are the model description translation of the SOLVE
statement in the BREAKPOINT block. Since v is now at tentry + dt, or the
midpoint of the integration interval from tentry + dt + dt/2, second order correct
integration schemes that treat v as a constant in the integration interval remain second
order correct. Specifically, the analytic integration of Hodgkin−Huxley−like channel
gating states, e.g.

m t +
∆ t

2
= m t �

∆ t

2

+ 1 � e
�∆ t ⁄ tau v t

m∞ v t � m t �
∆ t

2

Eq. 7.5

where v(t) is assumed constant, is second order correct for smooth functions of v. It
should be remembered, however, that the calculation of m is only first order correct
with the fixed step implicit method since the value of v itself is only first order
correct.

When fixed step methods were used exclusively, it was common practice to factor
the integration statement into the form

m = m + mexp(v)*(minf(v)−m)

where mexp and minf were calculated with fast interpolated table lookup. However,
since the mexp table is dependent on the value of dt, this no longer works with
variable step methods. Of course, minf and mtau could still be stored in tables, but
the speedup is marginal, and in these days of fast floating point processors, minf and
mtau have to be quite complicated to justify the use of tables.

7. All the variables being recorded due to Vector.record(&variable) statements
(i.e. without an associated sampling interval or Vector of recording times) are
stored in the Vector elements associated with time tentry + dt. Starting with
version 5.4, sampling times specified by a sampling interval or Vector of recording
times are handled by the discrete event system.

Page 12 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved

June 6, 2003 The NEURON Book: Chapter 7

Adaptive integrators
Our chief aim here is to see how adaptive integration operates in the context of a

simulation, and in particular how it fits in with the event delivery system. Mathematical
aspects of adaptive integration are discussed more thoroughly in Chapter 4.

Adaptive integrators adjust the time step and order of integration so that the local
error for each state is less than a user−specified tolerance. For a given dt they are three
times slower than the fixed step methods, because calculating the local error involves a
lot of overhead and it is no longer is possible to use dt−dependent rate tables or avoid
Newton iterations. However, the time step can be so large during interspike intervals that
total run time is often almost an order of magnitude faster than with fixed step methods
yielding the same accuracy. From the user’s perspective, a potentially more important
advantage of adaptive integration is that it eliminates the need for trial and error
adjustments of dt in order to achieve satisfactory accuracy; instead, one merely specifies
the local step accuracy and the integrator does the rest.

In models that involve asynchronous events, adaptive integration can improve
simulation accuracy by guaranteeing that all events occur at their specified times rather
than being forced to a dt step boundary (see below). Furthermore, variables are
consistent at time t on return from fadvance(), so there is no need to wonder whether
to plot a variable at t, t+dt/2, or t−dt/2 (see step 4 under The fixed step methods:
implicit Euler and Crank−Nicholson above).

Adaptive integration was first added to NEURON starting with CVODE [Cohen,
1994 #512][Cohen, 1996 #722] for global time steps in version 4.0, and this was
extended to local time steps in version 4.1. The original CVODE required modifications
in order to work with models that involved at_time() events, which were used to
implement abrupt changes of a parameter or a state. A strategy for dealing with an event
that occurs at tevent is to stop integration at tevent, change the parameters or states that are

modified by the event, calculate a new initial condition at tevent, and then resume

integration. However, the CVODE integrator had no provision for stopping at a specified
time, so it needed custom revisions. DASPK [Brown, 1994 #675], which was
subsequently added to deal with models in which some states are determined by algebraic
equations (e.g. extracellular fields or linear circuit elements), had a specifiable stop time
beyond which the integrator would not proceed, so it had a very different way of
handling at_time(). It would have been nice if DASPK could simply have replaced
CVODE, but DASPK did not directly support the interpolation operation needed by the
local step method, and it has even more overhead per step than CVODE. Therefore a
significant amount of code was required to provide the logical machinery that would
make all these different pieces of the NEURON simulation environment work properly
with each other, while at the same time allowing users to easily switch between the
various integrators. The later addition of an delivery system to NEURON greatly
increased the complexity of the code that ties all these pieces together.

This complexity has been much reduced in the most recent releases of NEURON by
replacing CVODE and DASPK with CVODES and IDA of the SUNDIALS package
(available from http://www.llnl.gov/CASC/sundials/). CVODES [Hindmarsh,

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

The NEURON Book: Chapter 7 June 7, 2003

2002 #721] is similar to CVODE but accepts a tstop beyond which the solution will not
proceed, and IDA is a new Initial value Differential Algebraic solver version of DASPK
which now does support the interpolation operation. However, for historical reasons the
class that is used to manage adaptive integration in NEURON is called CVode, and in
this book we often use the term "CVODE" as a generic reference to any of NEURON’s
adaptive integrators.

The normal CVODE integration step consists of a prediction followed by a
correction. Generating the prediction involves an evaluation of f(y, t) (see Eq. 4.28a and
4.29a) which consumes most of the computational effort in an integration step. When
CVODE returns, all STATEs have the correct values at the new time, but the
ASSIGNED variables (which include currents) still have their "predicted" values.
Correcting the ASSIGNED variables requires another evaluation of f(y, t), but this nearly
doubles the total computational overhead per integration step. For many purposes the
uncorrected values are sufficiently accurate, and tightening the error tolerance takes care
of most cases when it is not. Future releases of NEURON will apply the correction by
default but may offer users the option of disabling the ASSIGNED variable correction
with the extra call to f(y, t) after a CVODE step.

Adaptive integrators and discrete events

Now we are ready to consider what constitutes an fadvance() when adaptive
integration is used. We will focus on local variable step integration, in which an
independent CVODE method is created for each cell. The process of global time step
integration has only one CVODE method for the entire model, and is just a degenerate
case of what happens with local time steps.

In local time step integration there is a queue of event times and a queue of cell
times. The event times are the times at which events are to be delivered, and the cell
times are the current times of each cell in the model. When fadvance() is called, it
checks these queues and deals with whichever is earliest: the earliest event or the earliest
cell. If there is a tie, the event is handled before the cell is. After an event is handled, it is
discarded. When a cell is handled, its old time is discarded and it is assigned a new time
that is put back into the cell time queue.

Each cell has three variables, called t0, t_, and tn, that are related to the progress of
the simulation in time. t_ is the current time of the cell, and it determines the position of
the cell in the cell queue; the significance of t0 and tn will become clear shortly. When
fadvance() is called, it can take one of the following three actions, and when it returns
these variables are left in one of the configurations shown in Figure 7.2. For the purpose
of illustration, we assume that before fadvance() is called, the cell starts with t0, t_,
and tn as depicted in the top row of this figure.

1. Initialize: perform an initialization at some time t and then return. The cell’s
STATEs and currents are consistent at t, and its t0, t_, and tn are all equal to t.

2. Advance: perform a normal integration step to some new time t and then return.
This involves computing values for the STATEs and currents at some new time t,
updating t0 to the old tn, and making t_ and tn equal to the new t.

Page 14 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved

June 6, 2003 The NEURON Book: Chapter 7

3. Interpolate: return just before the time tevent of the next event. On exit from
fadvance(), t_ lies between t0 and tn with a value equal to tevent. STATE
values at t_ are calculated from their values at tn, t0, and prior solution points
according to CVODE’s interpolation formulas (this is much less costly than a
numeric integration step). If an integration step carries tn past the time of an event,
or if a new event arrives with tevent < t_, interpolation will be applied so that t_
retreats to tevent. However, a cell can’t retreat to a time earlier than its t0. If there
are multiple cells, the largest t0 is the "least event time," i.e. the time before which
no cell can retreat.

interpolate

t0 tnt_

advance

t0
tn
t_

t0
tn
t_

Before fadvance()

tn

t0
t_

initialize

After fadvance() does an

Fig. 7.2. After fadvance() returns, the relative positions of t0 (black open
circle), t_ (blue dot), and tn (red filled circle) in time depends on whether
fadvance() performed an initialization, a normal integration step, or an
interpolation to just before the next event. The small grey circle after initialize
and advance marks the former location of t0. Time increases toward the right
in each row.

Note that the STATE and current values at the new tn are "tentative" because if there
is an event in the [t0, tn] interval, a new initialization may be required that forces the
solution into a new trajectory. The values at t0 are "real" in the sense that a cell cannot
retreat past t0.

If multiple events occur at the same time, they are all handled. If more than one of
these requires an initialization, the initialization is deferred until after all simultaneous
events are handled. Thus if there are 4 events at the same time and 3 of them require
initialization, each event will be handled but there will be only one initialization, which
is performed after all four have been handled.

To make this more concrete, let’s walk through a hypothetical simulation of a small
network model using the local variable time step method. This model has two neurons
called 1 and 2. A NetCon delivers events to an excitatory synapse on cell 1, and cell 1
projects via another NetCon to a synapse on cell 2. In the following discussion the "step"

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved Page 15

The NEURON Book: Chapter 7 June 7, 2003

number refers to how many times we have called fadvance(), the "action" is what
fadvance() did, and the "outcome" is a figure that shows the relative position in time
of events and each cell’s t0, t_, and tn.

Step, action, and outcome Comments
0. Initialize the model

1

2

1 1 2 Initializing the model causes both cells to
be initialized to t = 0 ms; notice that t0 =
t_ = tn = 0 ms. Also three events are
placed in the event queue, two for cell 1
and one for cell 2, at the indicated times.

There are no events at t = 0 ms . . .

1. Advance cell 1

1

2

1 1 2 . . . so the first fadvance() advances one
of the cells. For the sake of illustration,
we’ll say it advances cell 1. This makes 2
the earliest cell.

2. Advance cell 2

1

2

1 1 2 Cell 2’s t_ and tn move past the earliest
event, but that’s OK because the event isn’t
for cell 2. Cell 1 is now earliest.

3. Interpolate cell 1 −−
integration phase

1

2

1 1 2

Cell 2’s t_ and tn move to a new time.
Notice how t0 follows behind tn, jumping
from its prior location (marked by the small
"ghost" circle) to the prior location of tn.
But also notice that t_ has moved past an
event for cell 1. Before fadvance() can
return . . .

Page 16 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved

June 6, 2003 The NEURON Book: Chapter 7

3 continued: Interpolate cell 1 −−
retreat phase

1

2

1 1 2 . . . t_ must retreat to the event time, and
cell 1’s STATEs at t_ are then calculated
by interpolation. fadvance() may now
return, and we are ready to handle the
event.

Handle the event

1

2

1 2 Handling the event removes it from the
event queue.

Cell 1 is still earliest. For the sake of
illustration, let’s say the event we just
handled didn’t do anything to cell 1 that
forces initialization . . .

4. Interpolate cell 1

1

2

1 2 . . . so cell 1’s trajectory isn’t affected.
There are no events between its current
time t_ and tn, so t_ can be moved right
up to tn, as shown here. Technically
speaking this is an "interpolation" but no
real calculations are involved.

The earliest cell is now cell 2.
5. Advance cell 2

1

2

1 2 Although cell 2’s t_ and tn have moved
past several events, the earliest event
doesn’t pertain to it, so fadvance() only
does an advance rather than an interpolate.

6. Interpolate cell 1 −−
integration phase

1

2

1 2 We have seen this before.

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved Page 17

The NEURON Book: Chapter 7 June 7, 2003

6 continued: Interpolate cell 1 −−
retreat phase

1

2

1 2 It is now time to deal with the event . . .

Handle the event

1

2

2 . . . which removes it from the queue.

And it’s also time to introduce a little
excitement. Unlike the first event, which
didn’t affect cell 1’s trajectory, we’ll
stipulate that this one was delivered to the
excitatory synaptic mechanism on cell 1 by
a NetCon with a strong positive weight,
causing an abrupt change in one of the that
mechanism’s parameters. This means the
next fadvance() has to initialize cell 1.

7. Initialize cell 1

1

2

2 Notice that cell 1’s t0, t_ and tn are
exactly at the handled event time.

8. Advance cell 1

1

2

2 The strong synaptic input drives this cell
toward firing threshold. Since its membrane
potential is changing rapidly, fadvance()
must perform short advances to satisfy the
error criterion.

Page 18 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved

June 6, 2003 The NEURON Book: Chapter 7

9. Advance cell 1

1

2

2

Cell 1 generates a spike event . . .

1

2

2 That last fadvance() took cell 1 over the
threshold of the NetCon that monitors its
membrane potential.

 . . . which is inserted into the event queue

1

2

2 2 The spike event will be delivered to the
synapse on cell 2 at the new time indicated
in this figure.

Cell 1 is the earliest cell now . . .

10. Advance cell 1

1

2

2 2 . . . and again. But it has moved past the
spike event for cell 2, so that event
becomes the next thing to deal with.

11. Interpolate cell 2

1

2

2 2
Cell 2 must retreat to the time of its event.

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved Page 19

The NEURON Book: Chapter 7 June 7, 2003

Handle the event

1

2

2 The event disappears from the event queue.

12. Initialize cell 2

1

2

2 The event caused an abrupt change in a
variable in cell 2’s synapse, so
fadvance() must initialize this cell.

From the standpoint of users, this is all easier done than said, thanks to the behind−the−
scenes coordination of adaptive integration and discrete events in NEURON.

Incorporating Graphs and new objects
into the plotting system

Objects that need to be notified at every step of a simulation are appended to one of
six lists. The first four lists are referenced by graphList[n_graph_lists] and their
normal contents are Graph objects that plot variables requested by each Graph’s
addexpr or addvar statement. Variables are plotted as line drawings in which the
abscissa is related to t and the ordinate is the magnitude of the variable. Graphs are
added to these four lists when one of the buttons of the NEURON Main Menu / Graph
menu titled Voltage axis, Current axis, State axis, and Phase Plane is pressed.

For each variable is plotted vs.
graphList[0] t

graphList[1] t−0.5*dt

graphList[2] t+0.5*dt

graphList[3] an arbitrary function of t called an x−expression

The most useful of these lists is graphList[0], which is recommended for all line
drawings. graphList[1] and [2] are useful only to provide second order correct plots
of ionic currents and state variables, respectively, when the Crank−Nicholson method has
been selected through the variable secondorder=2. The offset is meaningless when the
default first order method is used (secondorder=1) because first order accuracy holds
at all instants in the interval [t−0.5*dt, t+0.5*dt]. When the variable time step

Page 20 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved

June 6, 2003 The NEURON Book: Chapter 7

methods are chosen, all variables are computed at the same t so the offset is 0 and the
[1] and [2] graphList lists are identical to graphList[0].

The remaining two lists whose object elements are notified at every step are called
flush_list and fast_flush_list. The first is for Graphs that plot Vectors that
may change every time step. These do the Vector movies and Space Plots
requested from a Shape plot. The fast_flush_list is for Shape plots or
Hinton plots in which it is not necessary to redraw an entire cell or pattern because
only a few rectangles change color during each step.

Plots are initialized by a call from stdinit() to initPlot(). The initPlot()
procedure first removes any objects in the graph or flush lists for which there is no view
on the screen by checking the return value of the view_count() method of the objects,
and then calls the begin() method for all objects in the graph lists. Finally, it calls the
Plot() and flushPlot() procedures to get the right things plotted at t=0.

The Plot() procedure is called at the end of each step. Plot() calls plot(t) for
the graphList objects (actually the previously discussed offsets may be used for
graphList[1] and [2]). If stdrun_quiet is 0, Plot() also calls begin() and
flush() methods for items in the flush_list so that any Vector plots are updated.
Lastly it calls the fast_flush() method for each item in the fast_flush_list so
that any color changes are seen on the screen.

During continuerun(), the fast_flushPlot() procedure is called once at
every second of simulation time and the flushPlot() procedure is called at the end.
fast_flushPlot() calls the fast_flush() method for each item in the four
graphList lists. This special call is very efficient for time plots because it erases and
redraws only the portion of the lines that accumulated since the last fast_flush.
Otherwise, damaging a small part of a line entails damaging the entire bounding box of
the line, which implies damaging all the lines that intersect the bounding box, which ends
up damaging the entire canvas and consequently requires erasing and redrawing
everything on the canvas. flushPlot() calls the flush() method for each item in all
six lists, which ends up redrawing everything in every canvas. While this is expensive,
the screen accurately reflects exactly the internal data structures of the lines and shapes.

A Graph object constructed by the user with

objref g
g = new Graph()

can be added to the standard run system with

graphList[0].append(g)

or perhaps even better with

addplot(g, 0)

since the latter will also set the abscissa to range from 0 to tstop (and the vertical axis
from −1 to 1). Also, since the methods called on a graphList are begin(), plot(t),
view_count(), fast_flush(), flush(), and size(x0, x1, y0, y1), any
object that implements these functions, even as stubs, can be appended to
graphList[0] in order to carry out calculations during a run. The SpikePlot of the

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved Page 21

The NEURON Book: Chapter 7 June 7, 2003

NetGui tools is implemented in just this way. This is an example of how the hoc
interpreter provides a poor man’s version of polymorphism; more information about
object−oriented programming in hoc is presented in Chapter 13.

Page 22 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved

