The NEURON Simulation Environment

NEURON Hands-on Course

EXERCISES

Table of Contents

1. Introduction to the GUI
Lipid bilayer model

2. Interactive modeling

Squid axon model

3. The CellBuilder

Constructing a ball and stick model, saving session files

4. Using morphometric data
The Import3D tool

5. Using NMODL files

Single compartment model with HHk mechanism

6. HOC exercises
Introduction to the hoc programming language

7. Using ModelDB and Model View

Neuroinformatics tools for finding and understanding models

8. Specifying inhomogeneous channel distributions

with the CellBuilder

9. Bulletin board parallelization
Speed up embarrassingly parallel tasks

10. Multithread parallelization

Increase performance on multicore workstations

11. Custom initialization

12. Networks : discrete event simulations with artificial cells

Hands-on Exercises

Introduction to the Network Builder

13. Networks : continuous simulations of nets with biophyvsical model

cells
Network ready cells from the CellBuilder

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

21

29

31

41

47

51

59

63

67

71

Hands-on Exercises

The NEURON Simulation Environment

14. Hopfield Brody synchronization (sync) model 75
Networks via hoc

15. State and parameter discontinuities 83

16. Analyzing electrotonus 85
with the Impedance class

17. Introduction to the Linear Circuit Builder 93
A two-electrode voltage clamp

Informal extras

Some useful hoc idioms 99

Vectors and Matrices: reading data 101

Vectors and Matrices: processing data 103
Subtracting linear response

MyFirstNEURON (remote)
by Arthur Houweling

Simulation control: a family of simulations 105
Automating the execution of a family of related simulations

Simulation control: forcing functions 111

Optimizing a model 115

Rectifvin ap junction 131
implemented with the Linear Circuit Builder

MPI parallelization 137

Python 139

NEURON hands-on course
Copyright © 1998-2012 by N.T. Carnevale and M.L. Hines, all rights reserved.

Page 2 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Introduction to the GUI

Physical System

An electrolyte-containing vesicle with a lipid bilayer membrane that has no ion channels.

Conceptual Model

I

Ve——

Capacitor C—
-

/1

Simulation

Computational implementation of the conceptual model

create soma
. plus more code .

OR build it with the GUI.

Use a CellBuilder to make a cell that has surface area = 100 um? and no ion channels.

Start nrngui in this exercise's directory.
MSWin: Use Windows Explorer to navigate to course/intro _to gui, then double click
on welcome.hoc
OS X: Double click on welcome.hoc, or start a terminal, cd to course/intro_to gui,
and then execute
nrngui welcome.hoc
UNIX/Linux: cd to course/intro_to gui, then execute
nrngui welcome.hoc
Get a CellBuilder
NEURON Main Menu / Build / CellBuilder
Specify surface area
CellBuilder / Geometry
Make sure there is a check mark in the "Specify Strategy" box.
Select "area".

Click on "Specify Strategy" to clear the check mark.

Make sure that area is 100 um?.

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

Hands-on Exercises The NEURON Simulation Environment

Click on "Continuous Create" box so that a check mark appears in it.

Congratulations! You now have a model cell with a soma that has surface area = 100 um?.

Save this to a "session file" so you can recreate it whenever you like.
NEURON Main Menu / File / save session

Using the computational model

You'll need these items:

e controls for running simulations

e a graph that shows somatic membrane potential vs. time

e a current clamp to injet a current pulse into the model cell
e a graph that shows the stimulus current vs. time

Be sure to save your work to a session file as you go along!

Make a RunControl panel for launching simulations.
NEURON Main Menu (NMM) / Tools / RunControl
Make a graph that shows somatic membrane potential vs. time
NMM / Graph / Voltage axis
Now run a simulation by clicking on RunControl's "Init & Run". What happened?
Make a current clamp.
NMM / Tools / Point Processes / Managers / Point Manager
Make this an IClamp.
PointProcessManager / SelectPointProcess / IClamp
Show the IClamp's Parameters panel
PPM / Show / Parameters
Make it deliver a 1 nA x 1 ms current pulse that starts at 1 ms.

del (ms) =1
dur (ms) =1
amp (nA) =1

Make a graph that shows the stimulus current vs. time.
NMM / Graph / Current axis
Make it show the IClamp's i
Click on the graph's menu button (left upper corner of its canvas) and select "Plot
what?"
Plot what? / Show / Objects
Select IClamp (left panel)
Select 0 (middle panel)
Select i (middle panel)
Plot what?'s edit field should now contain IClamp[0].i
Click on Accept

Run a simulaton.
Too big? Divide IClamp.amp by 10 and try again.

Page 4 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Exercises

1. Run a simulation.

Double the duration and halve the amplitude of the injected current (injected charge is
constant).

Notes:

e Select Show / Parameters in the PointProcessManager window to view the field
editors.

e Multiplying a field editor value by 2 can be done by typing *2 <return> at the end of
the value. Divide by 2 by typing /2 <return>.

e The mouse cursor must be in the panel that contains the field editor.

Return the duration and amplitude to their default values (click in the checkmark box with
left mouse button).
Halve the duration and double the amplitude.

2. Insert passive conductance channels, then see how this affects the model.

In the CellBuilder, click on the Biophysics radio button.
Make sure there is a check mark in the "Specify Strategy" box.
Click on the "pas" button so that it shows a check mark.

Now repeat exercise 1.

Notice that v tends toward -70 mV, which is the default reversal potential for the passive
channel. This is because the initial condition v = -65 is not the steady state for this model.

In the "RunControl" set the Init field editor to -70 and repeat the run.

To rescale a Graph automatically, click on its menu box (square in upper left
corner of its canvas) and select "View=Plot"

3. Change the stimulus amplitude to 1A (1e9 nA) and run. Rescale the graphs to see the
result.
This is an example of a model that is a poor representation of the physical system.

4. Change the stimulus duration to 0.01 ms.
This is an example of a simulation that is a poor representation of the model.

Change the number of Points plotted/ms to 100 and dt to 0.01 ms and run again.

5. Increase the amplitude to 1e4 nA, cut the duration to 1e-5 ms, increase Points plotted/ms
to 1eb, and start a simulation . . .
After a few seconds of eternity, stop the simulation by clicking on RunControl / Stop

Bring up a Variable Time Step tool.
NMM / Tools / VariableStepControl

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

Hands-on Exercises The NEURON Simulation Environment

Select "Use variable dt" and try again.

When you're done, use "NMM / File / Quit" to exit NEURON.

A final word

intro_to_gui/solution/bilayer.hoc contains a properly configured CellBuilder, plus a custom
interface for running simulations. The one item it doesn't have is a VariableStepControl.

bilayer.hoc is actually a session file that was given the "hoc" extension
so that MSWin users could launch it by double clicking on the file name.

NEURON hands-on course
Copyright © 1998-2012 by N.T. Carnevale and M.L. Hines, all rights reserved.

Page 6 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Interactive Modeling

Physical System

Giant axon from Loligo pealei

f

[Image from http://www.mbl.edu

Conceptual Model

Hodgkin-Huxley cable equations

2 51=CM6V

4R, Hi? Bt
o — vttt o (| —) v = % B = 4o VHEN1E)
%% = -k 4+ G (L - k) op = .07:.’“""?(:7"""':‘]' B = F‘ITWG_"T
:—’:= —igpn4 f(l=n) ag= 1_.11'—%% Bn= 125 {V4&3)/30

+ GraT B (V = Fad+ Gen* (V= F)+ g (V - #)

Simulation

Computational implementation of the conceptual model

create axon

axon {
nseg = 43
diam = 100
L = 20000
insert hh
b

Use the CellBuild tool to create the model.
Save the model in hhaxon.ses using NEURONMainMenu/File/savesession.

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

Hands-on Exercises The NEURON Simulation Environment

Using the computational model

If starting from a fresh launch of nrngui, you can load the saved ses file from
NEURONMainMenu/File/loadsession.

Alternatively one can use NEURON to execute interactive modeling/hhaxon.ses

Linux/OS X terminal

cd interactive modeling

nrngui hhaxon.ses
OS X GUI

drag and drop hhaxon.ses onto nrngui icon
MSWin

double click on hhaxon.ses

Exercises

1) Stimulate with current pulse and see a propagated action potential.

The basic tools you'll need from the NEURON Main Menu :

Tools / Point Processes / Managder / Point Manager to specify stimulation

Graph / Voltage axis and Graph / Shape plot to create graphs of v vs t and v vs x.
Tools / RunControl to run the simulation

Tools / Movie Run to see a smooth evolution of the space plot in time.

2) Change excitability by adjusting sodium channel density.

Tool needed:

Tools / Distributed Mechanisms / Viewers / Shape Name

3) Use two current electrodes to stimulate both ends at the same time.

4) Up to this point, the model has used a very fine spatial grid calculated from the Cell
Builder's d_lambda rule.
Change nseg to 15 and see what happens.

Help reference

NEURON hands-on course
Copyright © 1998-2012 by N.T. Carnevale and M.L. Hines, all rights reserved.

Page 8 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Ball - Stick model

Physical System

Model

Ball- Stick approximation to cell

HH Tosswe |

Simulation

The computational implementation of the conceptual model will use the CellBuilder, a graphical tool for building and
managing models of individual cells. In overview, you will

1. setup a"virtual experimental preparation” (the model cell itself).
2. setup a"virtual lab rig".
o Simulation control: RunControl
o Instrumentation:
S timmlator-- PointProcessManager configured as IClamp
Graphs--v vs. t, v vs. distance (" space plot')

You will also learn a simple but effective strategy for modular organization of your programs.

o Separate the specification of the representation of the biological system (anatomy, biophysics, connections between
cells n anetwork . . .) from other items, such as the specification of instrumentation (voltage or current clamps,
graphs etc.) and controls (e.g. RunControl panel).

e Use a short program that pulls all of the pieces together.

Modular organization makes it easier to

e develop and debug models
o reuse the same model cell in many different kinds of simulation experiments
o perform the same kind of experiment on many different model cells

Getting started

Get 0 a working directory where you have permission to write files.
Suggestion: start NEURON with course/ballstk as the working directory.

Hints
UNIX/Linux: cd to the course/init directory, and enter the command line
nrngui

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

Hands-on Exercises The NEURON Simulation Environment

MSWin: double-click the nrngui icon on the desktop. Look at NEURONMainMenu / File / recent dir. If
course/ballstk appears in the menu list, selectit Otherwise, use NE URONMainMenu / File / working
dir ® bring up a directory browser that you can use o navigate to the desired location.

Making the representation of the biological properties

Use the CellBuilder to make a simple ball and stick model that has these properties:

Section Anatomy Compartmentalization Biophysics

soma 1‘?119&1 20 mi01."ons nseg = 1 Ra= 160 ohmcm Cm = 1 uf/cm’
diameter 20 microns Hodgkin-Huxley channels

dend lenglh 1000 microns nseg = 1 Ra= 160 ohm cm, Cm=1 uf/crn2

diameter 5 microns passive with Rm = 10,000 ohm cm2

Hints
1. To starta CellBuilder, click on
NEURONMainMenu / Build / CellBuilder.
2. CellBuilder overview and hints.
3. Helpful items in the on-line Programmer's Reference :
diam L mnsegy hh pas

Using the representation of the biological properties

At this point you should have :
1. entered the specification of the ball & stick model in the CellBuilder
2. saved the CellBuilder o a session file called ballstk.ses and verified what you saved
3. exited NEURON

In the course/ballstk directory, make an init hoc file with the contents

// load the GUI tools

load file("nrngui.hoc")

// your specification of the model
load file("ballstk.ses")

// your GUI

load file("rig.ses")

Make a beginning rig.ses file with the single line
print "ready!"

Actually you could put any innocuous statem ents you like int o t he rig. ses
file, because you'll eventually overwrit e t his file with a custom user
int erface t hat you construct.

Start NEURON with the init hoc argument Under UNIX use the command
nrngui init.hoc

Under MS Windows just double click on the init hoc file in the file manager (" Windows Explorer").

Exercises

1. Establish that the representation in the computer basically corresponds to the model.
Connectivity? (type topology())

Page 10 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Soma area? (type area(0.5))
Are the properties what you expect? Try

soma psection()
dend psection()

2. Use the NEURONMainMenu tolbar to construct an interface that allows you o inject a stimmlus current at the soma
and observe a plot of somatic Vm vs. time.

3. When a current stinulus is injected into the soma, does it flow into the dendrite properly? Hint: examine a space plot of
membrane potential.

Saving and Retrieving the Experimental Rig

You now have a complete setup for doing simulation experiments. The CellBuilder, which specifies your " experimental
preparation,” is safe because you saved it to the session file ballstk.ses. However, the GUI that constitutes your nicely-
configured "lab rig" (the RunControl, PointProcessManager, graph of v vs. t, and space plot windows) will be lost if
you exit NEURON prematurely or if the computer crashes.

To make it easy to reconstitute the virtual lab rig, use the Print and File Window Manager (PFWM) fo save these windows
to a session file. Here's how t bring up the PFWM and use it o select the windows for everything but the CellBuilder,
then save these windows 1o a session file called rig.ses. This will allow you to immediately begin with the current GUI.

Test rig.ses by using NE URONMainMenu / File / 1oad session to retrieve it. Copies of the "lab rig" windows should
overlay the originals. If so, exit NEURON and then restart it with the init hoc argument. It should start up with the
windows that you saved.

More exercises

4. How does the number of segments in the dendrite affect your simulation?
Turn on Keep Lines in the graph of Vmvs. tso you will be able tb compare runs with different nseg.
Then in the interpreter window execute the command
dend nseg *= 3
and run a new simulation. Repeat until you no longer see a significant difference between consecutive runs.
Finally, use the command
dend print nseg
to see how many dendritic segments were required.

5. Is the time step (dt) short enough?

6. Here's something you should try on your own, perhaps after class tonight: using the CellBuilder to manage models

'on the fly."

Footnotes and Asides

1. Here are sample jnit. hoc and initial rig.ses files.

2. The CellBuilder can be used to make your own "digital stem cells." If you have a model cell that you would like
to return to later, save the CellBuilder ® a session file. To bring the model back, just retrieve the session file. This
is a good way 0 create an " evolutionary sequence" of models that differ only in certain key points.

3. The CellBuilder can also be used to manage models based on detailed morphometric reconstructions. This is
covered in a later exercise.

NEURON hands-on course
Copyright © 1998-2010 by N.T. Carnevale and M .L. Hines, all rights reserved.

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 11

Hands-on Exercises The NEURON Simulation Environment

Overview of the CellBuilder

The CellBuilder is a graphical tool for creating, editing, and managing models of nerve cells.
It is probably most useful in two different settings.

1.

Building a model from scratch that will have only a few sections. If you need more
than 5 - 10 sections, it may be more convenient to write an algorithm that creates the
model under program control.

Managing the biophysical properties of a model that is based on complex
morphometric data, without having to write any code.

The CellBuilder breaks the process of creating and managing a model of a cell into tasks that
are analogous to what you would do if you were writing a program in hoc. They are

1.
2.

setting up the model's topology (branching pattern)

grouping sections into subsets. For example, it might make sense to group dendritic
branches into subsets according to shared anatomical criteria (e.g. basilar, apical,
oblique, spiny, aspiny), or biophysical criteria (passive, active).

assigning anatomical or biophysical properties to individual sections or subsets of
sections

The CellBuilder can import a model that already exists during a NEURON session. It can
also be used in conjunction with NEURON's Import3D tool to create new model cells based
on detailed morphometric reconstructions.

Starting the CellBuilder

Under UNIX, go to the working directory of your choice and enter the command line
nrngui
This makes NEURON open a hoc file that loads the graphical user interface
($NEURONHOME/lib/hoc/nrngui.hoc) and brings up the NEURON Main Menu.
Under OS X or MSWin it is easiest to double-click the nrngui icon on the desktop.
Take a look at NEURONMainMenu / File / recent dir. If your desired location appears
in the menu list, select it. Otherwise, use NEURONMainMenu / File / working dir to
bring up a directory browser so you can navigate to the desired location.

Then select NEURONMainMenu / Build / Cell Builder to start the CellBuilder.

Using the CellBuilder

Across the top of the CellBuilder there is a row of radio buttons, plus a checkbox labeled
"Continuous Create". For now you should leave the checkbox empty.

Use th

About

e radio buttons to select the following pages.

Scan this information, but don't worry if everything isn't immediately obvious. You can
reread it any time you want.

Topology

This is where you change the branching architecture of the cell.

Select "Make Section" from the list of actions, and then L click in the graph panel on a
blank space to the right of the soma. Use the other actions as necessary to make your
model look like the figure in this exercise.

Page 12 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Subsets
Subsets can simplify management of models that have many sections. The CellBuilder
automatically creates the "all" subset, which contains every section in the model.
There is no need to define subsets for the ball and stick model, so just skip this page.

Geometry
This is for setting the dimensions and spatial grid (nseg) of the soma and dendrite.

1. Make sure the Specify Strategy button is checked.
Choose soma from the list of subsets and section names, and then select L,
diam, and nseg.
Repeat for dend.
Note: choosing nseg lets you set the number of segments manually. The
CellBuilder also offers you the option of automatically adjusting nseg according
to one of its built-in compartmentalization strategies; we will return to this
later.

2. Clear the Specify Strategy button.
Use the list of section names to select the soma and dendrite individually, and
enter the desired dimensions in the numeric fields for L. and diam.
For now leave nseg = 1.

Biophysics
Use this to endow the sections with biophysical properties (ionic currents, pumps,
buffers etc.).

1. Specify Strategy. This is for inserting biophysical mechanisms into the sections
of your model (Ra and cm for "all," hh for the soma, and pas for the dend
section).

2. To examine and adjust the parameters of the mechanisms that you inserted,
clear the Specify Strategy button.

Management
This panel is not used in the ball and stick exercise.

When you are done, the CellBuilder will contain a complete specification of your model cell.
However, no sections will actually exist until you click on the CellBuilder's Continuous
Create button.

At this point you should turn Continuous Create ON, because many of NEURON's GUI tools
require sections to exist before they can be used (e.g. the PointProcessManager).

Saving your work

This took a lot of effort and you don't want to have to do it again. So save the completed
CellBuilder to a session file called ballstk.ses in the working directory course/ballstk. To do
this, click on

NEURONMainMenu / File / save session

This brings up a file browser/selector panel. Click in the top field of this tool and type
ballstk.ses
as shown here

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

Hands-on Exercises The NEURON Simulation Environment

nrniv {on)

Jhallstk.ses
Al

Then click on the Save button.
Checking what you saved

Retrieve ballstk.ses by clicking on
NEURONMainMenu / File / load session
and then clicking on ballstk.ses.

A new CellBuilder window called CellBuild[1] will appear. Since Continuous Create is ON,
this new CellBuilder forces the creation of new sections that will replace any pre-existing
sections with the same names. NEURON's interpreter announces that this happened :

oc>Previously existing soma[@] points to a section which is being deleted
Previously existing dend[0@] points to a section which is being deleted

Check Topology, Geometry, and Biophysics. When you are sure they are correct, exit
NEURON.

Questions and answers about sessions and ses files

What's a session?

What's a ses file good for?

What's in a ses file?

For answers to these and other questions about sessions and ses files, read this.

NEURON hands-on course
Copyright © 1998-2009 by N.T. Carnevale and M.L. Hines, all rights reserved.

Page 14 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Saving Windows

Saving the windows of an interface for later re-use is an essential operation. The
position, size, and contents of all the windows you have constructed often represent a
great deal of labor that you don't want to do over again. Losing a CellBuilder or
Multiple Run Fitter window can be painful.

This article explains how to save windows, how to save them in groups in separate
files in order to keep separate the ideas of specification, control, graphing,
optimization, etc, and how to recover as much work as possible in the event that a
saved window generates an error when reading it from a file.

What is a session?

We call the set of windows, including the ones that are hidden, a "session". The
simplest way to save the windows is to save them all at once with
NEURONMainMenu / File / save session. This creates a session file, which NEURON
can use to recreate the windows that were saved. Session files are discussed below.

When (and how) to save all windows to a ses file

Near the beginning of a project it's an excellent practice to save the entire session in
a temporary file whenever a crash (losing all the work since the previous save) would
cause distress. Do this with NEURONMainMenu / File / save session. Be sure to verify
that the session file can be retrieved (NEURONMainMenu / File / load session) before
you overwrite an earlier working session file!

It is most useful to retrieve such a session file right after launching NEURON, when
no other windows are present on the screen. It is especially useful if one of the
windows is a CellBuild or NetGUI ("Network Builder"), because most windows
depend on the existence of information declared by them. Conflicts can arise if there
are multiple CellBuild or NetGui windows that could interfere with one another,
especially if they create sections with the same names.

When (and how) to save selected windows

For small modeling tasks, it is most convenient to save all windows to a single session
file. The main drawback to saving all windows in a single session file is that it mixes
specification, control, parameter, and graphing windows.

For more complex modeling tasks, it may be necessary to have more control over
what groups of windows are created. This allows you to easily start a simulation by
retrieving the desired variant of a CellBuilder window, separately retrieving one of
several possible stimulus protocols and parameter sets, and lastly retrieving groups
of graph windows.

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 15

Hands-on Exercises

The NEURON Simulation Environment

The Print & File Window Manager (PFWM)

The PFWM has many useful features, especially saving session files, unhiding hidden
windows, printing hard copy, and generating PostScript and ASCII (plain text) output
files. This discussion focusses on how to use it to save selected windows to a session

file.

To bring up the PFWM, click on
NEURONMainMenu / Window / Print & File Window Manager

NEURON Main Menu (on) [=l[B][x]

RunControl (on) 1 Graph[1] x-0.5:5.5 y -92: 52 (on @1

w(.5)

AN

3

-850 —

1 Graph[2] x -102: 1122 y -92: 52 (cl[E(]1

|Clamp[0]
at: soma(0.5)

] PointProcessManager ([X|

40 —

-80 —

The figure above contains several NEURON windows, with a PFWM in the lower right

Page 16

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

corner. Notice the two red boxes in the bottom panel of the PFWM. The box on the
left is a virtual display of the computer monitor: each of the blue rectangles
corresponds to one of NEURON's windows. The relative positions and sizes of these
rectangles represent the arrangement of the windows on the monitor.

The toolbar just above the red boxes contains two menu items (Print, Session), and
three radio buttons (select, move, resize) that help you use the PFWM. The radio
buttons set the "mode" of the PFWM, i.e. they determine what happens when you
click on the blue rectangles. When the PFWM first comes up, it is in select mode and
the radio button next to the word "select" is highlighted.

How to select and deselect windows
First make sure the PFWM is in select mode. If it isn't, click on "select" in the toolbar.

Decide which of the rectangles in the virtual display correspond to the windows you
want to save to a ses file. If you aren't sure which blue rectangle goes with which
window, drag a window on your screen to a new location, and see which rectangle
moves.

When you have decided, click inside the desired rectangle in the virtual display, and a
new blue rectangle, labeled with the same number, will appear in the PFWM to the
right of the virtual screen. You can select as many windows as you like. To deselect a
window, just click inside the corresponding blue rectangle on the right hand side of
the PFWM.

Saving the selected windows

To save the selected windows, click on

Session / Save selected
in the PFWM, and use the file browser/selector panel to specify the name of the ses
file that is to be created.

What's in a ses file

A session file is actually just a sequence of hoc instructions for reconstructing the
windows that have been saved to it. Session files are generally given the suffix ".ses
to distinguish them from user-written hoc files.

In a session file, the instructions for each window are identified by comments. It is
often easy to use a text editor to modify those instructions, e.g. change the value of a
parameter, or to remove all the instructions for a window if it is preventing the ses
file from being loaded.

What can go wrong, and how to fix it

The most common reason for an error during retrieval of a session file is when
variables used by the window have not yet been defined. Thus, retrieving a point
process manager window before the prerequisite cable section has been created will

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 17

Hands-on Exercises The NEURON Simulation Environment

result in a hoc error. Retrieving a Graph of SEClamp[0].i will not succeed if
SEClamp[0] does not exist. In most cases, loading the prerequisite sessions first will
fix the error. The init.hoc file is an excellent place to put a sequence of load file
statements that start a default session. Errors due to mismatched object IDs are easy
to correct by editing the session file. Mismatched object IDs can occur from
particular sequences of creation and destruction of windows by the user. For
example, suppose you

1. Start a PointProcessManager and create the first instance of an IClamp. This
will be IClamp|[0]

2. Start another PointProcessManager and create a second instance of an IClamp.
This will be IClampl[1]

3. Close the first PointProcessManager. That destroys IClampl[0].

4. Start a graph and plot IClamp[1].i

5. Save the session.

If you now exit and re-launch NEURON and retrieve the session, the old IClamp[1]
will be re-created as IClamp[0], and the creation of the Graph window will fail due to
the invalid variable name it is attempting to define. The fix requires editing the
session file and changing the IClamp[1].i string to IClamp[0].i

Page and graphics copyright © 1999-2012 N.T. Carnevale and M.L. Hines, All Rights Reserved.

Page 18 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Managing Models on the Fly

If the CellBuilder's Continuous Create button is checked, changes are passed from the CellBuilder o the interpreter as
they occur. This means that you can immediately explore the effects of anything you do with the CellBuilder.

To see how this works, try the following.
1. Start NEURON with its standard GUI in the /course/ballstk directory (remember how?).

2. Bring up the CellBuilder and construct a cell thatlooks like this:

soma oblique/
£

basilar =/ trunk trunk[1] wﬁ

Use any anatomical and biophysical properties you like; these might be interesting to start with:

Section L (um) diam (um)
soma 30 30
trunk 400 3
trunk(1] 400 2
oblique 300 1.5
tuft 300 1
basilar 300 3
e nseg = 1 for all sections
e Ra= 160, Cm= 1, both uniform throughout the cell
e soma has hh
e trunk and all its tributaries have hh, but with gnabar & gkbar reduced by a factor of 10 and gleak = 0 (Subsets
makes this easy)

e all dendrites have pas with gpas = 3e-5
3. Toggle Continuous Create ON.
4. In the interpreter verify the structure and parameters of your model with topology() and forall psection()

5. At the proximal end of tuft, place an alpha function synapse that has onset = 0 ms, tau = 1 ms, gmax = 0.0 1 umho,
and e = 0 mV (hint NEURON Main Menu / Tools / Point Processes / Managers / Point Manager).

6. Open a graph window to plot soma Vmvs. time. Also setup a space plot that shows Vm along the length of the cell
from the distal end of the basilar o the distal end of the tuft

7. Run a simulation. If necessary, increase Tstop until you can see the full time course of the cell's response t synaptic
input

8. Increase nseg until the spatial profile of Vm is smooth enough (a couple of applications of

forall nseg *= 3

in the interpreter window should do the trick). You may need to adjust the peak synaptic conductance in order o trigger a
spike. Then use the command

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 19

Hands-on Exercises The NEURON Simulation Environment

forall print secname(), , hseg
0 see how many segments are in each section.

9. You can also setnseg for any or all sections using the CellBuilder according o options that you select by
Geometry/S pecify Strafegy. You can set the number of segments manually, or let the CellBuilder adjust them
automatically according to one of these criteria:

¢ d lambda (the maximum length of any segment, expressed as a fraction of the AC length constantat 100 Hz for a
cylindrical cable with identical diameter, Ra, and cm) (Hines, M.L. and Carnevale, N.T. NEURON: a tool for
neuroscientists. The Neuroscientist 7:123-135, 200 1; preprint available at http://www.neuron.yale.edu
/neuron/static/papers/thensci/spacetime revl.pdf)
or

e d X (the maximmm anatomical length of any segment)

Try each of these criteria, setting different values for d lambda or d X, and see what happens to nseg in each section and
how this affects the spatial profile of membrane potential.

Conmments:

e Don't forget that that execution of your strategy is sequential. In other words, if your strategy specifies d lambda
for the all subset, but then sets nseg = 1 for the tuft section, the tuft will end up with nseg = 1 despite the fact that
itneeds a much finer grid according to the d lambda criterion.

e Whether you choose d lambda or d X, the final value of nseg will be an odd number (this preserves the node at x
= 0.5).

e Of these two options, d_lambda is usually preferable. A value of 0.1 is generally adequate.

10 . What happens if the sodium channels are blocked throughout the apical dendrites? Use the CellBuilder o reduce
apical gnabar o 0 and then run a simulation.

NEURON hands-on course
Copyright © 1998-2010 by N.T. Carnevale and M .L. Hines, all rights reserved.

Page 20 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Working with morphometric data

If you have detailed morphometric data, why not use it? This may be easier said than done,
since quantitative morphometry typically produces hundreds or thousands of
measurements for a single cell -- you wouldn't want to translate this into a model by hand.
Several programs have been written to generate hoc code from morphometric data files,
but the one that is probably most powerful and up-to-date is NEURON's own Import3D
tool.

Currently Import3D can read Eutectic, Neurolucida (vl and v3 text files), swc, and
MorphML files. It can also detect and localize errors in these files, and repair many of the
more common errors automatically or with user guidance.

Exercises

A surprising result

Some morphometric data files contain surprises, but the Import3D tool handled this one
nicely.

Reading a morphometric data file and converting it to a NEURON model.

Exploring morphometric data with the Import3D tool.

A "litmus test" for models with complex architecture

Some morphometric reconstructions contain orphan branches, or measurement points with
diameters that are (incorrectly) excessively small or even zero. Here's a test that can
quickly detect such problems:

1. Use the data to create a model cell.
2. Insert the pas mechanism into all sections.
If you're dealing with a very extensive cell (especially if the axon is included), you

might want to cut Ra to 10 ohm cm and reduce g pas to le-5 mho/cm?.

3. Turn on Continuous Export (if you haven't already).

Bring up a Shape Plot.

5. Turn this into a Shape Plot of Vm (R click in the Shape Plot and scroll down the menu
to "Shape Plot". Release the mouse button and a color scale calibrated in mV should
appear).

6. Examine the response of the cell to a 3 nA current step lasting 5 ms applied at the
soma.

For very extensive cells, especially if you have reduced g pas, you may want to
increase both Tstop and the duration of the injected current to 1000 ms and use
variable dt.

e

Here's an example that uses a toy cell.

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 21

Hands-on Exercises The NEURON Simulation Environment

Shape Shape Plot x-255.15 : .. Shape Shape Plot x-255.15: ...

Close l Close l
40 40

35 35 < /
30 30 N/

25 25

20 20

15 15

10 10

5 5

0 0

-5 -5
-10 -10

v

Left: Vm at t = 0. Right: Vm at t = 5 ms.
Quantitative tests of anatomy

This one line hoc statement checks for pt3d diameters smaller than 0.1 um, and reports the
names of the sections where they are found :

forall for i=0, n3d()-1 if (diam3d(i) < 0.1) print secname(), i, diam3d(i)
There are many other potential strategies for checking anatomical data, such as

e creating a space plot of diam. Bring up a Shape Plot and use its Plot what? menu
item to select diam. Then select its Space plot menu item, click and drag over the
path of interest, and voila!

e making a histogram of diameter measurements, which can reveal outliers and
systematic errors such as "favorite values" and quantization artifacts (what is the
smallest diameter that was measured? how fine is the smallest increment of
diameter?). This requires some coding, which is left as an exercise to the reader.

Detailed morphometric data: sources, caveats, and
importing into NEURON

Currently the largest collection of detailed morphometric data that I know of is
NeuroMorpho.org. There are many potential pitfalls in the collection and use of such data.
Before using any data you find at NeuroMorpho.org or anywhere else, sure to carefully
read any papers that were written about those data by the anatomists who obtained them.

Some of the artifacts that can afflict morphometric data are discussed in these two papers,
which are well worth reading:

Kaspirzhny AV, Gogan P, Horcholle-Bossavit G, Tyc-Dumont S. 2002. Neuronal morphology
data bases: morphological noise and assesment of data quality. Network: Computation in
Neural Systems 13:357-380.

Scorcioni, R., Lazarewicz, M.T., and Ascoli, G.A. Quantitative morphometry of hippocampal
pyramidal cells: differences between anatomical classes and reconstructing laboratories.
Journal of Comparative Neurology 473:177-193, 2004.

NEURON hands-on course
Copyright © 1998-2012 by N.T. Carnevale and M.L. Hines, all rights reserved.

Page 22 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Data input and model output

To import morphometric data into NEURON, bring up an Import3d tool, and specify the file
that is to be read. Look at what you got, then export the data as a NEURON model.

A. Get an Import3D tool.

Start NEURON and go to exercises/using morphometric data, if you're not alredy there.

Open an Import3D tool by clicking on Tools / Miscellaneous / Import3D in the
NEURON Main Menu.

B. Choose a file to read.

In the Import3D window, click on the "choose a file" checkbox.

x|

[choose afile
accepted file formats:
SWC
Neurolucida (v1 and v3)
Eutectic
MorphhiAL

This brings up a file browser. Since you're already in the directory that contains the data,
just click on the name of the data file (111200A.asc), and then click the file browser's Read
button.

NEURON's xterm (interpreter window) prints a running tally of how many lines have been
read from the data file.

oc>
21549 lines read

After a delay that depends on the size of the file and the speed of the computer, a figure
will appear on the Import3D tool's canvas. Each point at which a measurement was made is
marked by a blue square.

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 23

Hands-on Exercises

Page 24

Import3d_GUI[O] (on)
Close Hide

(] /1112004.8sc
File format: Neurolucida V3

@ Zoom

v Translate
Rotate {about axis in plane)
Rotate 45deg about y axis
Rotated (vs Raw view)
Show Points
Show Diam

View all types

Select point

Export
Neurolucida V3 filter factsl

If the Import3D tool finds errors in the data file, a message may be printed in the xterm,
and/or a message box may appear on the screen. For this particular example there were no
errors--that's always a good sign!

The top of the right panel of the Import3D tool will show the name and data format of the
file that was read. The other widgets in this panel, which are described elsewhere, can be
used to examine and edit the morphometric data, and export them to the CellBuilder or the
hoc interpreter.

C. Let's see what it looks like.

It's always a good idea to look at the results of any anatomical data conversion--but those
blue squares are in the way!

To get rid of the blue squares that are hiding the branched architecture, click on the Show
Points button in the right panel of the Import3D tool. The check mark disappears, and so do
the blue squares.

The NEURON Simulation Environment

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment

Close

(™ importaaGuioj(eny X

[/1112004850
File format: Neurolucida V3

@ Zoom
v Translate
Rotate {about axis in plane)
_ | Rotate 45deg about y axis
Rotated (vs Raw view)
Show Points
¥ Show Diam

View all types

’,

‘éérle(;t .;:int

That's a very dense and complex branching pattern.

D. Exporting the model.

Hands-on Exercises

The Import3D tool allows us to export the topology (branched architecture) and geometry
(anatomical dimensions) of these data to a CellBuilder, or straight to the hoc interpreter.
It's generally best to send the data to the CellBuilder, which we can then save to a session
file for future re-use. The CellBuilder, which has its own tutorial, is a very convenient tool
for managing the biophysical properties and spatial discretization of anatomically complex
cell models.

So click on the Export button and select the CellBuilder option.

Edit
Export
CellBuild:

W3 filter facts

Instanﬁaté}

But this example contains a surprise: instead of one CellBuilder, there are two! Under
MSWin, they are offset diagonally as shown here, but under UNIX/Linux they may lie right
on top of each other so you'll have to drag the top one aside.

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

Page 25

Hands-on Exercises The NEURON Simulation Environment

= CellBuild[0] (on) (x|
Clo :
4| Close Hide.

Top € About < Topology <, Subsets <, Geometry <, Biophysics <, hanagement [j Continuous Create

Topology refers to section names, connections, and 2d orientation

e without regard to section length or diameter,

Sub Short sections are represented in that tool as circles, longer ones as lines,

g|| Subsets allows one to define named section subsets as functional

Geo) groups for the purpose of specifying membrane properties.

fd| Geometry refers to specification of L and diam (microns), and nseg

Biop for each section (or subset) in the topology of the cell.

Man|| Biophysics is used to insert membrane density mechanisms and specify their parameters.
T} | Management specifies how to actually bring the cell into existence for simulation.
g The default is to first build the entire cell and export it to the top level

It QOr else specify it as a cell type for use in networks,

It also allows you to import the existing top level cell into this builder

If"C| for modification.

al| If "Continuous Create" is checked, the spec is continuously instantiated

at the top level as it is changed.

Does getting two CellBuilders mean that the morphometric data file contained
measurements from two cells? Maybe that's why the branching pattern was so dense and
complex.

But there is an unpleasant alternative: maybe all this data really is from one cell. If there
was a mistake in data entry, so that the proximal end of one branch wasn't connected to its
parent. one CellBuilder would contain the orphan branch and its children, and the other
CellBuilder would contain the rest of the cell.

How can you decide which of these two possibilities is correct?

Examining the Topology pages of these CellBuilders shows that CellBuild[0] got most of the
branches in the bottom half of the Import3D's canvas, and CellBuild[1] got most of the
branches in the top half. The morphologies are ugly enough to be two individual cells; at
least, neither of them is obviously an orphan dendritic or axonal tree.

Page 26 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Until you know for sure, it is safest to use the Print & File Window Manager (PFWM) to
save each CellBuilder to its own session file. I optimistically called them bottomcell.ses and
topcell.ses, respectively.

At this point, you should really use the Import3D tool to closely examine these data, and try
to decide how many cells are present.

Go back to the main page to learn more about the Import3D tool.

NEURON hands-on course
Copyright © 2005 - 2012 by N.T. Carnevale and M.L. Hines, all rights reserved.

Examining morphometric data with Import3D

Take a new look at the shape in the Import3D tool.

x|

[Import3d_GUI[0] (on)
Close Hide
! (L] /111200A.8sc
File format: Neurolucida V3

& Zoom

v Translate
Rotate (about axis in plane)
Rotate 45deg about y axis
Rotated (vs Raw view)
Show Points
Show Diam

View all types

‘Sbelec‘t' point

Neurolucida V3 filter facts

Those two little green lines in the dense clusters are new. They appeared after exporting to
the CellBuilder. And is there a little orange blob at one end of each green line?

To find out what this is all about, it is necessary to discover what lies at the center of these
dense clusters.

A. Zooming in

To zoom in for a closer look, first make sure that the Import3D tool's Zoom button is on (if
it isn't, just click on it).

Then click on the canvas, just to the right of the area of interest, and hold the mouse button
down while dragging the cursor to the right. If it becomes necessary to re-center the
image, click on the Translate button, then click on the canvas and drag the image into
postion. To start zooming again, click on the Zoom button.

Repeat as needed until you get what you want.

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 27

Hands-on Exercises The NEURON Simulation Environment

Close Hide

(] /1112004.8sc
File format: Neurolucida V3

& Zoom

v Translate
Rotate (about axis in plane)
Rotate 45deg about y axis
Rotated (vs Raw view)
Show Points
Show Diam

View all types

Select point

Edit
Export
Neurolucida V3 filter factsl

The irregular shape at the center, with the transverse orange lines, is the soma of a neuron.
The green line is its principal axis, as identified by the Import3D tool. At least 9 neurites
converge on it, and a fine red line connects the proximal end of each branch to the center
of the soma.

If you zoom in on the other green line and orange blob, you'll find another soma there.

So by zooming in, it is possible to discover that this particular morphometric data file
contained measurements from at least two different cells.

To zoom out, make sure the Zoom button is on,
then click near the right edge of the canvas and drag toward the left. To fit the image to the
window, just use the graph's "View = plot" menu item.

Go back to the main page

NEURON hands-on course
Copyright © 2005 - 2012 by N.T. Carnevale and M.L. Hines, all rights reserved.

Page 28 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

HH potassium channel model

Download the hhkchan.mod file into an empty directory.

Part 1:

OnaPC...

Launch mknrndll from theicon in the NEURON program group.

Navigate to the directory containing the desired mod files.
Select "Make nrnmech.dll™.

and the "mknrndll" script will create a nrnmech.dll file which contains the HHk model.

On a unix workstation . . .

Go to the directory that holds the hhkchan.mod file and run the shell script

nrni viodl

Thiswill create a new executable called "special” which is a complete copy of NEURON and
also includes the HHk model.

Part 2:

Using the location of hhkchan.mod as the working directory, start NEURON with its standard
GUI.

OnaPC...

Under MSWin, double clicking on a hoc file opens that file using NEURON which
automatically looks in the working directory for a nrnmech.dll file.

Alternatively, you can launch nrngui from the icon in the NEURON program group
and use NEURONM ainMenu/File/WorkingDir or RecentDir to navigate to the
directory containing the nrnmech.dll file.

On a unix workstation . . .

when you run the script nrngui in aworking directory, it will automatically look for
the special i.e. 1686/special, that you created with nrnivmodl in the previous step. If
it doesn’t find one, it will execute the standard nrniv, which contains only the
"built-in" mechanisms (hh, pas, IClamp etc..).

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 29

Hands-on Exercises The NEURON Simulation Environment

Bring up a single compartment model with surface area of 100 um? (NEURON Main Menu /
Build / single compartment) and toggle the HHk button in the Distributed Mechanism Inserter
ON. Verify that the new HHk model (along with the Na portion of the built-in HH channel)
produces the same action potential as the built-in HH channel (using both its Naand K portions).

NEURON hands-on course
Copyright © 1998-2001 by N.T. Carnevale and M.L. Hines, all rights reserved.

Page 30 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

HOC exercises

I/ Executable lines below are shown with the hoc prompt // Typing these, although trivial, can be
avaluable way to get familiar with the language

oc>// A comment

oc> /* ditto */
Data types. numbers strings and objects
- anything not explicitly declared isassumed to be a
number
oc> x=5300// no previous declaration asto what 'x’ is
o numbersareall doubles (high precision numbers)
thereis no integer type in Hoc
o Scientific notation useeor E
oc> print 5.3e3,5.3E3// e preferred (see next)

o thereare some useful built-in values

oc> print PI, E, FARADAY, R
- Do you have anything to declare?: objectsand strings

o Must declare an object reference (=object variable) before making
an object

o Objref: manipulate referencesto objects, not the objects
themselves

often names are chosen that make it easy to remember what an object referenceisto
be used for (eg g for a Graph or vec for aVector) but it'simportant to remember that
these are just for convenience and that any object reference can be used to point to
any kind of object

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 31

Hands-on Exercises The NEURON Simulation Environment

o Objectsinclude vectors, graphs, lists, ...

oc> objref XO,Y O // capital "oh’ not zero

oc> print XO,Y O // these are object references

oc> XO =new List() // 'new’ creates a new instance of the List class
oc> print XO,Y O // XO now points to something, Y O does not

oc> objref XO // redeclaring an objref breaks the link; if thisisthe only reference to
that object the object is destroyed

oc> XO = new List() // anew newL.ist

oc> print XO // notice the List[#] -- thisis adifferent List, the old oneis gone

o After creating object reference, can useit to point a new or old
object

oc> objref vec,foo // two object refs

oc> vec = new Vector() // use’new’ to create something

oc> foo = vec // foo is now just another reference to the same thing
oc> print vec, foo// same thing

oc> vec=XO

oc> print vec, foo// vec no longer points to a vector

oc> objectvar vec// objref and objectvar are the same; redeclaring an objref breaks
the link between it and the object it had pointed to

oc> print vec, foo// vec had no special status, foo still points equally well
o Can createan array of objrefs

oc> objref objarr[10]

oc> objarr[0]=XO

oc> print objarr, objarr[0] // two ways of saying same thing

oc> objarr[1]=foo

oc> objarr[2]=objarr[0] // piling up more references to the same thing

Page 32 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

oc> print objarr[0] ,objarr[1] objarr[2]

o Exercises: Listsare useful for maintaining pointersto objects so
that they are maintained when explicit object referencesare
removed

1. Make vec point to a new vector. Print out and record its identity (print veg. Now
print using the object name (ie print Vector[#] with the right #). This confirms that
the object exists. Destroy the object by reinitializing the vec reference. Now try to
print using the object name. What does it say.

2. Asin Exercise 1. make vec point to a new vector and use print to find the vector
name. Make XO areference to anew list. Append the vector to the list:
{XO.append(vec). Now dereference vec asin Exercise 1. Print out the object by
name and confirm that it still exists. Even though the original objref is gone, it is still
point to by the list.

3. Identify the vector on the list: (print XO.object(0). Remove the vector from the
list (print XO.remove(Q) Confirm that this vector no longer exists.

o Strings

o Must declarea string before assigning it
oc> mystr = "hello" // ERROR: needed to be declared
oc> strdef mystr // declaration
oc> mystr = "hello" // can’t declare and set together
oc> print mystr

oc> printf("-%s-", mystr) // tab-string-newline; printf=print formatted; see
documentation

o Thereareno string arrays; get around thisusing arraysof String
objects

o Can also declare number arrays, but vectors ar e often mor e useful
oc> x=5
oc> double x[10]
oc> print x // overwrote prior value

oc> x[0]=7

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 33

Hands-on Exercises The NEURON Simulation Environment

oc> print x, X[0] // these are the same

Operators and numerical functions

oc> x=8// assignment

oc> print X+7, X*7, x/7, x%7, x-7, X7 [/ doesn’t change x

oc> x==8 // comparison

oc> x==8 & & 5==3//logica AND, OisFase; 1isTrue

oc> x==8\\ 5==3//logical OR

oc> !(x==8) // logical NOT, need parens here

oc> print 18%05, 18/5, 53, 3*7, sin(3.1), cos(3.1), log(10), log10(10), exp(1)

oc> print X, x+=5, x*=2, x-=1, x/=5, x // each changes value of x; no x++

Blocks of code {}

oc> { x=7
print x
x=12
print x

}
Conditionals

oc> X=8

oc> if (x==8) print "T" else print "F" // brackets optional for single statements

oc> if (x==8) {print "T"} else{print "F'} // usually better for clarity

oc> { x=1 while (x<=7) {print x x+=1}} // nested blocks, statements separate by space
oc> {x=1 while (x<=7) {print x, x+=1}} // notice difference: comma makes 2 args of print

oc> for x=1, 7 print x // simplest for loop

Page 34 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

oc> for (Xx=1;x<=7;x+=2) print X // (init;until;change)

Procedur es and functions

oc> proc hello () { print "hello" }
oc> hello()
oc> func hello () { print "hello” return 1.7 } // functions return a number

oc> hello()
- Numerical argumentsto proceduresand functions

oc> proc add () { print $1 + $2} // first and second argument, then $3, $4...
oc> add(5, 3)

oc> func add () { return $1 + $2}

oc> print 7*add(5, 3) // can use the returned value

oc> print add(add(2, 4), add(5, 3)) // nest as much as you want

. String ($s1, $s2, ...) and object arguments ($o1, $02, ...)

oc> proc prstuff () { print $1, "::", $s2, "::", $03 }
oc> prstuff(5.3, "hello”, vec)
- Exercises

*** Use printf in a procedure to print out a formatted table of powers of 2
*** \Write a function that returns the average of 4 numbers

*** Write a procedure that creates a section called soma and sets diam and L to 2 args

Built-in object types. graphs, vectors, lists,
files

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 35

Hands-on Exercises The NEURON Simulation Environment

- Gr aph
oc> objref g[10]
oc> g = new Graph()
oc> g.size(5, 10, 2, 30) // set x and y axes
oc> g.beginlineg("line", 2, 3) // start ared (2), thick (3) line
oc> {g.ling(6, 3) g.ling(9, 25)} // draw aline (X, y) to (X, y)
oc> g.flush() // show theline

- Exercises

o writeproc that drawsa colored line ($1) from (0, 0) to given
coordinate ($2, $3) assume g isa graph object

o Writeaproc that putsup two new graphs

o bringup agraph using GUI, on graph useright-button right
pull-down to " Object Name"; set 'g’ objectvar to point to this
graph and useg.size() toresize it

- Vector

oc> objref vec[10]

oc> for ii=0, 9 vec[ii]=new Vector()

oc> vec.append(3, 12, 8, 7) // put 4 valuesin the vector

oc> vec.append(4) // put on one more

oc> vec.printf // look at them

oc> vec.size // how many are there?

oc> print vec.sum/vec.size, vec.mean // check average two ways
oc> {vec.add(7) vec.mul(3) vec.div(4) vec.sub(2) vec.printf}
oc> vec.resize(vec.size-1) // get rid of last value

oc> for 1i=0, vec.size-1 print vec.x[ii] // print values

Page 36 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

oc> vec| 1].copy(vec|0]) // copy vec into vec[1]
oc> vec[1].add(3)

oc> vec.mul(vec[1]) // element by element; must be same size

. Exercises

o writea procto make $0l vec elementsthe product of $02* $03
elements

(use resize to get $01 to right size; generate error if sizeswrong eg
if ($o2.size!=%$03.size) { print "ERROR: wrong sizes' return }

o graph vector values. vec.ling(g, 1) or vec.mark(g, 1)
play with colors and mark shapes (see doc for details)

o graph onevec against another: vec.line(g, vec[1]); vec.mark(g,
vec[1])

o writea procto multiply the elements of a vector by sequential
valuesfrom 1to size-1

hint: use vec.resize, vec.indgen, vec.mul
File
oc> objref file
oc> mystr = "AA.dat" // use asfile name
oc> file = new Fil&()
oc> filewopen(mystr) //’w’ means write, arg is file name
oc> vec.vwrite(file) // binary format

oc> file.closg()

oc> vec[1] .fill(0) // set all elementsto O

oc> fileropen(mystr) //’r means read

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 37

Hands-on Exercises The NEURON Simulation Environment

oc> vec|1].vread(file)

oc> if (vec.eq(vec[1])) print "SAME" // should be the same
- Exercises
o proctowriteavector ($01) to file with name $sl1
o proctoread avector ($ol) from file with name $sl

o procto append a number to end of afile: tmpfile.aopen(),
tmpfile.printf
List
oc> objref list
oc> list = new List()
oc> list.append(vec) // put an object on the list
oc> list.append(g) // can put different kind of object on
oc> list.append(list) // pointless
oc> print list.count() // how many things on the list
oc> print list.object(2) // count from zero as with arrays
oc> list.remove(2) // remove this object

oc> for ii=0, list.count-1 print list.object(ii) // remember list.count, vec.size

- Excercise

o write proc that takesalist $01 with a graph (.object(0)) followed
by a vector (.object(1)) and showsthe vector on the graph

o modify thisprocto read the vector out of file given in $s2

Simulation

oc> create soma

Page 38 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

0OC> aCCesS s0Ima

oc> insert hh

oc> ismembrane("hh™) // make sureit’s set
oc> print v, v(0.5), soma.v, soma.v(0.5) // only have 1 seg in section
oc> tstop=50

oc> run()

oc> print t, v

oc> print gnabar_hh

oc> gnabar_hh*=10

oc> run()

oc> print t, v // what happened?

oc> gnabar_hh /=10// put it back

Recording the ssimulation

oc> cvode_active(0) // this turns off variable time step

oc> dt = 0.025

oc> vec.record(&soma.v(0.5)) //’ &’ gives apointer to the voltage

oc> objref stim

oc> soma stim = new |Clamp(0.5) // current clamp at location 0.5 in soma
oc> stim.amp = 20// need high amp since cell is big

oc> stim.dur = 1e10 // forever

oc> run()

oc> print vec.size()* dt, tstop // make sure stored the right amount of data

Graphing and analyzing data

oc> g=new Graph()

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 39

Hands-on Exercises The NEURON Simulation Environment

oc> vec.lineg(g, dt, 2, 2)

oc> g.size(0, tstop, -80, 50)

oc> print vec.min, vec.max, vec.min_ind*dt, vec.max_ind*dt
oc> vec|1].deriv(vec, dt)

oc> print vec[1].max, vec[1].max_ind*dt// steepest AP

+ Exercises

o change params (stim.amp, gnabar _hh, gkbar _hh), regraph and
reanalyze

o bring up the GUI and demonstrate that the GUI and command
line control same parameters

o write proc to count spikes and deter mine spike frequency (use
vec.where)

Roll your own GUI

oc> proc sety () { y=x print x }
oc> xpanel ("test panel")

oc> xvalue("Set x", "X")

oc> xvaue("Set y", "y")

oc> xbutton("Set y to x", "sety()")

oc> xpanel ()

+ Exercises

o put up panel torun sim and display (in an xvalue) the aver age
frequency

Last updated: Jun 16, 2003 (11:09)

Page 40 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Using ModelDB

http://senselab.med.yale.edu/modeldb/ is the the home page of ModelDB, but for most of this exercise
we’ll just use a local copy of some files from it.

We’ll be analyzing a couple of models in order to answer these questions:

1. What physical system is being represented, and for what purpose?
2. What is the representation of the physical system, and how was it implemented?
3. What is the user interface, how was it implemented, and how do you use it?

Example: Moore et al. 1983

Moore JW, Stockbridge N, Westerfield M (1983)
On the site of impulse initiation in a neurone.
J. Physiol. 336:301-11

This one doesn’t have any mod files, but there’s plenty to keep us busy.

The model archive moore83.zip has already been downloaded and unzipped. You’ll find its contents in
course/modeldb/moore83
1. What physical system is being represented, and for what purpose?

ModelDB provides a link to PubMed for the abstract (here’s a local copy of the abstract). At some point
we should also read the paper.

Go to course/modeldb/moore83 and read the README file. Does it provide any more clues?

2. What is the representation of the physical system, and how was it
implemented?

Run mosinit.hoc in course/modeldb/moore83
The PointProcessManager shows a shape plot of the cell.
Using hoc to Examine What’s in the Model
To see what sections exist and how they are connected, type
topology ()
and
forall psection()

at the oc> prompt.

At this point, you might think you’d have to start reading source code in order to get any more
information about what’s in the model. But the Model View tool can save you a lot of time and effort, and
it has the advantage of telling you exactly what the model specification is. This is a big advantage, since
some programs use complex specification and initialization routines that change model structure and
parameters "on the fly."

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 41

Hands-on Exercises The NEURON Simulation Environment

Using Model View to Discover What’s in a Model
Start a Model View tool NEURON Main Menu / Tools / Model View

This shows a browsable outline of the model’s properties.

Asterisks mark the items that are "expandable."

Expand the outline by clicking on "1 real cells". Then peer inside the model by clicking on each of its
expandable subitems.

Notice what happens when you get down to

1 real cells / root soma / 6 inserted mechanisms / hh / 2 gnabar_hh

In the ModelView Range Graph, click on the "SpacePlot" button, then click and drag in that tool’s shape
plot to bring up a space plot of gnabar_hh. Do the same for gkbar_hh and gl_hh.

A shortcut for discovering the distributions of spatially inhomogeneous parameters:

Density Mechanisms / Heterogeneous parameters

reveals all that are spatially nonuniform. Click on any one to make the Model View Range Graph reveal
its values over the model.

Analyzing the Underlying Code

Was this model specified by user-written hoc code, or was a CellBuilder used?
Exit the simulation and search the hoc files for create statements.
Under UNIX type

grep create *hoc

Under MSWin you can open a Command Prompt window, cd to the course/modeldb/moore83 directory,
and then type

c:\nrn54\bin\grep create *hoc

Alternatively you could try Windows Explorer’s semi-useful Search function, or open each hoc file with
a text editor and search for create.

If no hoc file contains the create keyword, maybe the CellBuilder was used.

Run mosinit.hoc again and look for a CellBuilder.

If you don’t see one, maybe a Window Group Manager is hiding it.

Click on NEURON Main Menu/Window and look for one or more window names that are missing a red
check mark. If you see one, scroll down to it and release the mouse button.

If a CellBuilder pops up, examine its Topology, Subsets, Geometry, and Biophysics pages.

Do they agree with the output of forall psection() and/or what you discovered with the Model View tool?

"Extra Credit" Question

Now you know what’s in the model cell, and how it was implemented. Suppose you wanted to get a copy
of it that you could use in a program of your own. Would you do this by saving a CellBuilder to a new
session file, or by using a text editor to copy create, connect, insert etc. statements from one of the hoc
files?

Page 42 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

3. What is the user interface, how was it implemented, and how do you
use it?

What is that panel with all the buttons?

What happens if you click on one of them?

Click on a different one and see what happens to the string at the top of the panel.

Click on some more and see what happens to the blue dot in the PointProcessManager’s shape plot.
Is this one of the standard GUI tools you can bring up with the NEURON Main Menu?

How does it work?

Hints: look for an xpanel statement in one of the hoc files.
Read about xpanel, xbutton, and xvarlabel in the help files.

Find the procedures that implement the actions that are caused by clicking on a button.
The last statement in each of these procedures launches a simulation.

What does the very first statement do?

What does the second statement do?

The remaining statements do one or more of the following:

change model parameters (e.g. spatial distribution of HH in the dendrite)
change stimulus parameters (e.g. stimulus location and duration)

change simulation parameters

Why does the space plot automatically save traces every 0.1 ms?

Hint: analyze the procedure that actually executes a simulation
Which hoc file contains this procedure?

What procedure actually changes the stimulus location, duration, and amplitude? Read about
PointProcessManager in the help files.
Another example: Mainen and Sejnowski 1996

Mainen ZF, Sejnowski TJ (1996)
Influence of dendritic structure on firing pattern in model neocortical neurons.
Nature 382:363-6

This one has interesting anatomy and several mod files.

The model archive patdemo.zip has already been downloaded and unzipped. Its contents are in
course/modeldb/patdemo
1. What physical system is being represented, and for what purpose?

This is ModelDB’s link to PubMed for the abstract, and here’s a local copy of the abstract. Another paper
to read.

Read the README.txt file in course/modeldb/mainen96 . Any more clues here?

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 43

Hands-on Exercises The NEURON Simulation Environment

2. What is the representation of the physical system, and how was it
implemented?

Compile the mod files, then run mosinit.hoc.

Four different cell morphologies are available. Select one of them, then click on the Init button to make
sure that all model specification and initialization code has been executed. Use Model View to browse the
model, and examine the heterogeneous parameters.

Now it’s time to discover how this model was created. Where are the files that contain the pt3d
statements of these cells?

This program grafts a stylized myelinated axon onto 3d specifications of detailed morphometry.
Where is the hoc code that accomplishes this grafting?

If you run mosinit.hoc and then try to import one of the cell morphologies into the CellBuilder, do you
also get the axon?

Length and diameter are scaled in order to compensate for the effect of spines on dendritic surface area.
Find the procedure that does this.
What is an alternative way to represent the effect of spines?

nseg is adjusted in each section so that no segment is longer than 50 um. What procedure does this?

Five active currents and one pump mechanism are included. Examine these mod files.
Do they appear to be compatible with CVODE?

Check them with modlunit.

Did you find any inconsistencies?

Do any of these seem likely to affect simulation results?
Are there any other warning messages?

Is there anything that would cause numerical errors?
How might you fix the problems that you found?

3. What is the user interface, how was it implemented, and how do you
use it?

mosinit.hoc brings up a minimal GUI for selecting cells and running simulations.

How did they do that?

4. Reuse one of their cells in a model of your own design

Import its morphology into a CellBuilder, then save the CellBuilder to a session file and exit the
simulation.

Restart nrngui and load the CellBuilder’s session file.
Assign a plausible set and spatial distribution of biophysical properties and save to a session file.

Instrument your new model and run a simulation.
Save the model, with instrumentation, to a session file.

NEURON hands-on course
Copyright © 1998-2008 by N.T. Carnevale and M.L. Hines, all rights reserved.

Page 44 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

J Physiol. 1983 Mar; 336:301-11
On the site of inpulse initiation in a neurone.
Moore JW Stockbridge N, Westerfield M

In the preceding paper (Mbore & Westerfield, 1983) the
effects of changes I n nmenbrane properties and non-uniform

geonetry on inpul se propagation and threshol d paraneters
were investigated. In this paper the contributions of these
and other paraneters to the site of initiation of an

i mpul se were determ ned by conputer sinulations using the
Hodgki n- Hux| ey menbrane description, the cable equations
and geonetry appropriate for a sinplified notoneurone with
a non-nyel i nated axon. Antidromic invasion of action
potentials into the soma was found to depend upon (a) the

i oni c channel rate constants (determ ned by the
tenperature), (b) the abruptness of the transition fromthe
smal | -di aneter axon to the larger dianeter (and increased

| oad) of the soma-dendrite, (c) extensions of active
properties into the dendrite, and (d) density of ion
channel s. The location of the apparent site of initiation
of inpulses was not necessarily at the site of synaptic

i nput nor the nearest active nenbrane. Its position
depended upon (a) the fraction of the dendritic tree with
exci tabl e nmenbrane, and secondarily on (b) the stinmulus
strength. Even with uniformexcitability in the active
menbr ane, the apparent site of initiation could be noved a
consi derabl e di stance fromthe soma and the site of

stinul ation by appropriate choice of the various paraneters
not ed above

Nature. 1996 Jul 25;382(6589):363-6.

I nfluence of dendritic structure on firing pattern in nodel
neocortical neurons.

Mai nen ZF, Sej nowski TJ.

Howar d Hughes Medical Institute, Conputational Neurobiol ogy
Laboratory, Salk Institute for Biological Studies, La
Jolla, California 92037, USA.

Neocortical neurons display a wi de range of dendritic

nmor phol ogi es, rangi ng from conpact arborizations to highly
el aborate branching patterns. In vitro electrical
recordi ngs fromthese neurons have reveal ed a
correspondi ngly diverse range of intrinsic firing patterns,
i ncl udi ng non-adapti ng, adapting and bursting types. This
het erogeneity of electrical responsivity has generally been
attributed to variability in the types and densities of
ionic channels. W show here, using conpartnental nodels of
reconstructed cortical neurons, that an entire spectrum of
firing patterns can be reproduced in a set of neurons that
share a common distribution of ion channels and differ only
in their dendritic geonetry. The essential behaviour of the
nodel depends on partial electrical coupling of fast active
conduct ances |l ocalized to the soma and axon and sl ow active
currents | ocated throughout the dendrites, and can be
reproduced in a two-conpartnent nodel. The results suggest
a causal relationship for the observed correl ati ons between
dendritic structure and firing properties and enphasi ze the
i mportance of active dendritic conductances in neurona
function.

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 45

Hands-on Exercises The NEURON Simulation Environment

Page 46 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Inhomogeneous channel distribution

Physical System

Conceptual Model

The conceptual model is a much simplified stylized representation of a pyramidal cell with
active soma and axon, passive basilar dendrites, and weakly excitable apical dendrites.

ap([1]

sSoma ap[2]

Computational Model

Here is the complete specification of the computational model:

Geometry
L diam
Section (um) (um) Biophysics
soma 20 20 hh
apl[0] 400 2 hh*
apl[1] 300 1 hh*
apl[2] 500 1 hh*
bas 200 3 pas
axon 800 1 hh

*.-gnabar hh, gkbar hh, and gl hh in the apical dendrites decrease linearly
with path distance from the soma. Density is 100% at the origin of the tree, and
falls to 0% at the most distant termination.

To ensure that resting potential is -65 mV throughout the cell, e pas in the
basilar dendrite is -65 mV.

Other parameters: cm = 1 uf/cm?, Ra = 160 ohm cm, nseg governed by
d lambda = 0.1.

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 47

Hands-on Exercises The NEURON Simulation Environment

The exercise

1. Use the GUI to implement and test a model cell with the anatomical and biophysical
properties described above.

e Start by using the CellBuilder to make a "version 0 model" that has uniform
membrane properties in the apical dendrites (hh mechanism with default
conductance densities).

o Verify that the anatomical and biophysical properties of the model are correct--
especially the channel distributions.

o Test the model with a virtual lab rig that includes a RunControl, IClamp at the
soma, and plots of v vs. t and v vs. distance. Employ a modular strategy so that
you can reuse this experimental rig with a different model cell.

e Next, copy the "version 0 model" CellBuilder and modify this copy to implement
version 1: a model in which gnabar hh, gkbar hh, and gl hh in the apical tree
decrease linearly with distance from the origin of the apical tree, as described above.

Verify the channel distributions, and test this new model with the same rig you used
for version 0.

2. Pick any anatomically detailed morphology you like, import it into NEURON, and
implement a model with biophysical channel densities similar to those described above.

Hints

1. Before doing anything, think about the problem. In particular, determine the formulas
that will govern channel densities in the apical tree.

In each apical section, gnabar hh at any point x in that section will be
gnabar hh = gnabar max * (1 - distance/max_distance)
where
distance = distance from origin of the apical tree to x
and
max_distance = distance from {origin of the apical tree} to {the most remote dendritic
termination in the apical tree}.

The formulas for gk hh and gl hh are similar.

distance/max distance is "normalized distance into the apical tree from its origin." So the
distance metric p should be 0 at the origin of the apical tree, and 1 at the end of the most
remote dendritic termination in the apical tree.

2. Hints for using the CellBuilder to specify an inhomogeneous channel distribution.

NEURON hands-on course
Copyright © 2010-2012 by N.T. Carnevale and M.L. Hines, all rights reserved.

Page 48 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Overview of the task

1. Specify the
o subset
o distance metric p
o parameter param that depends on distance
o function f that governs the relationship between the parameter and the
distance metric
param = f(p)
2. Verify the implementation.

Details

This involves a lot of steps--remember to save intermediate results to session files!
Act 1: Specify the subset

On the CellBuilder's Subsets page, create the subset.

Act 2: Specify the distance metric

Do this with a SubsetDomainlterator.

e Create a SubsetDomainlIterator.

o Click on the subset, then click on "Parameterized Domain Page"

o Click on "Create a SubsetDomainlterator".

The name of the SubsetDomainlterator will appear in the middle panel of the
CellBuilder. It will be called name_x, where name is the name of the subset.
e Use the SubsetDomainlterator to specify the distance metric.

o Click on name_x.

The right panel of the CellBuider will show the controls for specifying the
distance metric. Default is path length in um from the root of the cell (0 end of
soma).

Drag the slider back and forth to see the corresponding location(s) in the shape
plot (boundary between red and black). Distance from the root to the red-black
boundary is shown on the canvas as "p=nnn.nnn". You can also click on the
canvas near the shape and drag the cursor back and forth; the canvas will now
show the "range" of the boundary in the nearest section, and the name of that
section.

o metric offers three choices: path length from root, radial (euclidian) distance
from root, and "projection onto line" (distance from a plane that passes through
the root and is orthogonal to the principal axis of the root section).

o proximal allows specifying an "offset" for the proximal end(s) of the subset.
This lets you assign a distance of 0 to the origin of the apical tree.

o distal allows specifying whether or not to normalize the distance metric, and if
normalized, whether the metric is to become 1 only at the most distal end, or at
all distal ends.

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 49

Hands-on Exercises The NEURON Simulation Environment

Act 3: Specify the parameters that depend on distance
Do this on the CellBuilder's Biophysics page.

e Select Strategy (make a check mark appear in the box).
name_x (the name of the SubsetDomainlIterator) will appear in the middle panel.
e Click on name_x.
e In the right panel of the CellBuider, select the parameters that the
SubsetDomainlIterator will control.

Intermezzo

Time to step back and see where we are.
At this point, name x "knows" these things:

e the sections that are in its subset
e the distance metric for each spatial location in these sections
e the parameters in these sections that will be governed by this distance metric

But it doesn't know the functional relationships between the parameters and the distance
metric--and each parameter can have its own function. Defining these functions is the next
item to take care of.

Act 4: Specify the functional relationship between each parameter and the
distance metric

e Clear the Strategy checkbox.
name_x will appear in the middle panel of the CellBuilder, and beneath it will be the
names of each of the paramters that were selected in the strategy.
e Click on one of the parameter names.
The right hand panel presents controls for specifying f.
The default is a Boltzmann function. f(p) offers this and three other choices:
o Ramp (linear)
o Exponential
o New lets you enter your own function
Each of these has its own list of user-settable parameters.

show allows you to bring up a graph or shape plot for visual confirmation of how the
biophysical parameter varies in space. This is convenient, but you'll probably want to
check the finished model with Model View.

Finale trionfale

Turn on Continuous Create, and use Model View to verify the channel distributions.

NEURON hands-on course
Copyright © 2010 by N.T. Carnevale and M.L. Hines, all rights reserved.

Page 50 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Batch runs with bulletin board parallelization

Sooner or later most modelers find it necessary to grind out a large number of simulations,
varying one or more parameters from one run to the next. The purpose of this exercise is to
show you how bulletin board parallelization can speed this up.

This exercise could be done at several levels of complexity. Most challenging and rewarding,
but also most time consuming, would be for you to develop all code from scratch. But learning
by example also has its virtues, so we provide complete serial and parallel implementations
that you can examine and work with.

The following instructions assume that you are using a Mac or PC, with at least
NEURON 7.1 under UNIX/Linux, or the latest alpha version of NEURON 7.2 under
OS X or MSWin. Also be sure that MPICH 2 is installed if you have UNIX/Linux (OS
X already has it, and it comes with NEURON's installer for MSWin). If you are using
a workstation cluster or parallel supercomputer, some details will differ, so ask the
system administrator how to get your NEURON source code (.hoc, .ses, .mod, .py
files) to where the hosts can use them, how to compile .mod files, and what
commands are used to manage simulations.

Physical system

You have a cell with an excitable dendritic tree. You can inject a steady depolarizing current
into the soma and observe membrane potential in the dendrite. Your goal is to find the
relationship between the amplitude of the current applied at the soma, and the spike
frequency at the distal end of the dendritic tree.

Computational implementation

The model cell

The model cell is a ball and stick with these properties:

soma
L 10 um, diam 3.1831 um (area 100 um?2)
cm 1 uf/cm2, Ra 100 ohm cm
nseg 1
full hh
dend
L 1000 um, diam 2 um
cm 1 uf/cm2, Ra 100 ohm cm
nseg 25 (appropriate for d lambda = 0.1 at 100 Hz)
reduced hh (all conductances /=2)

The implementation of this model is in cell.hoc

Code development strategy

Before trying to set up a program that runs multiple simulations, it is useful to have a program
that executes a single simulation. This is helpful for exploring the properties of the model and
collecting information needed to guide the development of a batch simulation program.

The next step is to create a program that performs serial execution of multiple simulations,
i.e. executes them one after another. In addition to generating simulation results, it is useful

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 51

Hands-on Exercises The NEURON Simulation Environment

for this program to report a measure of computational performance. For this example the
measure will be the total time required to run all simulations and save results. The simulation
results will be needed to verify that the parallel implementation is working properly. The
performance measure will help us gauge the success of our efforts, and indicate whether we
should look for additional ways to shorten run times.

The final step is to create a parallel implementation of the batch program. This should be
tested by comparing its simulation results and performance against those of the serial batch
program in order to detect errors or performance deficiencies that should be corrected.

In accordance with this development strategy, we provide the following three programs. For
each program there is a brief description, plus one or more examples of usage. There are also
links to each program's source code and code walkthroughs, which may be helpful in
completing one of this exercise's assignments.

Finally, there is a fourth program for plotting results that have been saved to a file, but more
about that later.

initonerun.hoc

Description
Executes one simulation with a specified stimulus.
Displays response and reports spike frequency.
Usage
nrngui initonerun.hoc
A new simulation can be launched by entering the command
onerun(x)
at the oc> prompt, where x is a number that specifies the stimulus current amplitude in
nA.
Example:
onerun(0.3)
Source
initonerun.hoc
code walkthrough

. .

initbatser.hoc

Description
Executes a batch of simulations, one at a time, in which stimulus amplitude increases
from run to run.
Then saves results, reports performance, and optionally plots an f-i graph.
Usage
nrngui initbatser.hoc
Source
initbatser.hoc
code walkthrough

. .

initbatpar.hoc

Description
Performs the same task as initbatser.hoc, i.e. executes a batch of simulations, but does it
serially or in parallel, depending on how the program is launched.
Parallel execution uses NEURON's bulletin board.

Usage
Serial execution: nrngui initbatpar.hoc
runs simulations one after another on a single processor, i.e. serially. Parallel execution:
mpiexec -n N nrniv -mpi initbatpar.hoc

Page 52 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

launches N processes that carry out the simulations. On a multicore PC or Mac, parallel
execution with N equal to the number of cores can reduce total run time to about 1/N of
the run time required by initbatser.hoc, serial execution of initbatpar.hoc, or parallel
execution of initbatpar.hoc with N = 1.

Source

initbatpar.hoc
code walkthrough

Things to do

1. Run a few simulations with initonerun.hoc just to see how the cell responds to injected
current. You might try to find the smallest and largest stimuli that elicit repetitive dendritic
spiking.

2. Compare results produced by serial and parallel simulations, to verify that parallelization
hasn't broken anything. For example:

nrngui initbatser.hoc

mv fi.dat fiser.dat

nrngui initbatpar.hoc

mv fi.dat finompi.dat

mpd &

mpiexec -n 4 nrniv -mpi initbatpar.hoc
mv fi.dat fimpi4.dat

cmp fiser.dat finompi.dat

cmp fiser.dat fimpi4.dat

Instead of cmp, MSWin users will have to use fc in a "Command prompt" window.

3. Evaluate and compare performance of the serial and parallel programs.
Here are results of some tests I ran on a couple of PCs.

NEURON 7.2 (508:9756f32df7d0) 2011-03-16 under Linux
on a quad core desktop.

initbatser 10.4 s
initbatpar
without MPI 10.2
with MPI speedup
n=1 10.2 1 (performance baseline)
2 5.3 1.9
3 3.5 2.9
4 2.8 3.6

NEURON 7.2 (426:7b4f020b29e8) 2010-03-12 under Linux
on a dual core laptop

initbatser 7.7 s
initbatpar
without MPI 7.5
with MPI speedup
n=1 7.7 1 (performance baseline)
2 4.1 1.9

4. Make a copy of initbatpar.hoc and edit it, inserting printf statements that reveal the
sequence of execution, i.e. which processor is doing what. These statements should report
whatever you think would help you understand program flow. Here are some suggestions for
things you might want to report:

e the identity of the host process (i.e. the pc.id)
e the name of the proc or func that is being entered or exited

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 53

Hands-on Exercises The NEURON Simulation Environment

e the value that is being passed or returned

e the index of the simulation that is being run

e anything else that you think might illuminate this dark little corner of computational
neuroscience

Focus on the parts of the program that are involved in the master's principal function (posting
jobs and gathering results), and the workers' principal function (entering, executing, and
exiting fi).

After inserting the printf statements, change NRUNS to 3 or 4, then run a serial simulation
and see what happens.

Next run parallel simulations with -n 1, 2, 3 or 4 and see what happens. Do the monitor
reports make sense?

5. Examine an f-i curve from data saved to one of the dat files.
nrngui initplotfi.hoc
then use its file browser to select one of the dat files.

Examine initplotfi.hoc to see how it takes advantage of procs that are built into NEURON's
standard run library (UNIX/Linux users see nrn/share/nrn/lib/hoc/stdlib.hoc, MSWin users see
c:\nrnxx\lib\hoc\stdlib.hoc).

NEURON hands-on course
Copyright © 2011 by N.T. Carnevale and M.L. Hines, all rights reserved.

Page 54 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Bulletin board code walkthroughs

initonerun.hoc

Description
Executes one simulation with a specified stimulus.
Displays response and reports spike frequency.
Usage
nrngui initonerun.hoc
A new simulation can be launched by entering the command
onerun(x)
at the oc> prompt, where x is a number that specifies the stimulus current amplitude in
nA.
Example:
onerun(0.3)
Source
initonerun.hoc

Code walkthrough

initonerun.hoc is organized in a modular fashion. Only highlights are mentioned.

Simulation parameters
Firing frequency should be determined after the model has settled into a stable firing
pattern. Tests show that the first few interspike intervals vary slightly, so the first
NSETTLE=5 ISIs are ignored and frequency is computed from the last 10 ISIs in a
simulation. The slowest sustained repetitive firing is > 40 Hz (longest ISI < 25 ms), so
TSTOP = 375 ms would allow at least 15 ISIs. TSTOP has been set to 500 ms so that
repetitive firing produces > 15 ISIs, and runs with < 15 are ignored.

Model specification
loads the cell's source code

Instrumentation
stimulus--attaches an IClamp to soma(0.5)
data recording and analysis--uses a NetCon to record the times at which spikes reach
dend(1)
proc postproc() verifies that enough spikes have occurred, then calculates freq from the
last NINVL=10 recorded ISIs.

Simulation control and reporting of results
proc onerun() expects a single numerical argument that specifies the stimulus amplitude.
It creates a graph that will show dend.v(1) vs. time, runs a simulation, analyzes the
results, and prints out the stimulus amplitude and firing frequency.

initbatser.hoc

Description
Executes a batch of simulations, one at a time, in which stimulus amplitude increases
from run to run. Then saves results, reports performance, and optionally plots an f-i
graph.

Usage
nrngui initbatser.hoc

Source
initbatser.hoc

Code walkthrough

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 55

Hands-on Exercises The NEURON Simulation Environment

initbatser.hoc is based on initonerun.hoc. Only significant differences are mentioned.

Simulation parameters
If PLOTRESULTS = 1, an f-i curve will be generated at the end of program execution; if
not, the program simply exits when done.
AMPO, D AMP, and NRUNS specify the stimulus current in the first run, the increment
from one run to the next, and the number of simulations that are executed, respectively.
Instrumentation
setparams() assigns values to the parameters that differ from run to run. In this example,
it sets stimulus amplitude to a value that depends on its argument. Its argument is the
"run index", a whole number that ranges from 0 to NRUNS-1 (see proc batchrun() in the
following discussion of "Simulation control").
Simulation control
This has been separated from reporting of results.
trun = startsw() records system time at the beginning of the code whose run time will be
evaluated.
proc batchrun() contains a for loop that iterates the run counter ii from 0 to NRUNS-1.
Each pass through this loop results in a new simulation with a new stimulus amplitude,
finds the spike frequency, and saves the stimulus amplitude and frequency to a pair of
vectors. It also prints a "." to the terminal to indicate progress.
Reporting of results
proc saveresults() writes the stimulus and frequency vectors to a text file in the format
used by "NEURON Main Menu / Vector / Save to File" and "Retrieve from File".
After this is done, the program reports run time.
Then it plots an f-i curve or quits, depending on PLOTRESULTS.

initbatpar.hoc

Description
Performs the same task as initbatser.hoc, i.e. executes a batch of simulations, but does it
serially or in parallel, depending on how the program is launched. Parallel execution
uses NEURON's bulletin board.

Usage
Serial execution: nrngui initbatpar.hoc
runs simulations one after another on a single processor, i.e. serially. Parallel execution:
mpiexec -n N nrniv -mpi initbatpar.hoc
launches N processes that carry out the simulations. On a multicore PC or Mac, parallel
execution with N equal to the number of cores can reduce total run time to about 1/N of
the run time required by initbatser.hoc, serial execution of initbatpar.hoc, or parallel
execution of initbatpar.hoc with N = 1.

Source

initbatpar.hoc
Code walkthrough

initbatpar.hoc is based on initbatser.hoc. Only key differences are mentioned below. Note that
many statements have been wrapped in paried curly brackets { } to suppress printing of
undesired return values (0s, 1s, etc.).

ParallelContext
An instance of the ParallelContext class is created near the start of the program. printf
statements inserted after this point to monitor program execution can report not only
what code is being executed in the course of which simulation, but also the identity
(pc.id) of the host that is executing the code.

Simulation control
This is where most of the changes have been made.

Page 56 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

The speedup of bulletin board style parallelization depends on keeping the workers as
busy as possible, while minimizing communication (data exchange via the bulletin board)
as much as possible. To this end, the master should post as little data as necessary to
the bulletin board. The workers should do as much work as possible, and then return as
little data as necessary to the bulletin board.

The serial program initbatser.hoc has a proc batchrun() that uses this for loop to execute
a series of simulations, one at a time, on a single processor:

for ii=0,%$1-1 {
setparams(ii) // set parameters for this run
run()
postproc() // analyze the data
svec.append(stim.amp)
fvec.append(freq)
printf(".") // indicate progress

}

In initbatpar.hoc, everything that can be offloaded to the workers has been taken out of
batchrun() and inserted into a new func fi() that is defined prior to batchrun().

func fi() { // set params, execute a simulation, analyze and return results
setparams($1) // set parameters for this run
run()
postproc() // analyze the data
return freq

}

Notice that fi() contains the procedures that involve the most computational overhead.
Also notice that fi() expects a single numerical argument, and returns a single numerical
result. This is how the implementation of fi() tries to satisfy the aim of keeping the
workers busy, while minimizing communication overhead.

Here is the heart of initbatpar.hoc's batchrun() procedure:

for ii = 0, $1-1 pc.submit("fi", ii) // post all jobs to bulletin board
// retrieve results from bulletin board
while (pc.working) { // is a result ready?

fvec.append(pc.retval()) // get frequency

pc.unpack(&tmp) // get job number

svec.append(tmp)

printf(".") // indicate progress

}

There still is a for loop, but it uses pc.submit() to post jobs to the bulletin board.
Communication is minimized by passing only the name of a function ("fi" of course) and
the simulation index ii for each run that is to be carried out.

Next comes a while loop in which the master checks the bulletin board for returned
results. If nothing is found, the master picks a task from the bulletin board and executes
it. If a result is present, the master retrieves it from the bulletin board: pc.retval() gets
the value returned by fi(), and pc.unpack(&tmp) gets the job number into tmp. The job
number starts at 0 and increments by 1 each time another job is posted, so it is identical
to the simulation index.

After the last job has been completed, the master exits the while loop, and batchrun() is
finished. Then pc.done() releases the workers.

But the master still has some work to do.

Reporting of results

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 57

Hands-on Exercises The NEURON Simulation Environment

Although the jobs were posted in order of increasing stimulus intensity, there is no
guarantee that simulation results will be returned in the same sequence. Also, the values
in svec are job numbers, not stimulus currents. So results have to be sorted, and job
numbers must be converted to stimulus currents. This is done by

fvec = fvec.index(svec.sortindex()) // rearrange fvec according to svec sortindex
{

svec.sort()

// but svec contains job numbers, not actual stimulus currents
svec.apply("fstimamp")

}

NEURON hands-on course
Copyright © 2011 by N.T. Carnevale and M.L. Hines, all rights reserved.

Page 58 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Greater performance on multicore
workstations

If a model has more than a few thousand states, it may run faster with multiple threads.

Physical System

Purkinje Cell

Model

Miyasho et al. 2001

Simulation

Launch the model, let it run for about 30 seconds of wall time and stop it.
What ms of simulation time did it get to?

Pop up the NEURONMainMenu/Tools/ParallelComputing panel. How large is the model? (The
"Total model complexity" value is approximately the number of states in the model). This is a
large model that should be able to run faster on a multicore workstation if we can parallelize
the simulation using threads.

Press the "Refresh" button to see how many useful processors your machine has. May have to
press it several times to get a stable number. The value is determined by how much time it
takes N threads to count to 1e8. If N is greater than the number of cores on your machine,
then the total time will go up. Enter the number of processors into the "#Threads" field.
Thread performance has a chance of being good only if the "Load imbalance" is less than
20%. That can only happen if there are more cells than threads and the cells can be
distributed so that the total complexity on each thread is about the same. Here, there is only
one cell so we have to split the cell into pieces and put the pieces into different threads. This
is done by pressing the "Multisplit" button. On my 4-core computer, it splits the cell into 26
pieces and distributes the pieces on 4 threads for a load imbalance of just 4%. Unfortunately,
an error message is printed to the terminal window saying:

cad is not thread safe

A look at the nmodl translator messages shows that not all of the mod files are threadsafe.
We need to repair those mod files (cells that use a non-threadsafe mechanism are placed
onto the main thread unless you force them onto a different thread, as above, in which case
NEURON will generate an error message). A script to aid in the repair is called
"mkthreadsafe" and is run in a bash terminal window. On mswin machines, start a bash
terminal using the rxvt icon. When executed in the prknj directory it first complains about

VERBATIM
return 0;
ENDVERBATIM
Translating K22.mod into K22.c
Notice: VERBATIM blocks are not thread safe

Force THREADSAFE? [v][n]l: n

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 59

Hands-on Exercises The NEURON Simulation Environment

This VERBATIM block is an old and never needed idiom that some people use to return a
value from a PROCEDURE or FUNCTION. You can edit the K22.mod file to remove it but it
does not affect thread safety so you can type

Y

so that the script adds the THREADSAFE keyword to the NEURON block. The script
continues with the same messages for K23.mod, K2.mod, KC2.mod, KC3.mod, KC.mod, for
which it is safe to type y. Something new comes up with

NEURON {

SUFFIX Khh

USEION k WRITE ik

RANGE gk, gkbar, ik

GLOBAL ninf, nexp
}
Translating Khh.mod into Khh.c
Notice: This mechanism cannot be used with CVODE
Notice: Assignment to the GLOBAL variable, "nexp", is not thread safe
Notice: Assignment to the GLOBAL variable, "ninf", is not thread safe
Warning: Default 37 of PARAMETER celsius will be ignored and set by NEURON.
Force THREADSAFE? [y][n]: n

This is an even more common idiom that uses global variables to save space. I.e A block calls
a rate procedure that computes rate values and temporarily stores them for use later in the
block. The assumption was that between assignment and use, no other instance of the model
assigns a value to those variables. That assumption is false when there are multiple threads.
Type "y" for this case as well. The script will add the THREADSAFE keyword to the NEURON
block of the mod file which will cause GLOBALs that are assigned values to become thread
variables. That was the last problem mentioned by the script. Unfortunately, there is one
other problem in CalciumP.mod which is not tested by the script and you will continue to
get the "cad is not thread safe" error if you launch the model. The problem is

SOLVE state METHOD euler

I never bothered to make euler thread safe since the best practical methods are "cnexp" for
hh-like equations and "derivimplicit" for all the others. So change the "euler" to "cnexp"
manually in CalciumP.mod .

Now one should build the dll as normally done on your machine and try the "Parallel
Computing" tool again. My computer runs the model in 76s with one thread and 12s with 4
threads. The reason for the superlinear speedup is that multisplit forces "Cashe Efficient" on.
It is often worthwhile turning that on even with a single thread (in my case, 49s).

Note: Multisplit, divides the cell into many independent cells which are connected together
internally (check with "topology()"). When divided into pieces the cell as a whole is difficult
to deal with (for example, distance() and Shape tools don't work well. Even topology() gives
an incomplete idea of what is going on). So it is best to turn off "Multisplit" to re-assemble
the cell to its original condition before doing any GUI manipulation.

Let's try another case using a network model.

Page 60 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Physical System

Cortex integrates sensory information. What is a moment in time?

Model

Transient synchrony. Hopfield and Brody 2001 implemented by Michele Migliore.

Simulation

This model has a home-brew interface that does not show elapsed walltime, but to time the
"before training" simulation one can copy-paste the following into the terminal window.

{tt = startsw() zrun u() print startsw()-tt }

This model also has non-threadsafe mechanisms. So we need to repair with mkthreadsafe
(Another case of using GLOBAL variables for temporary storage.) However, running a sim
with two threads gives an error

...usable mindelay is 0 (or less than dt for fixed step method)

Sadly, threads cannot be used when any NetCon.delay is 0. Fortunately, this model is not
critically sensitive to the delay, so try again by setting all delays to .5ms . (Copy-paste the
following into the terminal window)

objref xx
xX = new List ("NetCon")
for i=0, xx.count-1 xx.0(i).delay = .5

With two threads the run will be faster, but far from twice as fast. Try again with "Cache
Efficient" checked.

NEURON hands-on course
Copyright © 2009 by N.T. Carnevale and M.L. Hines, all rights reserved.

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 61

Hands-on Exercises The NEURON Simulation Environment

Page 62 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Custom initialization

Physical System

Ball-Stick approximation to cell

HH P |

Simulation

The aim of this exercise is to learn how to perform one of the most common types of custom
initializaton: initializing to steady state.

We start by making a ball & stick model in which the natural resting potential of the somatic
sphere and dendritic cylinder are different. No matter what v_init you choose, default
initializaton to a uniform membrane potential results in simulations that show an initial drift
of v as the cell settles toward a stable state.

After demonstrating this initial drift, we will implement and test a method for initializing to
steady state that leaves membrane potential nonuniform in space but constant in time.

Getting started

In this exercise you will be creating several files, so you need to be in a working directory
for which you have file "write" permission. Start NEURON with course/init as the working
directory.

Making the representation

Use the CellBuilder to make a simple ball and stick model that has these properties:

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 63

Hands-on Exercises The NEURON Simulation Environment

Section Anatomy Compartmentalization Biophysics

soma length 20 microns d lambda = 0.1 Ra =160 ohmcm, Cm =1
diameter 20 uf/cm?
microns Hodgkin-Huxley channels

dend length 1000 d lambda = 0.1 Ra =160 ohmcm, Cm =1
microns . uf/cm2
diameter 5 microns passive with Rm = 10,000 ohm

cm?

Turn Continuous Create ON and save your CellBuilder to a session file.
Using the Representation

Bring up a RunControl and a voltage axis graph.
Set Tstop to 40 ms and run a simulation.
Use View = plot to see the time course of somatic membrane potential more clearly.

Add dend.v(1) to the graph (use Plot what?), then run another simulation.
Use Move Text and View = plot as needed to get a better picture.

Add a space plot and use its Set View to change the y axis range to -70 -65.
Run another simulation and watch how drastically v changes from the initial condition.

Save everything to a session file called all.ses (use File / save session) and exit NEURON.

Exercise: initializing to steady state

In the course/init directory, make an initss.hoc file with the contents

// load the GUI tools

load _file("nrngui.hoc")

// the model and user interface
load _file("all.ses")

// custom steady state init
load _file("ssprocinit.hoc")

Also make a file called ssprocinit.hoc that contains these lines :

proc init() { local dtsav, temp
finitialize(v_init)

t = -1lel0
dtsav = dt
dt = 1e9

// if cvode is on, turn it off to do large fixed step
temp = cvode.active()

if (temp!=0) { cvode.active(0) }

while (t<-1e9) { fadvance() }

// restore cvode if necessary

if (temp!=0) { cvode.active(l) }
dt = dtsav
t =0

Page 64 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

if (cvode.active()) {
cvode.re_init ()

} else {
fcurrent ()

}

frecord_init ()

}

Now use NEURON to execute initss.hoc.
Click on Init & Run and see what happens.

"Special credit" exercise

Another common initialization is for the initialized model to satisfy a particular criterion.
Create an initialization that will ensure that resting potential throughout the cell equals
V_init.

NEURON hands-on course
Copyright © 2003-2009 by N.T. Carnevale and M.L. Hines, all rights reserved.

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 65

Hands-on Exercises The NEURON Simulation Environment

Page 66 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

| ntroduction to the Networ k Builder

The Network Builder tools are principally of didactic value, in that the graphical creation of ssmple
networks can generate "readable” hoc code which in turn embodies our notion of afairly flexible
programming style for construction of more complicated networks.

M od€l

Artificial Integrate and Fire cell stimulated by a burst of action potentias. Thisisa"hello world"
level exercise that shows how to use the Network Builder and supporting tools to create artificial cell
types, use those types to create cell objects, and connect the cell objects together. A subsequent

exercise discusses how to create network ready cell types from more complicated cells specified by
the cell builder.

Simulation

The strategy isto 1) define the types of cells (and stimulators), 2) create each cell in the network, 3)
connect the cells together, 4) specify parameters such as delays and connection weights, 5) run a
simulation and plot the input and output spike trains. If you have trouble with the following
instructions, this executes a working exercise.

Define artificial cell types

What is an artificial cell in NEURON?

Start an ArtCellGUI tool by selecting the menu item:
NEURONMainMenu/Build/NetworkCell/Artificial Cell

Create a"C" type viaa New/IntFirel followed by a Rename. This type will be used to create our
model cell.

Createan"S' type viaa New/NetStim followed by a Rename. We will use this type later on to create
astimulator. The interval and number parameters should be set to 10 and 10 respectively.

The interface should now look something like this.
Cédll creation

Start a NetGUI tool by selecting the menu item: NEURONM ainM enu/Build/NetworkBuilder

The NetGUI instance should have its "Locate" radiobutton selected.

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 67

Hands-on Exercises The NEURON Simulation Environment

Drag an"S" into the middle of the canvas. This creates an "S0". The text in the canvas explains what
is happening during dragging.

Drag a"C" into the canvas. Thiscreatesa"C1".

The NetGUI window should now look something like thisbut won't have the explanatory text in the
canvas unless you just selected the "L ocate" radio button.

Note that cells are indexed according to the order of creation starting at 0. Dragging a created cell off
the canvas destroys it (and reduces the indices of cells greater than that index by 1. That is, the
largest index is total number of cells - 1. Dragging anew cell onto an existing cell replaces the

existing cell and itsindex is unchanged. Currently, replacing a cell destroys all the connections to
that cell -- possibly the wrong gui behavior when cells have only one possible input connection point.

At this point, what you see in the NetworkBuilder is just a specification and the cells don’t yet exist.
The pointprocesses aren’t created (and therefore the network can’t be simulated) until the "Create"
button is pressed. After "Create" is pressed, no new cell type can be added to the NetGUI. Within the
confines of the existing types, any number of cells can be created or destroyed along with their
connections and the "real (simulatable)" network will be constantly updated to reflect the NetGUI
specification.

It isagood ideato save the NetGUI tool often (or at least if substantial effort has gone into changing
it since it was last saved).

Connections

In the NetGUI window, select the " Src->Tar" radiobutton and drag a line from SO to C1.

Use the "Weights" button to pop up a NetEdgeGUI panel. With this panel, selecting an item on the
left list places the number in the field editor. Selecting an item in the right list assigns the field editor
value to its connection weight. This makes it convenient to assign the same weight to a subset of
connections.

Enter "2" into the field editor.

Click ontheright list item labeled "SO->C1 0". The label should change to "SO->C1 2". Thisweight
is large enough so that every input event (from S0) should €licit an output event from C1

The NetGUI and NetEdgeGUI windows should now look something likethis.
Simulation
In the NetGUI window, press the "Create" button.

Press the " SpikePlot" button to pop up a plot window.

Start a NEURONMainMenu/Tools/RunControl and VariableStepControl. Set TStop to 1000 and
invoke "Use variable dt"

Do an Init& Run. Y ou should see spikesin the SpikePlot graph.

The relevant windows should now look something like this.

Page 68 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Compare the discrete event simulation run time with the fixed step method ("Use variable dt" turned
off).

Other Simulation Exercises

Reduce the fast interspike interval of the stimulusto 2 ms. Why are spikes missing from the C1
output?

For the remaining exercises, set the fast interspike interval back to 10.

For the C cell type, set the integration time constant to 100 ms and set the input connection weight to
0.2 . Observe the output spike train and its relation to the input train.

Plot the value of the state variablemin the IntFirel pointprocess that implements the C1 cell. Why
doesm remain constant between events instead of decaying exponentially (even with the fixed time

step)?

Note: The "ShowCellMap" button in the NetGUI panel helpsidentify the actual
C_IntFirel object instance that contains the "pp" public object reference to the actual
IntFirel point process object instance (which is located in the dummy section,

acel | _hone_) -

The automatically generated hoc code

It s one thing to manage a few cells and connections, quite another to manage thousands. Some help
in thistask is provided by functions that return various kinds of NetCon lists, e. g. all the Net cons that
connect to the same postcell, post synaptic point process, precell, etc. However, at thistime there are
no generic gui tools to view or manage large networks and it is necessary to craft viewing, control,
and management routines based on the details of the particular network being investigated.

Specifying large networks practically requires interpreter programming and this in turn requires
familiarity with a programming style suitable for conceptual control of such networks. The hoc code
generated by the NetGUI tool for small networks can be used as a basic pattern and alarge part of it
re-used for the construction of larger networks involving procedural specification of network
architecture with random connections, weights, etc. Certainly the cell types are re-usable asis and
without change. Those of you with an interest in networks that are beyond the scope of the current
NetGUI tool should save the above NetGUI specification as a hoc file and look at it with an editor.
Hoc files are constructed using the "Hoc Fil€" button in the NetGUI window. The ideas involving
cell templates, the cell creation procedure (cell_append), and the connection procedure (nc_append)
have wide applicability.

Cell templates are probably essential programming practice with regard to ssimulation of large
numbers of non-artificial cells. Each template has a position procedure to set the 3-d location of the
cell and public position coordinates x, y, z. The connect2target function creates a NetCon with "this"
as the source, and the first objref argument as the target.

The hoc file for the above spec looks like this.

NEURON hands-on course
Copyright © 1998-2001 by N.T. Carnevale and M.L. Hines, all rights reserved.

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 69

Hands-on Exercises The NEURON Simulation Environment

In NEURON, artificial cells are point processes that serve as both atarget and source object for a
network connection object. That they are targets mean that they have aNET_RECEIVE block which
handles discrete event input streams through one or more NetCon objects. That they are also sources
means that the NET_RECEIVE block also generates discrete output events which are delivered
through one or more NetCon objects. Generally, such cells are computationally very efficient
(hundreds of times faster than cells we have simulated up to now whose voltage responseis a
consequence of membrane conductance) because their computation time does not depend on the
integration step, dt, but only on the number of events. That is, handling 100000 spikes in one hour for
100 cells takes the same time as handling 100000 spikesin 1 second for 1 cell. The total computation
timeis proportional to the total number of spikes delivered during arun and is independent of the
number of cells or number of connections or interval between spikes.

NEURON has four built-in point process classes which can be used to construct artificial cell types:

1. NetStim produces a user-specified train of one or more output events, and can aso be triggered
by input events
2. IntFirel, which acts like aleaky integrator driven by deltafunction inputs. That is, the state
variable m decays exponentialy toward 0. Arrival of an event with weight w causes an abrupt
change in m. If m exceeds 1, an output event is generated and the cell enters arefractory
period during which it ignores further inputs. At the end of the refractory period, misresetto 0
and the cell becomes responsive to new inputs.
3. IntFire2, aleaky integrator with time constant taum driven by atotal current that is the sum of
{ auser-settable constant "bias" current }
plus
{ anet synaptic current }.
Net synaptic current decays toward 0 with time constant taus, where taus > taum (synaptic
current decays slowly compared to the rate at which "membrane potential” m equilibrates).
When an input event with weight w arrives, the net synaptic current changes abruptly by the
amount w.
4. IntFired, with fast excitation current (rises abruptly, decays exponentially) and slower alpha
function like inhibition current that isintegrated by even slower membrane.

NEURON requires that all point processes be located in a section. To meet this (in this context,
conceptually irrelevant) requirement, the Network Builder tool locates each point process of its
instantiated artificial cellsin the dummy section called acel 1 _hore_

NEURON hands-on course
Copyright © 2000-2001 by N.T. Carnevale and M.L. Hines, all rights reserved.

Page 70 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Network ready cellsfrom the CellBuilder
M odel

HH |}]
Passive

Ball-Stick model cell with distal excitation and proximal inhibition. Thisis another "hello world"
level exercise. It shows how to use the a specification from a cell builder to create a network ready
cell (spikeinitiation site and a set of synapses) from a NetReadyCellGUI. It shows how to use these
cell typesin aNetGUI to make connections between spike initiation sites and synapses.

Simulation

The strategy isto

1) Use a CellBuilder window to create a cell type with specific morphology and membrane
properties. The CellBuilder also specifies the type name and the spike initiation site.

2) Define synapse types with a SynTypeGUI. E.g. inhibitory and excitatory synapses from suitable
PointProcesses.

3) Define anetwork ready cell type with a NetReadyCellGUI. |.e. specify where instances of the
synapse types should be located on the cell. The NetReadyCellGUI references a CellBuilder to
obtain the basic cell morphology and membrane properties. It references a SynTypeGUI which is
used to obtain the synapse types.

4) Use a NetGUI to construct the network

5) Run asimulation and plot the input and output spike trains. If you have trouble with the following
instructions, this executes aworking exercise --- the NetReadyCel IGUI (for the ball stick cell) and
ArtCelGUI (for the stimulators) arein the "cell types" window group.

Ball-Stick cell model

Start with the ball-stick specification in course/net2/start.ses . This model has

soma area = 500 um2 with hh channels (standard density)

dendrite L = 200 um, diam = 1 um with pas channel (g_pas=.001 S'um2 and e pas=-65mV)
Ra= 100 ohm-cm

cm = 1 uF/cm2

and uses d_lambda=.1 compartmentalization policy.

From the CellBuild Management/Cell Type panel, the classname should be declared as "Ball Stick"

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 71

Hands-on Exercises The NEURON Simulation Environment

and the output variable which is watched for spike event should be soma.v(1). At this point the
windows should look something like this.

Ball-Stick cell model with synapses.

The NEURONMainMenu/Build/NetworkCell/FromCelIBuilder menu item starts a dialog box which
requests references to a " Synapse type set” (left list) and a"CellBuild type" (right list). The synapse
type set list is empty now but the CellBuild type list should have areference to the cell builder
previously loaded. Select "CellBuild[0]" and pressthe "Use Selection” button.

This starts a NetReadyCellGUI window (nrc) and a SynTypeGUI window. (It would have also
started a new CellBuild window as well if no CellBuild type had been selected in the dialog). Note
that the nrc contains a drawing of the cell topology. At this time you can close the CellBuild window
--- It can always be re-created with the nrc’s Info menu. In fact, when saving the nrc in asession, it
is best to first close both the cell builder and the SynTypeGUI to avoid saving duplicate copiesin the
session file. After closing the CellBuild[0] window the interface should ook something like this.

From the SynTypeGUI window, create a"E" synapse type viaa New/ExpSyn followed by a
Rename. Since the reversal potentia for the standard ExpSynis0mV, it is aready excitatory.
However, change the time constant from 0.1 to 2 ms.

In the same SynTypeGUI window create a"l" synapse type viaa New/ExpSyn followed by a
Rename. Set the reversal potential "€" to -80 mV so that it will be inhibitory and set tau to 5ms.

In the NetReadyCellGUI, press the Refresh button so that the new SynTypes appear.
Change the cell nameto "B" so the label won't take up so much space later on when we useitin a
NetGUI tool.

In the NetReadyCelIGUI, press the "Locate" radiobutton and drag an E to location .8 on the dendrite.
Then drag an | to location .1 on the dendrite. The label in the canvas will show whether the synapse
typeis close enough to be attached or not. Each synapse on the cell is given an index which isthe
order of creation. Several synapses can be attached to the same location. The synapse label can be
dragged up to two font sizes above or below the location to avoid label overlap. If alabel is dragged
too far away from the cell it will become detached and the larger synapse indices will be reduced by
1. Theinterface at this point should look something like this. Enough work has been done up to this
point so that you should save the NetReadyCellGUI in a session by itself (without the CellBuild or
SynTypeGUI windows -- these may safely be closed as well).

This cell type is now ready for use in the NetGUI.
Stimulators

In analogy with the previous hands-on exercise create two stimulus types, "SE" and "SI" to provide
event streams to stimulate the ball-stick model.

For SE, set interval=5 , number=50 , and start=0.

For Sl, set interval=10, number=>5, and start=20.

I.e. from NEURONMainMenu/Build/NetworkCell/Artificial Cell get an ArtCellGUI and use NetStim
to define the stimulus types. After setting it up the window will look something like this.

At thispoint | created a Window Group called "cell types', placed the ArtCellGUI and

Page 72 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

NetReadyCelIGUI in it, and saved the group. In case things go wrong | can easily return to this
point.

Cdll creation

Start a NetGUI tool and create a"B0" ball-stick cell and "SE1" and "SI2" stimulators as shown in
this picture

Connections

In the NetGUI window, select the " Src->Tar" radiobutton and drag aline from SE1 to BO. The string
near the top of the canvas describes the operation to be performed when the mouse button is
released. When the connection line gets near BO a picture of the BallStick topology will be drawn
and the mouse should be moved to the EO synapse label. The following three figuresillustrate the
process.

Select the source cell

Select the target cell

Select the synapse on the target cell

Connect SI1to 11 of BO
The NetGUI window should now look something like this.

Use the "Weights' button to pop up a NetEdgeGUI panel and enter the following weights.

=| NetEdgeEUI[0] for NetData[0] I
Close Hide
‘‘‘‘ ~ || Weight |87 0.002 I
SE1->BO.ED 001 |All SE1->BO.ED 0.01 |A
Slz—=Bo1 0.002 [Sl2--B0.11 0.002
¥ i J
Simulation

In the NetGUI window, press the "Create" button. Thet opol ogy() Statement should produce
oc>t opol ogy()
| -] acel | _home_(0-1)

| -] B _Bal I'Stick[0].soma(0-1)
G- | B Bal | Sti ck[0] . dend(0- 1)

oc>

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 73

Hands-on Exercises The NEURON Simulation Environment

Press the " SpikePlot" button to pop up a plot window.

Start a NEURONMainMenu/ToolsyRunControl and V ariableStepControl. Set TStop to 500 and
invoke "Use variable dt"

Get a voltage style graph window and plot the soma voltage for the ball-stick cell. The
ShowCellMap button on the NetGUI is useful here. The relevant interface |looks something like this

Do an Init& Run.

The relevant windows should now look something like this.

Other Simulation Exercises

Plot the value of the conductance and current of the inhibitory synapse.
The automatically generated hoc code

The hoc file for the above spec looks like this.

NEURON hands-on course
Copyright © 2000 by N.T. Carnevale and M.L. Hines, all rights reserved.

Page 74 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Hopfield Brody synchronization (sync) model

The exercises below are intended primarily to familiarize the student with techniques and tools useful
for the implementation of networksin Neuron We have chosen arelatively simple network in order
to minimize distractions due to the complexities of channel kinetics, dendritic trees, detailed network
architecture, etc. The following network uses an artificial integrate-and-fire cell without channels or
compartments. Thereis only one kind of cell, so no issues of organizing interactions between cell
populations. Thereisonly one kind of synapse. Additionally, suggested algorithms were chosen for
ease of implementation rather than quality of results.

Although thisisaminimal model, learning the ropesis still difficult. Therefore, we suggest that you
go through the entire lesson relatively quickly before returning to delve more deeply into the
exercises. Some of the exercises are really more homework projects (eg design a new
synchronization measure). These are marked with asterisks.

Asyou know, Neuronis optimized to handle the complex channel and compartment simulations that
have been omitted from this exercise. The interested student might wish to convert this network into
anetwork of spiking cellswith realistic inhibitory interactions or a hybrid network with both realistic
and artificial cells. Such an extended exercise would more clearly demonstrate Neuron’ s advantages
for performing network simulations.

- Standard intfireimplementation (eg IntFirel from
intfirel.mod))

Individual units are integrate-and-fire neurons.

The basic intfire implementation in neuron utilizes a decaying state variable (m as a stand-in
for voltage) which is pushed up by the arrival of an excitatory input or down by the arrival of
an inhibitory input (m = m + w. When m exceeds threshold the cell "fires," sending eventsto
other connected cells.

if (m>1) { ..

net _event (t) /] trigger synapses

- IntlbFirein sync mode

The integrate-and-fire neuron in the current model must fire spontaneously with no input, as
well asfiring when athreshold is reached. Thisisimplemented by utilizing afiretime() routine
to calculate when the state variablem will reach threshold assuming no other inputs during that
time Thisfiring timeis calculated based on the natural firing interval of the cell (invl) and the
time constant for state variable decay (tau). When an input comesin, anew firetimeis
calculated after taking into account the synaptic input (m = m + w) which perturbs the state
variable strajectory towards threshold.

- Cell template

IntIBFireis enclosed in atemplate named "Cell." An instantiation of this template provides

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 75

Hands-on Exercises The NEURON Simulation Environment

access to the underlying mechanism through object pointer pp. Execute the following:
oc> objref mycell

oc> mycell = new Cdll()

oc> print mycell.pp, mycell.pp.tau, mycell.pp.invi

The Cell template also provides 3 procedures. connect2target(js optionally used to hook this
cell to apostsynaptic cell.

- Network

The network has all-to-all inhibitory connectivity with all connections set to equal negative
values. The network isinitialy set up with fast firing cells at the bottom of the graph (Cell[0],
highest natural interval) and slower cells at the top (Cell[ncell-1], lowest natural interval).
Cellsin between have sequential evenly-spaced periods.

How it works

The synchronization mechanism requires that all of the cells fire spontaneoudly at similar
frequencies. It is obviousthat if al cells are started at the same time, they will still be roughly
synchronous after one cycle (since they have similar intrinsic cycle periods). After two cycles, they
will have drifted further apart. After many cycles, differencesin period will be magnified, leading to
no temporal relationship of firing.

The key observation utilized hereis that firing is fairly synchronized one cycle after onset. The trick
isto reset the cells after each cycle so that they start together again. They then fire with temporal
differences equal to the differencesin their intrinsic periods. This resetting can be provided by an
inhibitory input which pushes state variable mdown far from threshold (hyperpolarized, asit were).
This could be accomplished through an external pacemaker that reset all the cells, thereby imposing
an external frequency onto the network. The interesting observation in this network is that
pacemaking can also be imposed from within, though an intrinsic connectivity that enslaves all
members to the will of the masses.

- Exercisesto gain familiarity with the model

o |Increaseto 100 neuronsand run.

Many neurons do not fire. These have periods that are too long -- before they can fire,
the population has fired again and reset them. Notice that the period of network firing is
longer than the natural periods of the individual cells. Thisis because the threshold is
calculated to provide this period when m starts at 0. However, with the inhibition, m
starts negative.

o Narrow thedifference between fast and slow cells so asto make more
of them fire.

Alternatively, increase the delay.

Page 76 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

o Reducetheinhibition and demonstrate that synchrony wor sens.
With inhibition set to zero, there is no synchrony and each cell fires at its natural period.
o Increase cell time constant.

Thiswill destroy synchrony. Increase inhibitory weight; synchrony recovers. Thisisa
consequence of the exponential rise of the state variable. If the interval is short but the
time constant long, then the cell will amplify small variations in the amount of

inhibition received.

Beyond the GUI -- Saving and displaying
spikes
- Spiketimesarebeing saved in a series of vectorsin a
template: sp.vecq 0] .. sp.vecsncell-1]

Count the total number of spikes using afor loop and total+=sp.vecs]ii].size

- Wewill instead save spiketimesin a single vector (tvec),
using a second vector (ind) for indices

oc> load_file("ocomm.hoc™) // additional routines
oc> savspks() // record spike timesto tvec; indicesto ind

oc> run() // or hit run button on GUI

- Make surethat the same number of spikes are being saved
asweresaved in sp.vecy[]

oc> print ind.sizetvec.size

o Wise precaution -- check step by step to make surethat nothing's
screwed up

o Can usefor ... {vec.append(sp.vecdii]) vec.sort tvec.sort vec.eq(tvec)}

to make sure have all the same spiketimes (still doesn’t tell you they
correspond to the same cells)

« Graph spiketimes-- should look like SpikePlot1 graph

oc> g=new Graph()

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 77

Hands-on Exercises The NEURON Simulation Environment

oc> ind.mark(g,tvec) // throw them up there

oc> showspks() // fancier marking with sync lines
Synchronization measures

- Look at synchronization routine

oc>syncer()

oc>for (w=0;w>-5e-2;w-=5e-3) { weight(w) run() print w,syncer()}

- Exercise*: write (or find and implement) a better
synchronization routine

- Graph synchronization

oc> for ii=0,1 vec[ii].resize(0) /1 clear
oc> for (w=0;w>-5e-2; w=5e-3) {
wei ght (w)
run()
vec[1] . append(w)
vec[2] . append(syncer())
}
oc> print vec[1l].size,vec[2].size /1 make sure nothing went w ong
oc> g.erase() /1 assuming it's still there, else put up a new one

oc> vec[2].line(g,vec[1l]) /1 use "View = plot" on pull down to see it

oc> vec[2].mark(g,vec[1],"O',8,2,1) /1 big (8) red (2) circles ("O")

o Make surethat the values graphed are the same asthe values printed
out before

- Exercises
o enclose the weight exploration abovein a procedure

o writeasimilar routineto explore cell time constant (param is called
ta; set with tau(ta)); run it

o writea similar routineto explore synaptic delay (param iscalled del;
set with delay(ddl)); run it

Page 78 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises
o *writeageneral proc that takes 3 args: min,max,iter that can be
used to explor e any of the params

(hint: call ageneral setpar()procedure that can be redefined eg proc setpar() {
weight($1)} depending on which param you are changing

Procedur e interval2() in ocomm.hoc sets cell
periods randomly

» can beused instead of interval() in synchronize.hoc
» randomizing cell identitiesiseasier than randomizing connections

» with randomized identities can attach cell 0to cells 1-50 and not have
interval unifor mity

» Toreplaceinterval() with interval2(), overwriteinterval():
oc> proc interval () { interval2($1,$2) }

* Runinterval() from command line or by changing low and high in GUI
panel

« Check results
oc> for 11=0,ncell-1 printf("%g ",cells.object(ii).pp.invl)

» Exercise: check results graphically by setting wt to O, running sim, and
graphing results

Rewiring the network

All of the programs discussed in the lecture are available in ocomm.hoc. The student may wish to use
or rewrite any of these procedures. Below we suggest a different approach to wiring the network.

« procedurewire() in ocomm.hoc is slightly ssmplified from
that in synchronize.hoc but does the same thing

proc wire () {
nclist.renove_all ()
for i=0,ncell-1 for j=0,ncell-1if (i!'=) {

netcon = new Net Con(cel | s.object(i).pp,cells.object(j).pp)

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 79

Hands-on Exercises The NEURON Simulation Environment

ncli st. append(net con)

}
- Exercises

o rewritewire() to connect each neuron to half of the neurons
suggestion: for each neuron, pick an initial projection randomly

€g

rdm di scuni f (0, ncel | -1)

proj =rdm repi ck()}

if (proj < ncell/2) {
/] project to 0->proj

} else { // project to proj->ncell-1

This agorithm is not very good since cellsin center get more convergence
o * rewritewireto get even convergence

suggestions. counting upwards from proj, use modulus (%) to wrap-around and get
values between 0 and ncell-1

o run(), graph and check synchrony

o generalize your procedureto take argument pij=$1 that defines
connection density

o * assess synchrony at different connection densities

Assessing connectivity

- cvode.netconlist(cells.object(0).pp," " ," ") gives a diver gence
list for cell#0
- cvode.netconlist(""," " ,cells.object(0).pp) gives a

convergence list for cell#0

- Exercise: usetheseliststo calculate average, min, max for
conv and div

Page 80 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Graphing connectivity

- usefconn(prevec,postvec) to get parallel vecsof pre and
postsyn cell numbers

- use postvec.mark(g,prevec) to demonstratethat central cells
get most of the conver gence (if using original suggestion for
wire() rewrite)

- use showdivl(cell#) and showconvl(cell#) to graph
connectionsfor selected cells

- * Exercise: write a procedureto count, print out and graph
all cellswith reciprocal connectivity, eg A->B and B->A

- * Exercise: modify your wire() to eliminate reciprocal
connectivity

Animate

- Useanimplot() to put up squaresfor animating simulation

- Resize and shift around as needed but afterwards make
surethat " Shape Plot" is set on pulldown menu

- After running a simulation to set tvec and ind, run anim()
tolook at the activity

* Difficult or extended exercises

Last updated: Jun 17, 2003 (16:35)

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 81

Hands-on Exercises The NEURON Simulation Environment

Page 82 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

State and Parameter Discontinuities in
HOC

Physical System

Transient voltage clamp to assess action potential stability.

Model

Force a discontinuous change in potential during an Action Potential

Simulation

To work properly with variable time step methods, models that change states and/or
parameters discontinuously during a simulation must notify NEURON when such events take
place. This exercise illustrates the kinds of problems that occur when a model is changed
without reinitializing the variable step integrator.

1) Start with a current pulse stimulated HH patch. E.g. HH Patch
2) Discontinuously change the voltage by +20 mV using

objref fih
fih = new FInitializeHandler ("cvode.event (2, \"change()\")")
proc change() {

print "change at ", t

v += 20

}
Notice the difference between fixed and variable step methods.
3) Replace the "change" procedure with the following and try again.

proc change() {
print "change at ", t
v += 20
cvode.re _init ()

}

4) What happens if you discontinuously change a parameter such as gnabar hh during the
interval 2-3 ms without notifying the variable time step method.

objref fih
fih = new FInitializeHandler ("cvode.event (2, \"change(1)\")")
proc change() {

print "change at ", t
if (81 == 1) {
gnabar_hh *= 2
cvode.event (3, "change(2)")
} else {

gnabar_hh /= 2

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 83

Hands-on Exercises The NEURON Simulation Environment

// cvode.re_init // should be here for varstep method
}
It will be helpful to use the Crank-Nicholson fixed step method and compare the variable
step method with and without the cvode.re init() . Zoom in around the discontinuity at 2ms.

Extra:

Parameter Discontinuities in NMODL

This older exercise makes use of the deprecated at_time way of notifying cvode of the time
for a discontinuity. Nowadays, a NET RECEIVE block is recommended for dealing with
discontinuities but the old exercise still is a good cautionary example of what happens when
there is a discontinuity without notifying the variable step method.

NEURON hands-on course
Copyright © 1998-2009 by N.T. Carnevale and M.L. Hines, all rights reserved.

Page 84 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Electrotonic Analysis with NEURON

What's all this, then?

NEURON has a powerful, convenient, and flexible set of tools that facilitate analysis of electrotonic
architecture. These tools compute the following :

input impedance ZN (local voltage change)/(local current injection)

transfer impedance ZC (local voltage change)/(remote current injection)
equal to
(remote voltage change)/(local current injection)

voltage transfer ratio k (voltage downstream)/(voltage upstream)
Identical to current and charge transfer ratio in the opposite direction.

voltage attenuation A (voltage upstream)/(voltage downstream)
Identical to current and charge attenuation in the opposite direction.

electrotonic distance L natural log of A
(see Note below)

These tools are based on the electrotonic transformation and their use led to the discovery of passive
normalization (see citations).

NOTE: The electrotonic distance computed by NEURON is defined by attenuation, but the
classical definition is (anatomical distance/length constant). These two measures of
electrotonic length are identical for an infinite cylindrical cable. However, the measure
computed by NEURON always has a simple, direct relationship to attenuation, regardless
of cellular anatomy, whereas the classical measure only has meaning in cells that meet
several very specific constraints (such as the "3/2 power branching criterion"), and even
then it does not have a simple relationship to attenuation. The new definition of
electrotonic distance also preserves the direction-dependence of attenuation, which the
classical definition obscures.

Exercises

Start neurondemo and select the Pyramidal cell model. Examine the side view of the anatomy of the
cell in the Shape plot. Rotate, zoom in, and check it out from different vantage points (if you have any
questions, here's how).

NEURON's tools for electrotonic analysis are gathered into four different "styles":

e Frequency
e Path

e log(A) vs. X
e Shape

They are accessible through NEURON Main Menu / Tools / Impedance. In this exercise you will start
to learn how to use each of them. To save screen space, close a tool when you are done with it.

The Frequency tool
The Frequency tool can be used to study electrical coupling between any two points in a cell. Suppose
an interesting signal is generated at some location in a neuron, e.g. by a synapse or by active

conductances. An electrode is attached to the cell, but not necessarily where the signal is produced.
The electrode may be used with a current clamp to inject current and record fluctuations in

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 85

Hands-on Exercises The NEURON Simulation Environment

membrane potential Vm, or with a voltage clamp that records the clamp current Ic that is needed to
regulate Vm.

This experimental situation brings several questions to mind, such as

1. How accurately does observed Vm reflect what is actually happening at the site where the
signal is generated?

2. How does the location of a synapse or active conductance change its effect on Vm elsewhere in
the cell?

3. If the cell is voltage clamped, what fraction of the current generated by the signal source will
the clamp capture?

4. If current is injected through the electrode to change local Vm, how does this affect Vm at the
site of the "interesting signal"?

5. What does frequency do to the spread of signals between two points?

Bring up the Frequency tool: NEURON Main Menu / Tools / Impedance / Frequency

Close Hide

Redraw | Selectlocation || Plot || Baras || Top panel controls operation of the tool, and tells what is
[} include dstate/dt contribution happening. Note particularly:
measure (red): soma(0.5)
inject (blue): dendrite_1[9](0.75)
distance(um) 564.432

e Select Location enables the use of a mouse in the
middle panel to change the sites of current injection
and voltage measurement, or to swap these locations.

¢ Plot brings up a menu of items that can be plotted as
functions of frequency

o Log(Attenuation) plot natural log of voltage
attenuation (shown here)

o Zin and Ztransfer plot input or transfer
impedance

o Vmeasure/Vinject plots voltage transfer ratio, i.e.
the reciprocal of voltage attenuation

- freq log10(Hz) Middle panel shows anatomy of the cell, indicating where
log(Attenuation) current is injected (blue dot) and where Vm is measured (red
dot). Zoom in or out as needed to see the whole cell.

Bottom panel in this example shows natural log of voltage
attenuation from the injection site to the measurement site as
a function of frequency over the range 0.1 to 1000 Hz. For
most cells, attenuations at DC and 0.1 Hz are nearly identical.

Things to do:

Move the injection and measurement sites to different locations in the cell and Redraw.

What happens to attenuation when the injection and measurement sites are swapped?

How do Zin and Ztransfer vary with frequency and location in the cell?

Is Ztransfer sensitive to direction (swap the inject and measure sites to find out)? How does this
differ from attenuation, and why?

W N -

The Path tool
The Path tool is useful when the general location of the signal source is known, or when there are

several independent signal sources at different locations. It performs the same kind of analyses that
the Frequency tool does, but it allows the user to examine signaling between an electrode and a

Page 86 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

region instead of a specific location.

Bring up the Path tool: NEURON Main Menu / Tools / Impedance / Path

hMeasure (red) soma(0.5)
path start (blue): dendrite_1[29](1)
path end (green): dendrite_3[39](1)
path length (um) 1207.61

Close Hide

Redraw I Selecti ocation || Plot II Extras |

include dstate/dt contribution

frequency (Hz) | _{ [0 | Top panel. Note particularly
¢ Vvin
v Vout e The frequency field editor, which sets the frequency at

which In(A) is calculated.
e The Vin and Vout buttons, which specify the direction of
signal flow relative to the electrode.

! Middle panel. Click on the Shape Plot to set the location of

the electrode (red dot), the path start (blue dot), and the path
end (green dot). The direct path between the start and end is
highlighted in red. Anatomical distance along this path is the
independent variable against which analysis results of are
plotted.

= Bottom panel. For all points on the path, shows natural log(A)
for voltage spreading toward (Vin) or away from (Vout) the

electrode, according to the choice set in the Top panel. The
path start is on the left of the horizontal axis, and the end is
on the right. If the electrode is located on the path, this is the
distance from the electrode in um; if the electrode is not on
the path, this is the distance to the location on the path that is
closest to the electrode.

log(Attenuation)
3

| | |

]
-900 -500 -100 300

Things to do:

1.

Leave the measure location at the soma, and move the path start and end to the positions
shown above.

. Examine the spatial profile of voltage attenuation in the somatopetal (Vin) direction. Where

does Vin attenuation increase most rapidly with distance (where is the plot steepest): along the
apical path or along the basilar path?

Switch to the Vout (somatofugal) direction. What happens to the magnitude and spatial profile
of attenuation? Now where does it increase most rapidly?

How does frequency affect attenuation in the Vout direction (compare 0 Hz and 30 Hz)? in the
Vin direction?

What does membrane resistance do to attenuation? Bring up the "Distributed
Mechanism/Manager/Homogeneous spec" window and use its MechType button to view the

parameters of the passive mechanism.

The axon of the cell, which has the hh mechanism but not the pas mechanism, should be black in the shape plot for this
manager.

Change g _pas from its default value of 0.0001 (Rm = 10000 ohm sz) to 0.00002 (Rm = 50000
ohm cmz). Then press the Redraw button in the Path tool window. Does increasing Rm make
attenuation more or less sensitive to frequency?

How does cytoplasmic resistivity affect attenuation? Notice the axial resistivity in the NEURON
Main Panel. This should be 100 ohm cm. Try doubling or halving this value and see what
happens to attenuation. Don't forget to press Redraw in the Path tool window.

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 87

Hands-on Exercises The NEURON Simulation Environment

The log(A) vs x tool

This tool is the ultimate extension of the approach used by the Path tool: it shows the log of voltage
attenuation for each point in the cell relative to the electrode or reference point.

Bring up the log(A) vs x tool: NEURON Main Menu / Tools / Impedance / log(A) vs x

Close Hide

—_— - Top panel. The only significant difference from the Path
Redraw | Shape Sefect Action | Plot| Beras| (0] is the button labeled Shape Select Action. This button

include dstate/dt contribution enables two important operations in the Shape Plot (middle
frequency (Hz) |_{ [0 | panel). The first is "Move electrode" which lets you move
@ Vin the electrode to a new location by clicking on a neurite.
W Vout

The second is "Show Position" which helps you discover the
mapping from the Shape Plot to the log(A) vs x plot: click
on a neurite to see both it and the corresponding line in the
log A vs. x plot turn red. The bottom panel's graph menu
has a "Show position" item that does the same thing in the
opposite direction.

hMeasure (red) soma(0.5)

Middle panel. Since attenuation is computed over the
entire cell, the only location the user specifies is the
position of the electrode (red dot).

Bottom panel. For every section throughout the cell, this
panel shows In(A) for voltage spreading toward (Vin) or
away from (Vout) the electrode. The abscissa is the
distance in um along the direct path from the soma (not
the electrode) to each point. To discover which neurite
corresponds to a line in this graph, click on the menu box
(square in upper left corner of this graph) and select the
"show position" item. Then click on a line to see it and the

! A ' ' | | corresponding neurite turn red.
0 200 400 GO0 BOD 1000

351 log(Attenuation)

Things to do:
Leave the electrode at the soma.

1. Which of the traces in the bottom panel correspond to the
o basilar dendrites?
o primary apical dendrite and its major branches?
o distal apical tuft?
o axon?
2. How does the plot change with frequency? g pas? axial resistivity?
3. For the Vin direction, in what part of the cell does attenuation increase most rapidly with
distance? What about the Vout direction?

Follow these steps to discover passive normalization for yourself!

1. Leave the electrode at the soma.

2. Switch the plot to voltage transfer (click on the Plot button and select the V(measure)/V(inject)
item).

3. Click on the Vin radio button, then click on Redraw.

4. Use the bottom panel's View = plot so you can see the entire range of y values.

This graph now shows a plot of the somatic response to a 1 mV signal as a function of the distance
between the soma and the location where the signal is being applied to the cell. If synapses were

Page 88 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

voltage sources, this is how the somatic PSP would vary as a function of synaptic location. Based on
this result, you would expect synaptic efficacy to decline most rapidly with distance in the basilar
dendrites.

But synapses aren't voltage sources. They're much more like current sources. In other words, a
synapse would deliver nearly the same current to a neuron regardless of where it is attached to the
cell. Therefore voltage transfer ratio in the Vin direction (from synapse to soma) does not predict the
relationship between synaptic efficacy and synaptic location. Instead, the best predictor of
synaptic efficacy is normalized transfer impedance. This is identical to the voltage transfer ratio
in the Vout direction!

So just click on the Vout radio button and you see that a synapse attached to a basilar dendrite will
produce nearly the same somatic PSP no matter how far it is from the soma! This is the phenomenon
that David Jaffe and I call passive normalization : variation of somatic PSP amplitude with synaptic
distance is reduced ("normalization"), and it doesn't require active currents to happen ("passive"). For
more information, see our paper.

The Shape tool

Perhaps the most intuitive representation of electrotonic architecture is to redraw the branched
anatomy of the cell in a way that preserves the relative orientation of the branches, using line
segments that are proportional to natural log(A) between adjacent points instead of the anatomical
branch lengths. These neuromorphic renderings of the electrotonic transform warp the anatomy of
the cell so that the proximity of points to each other is a direct indication of the degree of electrical
coupling between them: tightly coupled points appear close to each other, and points that are
electrically remote from each other are shown farther apart. The overall form of a neuromorphic
figure parallels cellular anatomy, so it is easy to identify structural features of the cell, such as
basilar or apical dendrites and particular dendritic segments or branch points.

Bring up the Shape tool: NEURON Main Menu / Tools / Impedance / Shape

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 89

Hands-on Exercises The NEURON Simulation Environment

Close Hide

include dstate/dt contribution
’Frt;c::ency (He) g Top panel. The controls for the Shape tool are very simple. Because
< Vout of the direct visual parallels between the Shape plot (middle panel)

Measure (red) soma(0.5) and the form of the neuromorphic rendering (bottom panel), there is
no need for special functions to demonstrate the correspondence
between lines in these two panels. There is no Plot button because
there is no way to represent Zin or Ztransfer by changing branch
lengths in the neuromorphic figure.

Middle panel. This shows the anatomy of the cell and the location of
the electrode or reference point (red dot), as in the log(A) vs x style.

Bottom panel. This displays the neuromorphic rendering of one of
the components of the electrotonic transform. The distance of a point
from the site of the electrode is proportional to the natural logarithm
of attenuation for voltage spreading toward (Vin) or away from (Vout)
the electrode, according to the selection in the Top panel. The
calibration bar represents one log unit of attenuation, i.e. the
distance that signifies an e-fold decay of voltage.

Things to do:
Leave the electrode at the soma.

1. Examine the Vin and Vout transforms at 0 Hz. How does the overall electrotonic extent of the
cell vary with direction of signal transfer? Which parts of the cell are responsible for most
attenuation in the Vin transform (ignore the axon)? in the Vout transform?

2. Change the frequency to 1, 3, 10, 30, and 100 Hz. At what frequency do you first see a
noticable increase of electrotonic extent? Does this frequency depend on the direction of signal
transfer? Note: to ensure similar sensitivity for detecting relative changes in the Vin and Vout
transforms, first apply View = plot at 0 Hz.

3. Move the reference point to different locations and see what happens to the Vin transform. Do
the same for the Vout transform. Can you explain the effect of changing the reference point?
Hint: see Fig. 2 in Carnevale et al. 1995.

Citations

Carnevale, N.T., Tsai, K.Y., Claiborne, B.]., and Brown, T.H. The electrotonic transformation: a tool for
relating neuronal form to function. In: Advances in Neural Information Processing Systems, vol. 7,
edited by G. Tesauro, D.S. Touretzky, and T.K. Leen. Cambridge, MA: MIT Press, 1995, p. 69-76.
Posted in html format at http://www.neuron.yale.edu/neuron/static/papers/NIPS94/nipsfin.html

or see this local copy.

Jaffe, D.B. and Carnevale, N.T. Passive normalization of synaptic integration influenced by dendritic
architecture. Journal of Neurophysiology 82:3268-3285, 1999. Preprint available from
http://www.neuron.yale.edu/neuron/static/papers/jnp99/pasnorm.pdf

NEURON hands-on course
Copyright © 1998-2012 by N.T. Carnevale and M.L. Hines, all rights reserved.

Page 90 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Working with Shape plots

This

is the Shape plot for the Pyramidal cell model inneur ondeno asiit first appears on the screen. Its X axisis

horizontal, the Y axisisvertical, and the Z axis is perpendicular to the page. Shape plots can be rotated,
magnified or reduced, and translated.

Shape Section x -682.449 - 71_

Close I

Rotation

PR

5.

6.
7.

Oth

R click in the graph window and select 3D Rotate.

Lift the mouse carefully off the pad, so that its cursor remains in the graph window.
Press the L mouse button and hold it down.
Usethe A, X, and Z keys to examine the cell from three orthogonal directions.

A topview downtheY axis
X sideview downtheX axis, i.e. from the right

Z sideview down theZ axis (standard view seen above)

Place the mouse back down on the pad, press the L mouse button, and run the mouse around on the pad to
see the cell rotate wildly.

Restore the standard view by pressing Z while holding the L mouse button down.
Use X, Y, or ~Z (® = Ctrl key) to rotate the cell in 10° increments around the X, Y, or Z axis.

er operations

Use the secondary menu of the Shape plot window to

zoom in or out by 10% increments

click and drag to open a NewView that focusses on a particular area

zoom in or out continuously (Zoom infout) by clicking and dragging to R or L

click and drag the image around the window (Trandlate).

Note: you can also move the image by holding down the shift key and then doing click and drag

When you’'redone

be sure to set View/Section so you don’t inadvertently cause other changes to the image.

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 91

Hands-on Exercises The NEURON Simulation Environment

Page 92 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

| ntroduction to the Linear Circuit Builder

The linear circuit builder is a graphical interface for electrical circuits consisting of idealized
resistors, capacitors, and first order operational amplifiers. Circuits may haveintra- and
extra-cellular connections to cells at multiple locations. Batteries and current sources use a 3 step
protocol similar to the IClamp.

During a simulation, the voltages at each circuit node and the currents through each battery and
op amp are computed along with the voltage and state variables of each cable section. At present,
simulation runs can only use the default implicit fixed time step method (don’t use cvode).

Linear circuits are simulated as a specific instance of the more general LinearM echanism class.
This latter class allows NEURON to transcend its historical limitation to tree structure and allows
simulation of arbitrary extracellular fields and low resistance gap junctions. Unfortunately this
generality comes at a significant performance cost. In the worst case (gap junctions connecting
every compartment to every compartment) the simulation time for gaussian elimination increases
from order N to order N*3. A single gap junction between two cells does not increase the
gaussian elimination time. But a gap junction connecting one end of a cable to the other end
doubles the gaussian elimination time.

Physical System

Two electrode Voltage clamp of an HH axon.
M odel

-V

N/

Ideal voltage clamp of axon containing standard hh channels. The axon is 300 um long and 10 um
in diameter. Ra=35 ohm-cm. The ideal voltage recording electrode is 100 um from the left and

theideal current injection electrode is 100 um from the right.

At least a plausible case can be made for how the voltage clamp circuit works by realizing that
the input to the high gain amplifier can only be 0 volts if (assuming the resistors are equal) the
membrane potential of the recording electrode is equal to VC. If it islessthan VC then the input
will be negative and the op amp will produce a high voltage output thus injecting current into the
cell and causing the membrane potential to increase toward VC. Whether this circuit will be
stable remains to be seen.

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 93

Hands-on Exercises The NEURON Simulation Environment

Simulation

1) Use the cellbuilder to create the HH axon. This axon should be in three pieces each 100 um
long so that regardless of the values of nseg, the electrodes can be placed precisaly at 100 and 200

microns.
Example

2) Arrange components to define the structure of an ideal voltage clamp circuit using the Linear
Circuit Builder. When arranged and labeled, the Linear Circuit Builder should look like

Lines iz incuit]0]

Arra nge

Label

Vo + Pammeters
e, o Bimuiate

2 Vout [, Move

Change

¥m

axon[1]t0) axon[2] 0]

Construction Hints

Notice that the battery hasits negative terminal connected to R1 so that Vm will have the same
signasVC.

3) Set the parameters of the circuit. R1 and R2 should have the same value and be large so that
not much current goes through the recording el ectrode to change the membrane potential. The
Control amplifier gain should be large so that e can be a good virtual ground. Set the battery pulse
currents to start at rest (-65 mV), jump to 10mV at 2 msfor 3 ms and then return to rest

Values forLinearGircui't[U] ftt‘,lfﬂr"-"cﬂf LinearCircu'rt[D]

durd fms) | w1

tvec is Wector[d242]
amp is YWector[4241]

Page 94 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment

Hands-on Exercises

4) Simulate the circuit and plot the Control current and Vm. Also show a space plot of the entire

cable.
Aun
Init & Hun
Line=arCiraui{f]
A b
R 300
x P_n'n'neier:
—— [°°” | /L—4
sl 2 s 5
oo
no—
LincirGraph([1] for Linea riircuit[0]
Graph x 30330 y-92 . 52 | Plot¥hai?
A0 40 Vim (i)
"
4 | | | By | | |]
] 100 200 300 0 2 3 5
40" 40—
80— 80—
Completed example

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

Page 95

Hands-on Exercises The NEURON Simulation Environment

Building and labeling a two electrode voltage
clamp with the Linear Circuit Builder

Pop up aLinear Circuit Builder with

NEURON Main Menu
Iconify

File Edit [Build] Tools Graph Vector Window

single compartment
CellBuilder
NetWork Cell
NetWork Builder
Lirgar Circuit

LinearGircuit[0]
Cloze Hide
L, 4 Arrange
~ Label
7 ~s Parameters
s “r Simulata
=

= Keep Connected
= _Hinis_|

}
ey

The usage styleisto

1) With the "Arrange" tool, place the components of the circuit so they are properly connected.

2) With the "Label" tool, rename components and specify the names of important circuit nodes.
Move the labels so they are clearly associated with the proper component/node. Also, cell
locations, if any, are specified with the "Label" tool.

3) With the "Parameters’ tool, specify values for the components and pul se protocols for any
batteries and constant current devices.

4) With the "Simulate" tool, one specifies states (node voltages and/or internal component states)
for plotting. The circuit is not added to the neuron equations unless the "Simulate” tool is active.

Page 96 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Each of these tools has a brief "Hints" button which gives basic usage information.

Arranging the voltage clamp parts on the graph panel is done by selecting parts on the | eft of the
scene which are then dragged to their desired position.

LinearCircuit[0]
Close Hide
—_ 4 Arange
R2 ~ Label
< "Q’E’ ~ Parameters
= s Simulate

1 Keep Connected
= Hirts

FE b4

Unconnected ends of components are indicated by red circles. When the ends of two components
overlap, aconnection isimplied and that fact isindicated by a small black square. Selecting the
center of acomponent allows positioning. Selecting and dragging an end of a component allows
scaling and rotation. An attempt is made to keep the ends of components on implicit grid points.

The completed arrangement of parts

Linea iz incuit]0]

& Arrange

w Label

+ Pammeters
[t R W Bimulate

e m———
H kKeen Connected
Hirts

!
f

aﬁ]msﬁ aﬁ]mﬂ

gives afairly understandable circuit topology. However the components are labeled according to
component type with indices in the order in which they were created. Those labels are not
pleasingly formatted in relation to the components. The default cell connections are not our
desired locations. And important voltage nodes of the circuit are unlabeled. All these problems
are overcome with the "Label" toal.

R e b4t

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 97

Hands-on Exercises The NEURON Simulation Environment

It is probably best to start by moving the existing labels to better locations.

LinegrCircuit[0]
Close Hide
Arrange
Label
Bg s Parametars
RZ = s Simulate
: e Ad @ I"éﬂrl_:lwe
+ enge
axon[0 axon[0](0.5)

When "Change" is selected, clicking on a component label pops up a string input dialog. Clicking
on acell name pops up alocation browser.

nraiv
EnterMName.
EE
Eeae L S
| Accept+=| | carcel | s
Label

~ Parameters

B3 go wr Simulate
? = I Mowve
X Charle
| T
E E nrriy

axor[0](0.5) axon[0](0.5) el e Serian

axon[Z](0}

I

Page 98 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Idioms

Iterating over all segments

forall for (x) print secname(), x
forall for (x,0) print secname(), x // leave out 0 and 1, i.e. the 0 area nodes

Data Structures

begintemplate Temp
public str, obj, x
strdef str
objref obj
x =0
endtemplate Temp

objref temp

temp = new Temp()

temp.x = 2

temp.str = "hello"

temp.obj = new SectionList()

print temp, temp.x, temp.str, temp.obj

Adding a Graph so it works with the Standard Run Library

begintemplate P
public flush, plot, begin, view_count
objref this

proc flush() { print this, "flush", t }
proc plot() { print this, "plot", t }
proc begin() { print this, "begin", t }

func view_count() { print this, "view_count" return 1}
endtemplate P

flush_list.append(new P()) // call flush every step
graphList[0].append(new P()) // call plot and flush every step

Arrays of strings

/*
// The standard run library includes this template which defines a String class:
begintemplate String

public s

strdef s

proc init() {

if (numarg() == 1) {
s = $sl

}
endtemplate String

*/

objref sobj[5]

for i=0, 4 sobj[i] = new String()

for i=0, 4 sprint(sobj[i].s, "Number %d", i)
for i=0, 4 print sobjli].s

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 99

Hands-on Exercises The NEURON Simulation Environment

Neat stuff to do after picking a Graph line into the vector clipboard

You can then apply the Vector methods, as in these examples.

hoc_obj_.c.printf
prints a copy of the vector

hoc_obj_.c.deriv(1l,1).printf
prints the euler derivative

hoc_obj_.c.deriv(1l,1).indvwhere(">", le-5).printf
prints the indices

hoc_obj_.ind(hoc_obj_.c.deriv(1l,1).indvwhere(">",
le-5).add (1)) .printf
prints the peak values

hoc_obj_[1].ind(hoc_obj_.c.deriv(1l,1).indvwhere(">",
le-5).add(1)).deriv(1l,1).printf
prints the time intervals between synaptic discontinuities

The following aren’t hoc idioms, but they can be helpful.

NEURON’s interpreter window
EMACS

These EMACS commands work for command line editing from the console (MSWin: NEURON’s
interpreter window).

AP previous line (up arrow may also work; this crude history function can be applied repeatedly to
scroll through prior commands)

AA front of line

AE end of line

"B backward character

AF forward character

Long command lines can be constructed by revision + accretion (recall a prior line, make changes and
add new stuff to it).

NEURON hands-on course
Copyright © 1998-2008 by N.T. Carnevale and M.L. Hines, all rights reserved.

Page 100 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Vector/matrix: reading data

Exercises

1) Run the plotdata.hoc file in the vec directory. This reads the contents of datad.dat and displays
all thelinesin a Graph. Look at the hoc file and the format of the datafile. Notice that the first
number is the number of rows of data (Strings like #9 are not numbers. Numbers are strings that
start with a0-9, ., or +-. Modify the plotdata.hoc file so it uses a File chooser to read thefile.

The following hints may help with this exercise. For information about File.chooser, in the
NEURON console, type

help File

or else navigate there manually with the web browser.
Isafile open for the File referenced by f? Typet . i sopen()
Define the chooser to be aread type: f . chooser ("r")

Pop up the chooser: t. chooser () : and select datad.dat
Isafile open?

2) Save these data using the Print& FileWindowManager/PrintFile/Ascii menu item into the file
templ.dat . Look at the format of the templ.dat file. Fix the templ.dat file so it can be read with
plotdata.hoc.

3) The dataarein a Matrix. Prove thisto yourself by typing mand then m print f . Save the matrix
by opening the file with t . wopen("t enp2. dat ") and thenm fprint (f). Look at the contents of the
file and verify that it can be read with plotdata.hoc.

4) Pick one of the data linesinto the clipboard and save it using the

NEURONMainMenu/V ector/SaveToFile menu item as temp2.dat . Verify that temp2.dat can be
read correctly with the NEURONMainMenu/V ector/RetrieveFromFile. Fix the temp2.dat file so
it can be read with plotdata.hoc.

An observation

There are probably more data formats than there are programs that write datafiles. Datain ASCI|
can generally be read with a hoc program (see File.scanvar, File.gets, sscanf, Vector.x and
Matrix.x). Some formats are very complicated and are in binary, e.g. PClamp binary datafiles.
Cases like this can only be handled with model descriptions like clampex.mod. After the data are
inaMatrix or Vector set, they are generally fairly easy to display with the GUI or manipulate
with simple hoc programs.

NEURON hands-on course
Copyright © 1998, 1999 by N.T. Carnevale and M.L. Hines, all rights reserved.

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 101

Hands-on Exercises The NEURON Simulation Environment

Page 102 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Vector/matrix: subtracting linear response

Exercises

1) Run plotdata.hoc in the course/vec directory. This reads the contents of datad.dat and displays
four curves: the voltage responses to hyperpolarizing current pulses of -9, -18, -27, and -36 nA.

Scale these curves according to the magnitude of the current pulse to see if the response was
linear.

Hints

A good way to test a Vector method isto pick acurve into the clipboard, apply the method, and
either printf the result or plot it in a NEURONMainMenu/Display tool. For example, if we pick
the 36nA curve and put it in aVector/Display and then pick the 9nA curve, scale it with

hoc_obj _. mul (4)

and then put it in the tool, we suddenly realize that the curves need to be shifted to O before being
scaled. One way to shift would be merely to select a point on the resting curve and subtract that
value from the entire curve, ie

hoc_obj _. sub(hoc_obj _. x[10])
If the resting value is noisy, we could subtract the mean value over ashort range asin
hoc_obj _. sub(hoc_obj _. nean(5, 15))

To modify acolumn in amatrix, get it into a Vector with m.getcol(i) and put a Vector into the
column with m.setcol(i, vector). i.e one can scale a column in one statement with

m setcol (i, magetcol (i).sub(mgetcol (i).nean(5,15)).div(9*i))

but long nested chains get easier to write than to read and it is generally better to do only one or
two Vector operations per statement.

2) This has nothing to do with data but it will give you practice in Vector manipulations. Set up a
simulation with several action potentials, e.g. with along but low amplitude current pulsein an
HH patch. Run it with the variable time step method. Now, plot 1og10(dt) as a function of t.
Hints

Use the clipboard. Thet values arein hoc_obj_[1]. Calculate the dt valuesin hoc_obj_(a
synonym for hoc_obj_[0]) and use aVector/Display to plot it.

Some pertinent Vector methods are
vec. ¢ return a clone (new identical copy) of the vector instance
vec.deriv(1, 1) v.X[i+1]-v.X[i] -> v.X[i] , Sizeis 1 less than before

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 103

Hands-on Exercises The NEURON Simulation Environment

vec. resi ze(vec. si ze- 1) reduce size of vector by 1

vec. | 0g10 log10(v.x[i]) -> v.x[i] , 10g10(0) is an error

vec. remove(index_vector) remove al elements at values given by index_vector
index_vector = vec.where("==", 0) jndiceswherev.x[i] ==

If removing O elements seems too complicated, it isless elegant but just as effective to add 1e-9
to every element before taking the log.

NEURON hands-on course
Copyright © 1998, 1999 by N.T. Carnevale and M.L. Hines, all rights reserved.

Page 104 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Model Control: Simulation Families

Modeling projects often involve executing a series of simulation runs, analyzing the output
of each run, and summarizing the results. This exercise will have you examine how the
location of an excitatory synapse affects the peak depolarization at the soma. In doing this,
you will learn:

e how to set and determine the position of a point process under program control
e how to use the Vector class to collect and analyze simulation output
e more about managing models with the CellBuilder

Model

This exercise uses the ball and stick model you have already seen.

Simulation

In the course/family directory, start NEURON with the init.hoc argument
(UNIX: nrngui init.hoc , MSWin: double click on init.hoc). This particular init file

// start the GUI and load the ballstk cellbuilder
load_file("nrngui.hoc")
load _file("ballstk.ses")

// eventually becomes a custom GUI
load_file("rig.ses")

makes NEURON read the session file for a CellBuilder that contains the specification of the
model. You will use this CellBuilder to adjust the model parameters.

Note: Make sure the CellBuilder's Continuous Create button is checked.
Otherwise the sections of the ball and stick model will not exist.

Using the CellBuilder to manage the spatial grid

1. Geometry/Specify Strategy : select d_lambda for the all subset. Also make sure that no
section has an overriding strategy.

2. toggle Specify Strategy off

3. make sure that d lambda = 0.1 space constant at 100 Hz

How many segments were created?

forall print secname(), " nseg = ", nseg
Where are the nodes located?
dend for (x) print x, " ", x*L

If these locations aren't particularly "esthetic," you can assign nseg a new (larger) value
manually (odd multiples of 5 are nice). You could do this with a hoc statement like

dend nseg=25

but this would be a potential cause of confusion, so you should specify nseg through the
CellBuilder instead.

Remember, you are using the CellBuilder with Continuous Create on. This
means that, if you change the model specification in the CellBuilder, or even

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 105

Hands-on Exercises The NEURON Simulation Environment

just toggle Continuous Create off and on, what you did in hoc code could be
overridden.

Using the Representation

1. BUILD THE GUI

Set up a graphical interface that lets you apply an AlphaSynapse to the model (time constant
1.0 ms, peak conductance 0.005 umho) while observing Vm at the middle of the soma.

2. TEST THE MODEL

Put the synapse at the proximal end of the dendrite, turn on Keep Lines in the voltage
graph, and run a simulation. Then reduce the peak synaptic conductance to 0 and run
another. Use View = plot to get a better look at somatic Vm.

What's wrong with these responses? (hint: increase Tstop to 50 ms and run another
simulation)

Change dendritic e pas to -65 mV (use the CellBuilder's Biophysics page!) and try another
run. Does this help? Why?

3. INITIAL EXPLORATION OF THE MODEL

Place the synapse at several different positions along the dendrite. Find and plot the peak
amplitude of the somatic EPSP vs. synaptic location.

You will need a procedure that moves the synapse to a specified location. I have provided
putsyn.hoc, which contains a procedure (putsyn ()) that takes a single numeric argument in
the range [0, 1] (i.e. the desired synaptic location).

putsyn () does these things:

1. Verifies that the requested location is actually in the range [0, 1].

2. Places the synapse in the section (uses the Point Process .loc() function).

3. Since point processes are always placed at the nearest node, and nodes are located at
0, 1, and the center of each segment, putsyn () must determine the actual location of
the synapse (uses .get loc()). This is assigned to a global variable called synloc.

4. Executes the statement run () (equivalent to clicking the Init & Run button).

Load putsyn.hoc (use the statement xopen ("putsyn.hoc"), and then invoke putsyn() with a
couple of different arguments to see what happens. Use the voltage axis graph's crosshairs
to find the peak amplitude of the epsp at the soma.

You might also want to append the statement xopen ("putsyn.hoc") to the end of init.hoc for
future use.

4. SWITCHING TO PRODUCTION MODE

In principle, you could type putsyn() many times, with different numerical arguments,
measure the epsp peaks manually, write down the synaptic location and the corresponding
peak depolarization, and then plot the results by hand, but that would be a poor use of your
time. It's much better to learn how to automate repetitive tasks.

Here's an outline of one approach to automating this particular modeling experiment:

For each node along dend

Page 106 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

move the synapse to that node
run a simulation
determine the most depolarized somatic Vm produced by a synapse at
that location
save this value and the synaptic location in a pair of vectors
Plot the vector of peak values vs. the vector of synaptic locations

Use a text editor to create a procedure that implements this approach. Put it in a file called
myprofile.hoc, and then use the command

xopen ("myprofile.hoc")

or just use the NEURON Main Menu's "File / load hoc" button to make it available to your
model.

You already have putsyn (), which takes care of the second and third items in this outline.
It may be helpful to know about :

for (x) objref new the Vector class in general Vector record() Vector max()
Vector append() Vector plot() the Graph class

Here is a skeleton of one possible implementation of such a procedure.
5. THINGS TO TRY

1. Compute the actual EPSP amplitudes by subtracting the -65 mV baseline from the soma
responses and plot the results.

2. Plot peak EPSP amplitude as a function of anatomical distance along dend in microns.

2. What would happen if the somatic HH currents were blocked? Use the CellBuilder to
reduce gnabar hh and gkbar hh to 0. Make sure to change el hh to -65 mV before running a
new series of simulations (why or why not? and what if you don't?).

Compare these results with what you saw when HH currents were not blocked. Do spike
currents in the soma enhance all EPSPs, or does the nature of the effect depend on synaptic
location?

NEURON hands-on course
Copyright © 1998-2009 by N.T. Carnevale and M.L. Hines, all rights reserved.

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 107

Hands-on Exercises The NEURON Simulation Environment

/* putsyn. hoc for somatic epsp as a function of synaptic |ocation
| ast nodified 7/15/99 NTC
*/

synl oc=0 /] accessible to the Gather Val ues tool

proc putsyn() {

if ($1 <0 || $1 > 1) {
printf("%",7) [// ring bell
print "ERROR--location nust be in the range [0, 1]"
synloc = -1

} else {
/1 say what we want
dend Al phaSynapse[0]. | oc($1)
/1 find out what we got
synl oc = Al phaSynapse[0].get | oc()

/* Note: get _loc() pushes the section of the target point
process onto the section stack, so that it becones the
currently accessed section. W nust restore the currently
accessed section to what it was before get loc(). */

pop_section()
run()

Page 108 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Here is a skeleton of one possible implementation of the final procedure.
Ordinary comments are indicated by //,

things that remain to be done are indicated

by remarks inside /* */ pairs.

In broad outline, the procedure profile() walks the synapse along the length of dend. At
each node (the 0 and 1 ends plus the center of each segment), the time course of somatic Vm
is computed and stored in the vector vm, which is then examined to find its maximum value.
The synaptic location and the peak amplitude of the somatically observed epsp are then
stored in the vectors location and amplitude, respectively. Finally, the graph g displays a
plot of amplitude vs. location.

// objects must first be declared _outside procedures

objref location, amplitude

location = new Vector () // stores locations along the dendrite
amplitude = new Vector () // stores peak amplitude at each location

objref vm

vin = new Vector () // to hold the time course of somatic Vm
// evoked by a synaptic input

/* use Vector class .record() to "attach" vm to soma.v(0.5) */

objref g
g = new Graph () // for plot of amplitude vs. location

proc profile() {
// next three statements discard prior results, if any
location = new Vector()
amplitude = new Vector()
g = new Graph ()
dend for (x) { // loop over each node in dend
putsyn (x)
// at this point, vm should contain a record of soma.v(0.5)
/* find maximum element in vm */
/* append this to amplitude vector */
/* append x to location vector */
}

/* plot amplitude vs. location */

NEURON hands-on course
Copyright © 1998-2009 by N.T. Carnevale and M.L. Hines, all rights reserved.

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 109

Hands-on Exercises The NEURON Simulation Environment

Page 110 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Model Control: Arbitrary forcing functions

It is often useful to make some model parameter follow a predetermined time course during a
simulation. For example, you might want to drive a voltage or current clamp with a complex
waveform that you have computed or measured experimentally, or have a synaptic
conductance or equilibrium potential change in a particular manner. You could do this at
the interpreter level by inserting the necessary hoc statements inside the main
computational loop, but this is cumbersome and imposes extra interpreter overhead at each
time step.

The record and play functions of the Vector class are a better alternative. These are
accessible using hoc statements and also through the GUI.

To help you learn how to generate and use arbitrary forcing functions, in this exercise you
will use the GUI to make a ramp clamp. You will

e set up and test a voltage clamp with a standard step command
e generate the desired waveform
e use this waveform as the command for the voltage clamp

But first, you need some membrane with HH channels--

Physical System

A patch of excitable membrane

Model

Hodgkin-Huxley gNa, 9K, and gleak in parallel with membrane capacitance

Simulation

Start NEURON with its standard GUI with /course/arbforc as the working directory. Then
use Build / single compartment from the Main Menu. This creates a single section with a

total surface area of 100 um? and nseg = 1. It also brings up a Distributed Mechanism
Inserter (a small window with checkboxes) that you can use to specify which mechanisms
are present.

An aside: the total current in units of [nA] (nanoamperes) through a patch of

2

membrane with area = 100 um“ is numerically equal to the current density in

units of [mA/cm2]

The membrane of this single-compartment model has cm = 1 uf/cmz, but it lacks ion
channels. Use the inserter to endow it with ion channels (hh), and then set up
instrumentation to experiment on it.

The tools you'll bring up with the NEURON Main Menu:

e RunControl
e Voltage axis graph for a plot of v vs. t

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 111

Hands-on Exercises The NEURON Simulation Environment

e a PointProcessManager configured as an IClamp to deliver a stimulus pulse (verify
that the membrane is excitable)

Set up and test a voltage clamp

Turn the point process into a single electrode clamp (SEClamp) that has these parameters:
durl = 1 ms, ampl = - 66mV
dur2 = 3 ms, amp2 = - 3bmV
dur3 = 1 ms, amp3 = - 66mV

You need another graph to show clamp current vs. t
(Graph / Current axis, then use the graph's Plot what? to specify SEClamp[0].i)

Run a simulation to test the voltage clamp. If voltage control is visibly poor, divide rs by 10
and try again. Repeat until membrane potential is well controlled.

Generate the ramp waveform
You want a voltage ramp that starts at v_init mV when t = 0, and rises at a constant rate.

This could be done in hoc by creating a vector with the right number of elements (one for
each time step in the simulation), and then assigning the desired value to each element.
However, it is more convenient to use the Grapher (NEURON Main Menu / Graph / Grapher).
Read about it and try this simple example:

Use Plot what?, and enter the expression sin (t) into the "Variable to graph" field.

Then L click on the Grapher's Plot button.

The Grapher can plot any function that you specify in hoc. Once the desired waveform is
plotted, you can use Pick Vector to copy it to NEURON's Clipboard.

Let's make a ramp that starts at the holding potential v_init and depolarizes steadily at a
rate of 1 mV/ms for 50 ms. To do this, set the following parameters in the Grapher :

PARAMETER VALUE COMMENT

Indep Begin 0 t at start of ramp

Indep End 50 t at end of ramp

Steps 50/dt NEURON's GUI defined dt for us
Independent Var t

X-expr t

Generator leave blank

Next tell the Grapher what to plot (use Plot what?, and enter the expression v_init+t*1 into
the "Variable to graph" field).

Plot and examine the resulting waveform (may need to use View=plot).

When you are satisfied with the result, use Pick Vector to copy the ramp into NEURON's
Clipboard.

Use the waveform as the command for the voltage clamp

Page 112 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

The play function of the Vector class can be exercised in hoc, but it is more convenient to
use the GUI's Vector Play tool
(NEURON Main Menu / Vector / Play).

This tool has a "Specify" button that brings up a menu with several items. For this exercise,
the most important are "Variable Name" and "Vector from Clipboard". "Vector from
Clipboard" will deposit the ramp waveform into the Vector Play tool. Use the tool's
View=plot to verify that this has happened. Then use "Variable Name" to specify
SEClamp[0].amp1

You are almost ready to test the ramp clamp -- but first you should increase
SEClamp[0].durl to something BIG. Anything >=50 ms will do, and if you plan to play with
other waveforms, you might as well make it much larger, say 1000 ms (why is this
necessary?).

Finally, L click on Vector Play's "Connected" button, and then run a simulation.

When everything is working, save the configured SEClamp, the graph of clamp current vs. t,
the Vector Play tool, and the Grapher to a new session file (call it rampclamp.ses).

Exercises

1. Try changing dt.

Turning on Keep Lines in the voltage and current plots will let you compare the new and old
results side-by-side.

In the RunControl window, cut dt in half.

What happens to the time course of Vm and clamp current?

What do you think would happen if you increased dt to 0.05 ms?

Why does this occur?
Don't forget to restore dt to 0.025 ms when you're done.

2. Try changing the ramp's dv/dt. In the Grapher's graph window, invoke Change Text and
edit the expression, then Plot the new waveform and copy it to the Vector Play tool. Try 2
mV/ms, 3 mV/ms, whatever -- you can't fry this cell!

3. How do you get a plot of clamp current vs. Vm?

Answer: use a Phase Plane graph (Graph / Phase Plane).

For the x axis expression enter v (OK for this simple one-compartment model, but
SEClamp[0].amp1 would be a more flexible choice for a cell with many sections if you want
to move the clamp away from the default section).

4. Try a different driving function, e.g. v_init+sin (2*PI*t/10) *5

An interesting variation: reconfigure the PointProcessManager as an IClamp and drive the
amplitude of the current it delivers with a sinusoid or some other waveform.

5. Try the ramp clamp with a different cell, e.g. the ball and stick model used in previous
exercises.
Use NEURON to execute the init.hoc file in the /course/arbforc subdirectory.
Incidentally, I have included the statement
dend nseg = 27
in the init.hoc file for improved spatial accuracy.
After playing with the cell under current clamp, close the IClamp PointProcessManager and

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 113

Hands-on Exercises The NEURON Simulation Environment

retrieve the session file rampclamp.ses (a good copy of this file already exists under the
name rampclamp.se).

An important aside: when rampclamp.ses was saved, its SEC
referred to a section with the name "soma". Therefore it will work
with any cell that has a section called "soma". If you try to use it
with a cell that does NOT have such a section, it won't work and
you'll get an error message.

First try a 1 mV/ms ramp applied to the soma, then try a 2 mV/ms ramp.
Can you improve control of Vm by cutting the SEClamp's access resistance (rs)?

See what happens when you move the SEClamp out onto the dendrite. It might be
instructive to bring up a space plot that monitors Vm along the entire length of the model;
in this case, you may also want to speed things up by reducing Points plotted/ms from 40 to
20.

Hints & tips

0. The Grapher can display more than one function at a time--just invoke Plot what? more
than once. Avoid visual confusion by making the traces have different colors (Color/Brush).

1. The forcing function can be far more complicated than a one-liner. Create a hoc file that
contains your own function, xopen() the file, and then plot it. Simple scaling and baseline
shifts can be accomplished in the Grapher itself (Change Text).

Example:

func whatnot () { local abc
if ($1 < 10) abc = sin(2*PI*$1/10)
if ($1 >= 10 && $1 < 20) abc = (sin(4*PI*$1/10) > 0)
if ($1 >= 20) abc = exp(($1-20)/30) *sin(2*PI* (($1-20)/10)A2)
return abc

}

2. Alternatively, you could create a vector graphically with the MakeCurve tool (NEURON
Main Menu / Vector / Draw). This is best suited to waveforms that consist of a sequence of
rectangular steps (and linear ramps, if you activate the Vector Play tool's "piecewise
continuous" option by clicking on Specify / Piecewise continuous).

3. Experimental data (e.g recordings of membrane potential or clamp current) can also be
used as forcing functions. File i/o can be done through the GUI with the Clipboard, or under
program control with these Vector class methods: fread, fwrite, vread, vwrite, scanf, printf,
scantil.

NEURON hands-on course
Copyright © 1998-2009 by N.T. Carnevale and M.L. Hines, all rights reserved.

Page 114 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Optimizing a Model
Physical System

Two patch electrodes were attached to a pyramidal cell in layer 5 of the neocortex. One
electrode was attached to the soma, and the other was attached to a dendrite in the apical
tree. The resting potential of the cell was -70 mV, and its I-V relationship was linear from -90

to -50 mV.

This figure shows the response of the cell to injected current pulses (0.1 nA x 5 ms).

B8 — inject at soma -85 — in ject at dendrite
II1I
&5l I,' Vsoma -6 — dendrite
|
|
|'I BT -
B3 — I|I
f —B8 [~
|I dendrite
95 |
| -69 -
I 50Ma
ol L/ 1 | I | 0
0 10 20 ao 40 50 0 10 20 a0 40 B0

Two experimental protocols were used.
Protocol 1 (left): somatic current injection.
Protocol 2 (right): dendritic current injection.
Each trace is the average of four recordings.

At the end of the experiment, the cell was fixed and stained, and detailed anatomical

measurements were made.
Experimental evidence (Stuart and Spruston, 1998) suggests that membrane conductance in
the apical dendrites of pyramidal neurons increases with distance from the soma in a way
that can be described by the sigmoidal function

g =A0+ A/(1 + exp(k*(d - p)))

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 115

Hands-on Exercises The NEURON Simulation Environment

where p is the distance from the soma, AO is the conductance at the soma, A0 + A is the
maximum conductance as p becomes very large, d is the distance at which g is halfway
between AO and A0 + A, and k governs the maximum slope of the sigmoid.

We will use the same k as Stuart and Spruston did (k = 1/(50 um), but the other biophysical
parameters (not just A0, A, d, but also Ra, cm, and membrane conductance in the apical
dendrites and elsewhere) are to be estimated from the experimental data.

The exercise

The task is to adjust the biophysical parameters of a model cell so that its response to
injected current matches the experimental data. In this exercise you will learn how to use
the Multiple Run Fitter (MRF), NEURON's GUI tool for automating optimization.

Here's an outline of the steps that are involved in accomplishing this task.

1. Create a specification of the model cell based on its anatomy and an intial guess at its
biophysical properties, including the spatial distribution of ion channels.

2. Set up a "virtual experimental rig" to use with this cell for the purpose of recreating
the experimental protocols.

3. Create and configure an MRF that will simulate the protocols and adjust the model
parameters to minimize the differences between the simulation and experimental
results.

4. Use the MRF.

Time is short and we need to focus on the MRF itself, so instead of building everything from
scratch, we'll start with some preconfigured building blocks. These are:

cell.hoc
A model specification that combines cellular anatomy with a "reasonable first guess"
at its biophysical properties (what channels are present and how they are distributed
in space). A first draft was created with the CellBuilder (very handy for setting up the
g pas gradient in the apical dendrites!) and exported to a hoc file. The hoc file was
revised so that we can use its built-in procedures for assigning values to Ra, cm,
g pas, A0, A, and d.

In the original version of cell.hoc, these parameters were assigned fixed
numerical values that were buried inside procedures, and some of them
were "local" variables that would be inaccessible to the MRF. The
revision involved adding "surrogate parameters" called Ra , cm , g pas ,
A0 , A, and d_that the MRF can access.

Here's how the cell model was set up, and a description of the specific
changes to cell.hoc (for leisure reading after you have finished the rest of
this exercise).

rig.ses
Creates a "virtual experimental rig" for replicating protocols 1 and 2: a RunControl, a
voltage axis graph, and a pair of PointProcessManagers configured as IClamps.
IClamp[0] is attached to soma(0.5), and IClamp[1] to dendrite 1[9](0.5).

init opt.hoc

Page 116 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Does the following:

e Loads nrngui.hoc, cell.hoc, and rig.ses. This creates the model cell and the
virtual experimental rig.

e Defines starting values for the parameters that the MRF will adjust.

e Defines set biophys(), which uses procs in cell.hoc and the surrogate variables
(Ra_ etc.--see description of cell.hoc above) to assign the model's biophysical
parameters.

e Uses an FlnitializeHandler to ensure that set _biophys() is called before each
simulation run.

Enough words already--let's get going!
Go to course/optimize and use NEURON to run init opt.hoc

Check the parameters of the two IClamps.
See what happens when you run simulations with both IClamps delivering 0.1 nA, and after
changing either IClamp's amp to O.

This is an outline of how to proceed from here.

1. Configure a MultipleRunFitter to do a "run fitness" optimization.
2. Load experimental data into the Run Fitness Generator.
3. Tell the MRF what parameters to adjust.
4. Perform the optimization.
Reference

Stuart, G. and Spruston, N. Determinants of voltage attenuation in neocortical pyramidal
neuron dendrites. J. Neurosci. 18:3501-3510, 1998.

NEURON hands-on course
Copyright © 1998-2009 by N.T. Carnevale and M.L. Hines, all rights reserved.

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 117

Hands-on Exercises The NEURON Simulation Environment

Listing of init_opt.hoc

load_file("nrngui.hoc")
load_file("cell.hoc")
load_file("rig.ses") // instrumentation

// model cell and instrumentation exist
// everything below this point is related to optimization

// assign starting values to the parameters defined in cell.hoc
// that will be adjusted by the MRF

Ra_ = 100

cm_ =1

g_pas_ = 1/10000

AO_ = 1/10000 // ~ g_pas at prox end of apical tree

A_ = 9*A0_ // difference between g_pas at distal end and prox end
// if apical tree were infinitely long
d_ = 1000 // distance at which g_pas is halfway between AG_ and A_

proc set_biophys() {
// the following procs are defined in cell.hoc
biophys() // may change Ra and cm
geom_nseg() // so must adjust spatial grid
// spatial grid may have changed so must call biphys_inhomo()
// instead of g_pas_apicals_x()
biophys_inhomo() // set up gradient of g_pas in apicals

b

// make sure that set_biophys() is called before finitialize() is called
objref fih
fih = new FInitializeHandler (@, "set_biophys()")

// load_file("mrf.ses")

Page 118 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Overview

We will use an MRF to adjust the parameters of a model to try to get the best match to data
obtained with two experimental protocols. To this end, we must set up two Generators--one
for each protocol.

For each Generator, we must specify

e a list of "protocol constants" that describe the experimental conditions (think
"independent variables")

e a list of the "observed variables" ("dependent variables")

e the experimental results

In the context of this exercise, the protocol constants are IClamp[0].amp and IClamp[1].amp,
the observed variables are soma.v(0.5) and dendrite 1[9](0.5), and the experimental results
are the recordings of these variables.

Let's start by setting up the Generator for protocol 1.

Configure an MRF to do a "run fitness" optimzation

In the NEURON Main Menu toolbar, click on
Tools / Fitting / Multiple Run Fitter

Release the mouse button and an MRF appears. Drag it to a convenient location on your
screen.

We need a tool to perform a "run fitness" optimization.

Create a Run Fitness Generator by clicking on the MRF's
Generators / Add Fitness Generator / Add Run Fitness

Release the mouse button, and the right panel of the MRF shows an item called "Unnamed
single run protocol".

Give the Run Fitness Generator a descriptive name.

This is the Run Fitness Generator for protocol 1, in which current is injected into the soma,
so change its name to "iclamp soma".

1. Click on
Generators / Change Name
"Change" should appear to right of the Generators button.
2. In the MRF's right panel, double click on "Unnamed single run protocol"
3. Type "iclamp" in the dialog box's edit field, then click its Accept button.

The right panel of the MRF will show the Generator's new name.
We need to see this Generator.
We have to see the Generator before we can get our experimental data into it.

1. Click on Generators / Display
Now "Display" appears to the right of the Generators button.

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 119

Hands-on Exercises The NEURON Simulation Environment

2. Double click on "iclamp soma", and up pops up a tiny window titled "MulRunFitter[0]

Generators".
=] MulRunFitter[0] Generators (on) E_EI
Close Hide

iclamp soma | Errar ‘u’alue'lil Fitness

3. Tell it the name of the dependent variable.
Click on the iclamp soma Generator's Fitness button, and select the item "Variable to
fit" from the popup menu.

Change hethod to
[/ ariable to fit |
Femove a fit Variahle
Change a fit Variable
Protocal Constant
Protocol Statement
Femove a protocaol

This brings up a "variable name browser" that looks and works just like a graph's "Plot
what?" tool.

4. Click inside the edit field of the variable name browser and type
soma.v(0.5)

Then click on its Accept button.

The variable name browser will go away, but our Generator looks unchanged. We need to
make the MRF redraw it.

But first, save the MRF to a session file! I called mine mrf.ses
Redrawing the iclamp soma Generator

Click on the iclamp soma Generator's "Close" button (NOT the MRF's Close button!). To see
the Generator again, make sure the MRF is in "Display" mode, then click on "iclamp soma" in
its right panel.

If you made a mistake and clicked on the MRF's Close button, both the
MRF and the iclamp soma Generator went away. But since you saved the
MREF to a session file, it's easy to restore--just xopen mrf.ses

Here's what the redrawn Generator looks like. Notice that the blue area above the graph has
three rows. The top row shows the name of the protocol on the left. The middle row shows
the name of the variable to fit on the right.

Page 120 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

somav(0.5)

« Adjustf€ |scale= 1 MeanSgErr xcocooooooo

-h0

-80

Next to do: load data into this Generator.

[Outline | Next]

NEURON hands-on course
Copyright © 1998-2009 by N.T. Carnevale and M.L. Hines, all rights reserved.

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 121

Hands-on Exercises The NEURON Simulation Environment

Loading data into the Run Fitness Generator

This actually involves two related tasks: loading data into the Generator, and testing the
Generator.

There are four data files. Each one has a name that starts with the letter n and ends with
.dat The first part of the file name tells where current was injected, and the second part tells
where voltage was recorded. The file we want now is called

nisoma vsoma.dat

because it shows how current injected at the soma affected membrane potential at the soma.

Read nisoma vsoma.dat into NEURON's clipboard, then paste it into the iclamp soma
Generator.

1. NEURON Main Menu / Vector / Retrieve from File
2. Navigate the directory tree and choose nisoma vsoma.dat
3. In the iclamp soma Generator, click on Regions / Data from Clipboard

The Generator's graph area should now contain a red trace that shows the time course of
membrane potential at the soma elicited by injecting a 0.1 nA x 5 ms current pulse at the
soma.

Testing the Generator

Time to test the iclamp soma Generator. Click on its Error Value button. This should launch
a simulation, producing a black trace that shows the trajectory of the simulated soma.v(0.5),
and reporting an error value (see below).

|- MulRunFitter[0] Generators (on)
Close Hide

iclamp soma| Efror Halue'D.DEDé}SE Fitniess

& somav(0.5)

Regions |scale= 1 0.0R04362

« Adjust

far

-BE [

Ba

-6

4o

I I
a 10 20 30 40 =0

=70

Adding a second variable to fit

Page 122 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

This protocol also produced a recording of dendritic membrane potential, so let's add that as
the second variable to fit.

You already know how to do this--click on Fitness / Variable to fit
The name of the variable to add is dendrite 1[9].v(0.5)

If you don't see this new variable in the top panel of the Generator, maybe it's hiding behind
something. Grab the bottom margin of the Generator's window and drag down a bit, and you
should see a new radio button with "dendrite 1[9].v(0.5)" right next to it.

Having added a new variable, we must also add the corresponding experimental data.
Click on the dendrite 1[9].v(0.5) radio button and the Generator shows an empty graph.

Read nisoma vdend.dat into NEURON's clipboard, then paste it into the Generator.
Now click on Error Value again and the Generator should look like this:

|h'- MulRunFitter[0] Generators (on)
Close Hide.
iclamp soma | Effor \Jaluel1.514 Fitness

o somanv(is)
& dendrite_1[3].w(0.5)

 Adjust flegions |scale= 1 155357

E dendrite_1[
55 -

dendrite_1[
-B7 [~
| NN
o |] | T
0 10 20 a0 40 =0

The experimental data (red) look OK, but the simulation looks like current is being injected
into the dendrite.

And it is. We forgot about using protocol parameters to tell IClamp[1] that its amp should be
0 for the "iclamp soma" protocol.

Easy to fix. Click on Fitness / Protocol Constant, then use the "variable name browser" to add
IClamp[0].amp.
Do the same for IClamp[1].amp.

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 123

Hands-on Exercises The NEURON Simulation Environment

Close the Generator and open it again, and notice that both IClamp amp parameters are 0.1.
Enter 0 in the numeric field next to the IClamp[1].amp button, then save the MRF to a
session file.

Finally click on the Error Value button and compare the experimental and simulated
membrane potentials. Here's what the voltage in the dendrite looks like.

iclamp soma | Error ‘v’aluelD.Dm 173 Fitness
01 =il somaw(0.5)
I—M 4% dendrite_1[9].v(0.5)

|Clamp[1].amp 0 &1

o Adjust flegions | scale= 1 00101922

9.2 dendrite_1[<

dendrite_1[<S

3.4

B3.6 [~

3.8 [

-70 St

n 1M rlul an A0 cn

Use the radio buttons to switch back and forth between the graphs of soma.v(0.5) and
dendrite 1[9].v(0.5).

Hint: to rescale the vertical axes, use the graphs' "Set View"

Next: specify the model parameters that are to be adjusted.

[Outline | Previous | Next]

NEURON hands-on course
Copyright © 1998-2009 by N.T. Carnevale and M.L. Hines, all rights reserved.

Page 124 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Specifying the parameters that are to be optimized

Let's review the parameters that we want the MRF to adjust.

Parameter Description

Ra cytoplasmic resistivity

cm specific membrane capacitance

g_pas specific membrane conductance everywhere except apical
dendrites

AO minimum value of the sigmoidal function of distance that
governs specific membrane conductance in the apical
dendrites

A A + A0 is the maximum value of the sigmoidal function

d distance at which specific conductance in the apical

dendrites is halfway between A0 and A + A0
But we're not going to have the MRF access these directly. Instead, we want to tell the MRF

to control the surrogate variables Ra , cm , g pas , A0 ,A ,and d .

1. Click on the MRF's Parameters / Add Parameter
This brings up a variable name browser (where have we seen that before?).

2. Click in the edit field of the variable name browser, type Ra _, then click on the Accept
button.

3. Do the same forcm , g pas , A0 ,A ,and d .

The surrogate variables will appear in the left panel of the MRF.
Save the MRF to a session file!
Viewing (and changing) parameter values

Click on the MRF's
Parameters / Parameter Panel

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 125

Hands-on Exercises The NEURON Simulation Environment

(m MulRunFitter[0] parameters (X

Close Hide
g_pas_ I | [0:0007 =l

AO_ I | [0.0007 =
A I”III.IIIIIIIIIEI =

d_ I { [1000 |i|i

Change cm_and see what happens. In the Parameter panel, increase cm_to 2, then click on
Error Value in the iclamp soma Generator. To restore cm_ back to its original value, click on
the checkbox to the right of the cm_ button.

))
1l

The checkboxes to the left of the parameter buttons specify which parameters the MRF is
allowed to adjust. A check mark means the MRF can alter that parameter's value.

At this point we have set up the iclamp soma Generator, which emulates protocol 1, and told
the MRF what parameters to optimize.

The next step is to try optimizing the model with this Generator.

[Outline | Previous | Next]

NEURON hands-on course
Copyright © 1998-2009 by N.T. Carnevale and M.L. Hines, all rights reserved.

Page 126 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Optimizing the model with protocol 1

Test the MRF
First, test the MRF by clicking on its Error Value button.
Nothing happens--the number in the field next to the Error Value button is still 0.

We have to tell the MRF to use our Generator. Look at "iclamp soma" in the right hand panel
of the MRF. See the little - (minus) sign? That means we haven't told the MRF to use the
iclamp soma Generator.

To fix this, in the MRF click on
Generators / Use Generator
and note the appearance of "Toggle" next to the Generators button.
Double click on "iclamp soma" in the right panel of the MRF, and the - changes to a + (plus).

Now when we click on the MRF's Error Value button, the iclamp soma Generator will run a
simulation and contribute to the total error that appears in MRF's error value field.

Choose and use an optimization algorithm

In the MRF click on
Parameters / Select Optimizer / Praxis

This brings up a MulRunFitter Optimize panel, which we'll call the "Optimize panel". Change
the "# quad forms before return" (numeric field near the bottom of the Optimize panel) from
Oto 1.

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 127

Hands-on Exercises The NEURON Simulation Environment

|'T'- MulRunFitter[0] Optimize (on)

Feal time § /.08

multiple runs §54
kinimurm so far § 0.00016346
|2 =
Append the path to savepath fit

Funning

Fandomize with factor

=top
Optimize

| Cptimize

tAulfitPraccyy rap[0] specific items

guad forms = 0 means praxis returns by itself

guad forms before return

Principal axis variation

Now click on the Optimize button in this panel.
When the MRF stops, note the error value, then click on Optimize again.
And again.

Does it seem to be stuck?
Watch the values in the parameters panel--do any of them occasionally go negative?

Try constraining the parameters

It would be meaningless for any of the actual biophysical parameters (Ra, cm, g pas, A0, and
A) to become negative. And a negative value for d (distance at which membrane
conductance is halfway between A0 and A) would also make no sense.

So all of the parameters are positive definite. To apply this constraint, bring up the MRF's
Domain panel by clicking on its
Parameters / Domain Panel

In the MulRunFitter Domain panel click on
group attributes / positive definite limits

Now do a few more optimization runs.
The error decreases very gradually, and NEURON's interpreter prints a lot of complaints
about parameters trying to go negative.

What else can we try?

Page 128 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

The PRAXIS optimizer often benefits from logarithmic scaling of parameters. This seems to
be most helpful when two or more parameters are very different in size, i.e. when they differ
by orders of magnitude. Which is the case in this problem.

To apply logarithmic scaling to all the parameters, in the MulRunFitter Domain panel click
on
group attributes / use log scale

Click on Optimize once more . . . much nicer!

Range constraints and log vs. linear scaling can also be set for individual
parameters. Just double click on a parameter in the Domain panel, then change
the contents of the edit field in the window that pops up--see the "DomainPanel"
discussion in the Programmers' Reference entry about the MulRunFitter.

For an expanded discussion of parameter constraints, see D. Constraining
parameters at
http://www.neuron.yale.edu/neuron/docs/optimiz/func/params.html

More things to try

Add a Generator for protocol 2

Set up another Generator that uses the data obtained by injecting current into the dendrite.
You can save yourself some effort by cloning the iclamp soma Generator, and then revising
the clone.

1. In the MRF, click on
Generators / Clone
then double click on "iclamp soma" in the MRF's right panel. The name of the new
Generator will have a - sign in front of it.

2. Change the name of the new Generator to "iclamp dend".

3. Display the new Generator. Notice that it has controls for specifying the protocol
constants, and radio buttons for viewing the graphs that show soma.v(0.5) and
dendrite 1[9].v(0.5).

4. Change the protocol constants so that they are appropriate for protocol 2.

5. Get protocol 2's experimental data into this Generator. These are in files called
nidend vsoma.dat and nidend vdend.dat. Use

NEURON Main Menu / Vector / Retrieve from File
to read the somatic membrane potential recording into NEURON's clipboard, then
make sure the Generator's soma.v(0.5) button has been selected, and click on

Regions / Data from Clipboard
Follow similar steps to retrieve the dendritic membrane potential recording and paste
it into the Generator.

Use the Generators

See if using the iclamp dend Generator by itself does a better job of optimizing this model.
Be sure to

Generators / Use Generator
and then "toggle" the Generators so you are using the iclamp dend Generator, and not the
iclamp soma Generator. Also, for a fair test, before starting to optimize be sure to restore the
parameters to their original values (Ra 100, cm 1, g pas = A0 = 0.0001, A_0.0009, d_ 1000).

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 129

Hands-on Exercises The NEURON Simulation Environment

Finally, try using both Generators together and see if you get a better result, or at least
faster convergence.

Hints:

1. Ifyou think the optimizer may have fallen into a local minimum, or is in a parameter
region where the error surface is very shallow, try randomizing the parameters. In the
MRF Optimize panel, click on

Randomize with factor
(a factor of 2 is generally sufficient) once or twice, then run another series of
optimization simulations and see how soon the error falls below a predetermined level,
and what the new parameter values are.

2. You might find it interesting, and maybe even useful, to capture a record of parameter
values and associated errors. To turn on "path logging", click on "Append the path to
savepath.fit" in the MRF Optimize panel.

[Outline | Previous]

NEURON hands-on course
Copyright © 1998-2009 by N.T. Carnevale and M.L. Hines, all rights reserved.

Page 130 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Rectifying Gap Junction

Physical System

Not in this universe.

Model

Rectifying gap junction between two Hodgkin-Huxley axons. When the internal voltage of the left side
is greater than the internal voltage of the right side, current can pass. Otherwise the conductance is 0.

HH HH

Simulation

This exercise shows how an understanding of the underlying NEURON representation of neuron cable
sections in terms of equivalent circuits can become the basis for hitherto impossible simulations.

Representation

A Model description for a rectifying gap junction is rgap.mod. This membrane mechanism must
somehow be wrenched out of its normal context of a channel between the inside and outside of a point
on a section so that it can represent a channel between the insides of two sections.

However, I have a problem. I want you to be able to run the completed example from this page but this
disallows the running of "special" versions of NEURON on unix machines. (There would be no
problem under mswin since the downloaded hoc file that is to be executed could change to the proper
directory "$(NEURONHOME)/../course/lincir2" and dynamically load the nrnmech.dll file).

So, to allow all machines to run this example from the web, I am using a Channel Builder to specify
the properties of the gap junction channels in terms of a simple HH-style mechanism with a single
gating variable: g = gmax * O, where O’ = (Oinf - O)/Otau

® QOinf = 1/(1+exp(-100*v)) so the steady state gap conductance is almost a step function at v=10

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 131

Hands-on Exercises The NEURON Simulation Environment

Qinf 1

0.8 |
06 |~
0.4~
0.2

0]

-30 -40 10 B0

® Otau = 0.01 ms, which is "instantaneous" compared to membrane time constant

We use three cellbuilders to create the two HH axons and a gap section. By specifying the orientation
of each section and moving the 0 location of the root, we can arrange the sections so that combined
appearance will turn out to look like

FointF rocessharager

SelectPointFrocess I
Show |
IGEmp[O]

at: left{ 1

which nicely indicates the intended relation between the structures and makes it convenient to select
the site of stimulus current injection as well as points for a time plot and two separate paths for a space
plot.

Happily, the use of the "Reposition" tool in the "Topology" panel of a "Continuously Create"ing
CellBuilder constantly updates the location of the instantiated sections and this is immediately
re-plotted in a shape scene.

I’m using 1000um x 10um sections with hh channels and "d_lambda" segmentation for the "left" and
"right" cables. For the gap section, I am using an area of 100 um2, cm as close to 0 as the cell builder
allows (the default implicit method in NEURON allows cm=0 but that is another story), an rgap
channel with maximum conductance of 1 mA/cm2 == 1 uS, ena=0 (ions mistakenly don’t show up in
the CellBuilder so that can only be done with a
NEURONMainMenu/Tools/DistibutedMechanism/Viewers/ShapeName tool or with an interpreter

Page 132 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

statement) and an extracellular mechanism.

The extracellular mechanism for the gap section is a key idea in this exercise since it gives us a
non-trivial extracellular node (without an extracellular mechanism, the outside voltage next to the
membrane is defined to be 0). This means that we can use available channel and point process
mechanisms to create an arbitrary two terminal conductance component which, in conjunction with the
LinearCircuit builder, can be attached between any two points in a network of cells. We defeat the
normal usage of the extracellular mechanisms by setting xg to O so that there is no longer a default
path from the extracellular node to ground. Thus the normal equivalent circuit of a single compartment
section has been subverted to look like

G 8

T

Now the Linear Circuit Builder can be used to connect these pieces.

Linea riZircuit]0)]

ws ArEnge
wr Label

Fammeters
gapi0.3 Simulate

Faramete rsl

B1 * E= coumce T I
otates

|

MNewGraph
Namen‘apl
—_—

Hirnts

The batteries are necessary in order to introduce electrical current variables as first class states of the
system. These current states allow consistency of an otherwise overdetermined system. That is,
connecting two voltage nodes by a short circuit introduces the equation v1 = v2 and the only way to
make this consistent with the two current balance equations for the nodes is to calculate the current
flowing through the short circuit simultaneously with all the other membrane potentials. The batteries
themselves have a default potential of 0 mV. This is a nice trick to use when one wishes to measure
the current through a short circuit.

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 133

Hands-on Exercises The NEURON Simulation Environment

Completed example
See how an action potential initiated on the left propagates into the right section. However an action

potential initiated on the right is blocked by the gap junction.

Clearly, the linear circuit builder would be inadequate to handle more than a few gap junctions. In hoc
one would manage such simulations by writing a "GapJunction" template that manages a gap section
with an rgap and extracellular mechanism along with a LinearMechanism instance to connect the gap
junction to the desired locations. With that class as the basic object, it would then not be too much
trouble to create a GUI tool (perhaps using a Shape scene) that managed interactive creation of the gap
junctions.

NEURON hands-on course
Copyright © 1998-2008 by N.T. Carnevale and M.L. Hines, all rights reserved.

Page 134 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

rectifying gap junction. Can only be used in conjunction with
extracellular mechanism and the LinearMechanism class

NEURON {
POINT_PROCESS RectifyingGapJunction
RANGE g, i
NONSPECIFIC_CURRENT i

¥

PARAMETER {
g = 0 (microsiemens)

¥
ASSIGNED {
v (millivolt)
i (nanoamp)
3
BREAKPOINT {
if (v > 0) {
i=g*v
}else{
i=0
¥
3

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 135

Hands-on Exercises The NEURON Simulation Environment

Page 136 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Parallel Computing with MPI
Getting started

The first step is to get to the place where you can run the "hello world" level program
test0.hoc by launching in a terminal window with

mpiexec -n 4 nrniv -mpi test0.hoc

and see the output

of 4
of 4
of 4
of 4

am
am
am

H H H H -
N O Wk

am

MSWIN

The NEURON setup installer has already put all the required software on your machine to
use MPI. I.e. a subset of MPICH2 compiled under CYGWIN.

1) start an rxvt terminal window
2) start the mpd daemon

mpdtrace # is it already running
mpd&
mpdtrace # it will persist until you do an mpdallexit or close the terminal

3) launch the program (mpiexec command above) in the directory containing test0.hoc (or
give a full path to test0.hoc)

Mac OS X and Linux

Unfortunately MPI can't be a part of the binary installation because I don't know if, which,
or where MPI was installed on your machine. So you have to install MPI yourself, check that
it works, and build NEURON from the sources with the configure option '--with-paranrn'. See
the "installing and testing MPI" section of the Hines and Carnevale (2008) paper,
"Translating network models to parallel hardware in NEURON?", J. Neurosci. Meth. 169:
425-465. The paper is reprinted in your handout booklet. Or see the ModelDB entry

Going further

The ring model from the above ModelDB entry is a good next step. See also the
documentation for the ParallelContext class, especialy the subset of methods gathered under
the ParallelNetwork heading. A large portion of the ParallelNetManager wrapper is better
off done directly from the underlying ParallelContext though it can be mined for interesting
pieces. A good place to find the most recent idioms is the NEURON implementation of the
Vogels and Abbott model found in the Brette et al. ModelDB entry. However, to run in
parallel, the NetCon delay between cells needs to be set greater than zero.

NEURON hands-on course
Copyright © 1998-2009 by N.T. Carnevale and M.L. Hines, all rights reserved.

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 137

Hands-on Exercises The NEURON Simulation Environment

Listing of test0.hoc

objref pc
pc = new ParallelContext()
{

printf("I am %d of %d\n", pc.id, pc.nhost)

}
{pc.done()}
quit()

Page 138 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Using Python as NEURON's interpreter
Getting Started

From a terminal window, launch with
nrniv -python
To gain access to the HOC interpreter, use

from neuron import h

Everything you could do in HOC you can do through the h object.

#execute a hoc statement
h('printf ("hello world\\n")') #but note how we had to escape the backslash

#icreate a hoc Object and execute its methods
v = h.Vector (5)
v.indgen() # parentheses are not optional
v.printf ()
v.x[2]
for x in v:

print x

#create sections, etc.

soma = h.Section()

axon = h.Section()

axon.connect (soma, 1)

axon.nseg = 3

h.topology () # sadly, they are anonymous in the hoc world

for sec in h.allsec():
sec.insert ('hh')

axon.gnabar_hh = .1 # for whole section must use old hoc rangevar name
axon(.5) .hh.gnabar = .09 # for a segment, can use either
for sec in h.allsec():
for seg in sec:
print sec, seg.x, seg.hh.gnabar

See the Python Accessing HOC documentation for further information.

Going further

Some hoc functions use callbacks.

from neuron import h
h.load_file('nrngui.hoc"')

def callbackl():
print "callbackl: t=%s" % h.t

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 139

Hands-on Exercises The NEURON Simulation Environment

interval = 10000
print "next callbackl at %s" % (h.t+interval)
h.cvode.event (h.t + interval, callbackl)

h.cvode_active(l)

fih = h.FInitializeHandler (callbackl)
h.stdinit ()

h.cvode.solve (50000)

Some hoc functions use pointers to HOC variables.

from neuron import h
h.load_file('nrngui.hoc"')

soma = h.Section()

soma.L = 10

soma.diam = 10

soma.insert ('hh')

stim = h.IClamp (.5, sec=soma)
stim.delay = .1

stim.dur =

stim.amp =

vvec = h.Vector ()
vvec.record(soma(.5) . _ref v, sec=soma)
tvec = h.Vector()
tvec.record(h._ref_t, sec=soma)

h.run()

g = h.Graph()
g.size(0,5,-80,40)
vvec.line(g, tvec)

NEURON hands-on course
Copyright © 1998-2009 by N.T. Carnevale and M.L. Hines, all rights reserved.

Page 140 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved

