
The NEURON Simulation Environment Didactic Presentations

Table of Contents and Schedule of Presentations

NTC Ted Carnevale

MLH Michael Hines

WWL Bill Lytton

TJS Terry Sejnowski

Hands-on exercises are indicated by an asterisk * in the Page column. 

Times shown are approximate, except for lunch.

Saturday, 6/23 Morning session

Time Speaker Title Page

9:00 AM MLH Welcome to the NEURON summer course

9:15 NTC Introduction to modeling with NEURON 7

9:30 NTC Example: building and using a simple model

with the GUI

11 *

10:45 Coffee Break

11:00 NTC Fundamental concepts: 

neurites, cables, and sections

13

11:15 MLH Interactive modeling: Hodgkin-Huxley axon 15 *

12:15 End of morning session

12:30 Lunch

Afternoon session

1:30 NTC Fundamental concepts: range, range variables,

nodes, and nseg

17

1:45 NTC Example: constructing branched model cells 

with the CellBuilder

21 *

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 1



Didactic Presentations The NEURON Simulation Environment

3:15 Coffee Break

3:30 NTC Working with morphometric data 23 *

5:00 End of afternoon session

Sunday, 6/24 Morning session

Time Speaker Title Page

9:00 AM Q & A

9:15 MLH NMODL: the NEURON Model Description

Language

27 *

10:30 Coffee Break

10:45 NTC Overview of creating and using 

NEURON models

35

11:00 WWL The hoc programming language 41 *

12:15 End of morning session

12:30 Lunch

Afternoon session

1:30 MLH Numerical methods: accuracy, stability, speed 57

2:30 NTC ModelDB and Model View 65 *

3:30 Coffee Break

3:45 NTC Inhomogeneous channel distributions 71 *

5:00 End of afternoon session

Page 2 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Monday, 6/25 Morning session

Time Speaker Title Page

9:00 AM Q & A

9:15 MLH Families of simulations in parallel 73 *

10:45 Coffee Break

11:00 MLH Using a supercomputer 79 *

12:15 End of morning session

12:30 Lunch

Afternoon session

1:30 MLH NEURON + threads 85 *

3:15 Coffee Break

3:30 NTC Initialization 97 *

5:00 End of afternoon session

Tuesday, 6/26 Morning session

Time Speaker Title Page

9:00 AM Q & A

9:15 WWL Python + NEURON 105

10:30 Coffee Break

10:45 NTC Networks: synapses, events, 

and artificial spiking cells

119 *

12:15 End of morning session

12:30 Lunch

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 3



Didactic Presentations The NEURON Simulation Environment

Afternoon session

1:30 WWL Networks: inhibitory synchronizing network 131 *

3:00 Coffee Break

3:15 MLH Variable time steps 

and parameter discontinuities

153 *

5:00 End of afternoon session

Wednesday, 6/27 Morning session

Time Speaker Title Page

9:00 AM Q & A

9:15 TJS TBA (special topic 

in computational neurosciece)

10:30 Coffee Break

10:45 MLH Parallel computation: 

distributed network models

177

12:15 End of morning session

12:30 Lunch

Afternoon session

1:30 NTC NEURON's tools for analyzing electrotonus 195 *

3:00 Coffee Break

3:15 NTC The Linear Circuit Builder 203 *

4:15 Review discussion

4:45 Evaluation form (see last page in this booklet)

5:00 End of afternoon session

Page 4 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Optional MLH The Channel Builder 211

Appendix Translating network models to parallel hardware 

in NEURON (Hines & Carnevale 2008).

Parallel tutorial from 2010 NEURON Users' Meeting.

NEURON and Python (Hines et al. 2009).

before

survey

Receipt penultimate

page

Survey last page

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 5



Didactic Presentations The NEURON Simulation Environment

Page 6 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

The What and the Why
of Neural Modeling

The moment-to-moment processing of information 
in the nervous system involves the propagation 
and interaction of electrical and chemical signals 
that are distributed in space and time.

Empirically-based modeling is needed to test 
hypotheses about the mechanisms that govern 
these signals and how nervous system function 
emerges from the operation of these mechanisms.

Topics

1. How to create and use models of neurons 
and networks of neurons

� How to specify anatomical and biophysical 
properties

� How to control, display, and analyze models 
and simulation results

2. How NEURON works

3. How to add user-defined biophysical 
mechanisms

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 7



Didactic Presentations The NEURON Simulation Environment

From Physical System
to Computational Model

Conceptual model

a simplified representation of the physical system

Computational model

an accurate representation of the conceptual model

Computational
Model

Conceptual
Model

Physical
System

From Physical System
to Computational Model

dendrite

soma

Conceptual
model

ball
and
stick

Physical
system

Ca1
pyramidal

cell

Computational
model

hoc
code

create soma, dendrite
connect dendrite(0), soma(1)v

Page 8 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Hierarchies of Complexity

Structure

Single compartment

Stylized

Network

Anatomically detailed v

Hierarchies of Complexity

Passive and Active currents
HH-style
kinetic scheme

Synaptic transmission
continuous
spike-triggered

Gap junctions

Extracellular fields, Linear circuits

Diffusion, buffers, transport & exchange

Artificial spiking cells ("integrate & fire")

Mechanism

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 9



Didactic Presentations The NEURON Simulation Environment

Fundamental Concepts in NEURON

Signals

Electrical

Chemical

What
moves

charge
carriers

solute

Driving
force

voltage
gradient

concentration
gradient

What is
conserved

charge

mass

Conservation of Charge

C
m

d V
m

d t
� i

ion
=� i

a

im

im
im

im

ia

ia

ia

ia

Page 10 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Example: Single Compartment

Lipid bilayer (no channels)

Membrane with linear ion channels (passive leak)

Project goals:
� Use the GUI to build the model

and custom interface for using it
� Run simulations and analyze results
� Change stimulus intensity and duration
� Adjust graphical displays of simulation results
� Adjust dt and Points Plotted / ms

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 11



Didactic Presentations The NEURON Simulation Environment

Page 12 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Fundamental Concepts in NEURON

What equations are being solved?

How to separate the biology 
from computational details?

It's all about conceptual control . . .

Conservation of Charge

C
m

d V
m

d t
� i

ion
=� i

a

im

im
im

im

ia

ia

ia

ia

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 13



Didactic Presentations The NEURON Simulation Environment

The Model Equations

c
j

d v
j

d t
� i

ion
j

=�
k

v
k
� v

j

r j k

v
j

membrane potential in compartment j

i
ion

j

net transmembrane ionic current in compartment j

c
j

membrane capacitance of compartment j

r
jk

axial resistance between the centers of
compartment j

and
adjacent compartment k

Separating Anatomy and Biophysics
from Purely Numerical Issues

section

a continuous length of unbranched cable

Anatomical data from A.I. Gulyás

Page 14 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 15



Didactic Presentations The NEURON Simulation Environment

Page 16 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Syntax:  create sectionname

Example:  create soma, dend[3]

creates one section called soma

and three sections called dend[0], dend[1], and dend[2]

Assigning anatomical and biophysical attributes:
soma {

L = 50 // [um] length
diam = 50 // [um] diameter
insert hh // Hodgkin-Huxley mechanism

}
for i=0,2 dend[i] {

L = 200
diam = 2
insert pas // passive channels

}

Range Variables

Name Meaning Units

diam diameter [µm]

cm specific membrane [µf/cm2]

capacitance

g_pas specific conductance [siemens/cm2]

of the pas mechanism

v membrane potential [mV]

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 17



Didactic Presentations The NEURON Simulation Environment

range

normalized position along the length of a section

0 � range � 1

any variable name can be used for range, e.g. x

0 1
distance

normalized

0
distance
physical

length
physical

Syntax:
sectionname.rangevar(range)

returns or sets the value of rangevar
at the location corresponding to range

Examples:
dend.v(0.5)

returns membrane potential at the middle of dend

Shortcut: dend.v

dend for (x) print x*L, v(x)

prints physical distance and v 

at each point in dend where v was calculated

Page 18 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

nseg

the number of points in a section section where

membrane current and potential are computed

nseg=1

nseg=2

nseg=3

Example:  axon nseg = 3

To test spatial resolution
forall nseg = nseg*3

and repeat the simulation

Category Variable Units

Time t [ms]

Voltage v [mV]

Current

specific i [mA/cm2] (distributed)

absolute [nA] (point process)

Capacitance

specific cm [µf/cm2]

absolute [nf] (point process)

Length diam, L [µm]

Conductance

specific g [S/cm2] (distributed)

absolute [µS] (point process)

Cytoplasmic resistivity Ra [� cm]

Resistance ri() [106 �]

Concentration nai etc. [mM]

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 19



Didactic Presentations The NEURON Simulation Environment

Page 20 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Example: Branched Model Cells

Physical system: anatomically complex cell

Conceptual model: "stick figure"

Computational model: soma + dendritic cylinder(s)
(and maybe an axon . . .)

Project goals:
� Learn how to use CellBuilder
� Use session files to save and retrieve user

interface (elementary project management)
� Test model and simulation:

structural integrity
discretization of space and time

From hoc file generated by CellBuilder:

create soma, trunk[2], oblique, tuft, basilar

proc topol() { local i
  connect trunk(0), soma(1)
  connect trunk[1](0), trunk(1)
  connect oblique(0), trunk(1)
  connect tuft(0), trunk[1](1)
  connect basilar(0), soma(0)
   . . .

soma

trunk trunk[1]

oblique

tuft
basilar

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 21



Didactic Presentations The NEURON Simulation Environment

soma

trunk trunk[1]

oblique

tuft
basilar

From hoc file generated by CellBuilder:

proc geom() {
  forsec all {  }
  soma {  L = 30  diam = 30  }
  trunk {  L = 400  diam = 3  }
  trunk[1] {  L = 400  diam = 2  }
  oblique {  L = 300  diam = 1.5  }
  tuft {  L = 300  diam = 1  }
  basilar {  L = 300  diam = 3  }
}

proc biophys() {
  forsec all {
    Ra = 160
    cm = 1
  }
  forsec dendrites {
    insert pas
      g_pas = 3e-05
      e_pas = -70
  }
  forsec apicals {
    insert hh
      gnabar_hh = 0.012
      gkbar_hh = 0.0036
      gl_hh = 0
      el_hh = -54.3
  }
  soma {
    insert hh
      gnabar_hh = 0.12
      gkbar_hh = 0.036
      gl_hh = 0.0003
      el_hh = -54.3
  }
}

Page 22 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Anatomy and Empirically-based Models

Quality of data
� histology
� staining, amputation, shrinkage
� diameter
� spines

Data formats

Detailed Morphometric Data

Where to get it?
� DIY
� the kindness of strangers
� ModelDB
� NeuroMorpho.org

How to get it into NEURON?
� standalone conversion programs
� import into CellBuilder
� Import3D tool
� "already in hoc"

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 23



Didactic Presentations The NEURON Simulation Environment

Trust but verify . . .

Qualitative tests

Orphan sections and bottlenecks?

insert pas, set Ra and g_pas low

inject large depol current at soma

examine shape plot of v

Z-axis drift and backlash?

examine side view of shape plot
for abrupt jumps

. . . and verify some more

Quantitative tests

Diameter

Too large?
_dmin=10
forall for i=0, n3d()-1 \
  if (diam3d(i)<_dmin) _dmin=diam3d(i)
print _dmin

Too small?
forall for i=0, n3d()-1 \
  if (diam3d(i)<0.1) \
    print secname(), " ", i, diam3d(i)

Page 24 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

 When it really matters . . .

Test for systematic errors

Favorite numbers?

histogram of diameter measurements

Other tests

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 25



Didactic Presentations The NEURON Simulation Environment

Page 26 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

NMODL
NEURON Model Description Language

Add new membrane mechanisms to NEURON

Density mechanisms Point Processes
Distributed Channels

Ion accumulation

Electrodes

Synapses

Described by

Differential equations
Kinetic schemes
Algebraic equations

Benefits

Consistent Units

Consistent ion current/concentration interactions.

One NMODL statement −> many C statements.

Interface code automatically generated.

Compact

Efficient −− translated into C.

Specification only −− independent of solution method.

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 27



Didactic Presentations The NEURON Simulation Environment

NMODL general block structure

What the model looks like from outside

NEURON {

    USEION k READ ek WRITE ik
    RANGE gbar, ...
}

What names are manipulated by this model

UNITS { (mV) = (millivolt) ... }

PARAMETER { gbar = .036 (mho/cm2) <0, 1e9>... }

STATE { n ... }

ASSIGNED { ik (mA/cm2) ... }

Initial default values for states

INITIAL {
    rates(v)
    n = ninf
}

    SUFFIX kchan

Calculate currents (if any) as function of v, t, states
(and specify how states are to be integrated)

BREAKPOINT {
    SOLVE deriv METHOD cnexp
    ik = gbar * n^4 * (v − ek)
}

State equations

DERIVATIVE deriv {
    rates(v)
    n’ = (ninf − n)/ntau
}

Functions and procedures

PROCEDURE rates(v(mV)) {
    ...
}

Page 28 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 29



Didactic Presentations The NEURON Simulation Environment

Density mechanism Point Process

NEURON {
    SUFFIX leak
    NONSPECIFIC_CURRENT i
    RANGE i, e, g
}
 
PARAMETER {
    g = .001 (mho/cm2) <0, 1e9>
    e = −65 (millivolt)
}
 
ASSIGNED {
    i (milliamp/cm2)
    v (millivolt)
}
 
BREAKPOINT {
    i = g*(v − e)
}
 

NEURON {
    POINT_PROCESS Shunt
    NONSPECIFIC_CURRENT i
    RANGE i, e, r
}
 
PARAMETER {
    r = 1 (gigaohm) <1e−9,1e9>
    e = 0 (millivolt)
}
 
ASSIGNED {
    i (nanoamp)
    v (millivolt)
}
 
BREAKPOINT {
    i = (.001)*(v − e)/r
}
 

NMODL

soma {
    insert leak
    g_leak = .0001
}
print soma.i_leak(.5)

Density mechanism Point Process

objref s
soma s = new Shunt(.5)
s.r = 2

NEURON {
    SUFFIX leak
    NONSPECIFIC_CURRENT i
    RANGE i, e, g
}
 

NEURON {
    POINT_PROCESS Shunt
    NONSPECIFIC_CURRENT i
    RANGE i, e, r
}
 

GUI

Interpreter

soma
pas
hh
leak

SingleCompartment
SelectPointProcess

Show

Shunt[0]

at: soma(0.5)

PointProcessManager

Page 30 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Ion Channel Ion Accumulation

NEURON {
  USEION k READ ek WRITE ik
}
BREAKPOINT {
  SOLVE states METHOD cnexp
  ik = gbar*n*n*n*n*(v − ek)
}
DERIVATIVE states {
  rate(v*1(/mV))
  n’ = (inf − n)/tau
}

NEURON {
  USEION k READ ik WRITE ko
}
BREAKPOINT {
  SOLVE state METHOD cnexp

DERIVATIVE state {
  ko’ = ik/fhspace/F*(1e8)
         + k*(kbath − ko)
}

}
 

0 2 4 6 8 10

−80

−40

0

40

v(.5)

soma.ek( 0.5 )

0 2 4 6 8 10
0

5

10

15

20

soma.ko( 0.5 )

0 2 4 6 8 10
0

1

2

3

soma.ik( 0.5 )

(ms)

(mM) (mV) (mA/cm2)

STATE {
   Vesicle Ach Achase Ach2ase X Buffer[N] CaBuffer[N] Ca[N]
}
KINETIC calcium_evoked_release  {
   : release
 ~ Vesicle + 3Ca[0] <−> Ach  (Agen, Arev)
 ~ Ach + Achase <−> Ach2ase  (Aase2, 0) : idiom for enzyme reaction
 ~ Ach2ase <−> X + Achase    (Aase2, 0) : requires two reactions
   : Buffering
   FROM i = 0 TO N−1 {
     ~ Ca[i] + Buffer[i] <−> CaBuffer[i]  (kCaBuffer, kmCaBuffer)
   }
   : Diffusion
   FROM i = 1 TO N−1 {
     ~ Ca[i−1] <−> Ca[i]     (Dca*a[i−1], Dca*b[i])
   }
   : inward flux
 ~ Ca[0] <<      (ica)
}

Internal Free Calcium

Vesicle

Saturable Calcium Buffer

ica

Ach

Achase

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 31



Didactic Presentations The NEURON Simulation Environment

UNITS Checking

NEURON { POINT_PROCESS Shunt ... }
PARAMETER {
    e = 0 (millivolt)
    r = 1 (gigaohm) <1e−9,1e9>
}
ASSIGNED {
    i (nanoamp)
    v (millivolt)
}
BREAKPOINT {
    i = (v − e)/r
}

Units are incorrect in the "i = ..." current assignment.

BREAKPOINT {
    i = (v − e)/r
}

The output from
    modlunit shunt
is:
    Checking units of shunt.mod
    The previous primary expression with units: 1−12 coul/sec
    is missing a conversion factor and should read:
      (0.001)*()
    at line 14 in file shunt.mod
           i = (v − e)/r<>

To fix the problem replace the line with:
           i = (.001)*(v − e)/r

What conversion factor will make the following consistent?

(uM/ms) (mA/cm2) (coulomb/mole) (um)
  nai’    =    ina       /      FARADAY      *      (c/radius)

/ /

Page 32 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 33



Didactic Presentations The NEURON Simulation Environment

Page 34 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Creating and using NEURON models

Use hoc, Python, and/or GUI to specify:
� Biological properties--anatomy, biophysics
� Instrumentation--signal sources and recording
� User interface--parameter panels, graphs
� Simulation control--dt, tstop, integration method

Hint: keep these separate from each other 
for maximum clarity and to save effort

Verify:
� Close match to conceptual model?
� Numerical accuracy adequate?

(spatial grid, integration time step or error criterion)

Specifying biological properties

Topology (branching pattern)

Geometry (diameter, length)
    and
Biophysics (membrane capacitance,
        ion channels, pumps . . . )

Connections between cells
        (synapses, gap junctions)

. . . and anything else that makes sense . . .

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 35



Didactic Presentations The NEURON Simulation Environment

Biological properties: topology

Make the pieces (sections)

create

Specify the default section

access

Assemble the pieces

connect

Example

Page 36 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

// make the pieces
create soma, axon, dendrite[3]

// specify default section
access soma

// assemble them
connect axon(0), soma(0)
for i=0,2 {
  connect dendrite[i](0), soma(1)
}

Compartmentalization

nseg

Geometry

L, diam

Biophysical properties

Density mechanisms: insert

Examples: ion channels distributed
over the cell surface, pumps, 
ion accumulation, buffers

Biological properties:
geometry and biophysics

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 37



Didactic Presentations The NEURON Simulation Environment

soma {
nseg = 1
L = 50     // [um] length
diam = 50  // [um] diameter
insert hh  // Hodgkin-Huxley currents

}

axon {
nseg = 21  // odd so a node is at 0.5
L = 1000
diam = 1
insert hh

}

for i=0,2 dendrite[i] {
nseg = 5
L = 200
diam(0:1) = 10:3  // taper
insert pas        // passive membrane

}

forall Ra = 60  // [ohm cm]

Range variables

Vary continuously in space along the length of a section

Examples: v, cm, diam

Section variables

Pertain to an entire section

Examples: Ra (cytoplasmic resistivity), L, nseg

Global variables

Same across all sections

Examples: celsius, t and dt (fixed time step integration)

Page 38 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Instrumentation

This model needs an electrode at the soma
to inject stimulating current.

Examples of "point processes":
current clamp, voltage clamp, synapse

Object syntax

objref stim
// attach to middle of soma
soma stim = new IClamp(0.5)

stim.del = 1    // [ms] delay
stim.dur = 0.1  // [ms] duration
stim.amp = 60   // [nA] amplitude

Example 1: minimalist for fixed dt simulations
finitialize(-65) // initialize v, state variables, time
tstop = 5
dt = 0.025
proc simulate() {
  print t, v(0.5) // soma is default section
  while (t < tstop) {
    fadvance() // advance solution by dt
    // function calls to save or plot results, e.g.
    print t, v(0.5)
    // statements to change model parameters
  }
}

Example 2: using the standard run system
v_init = -65 // Vm at t==0
tstop = 5 // [ms]
steps_per_ms = 40 // points plotted/ms
dt = 0.025 // [ms] integration time step
setdt() // ensures that a whole number of dts
        //   will fit into 1/steps_per_ms
run() // initialize, then run simulation

Simulation control

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 39



Didactic Presentations The NEURON Simulation Environment

Program organization

modelspec.hoc

"virtual organism"
topology, geometry, biophysics

rig.ses

"virtual experimental rig"
clamps, graphs, run control

init.hoc

"administrative wrapper"

load_file("nrngui.hoc")
load_file("modelspec.hoc")
load_file("rig.ses")

Workflow

Develop/debug "virtual organism"
hoc, Python, NMODL, GUI (CellBuilder, 

Channnel Builder, Network Builder)
in whatever combination

Model View
Iterative cycle of incremental revision and testing

Use NEURONMainMenu to customize interface
attach synapses and electrodes
set up graphs and run control
specify integration method

Page 40 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

NEURON: the HOC programming
language

Bill Lytton

SUNY - Downstate

Brooklyn, NY

NEURON: the HOC programming language – p.1/27

TOC

2. HOC is the interactive language for NEURON 3. Numbers

4. Functions & operators: pluses and minuses 5. NB: x=5 vs x==5 6. Assignments

7. Block of code 8. Conditionals and controls 9. Procedures and functions (proc and func)

10. Number arguments to procedures: 11. Strings 12. Objects 13. Simulation commands

14. Sim - stim 15. Sim - running 16. Vectors 17. What have we recorded?

18. Can analyze signals using vectors 19. Quick & dirty graphics 20. Graphing a vector

21. Find spikes 22. Check results graphically 23. Now can calculate means etc.

24. Other useful vector functions 25. Putting up buttons 26. Reading and writing files

NEURON: the HOC programming language – p.27/27

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 41



Didactic Presentations The NEURON Simulation Environment

Talk to the simulator
_ _ _

Similar to C or Perl but DON’T use semicolons

HOC=Higher Order Calculator (Kernighan)

oc is an object-oriented augmentation

NEURON: the HOC programming language – p.2/27

Numbers
_ _ _

Integers are handled internally with full precision: 5
same as 5.0

Can declare an array of numbers: double x[10]

but vectors are usually better

Scientific notation uses ’e’ or ’E’

oc>5e3
5000
oc>5E3
5000

NEURON: the HOC programming language – p.3/27

Page 42 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Functions & operators: pluses and minuses
_ _ _

Functions: sin, cos, tan, sqrt, log, log10, exp

Arithmetic operators: + - / %
oc>5+3 // put comment after double slash

8

Logical operators: && || !

Comparison operators: == != < >
oc>5==5

1

NB: x=5 vs x==5

NEURON: the HOC programming language – p.4/27

NB: x=5 vs x==5
_ _ _

oc>x = 5 + 7 /* another way to comment */

oc>x==12

1

oc>x==(5+8)

0

oc>x

12

NEURON: the HOC programming language – p.5/27

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 43



Didactic Presentations The NEURON Simulation Environment

Assignments
_ _ _

x = x+1

x += 1

x *= 2

NO: x++ (C but not in HOC)

NEURON: the HOC programming language – p.6/27

Block of code
_ _ _

A section of code that gets executed together

Can be used in a conditional or a procedure

Statements surrounded by curly brackets – no
separator

Confusing: { x = 7 print x x = 12 print x }
7
12

Better on individual lines:
{ x = 7
print x
x = 12
print x }

NEURON: the HOC programming language – p.7/27

Page 44 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Conditionals and controls
_ _ _

Decides whether or how often to execute a block

if (5==5) { print "yes" } else { print "no" }

did I mention?: ‘if (x=5)’ – you mean ‘if (x==5)’

while (x<=7) { print x x+=1 }

for x=1,7 print x

for (x=1;x<=7;x+=2) print x

NEURON: the HOC programming language – p.8/27

proc and func
_ _ _

proc hello () { print "hello" }

oc>hello()
hello

functions can only return a number

func hello () { print "hello" return 1 }

oc>hello()
hello
1

NEURON: the HOC programming language – p.9/27

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 45



Didactic Presentations The NEURON Simulation Environment

Number arguments to procedures:
_ _ _

proc add () { print $1 + $2 }

oc>add(5,3)
8

func add () { return $1 + $2 }

print 7*add(5,3)
56

NEURON: the HOC programming language – p.10/27

Strings
_ _ _

Unlike numbers, string variables must be explicitly
declared

oc>strdef str
oc>str=5
nrniv: parse error
str=5
oc>str= "hello"
oc>print str
hello

NEURON: the HOC programming language – p.11/27

Page 46 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Objects
_ _ _

objref or objectvar declares an object pointer:
objref g,vec[5],list

the command new creates a new instance of an object

Graphs, vectors, lists, files are all handled as objects
g = new Graph()
for ii=0,4 vec[ii] = new Vector()
list= new List()

“dot” notation accesses object components or
procedures
g.erase() // only makes sense if g is a graph
vec.x[3] // will access a location in vector vec

NEURON: the HOC programming language – p.12/27

Simulation commands
_ _ _

GUI buttons are connected to hoc level commands

Can create and run simulations form the command line

oc> create soma

oc> access soma

oc> insert hh

oc> ismembrane("hh")
1

NEURON: the HOC programming language – p.13/27

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 47



Didactic Presentations The NEURON Simulation Environment

Sim - stim
_ _ _

oc> objref stim

oc> stim = new IClamp(0.5) // current clamp obj

oc> stim.amp=20 // need big stim (big L, diam)

oc> stim.dur=1e10 // duration

NEURON: the HOC programming language – p.14/27

Sim - running
_ _ _

oc> tstop = 2 // stop at the peak of the spike

oc> run()

oc>print v, v(0.5), soma.v(0.5) // all equivalent

38.764279

NEURON: the HOC programming language – p.15/27

Page 48 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Vectors
_ _ _

Can record to vectors and then analyze the contents

objref vec
oc> vec=new Vector()
oc> vec.record(&soma.v(0.5))
oc> tstop = 100
oc> run()
resize_chunk 2046
resize_chunk 4094
resize_chunk 8190
resize_chunk 16382

NEURON: the HOC programming language – p.16/27

What have we recorded?
_ _ _

print vec.size(),dt,vec.size*dt,tstop

print vec.min,vec.max
-74.774437 40.444033

print
vec.min_ind,vec.max_ind,vec.min_ind*dt,vec.max_ind*dt
470 190 4.7 1.9

print vec.x[470],vec.x[190]
-74.774437 40.444033

NEURON: the HOC programming language – p.17/27

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 49



Didactic Presentations The NEURON Simulation Environment

Can analyze signals using vectors
_ _ _

Find the steepest action potential

vec[1].deriv(vec,dt)

print vec[1].max_ind,vec[1].max_ind*dt
168 1.68

NEURON: the HOC programming language – p.18/27

Quick & dirty graphics

_ _ _

0 20 40 60 80

−80

−40

0

40

NEURON: the HOC programming language – p.19/27

Page 50 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Graphing a vector
_ _ _

Can put up a graph from the main menu or by hand
g = new Graph()

Draw the vector on the graph
vec.line(g,dt)

Need a time vector if using var dt

Erase and redraw
g.erase

NEURON: the HOC programming language – p.20/27

Find spikes
_ _ _

vec[1].indvwhere(vec,">",15) // indices above a
threshold

vec[1].mul(dt) // times

spktime=0

for ii=0,vec[1].size-1 if (vec[1].x[ii]<spktime+2)
vec[1].x[ii]=-1 else spktime=vec[1].x[ii]

vec[2].where(vec[1],">",0)

NEURON: the HOC programming language – p.21/27

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 51



Didactic Presentations The NEURON Simulation Environment

Check results graphically

_ _ _ for ii=0,ind.size-1 g.mark(vec[2].x[ii],15,"O")

0 20 40 60 80 100

 −80 

 −40 

 0 

 40 

NEURON: the HOC programming language – p.22/27

Now can calculate means etc.
_ _ _

calculate differences: vec[3].sub(othervec)

take inverses: vec[3].resize(), vec[3].fill(1),
vec[3].div(othervec)

print vec[3].mean(), vec[3].stdev()

NEURON: the HOC programming language – p.23/27

Page 52 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Other useful vector functions
_ _ _

vec.setrand(rdm) // where rdm=new Random()

vec.fft() // fast fourier transform

vec.sort()

vec.histogram()

vec.apply("user_func")

NEURON: the HOC programming language – p.24/27

Putting up buttons

_ _ _

NEURON: the HOC programming language – p.25/27

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 53



Didactic Presentations The NEURON Simulation Environment

Reading and writing files
_ _ _

file=new File()

file.wopen("tmp")

vec.printf(file) // or vec.vwrite(file) for binary

file.close()

NEURON: the HOC programming language – p.26/27

Page 54 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 55



Didactic Presentations The NEURON Simulation Environment

Page 56 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

  1

Compartmental Modeling

Not much mathematics required.

Good judgment essential!

  2

i  + i  + i  = 01 2 3

1i   = −I

3i   = V/ R

2i   = C dV/ dt

C dV/dt + g V  =  I

I

C

V

R

i1

2i

3
i

0 1 2 3 4 5
0

2

4

6

8

10

0 1 2 3 4 5
0

0.005

0.01

0.015

0.02

ms

nA

mV

I

V

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 57



Didactic Presentations The NEURON Simulation Environment

  3

ia

im

ia

ia

ia
x

Σ iai m =∫

=
v j

jc
ji

d

dt
+

v j−v k

r jkΣ
k

  4

Section

Node

Segment

Membrane

v(1)v(0) v(1.5/nseg)

Membrane

Extracellular
barrier

v(1)v(0)

vext(0) vext(1)

Page 58 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

  5

nseg = 1

nseg = 2

nseg = 3

forall nseg *= 3

  6

Forward Euler

0 1 2 3
 0.00 

 0.20 

 0.40 

 0.60 

 0.80 

 1.00 

t

dt = .5

y(t + dt) = y(t) + dt *f(y(t))

y’ = f(y)

=
y(t+dt) − y(t)

dt
f(y(t))

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 59



Didactic Presentations The NEURON Simulation Environment

  7

1 1

1 1

1/20
V

1
V

2

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

dt
.02

.2

Forward
Euler

  8

0 1 2 3
 0.00 

 0.20 

 0.40 

 0.60 

 0.80 

 1.00 

t

Backward Euler

y(t + dt) = y(t) + dt *f(y(t + dt))

dt = .75

y’ = f(y)

=
y(t+dt) − y(t)

dt
f(y(t+dt))

Page 60 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

  9

1 1

1 1

1/20
V

1
V

2

dt
.02

.2

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

dt = .2

Backward Euler

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

  10

1 1

1 1

1/20
V

1
V

2

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

dt = .2
dt

.02
.2

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

1

1

V
1

0 1 2 3
 0.00 

 0.20 

 0.40 

 0.60 

 0.80 

 1.00 

t

Crank−Nicholson

dt = .75

y(t + dt) = y(t) + dt *f(y(t+dt/2))

y’ = f(y)

=
y(t+dt) − y(t)

dt
f(y(t+dt/2))

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 61



Didactic Presentations The NEURON Simulation Environment

  11

Single iteration

0.0 1.0 2.0

 1.0 

 0.0 

x

y

x’ = −1.4xy
y’ = −xy

Staggered time step

0.0 1.0 2.0

 1.0 

 0.0 

x

y

  12

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

Cvode.atol(1e−3)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

Cvode.atol(1e−1)

Page 62 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

_

na
2g   = .12 S/cm

.15 nA

.061 nA

mV

ms0 1 2 3 4 5

−80

−40

0

40

− 1%

.15 nA

.061 nA

mV

ms

Implicit dt=.025 ms

0 1 2 3 4 5

−80

−40

0

40 CN dt=.001 ms
CN dt=.025 ms
CVode atol = 1e−2

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 63



Didactic Presentations The NEURON Simulation Environment

Page 64 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

  1

Computational Modeling
and Neuroscience

Does computational modeling have a role
in neuroscience research?

  2

Best Practices

Know the literature

Collaborate with experimentalists

Use Occam's razor

Adhere to scientific method

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 65



Didactic Presentations The NEURON Simulation Environment

  3

Scientific Method

Observation

Hypothesis

Prediction

Verification

Evaluation

  4

Reproducibility

The ideal:

"Reproducibility is the cornerstone 
of scientific method."

"Experiments should be fully described 
so that anyone can reproduce them."

The harsh reality: 
Velilind's Laws of Experimentation

"If reproducibility may be a problem, 
conduct the test only once."

"If a straight line is required, 
obtain only two data points."

Page 66 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

  5

http://senselab.med.yale.edu/modeldb

ModelDB provides an accessible location for storing and efficiently retrieving computational neuroscience

models. ModelDB is tightly coupled with NeuronDB. Models can be coded in any language for any

environment. Model code can be viewed before downloading and browsers can be set to auto-launch

the models. For further information, see also, model sharing in general and ModelDB in particular.

Submit a new model entry      Help

Find models by

Model name

First author

Each author

Region(circuits)

Find models for

Cell type

Current

Receptor

Gene

Transmitters

Topic

Simulators

Methods

Find models of

Networks

Neurons

Electrical synapses (gap junctions)

Chemical synapses

Ion channels

Neuromuscular junctions

Axons

Search for models by author name or accession number Search

Search for SenseLab models using Google Search Hints

Combine ModelDB curated keywords with a Google search: ModelSearch

Search for publications in ModelDB or in PubMed

Register for an account

Login to access your models

Related Resources

Some models versions are available in a mercurial repository

                  

  6

Accommodates models from a wide range
of simulation environments

1 BioPAX 2 KInNeSS 1 PSICS

8 Brian 1 Lua 2 PSpice

79 C / C++ 155 MATLAB 3 Pascal/Delphi

1 CNrun 1 MCell 2 PyNN

4 CSIM 1 MOOSE / PyMOOSE 13 Python

8 CalC 1 MVASpike 2 Q/Quick/Turbo Basic

1 Catacomb 1 MadSim 1 QuB

1 CellExcite 1 Mathematica 1 R

1 CellML 1 MySQL 1 SABER

2 Chemesis 1 NCS 1 SBML

1 Content 2 NEST 21 SNNAP
1 Dynamics Solver 2 NEURONPM 4 SciLab

1 ERNST 1 Nengo 9 Simulink

3 Emergent/PDP++ 1 Network 1 Sspice

6 FORTRAN 1 NeuroRD 1 Topographica

1 GNU/Next/Openstep 345 Neuron 3 Virtual Cell

28 Genesis 1 NeuronetExperimenter 4 XML

1 IDL 2 Octave 66 XPP

3 IGOR Pro 1 PCSIM 5 neuroConstruct

7 Java 1 PGENESIS 2 parplex

721 entries as of 6/17/2012

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 67



Didactic Presentations The NEURON Simulation Environment

  7

Search results

.

.

.

  8

Site of impulse initiation in a neuron (Moore et al 1983)

Accession: 9852

Examines the effect of temperature, the taper of the axon hillock, and HH channel density on antidromic spike

invasion into the soma and spike initiation under dendritic stimulation.

Reference: Moore JW, Stockbridge N, Westerfield M (1983) On the site of impulse initiation in a neurone. J Physiol

336:301-11  [PubMed]

Citations  Citation Browser

Model Information (Click on a link to find other models with that property)

Model Type:  Neuron or other electrically excitable cell;

Brain

Region(s)/Organism:
 

Cell Type(s):  Spinal motor neuron;  

Channel(s):  I Na,t; I K;  

Gap Junctions:  

Receptor(s):  

Gene(s):  

Transmitter(s):  

Simulation

Environment:
 Neuron;

Model Concept(s):  Action Potential Initiation; Simplified Models;

Implementer(s):  Hines, Michael ;

Search NeuronDB for information about:  Spinal motor neuron; I K; I Na,t;

Model files     Help downloading and running models

\

moore83

README

mosinit.hoc

init.hoc

start.ses

                            

Moore, Stockbridge, and Westerfield. (1983) On the site of impulse initiation

in a neurone. 

J. Physiol. 336: 301-311.

This model qualitatively reproduces figures 1-5.

Note that orthodromic stimulus amplitude is considerably different from

that noted in the paper. IClamp[0].amp was chosen to give qualitative similarity.

We attribute minor quantitative differences to the following:

1) The precise site of axon v vs t curve is not specified. We plot

axon.v(0.25).

2) The antidromic stimulus was unspecified.

The NEURON implementation of this model was prepared by Michael Hines.

Questions about details of this implementation should be addressed to him

at michael.hines@yale.edu.

Page 68 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

  9

How to proceed

Read abstract / paper

Download, extract zip, compile mod files,
run mosinit.hoc

Analyze model

ModelView

topology(), Shape plot

forall psection()

Read code . . .

Reusable components?

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 69



Didactic Presentations The NEURON Simulation Environment

Page 70 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Spatially inhomogeneous parameters

Rules

� None (arbitrary values)

� Constant over sets of sections

use SectionLists (CellBuilder Subsets)

� A function of position

hoc or ?

Suppose gnabar_hh in the apical tree

decreases linearly with distance from the soma.

Details: 100% at tree origin, 0% at most distant termination.

Example: model with hh

in apical dendrites

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 71



Didactic Presentations The NEURON Simulation Environment

This example:

gnabar_hh = 0.12 * (1 - p) where p = L0x/Lmax 

(normalized path distance from location x

to origin 0 of apical tree)

The general problem: param = f(p), where f can be any function

and p is a "distance metric" such as:
� path length from a reference point
� radial distance from a reference point
� distance from a plane ("3D projection onto a line")

An equivalent hoc idiom:

forsec subset for (x,0) { rangevar_suffix(x) = f(p(x)) }

Conceptualize the task

1. Specify the

subset s

distance metric p

parameter that depends on distance

function f that governs the relationship 

between the parameter and p

2. Verify the implementation

How? hoc or GUI (CellBuilder, Model View)

Page 72 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Two kinds of parallel problems

A simulation run takes about a second.

Want to do 1000’s of them,
varying a dozen or so parameters.

A simulation of a large network takes hours.

Want to spread the problem over several machines,
each machine handling a subset of the neurons in the network

Serial Parallel

s = 0
for i = 1, 10 {
    s += f(i)
}

s = 0
for i = 1, 10 {
    pc.submit("f", i)
}
while (pc.working) {
    s += pc.retval
}

Goals

Assumptions

Keep all the machines as busy as possible.

If there is only one machine the parallel program
should run as fast as the serial program.

Things asked for earlier tend to get done earlier.

Workstation cluster − 1, 3, 15, 100 machines.

Wide variety of machine speeds.

Sending a byte is much slower than
executing a hoc statement.

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 73



Didactic Presentations The NEURON Simulation Environment

g g g g g

|| loop

|| loopf ff|| loop

Domain

Very coarse grain parallelization.

NEURON’s style

A bulletin board
  . . . on top of MPI.

Launching a parallel program
objref pc
pc = new ParallelContext()

  // setup which is exactly
  // the same on every machine
  // i.e. declaration of all
  // functions, procedures,
  // setup of neurons

pc.runworker

  // the master scatters tasks
  // onto the bulletin board
  // and gathers results

pc.done

Page 74 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

objref pc
pc = new ParallelContext()

func f() {local s, i

}

{pc.runworker()}

runtime = startsw()
s = 0
for i=1,10 {

}
while (pc.working()) {

}
print "sum = ", s
print "runtime ", startsw() − runtime
{pc.done()}
quit()

Example.hoc

  s = 0
  for i=1,100000 {
    s += $1

  return s

  pc.submit("f", i)

  s += pc.retval

  }

$ mpiexec −n 1 nrniv −mpi example.hoc
numprocs=1

NEURON −− VERSION 7.2 (428:986821b56b98) 2010−03−17

...

sum = 5500000 

runtime 0.079999924 

$ mpiexec −n 4 nrniv −mpi example.hoc
numprocs=4

NEURON −− VERSION 7.2 (428:986821b56b98) 2010−03−17

...

sum = 5500000 

runtime 0.019999981 

$ 

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 75



Didactic Presentations The NEURON Simulation Environment

NEURON

neuron context
g(i)

f(j)

g context

Context and Communication

context("stmt") : stmt executed on every worker

post Bulletin board

take
look
look_take

Bulletin board

Page 76 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Context and Communication

With Python

def f(arg1, arg2):
    ...
    return any_pickleable_object

...
pc.submit(f, (arg1, arg2))
...
while pc.working():
    r = pc.pyret()

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 77



Didactic Presentations The NEURON Simulation Environment

Page 78 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Supercomputer exercise

(using SDSC’s Trestles machine)

http://www.sdsc.edu/us/resources/trestles/

The course has 200,000 cpu hours available

SDSC > User Support >   Compute and Data Resource Guides >   Trestles User Guide  

Trestles User Guide: Technical Summary

Trestles is a dedicated XSEDE cluster designed by Appro and SDSC consisting of 324 compute nodes.

Each compute node contains four sockets, each with a 8-core 2.4 GHz AMD Magny-Cours processor, for

a total of 32 cores per node and 10,368 total cores for the system. Each node has 64 GB of DDR3 RAM,

with a theoretical memory bandwidth of 171 GB/s. The compute nodes are connected via QDR InfiniBand

interconnect, fat tree topology, with each link capable of 8 GB/s (bidrectional). Trestles has a theoretical

peak performance of 100 TFlop/s.

System Component Configuration

AMD Magny-Cours Compute Nodes

Sockets 4

Cores 32

Clock speed 2.4 GHz

Flop speed 307 Gflop/s

Memory capacity 64 GB

Memory bandwidth 171 GB/s

STREAM Triad bandwidth 100 GB/s

Flash memory (SSD) 120 GB

Full System

Total compute nodes 324

Total compute cores 10,368

Peak performance 100 Tflop/s

Total memory 20.7 TB

Total memory bandwidth 55.4 TB/s

Total flash memory 39 TB

QDR InfiniBand Interconnect

Topology Fat tree

Link bandwidth 8 GB/s (bidirectional)

Peak bisection bandwidth 5.2 TB/s (bidirectional)

MPI latency 1.3 µs

DISK I/O Subsystem

File Systems NFS, Lustre

Storage capacity (usable)

150 TB: Dec 2010

2 PB: June 2011

4 PB: July 2012

I/O bandwidth 8 GB/s

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 79



Didactic Presentations The NEURON Simulation Environment

alias trestles=’ssh train31@trestles.sdsc.edu’

In .bashrc
module load pgi mvapich2
export PATH=/home/train31/neuron/mpi/x86_64/bin:$PATH

Or build NEURON yourself from sources and use
export PATH=$HOME/neuron/mpi/x86_64/bin:$PATH

NEURON sources come from
cd $HOME/neuron
hg clone http://www.neuron.yale.edu/hg/neuron/nrn
cd nrn
sh build.sh

If mercurial or autotools cannot be made available
then get sources as latest tar.gz file from
http://www.neuron.yale.edu/ftp/neuron/versions/alpha/
and
tar xzf nrn*.tar.gz
mv nrn−7.2 nrn

Page 80 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

I encapsulate the configure;make;make install in a
shell script as sometimes the configure can be very
complex.

[train31@trestles ~]$ cat notes
#!/bin/sh
#building neuron. sources in $HOME/neuron/nrn
#build and install in $HOME/neuron/mpi

#assume previous ’module load pgi mvapich2’

cd $HOME/neuron/mpi

../nrn/configure −−prefix=‘pwd‘ −−without−x −−without−memacs \
 −−with−paranrn −−with−nrnpython \
 CC=pgcc CXX=pgCC MPICC=mpicc MPICXX=mpicxx

make −j 4 install

time sh notes
...
161.878u 98.813s 1:53.76 229.1% 0+0k 0+0io 93pf+0w

Testing

[train31@trestles test]$ cat foo.mod
NEURON { SUFFIX nothing }

nrnivmodl

[train31@trestles test]$ cat test0.hoc
objref pc
pc = new ParallelContext()
{printf("I am %d of %d\n", pc.id, pc.nhost)}
{pc.runworker()}
{pc.done()}
quit()

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 81



Didactic Presentations The NEURON Simulation Environment

[train31@trestles test]$ cat myjob
#!/bin/bash
# the queue to be used.
#PBS −q normal
# specify your project allocation
#PBS −A gue998
# number of nodes and number of processors per node requested
#PBS −l nodes=1:ppn=32
# requested Wall−clock time.
#PBS −l walltime=00:10:00
# name of the standard out file to be "output−file".
#PBS −o job_output
# name of the job
#PBS −N MPI_JOB
#PBS −V
cd $PBS_O_WORKDIR #change to the working directory
mpirun_rsh −np 32 −hostfile $PBS_NODEFILE nrniv −mpi test0.hoc

qsub myjob

also useful is ’qstat | grep train31’

[train31@trestles test]$ cat job_output
numprocs=32
I am 2 of 32
I am 3 of 32
I am 1 of 32
...
I am 20 of 32
I am 28 of 32
I am 29 of 32
Nodes:        trestles−2−24

Page 82 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 83



Didactic Presentations The NEURON Simulation Environment

Page 84 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

NEURON + Threads

Simulations on multicore desktops.

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 85



Didactic Presentations The NEURON Simulation Environment

Thread style in NEURON

void* step(NrnThread* nt) {
    ... nt−>id ...
}

run() {
  while (t < tstop) {
    multithread_job(step)
    plot()
  }
}

multithread_job(run)

run(NrnThread* nt) {
  while(t < tstop) {
    step(nt)
    barrier()
    if (nt−>id == 0) { plot() }
    barrier()
  }
}

Join

Condition Wait
We never use.

Reminiscent of MPI

Fixed step: t −> t + dt

setup triang bksub updatereduce
solve

cond
gates

S T R B U G

S U GT B

TS B U G

S T U GBR

Global var dt y’ = f() dy’/dy

27 ||Vector operations

Page 86 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

cache line
8 or 16 doubles

...
...

CPU 1

CPU 2

...
...

...
...

Ideal cache efficiency

10000 passive compartments
4 core 3GHz x86_64

1

2

4

8

Threads
Cache Efficiency

4.92

1.14

0.29

0.23

0.45

0.23

0.12

0.09

Off On

Runtime (s)

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 87



Didactic Presentations The NEURON Simulation Environment

Page 88 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 89



Didactic Presentations The NEURON Simulation Environment

Page 90 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

$ mkthreadsafe
NEURON {
        SUFFIX CAlM95
        USEION ca READ cai,cao WRITE ica
        RANGE  gbar,ica
        GLOBAL minf,tau
}
Translating CAlM95.mod into CAlM95.c
Notice: Assignment to the GLOBAL variable, "minf", is not thread safe
Notice: Assignment to the GLOBAL variable, "tau", is not thread safe
Force THREADSAFE? [y][n]: n

DERIVATIVE state {
        rate(v)
        m’ = (minf − m)/tau
}

        LOCAL a
        a    = alp(v) 
        tau  = 1/(tfa*(a + bet(v)))
        minf = tfa*a*tau
}

PROCEDURE rate(v (mV)) {

Force THREADSAFE? [y][n]: n
y

NEURON {
    THREADSAFE
        SUFFIX CAlM95
        USEION ca READ cai,cao WRITE ica
        RANGE  gbar,ica
        GLOBAL minf,tau
}

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 91



Didactic Presentations The NEURON Simulation Environment

$ mkthreadsafe
NEURON {
        POINT_PROCESS GABAa
        POINTER pre
        ...
}
        VERBATIM
        return 0;
        ENDVERBATIM
Translating gabaa.mod into gabaa.c
Notice: Use of POINTER is not thread safe.
Notice: VERBATIM blocks are not thread safe
Notice: Assignment to the GLOBAL variable, "Rtau", is not thread safe
Notice: Assignment to the GLOBAL variable, "Rinf", is not thread safe
Force THREADSAFE? [y][n]: n

Page 92 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 93



Didactic Presentations The NEURON Simulation Environment

Page 94 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 95



Didactic Presentations The NEURON Simulation Environment

Page 96 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

The NEURON Simulation Environment Slide 1

Initialization, broadly speaking:

We want to get the same result every time we click on
Init & Run, no matter what we did before

Note: this presentation explicitly omits details of initialization 
of ionic concentrations and equilibrium potentials

Copyright © 1998−2003 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Slide 2

Initialization should assign values at t = 0 for
membrane potential

gating states
ionic concentrations
chemical kinetic states
voltage across capacitors in linear circuits
internal states of op amps
random number generators

and properly configure
event queues
vector record and play
counters

Copyright © 1998−2003 N.T. Carnevale and M.L. Hines, all rights reserved

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 97



Didactic Presentations The NEURON Simulation Environment

The NEURON Simulation Environment Slide 3

NEURON’s finitialize()
" sets t  = 0

" clears event queue

" sets up internal data structures that depend on topology and geometry

" initializes Vector.play  controller

" delivers events whose delivery time is 0

" if finitialize  was called with v_init  argument, sets v  in all compartments to v_init

" calls INITIAL  block of every inserted mechanism in every segment

" if extracellular  is used, sets vext  to 0

" initializes ions; calculates equilibrium potentials if necessary

" initializes mechanisms that WRITE ion concentrations; recalcs equilib potentials as needed

" calls all other INITIAL  blocks

" initializes LinearMechanism  states

" calls INITIAL  blocks inside NET_RECEIVE blocks; if this spawns network events, delivers any
whose delay is 0 to their target NET_RECEIVE blocks

" if fixed time step integrator is used, calls all BREAKPOINT blocks

" initializes adaptive integrator (if being used)

" intializes any cvode.record  and vector.record  recordings

Copyright © 1998−2003 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Slide 4

Default initialization: the standard run library
nrn/share/nrn/lib/hoc/stdrun.hoc

(MSWin: c:\nrn\lib\hoc\stdrun.hoc )

stdinit()

Called when you 
click on Init  or Init & Run  in the RunControl
or
enter a new value for v_init  in the Init  button’s field editor

proc stdinit() {
  realtime=0  // "run time" in seconds
  startsw()   // initialize run time stopwatch
  setdt()
  init()
  initPlot()
}

Copyright © 1998−2003 N.T. Carnevale and M.L. Hines, all rights reserved

Page 98 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

The NEURON Simulation Environment Slide 5

init()

Most customizations are made here

proc init() {
  finitialize(v_init)
  // User−specified customizations go here.
  // If this invalidates the initialization of 
  // variable dt integration and vector recording,
  // uncomment the following code.
  /*
  if (cvode.active()) { 
    cvode.re_init()
  } else {
    fcurrent()
  }
  frecord_init()
  */
}

Copyright © 1998−2003 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Slide 6

INITIAL  blocks in NMODL

HH−like mechanisms

PROCEDURE rates(v(mv)) {
  minf = alpha(v)/(alpha(v) + beta(v))
  . . .
}
  . . .

INITIAL {
  rates(v)
  m = minf
  . . .
}

Copyright © 1998−2003 N.T. Carnevale and M.L. Hines, all rights reserved

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 99



Didactic Presentations The NEURON Simulation Environment

The NEURON Simulation Environment Slide 7

Kinetic schemes

INITIAL {
  SOLVE scheme METHOD steadystate
}

e.g.
NEURON {
  USEION k READ ek WRITE ik
}
STATE { c1 c2 o }
INITIAL {
  SOLVE scheme METHOD steadystate
}
BREAKPOINT {
  SOLVE scheme METHOD sparse
  ik = gbar*o*(v − ek)
}
KINETIC scheme {
  rates(v) : calculate the 4 k rates.
  ~ c1 <−> c2 (k12, k21)
  ~ c2 <−> o ( k2o, ko2)
}

Copyright © 1998−2003 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Slide 8

Default initialization of STATEs

Use state0 , e.g.
PARAMETER {
  state0 = 1
}

or alternative syntax 
STATE {
  state START 1
}

It’s best to be explicit
INITIAL {
  m = m0
  h = h0
}

To make them visible from hoc

NEURON {
  GLOBAL m0
  RANGE h0
}

Copyright © 1998−2003 N.T. Carnevale and M.L. Hines, all rights reserved

Page 100 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

The NEURON Simulation Environment Slide 9

Typical custom initializations

Steady state
unperturbed system
system under constant voltage or current clamp

Defined starting point on a trajectory 
of an oscillating or chaotic system

Adjust parameters to meet some condition

How?
Use a custom init()  procedure.
Load after the standard library, so it won’t be overwritten.

Copyright © 1998−2003 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Slide 10

Initializing to steady state
"Travel into the past," take large steps with implicit Euler, then return to the present.
proc init() { local dtsav, temp
  finitialize(v_init)
  t = −1e10
  dtsav = dt
  dt = 1e9
  // if cvode is on, turn it off to do large fixed step
  temp = cvode.active()
  if (temp!=0) { cvode.active(0) }
  while (t<−1e9) {
    fadvance()
  }
  // restore cvode if necessary
  if (temp!=0) { cvode.active(1) }
  dt = dtsav
  t = 0
  if (cvode.active()) {
    cvode.re_init()
  } else {
    fcurrent()
  }
  frecord_init()
}

Copyright © 1998−2003 N.T. Carnevale and M.L. Hines, all rights reserved

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 101



Didactic Presentations The NEURON Simulation Environment

The NEURON Simulation Environment Slide 11

Initializing to a desired state
Especially useful for oscillating or chaotic models.

Run a "warmup simulation," then save all states
objref svstate, f
svstate = new SaveState()
svstate.save()

If desired, write state info to a file for future use
f = new File("states.dat")
svstate.fwrite(f)

To read from a file 
objref svstate, f
svstate = new SaveState()
f = new File("states.dat")
svstate.fread(f)

Copyright © 1998−2003 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Slide 12

Initializing to a desired state continued

A custom init() that restores saved states
proc init() {
  finitialize(v_init)
  svstate.restore()
  t = 0 // t is one of the "states"
  if (cvode.active()) {
    cvode.re_init()
  } else {
    fcurrent()
  }
  frecord_init()
}

Copyright © 1998−2003 N.T. Carnevale and M.L. Hines, all rights reserved

Page 102 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

The NEURON Simulation Environment Slide 13

Initializing to a particular resting potential

One approach: adjust the leakage equilibrium potential 
so that leakage current balances the other ionic currents 
when the cell is at the desired resting potential

Example: for a single compartment model with hh, 
proc init() {
  finitialize(v_init)
  el_hh = (ina + ik + gl_hh*v)/gl_hh
  if (cvode.active()) {
    cvode.re_init()
  } else {
    fcurrent()
  }
  frecord_init()
}

Copyright © 1998−2003 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Slide 14

Alternative strategy: add a mechanism that injects a constant current 
to balance the other currents.

Example:
NEURON {
  SUFFIX constant
  NONSPECIFIC_CURRENT i
  RANGE i, ic
}

UNITS {
  (mA) = (milliamp)
}

PARAMETER {
  ic = 0 (mA/cm2)
}

ASSIGNED {
  i (mA/cm2)
}

BREAKPOINT {
  i = ic
}

This needs a different custom init()  

Copyright © 1998−2003 N.T. Carnevale and M.L. Hines, all rights reserved

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 103



Didactic Presentations The NEURON Simulation Environment

The NEURON Simulation Environment Slide 15

Custom init()  to use with constant current mechanism:
proc init() {
  finitialize(−65)
  ic_constant = −(ina + ik + il_hh)
  if (cvode.active()) {
    cvode.re_init()
  } else {
    fcurrent()
  }
  frecord_init()
}

Copyright © 1998−2003 N.T. Carnevale and M.L. Hines, all rights reserved

Page 104 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 105



Didactic Presentations The NEURON Simulation Environment

Page 106 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 107



Didactic Presentations The NEURON Simulation Environment

Page 108 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 109



Didactic Presentations The NEURON Simulation Environment

Page 110 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 111



Didactic Presentations The NEURON Simulation Environment

Page 112 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 113



Didactic Presentations The NEURON Simulation Environment

Page 114 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 115



Didactic Presentations The NEURON Simulation Environment

Page 116 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved



The NEURON Simulation Environment Didactic Presentations

Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved Page 117



Didactic Presentations The NEURON Simulation Environment

Page 118 Copyright © 1998-2012 N.T. Carnevale and M.L. Hines, all rights reserved


