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Abstract

The increasing complexity of network models poses a growing computational burden. At the same time, computational neuroscientists are

finding  it  easier  to  access  parallel  hardware,  such  as  multiprocessor  personal  computers,  workstation  clusters,  and  massively  parallel

supercomputers. The practical question is how to move a working network model from a single processor to parallel hardware. Here we show

how to make this transition for models implemented with NEURON, in such a way that the final result will run and produce numerically

identical results on either serial or parallel hardware. This allows users to develop and debug models on readily available local resources, then

run their code without modification on a parallel supercomputer.
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1. Introduction

Over the past decade, network modeling has become a widely practiced research activity in computational neuroscience.

Investigators often find that they need to study larger and more complex networks, but storage and run time limitations may

prevent  them  from reaching  their  goals.  At  the  same time,  the  computer  industry  has  been  shifting  to parallel  computing

architectures, beginning with supercomputers in the early 1990s; by 2002 all but 7% of the "TOP500" list of high-performance

computers were parallel machines (Kirkpatrick, 2003). This shift is so pervasive that many academic institutions now have at

least one parallel supercomputer, and with device physics limitations nearly halting advances in processor speed in recent years

(Sutter, 2005), inexpensive multiprocessor desktop and laptop computers have become commonly available consumer goods.

The obvious solution to the challenge posed by large network models is to move to parallel simulations, in order to take

advantage of hardware with multiple processors and large amounts of total memory. Several studies have shown that distributing

network models over multiple processors can achieve significant speedups. For example, Migliore et al. (2006) introduced the

framework employed in NEURON for parallel simulations, and used published models to test its performance scaling. They

obtained large gains, with a linear speedup of simulation speed as the number of processors increased, until each processor had so

little work to do (~100 equations) that communication became rate limiting.

NEURON offers users the ability to parallelize network models while maintaining, as much as possible, a separation between

the specification of the network, i.e. all of the cells and all of the connections between them, and how the cells are distributed

among all the host CPUs. It is thus possible to write code that executes properly, without modification, in any serial or parallel

hardware environment, and produces quantitatively identical results regardless of the number of CPUs or which CPU handles

which cell. This means that users can develop and debug their models locally--on serial hardware, an ad hoc cluster of two or
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more PCs linked by ethernet, or a multiprocessor PC--and then switch to production runs on parallel hardware without having to

make further program modifications.

Here we illustrate how this is done by parallelizing two network models that have different architectures: a ring, and a net with

random connectivity. This paper is written from the perspective of UNIX/Linux, but the basic concepts that are involved, and all

NEURON programming issues, are independent of the operating system. Source code for the models described in this paper is

available from ModelDB (http://modeldb.yale.edu/) via accession number 96444.

2. Materials and Methods

The literature on parallel processing is full of "terms of art," such as CPUs, cores, processors, processing units, nodes, and

hosts, but unfortunately these are not used synonymously by everyone. In this paper we define the number of processing units in a

computer to be the number of programs that can be executed simultaneously. For the sake of convenience, we refer to each

processing unit as a processor, so what is commonly called a "dual core, dual processor" PC has four processing units, or four

processors. When a processor is part of a parallel computing architecture, it is called a host. Note that the latter differs from the

usage of host in discussions of computer networking, where it refers to an individual server or workstation.

2.1 Installation and configuration of software

2.1.1 Installing and testing MPI

For parallel simulations, installation of NEURON requires a pre-existing installation of MPI-1.1 (Message Passing Interface)

standard or greater. MPI almost certainly exists on any parallel hardware that accepts remote login clients. The easiest way to find

out if MPI has already been installed is to ask the system administrator. Otherwise, with a UNIX command line, these statements

which mpicc

which mpic++ # or mpicxx, mpiCC, ...

will at least tell if it is in one's PATH.

Individuals who have multiprocessor workstations, or who wish to configure their own private workstation cluster, have a

variety of choices of open source implementation of the MPI standard. For example one can obtain MPICH2 from http://www-

unix.mcs.anl.gov/mpi/mpich2/.

Unfortunately, the syntax for launching a program is different for every implementation of MPI, and also depends on the

nature  of  the  parallel  hardware,  i.e.  supercomputer,  workstation  cluster,  or  standalone  multiprocessor  personal  computer.

Furthermore,  the  launch process  itself  is  often encapsulated  in batch queue control  programs,  e.g.  LoadLeveler, PBS,  etc..

Regardless of the details, the underlying principles are the same, but for the sake of illustration it is helpful to have a concrete

example, so we will assume the simplest case: MPICH2 on a standalone multiprocessor personal computer.

With the proviso that versions and README instructions may change, this sequence of commands will download and install

MPICH2 

curl http://www-unix.mcs.anl.gov/mpi/mpich2/downloads\

    /mpich2-1.0.6p1.tar.gz > mpich2-1.0.6p1.tar.gz

tar xzf mpich2-1.0.6p1.tar.gz

cd mpich2-1.0.6p1

./configure --prefix=$HOME/mpich2 --with-device=ch3:nemesis

make

make install

export PATH=$HOME/mpich2/bin:$PATH

(the  nemesis device  specified  in  the  configure line  provides  very  much  faster  communication  for  shared  memory

multiprocessors than does the default  socket device). Setting up a cluster that has several hosts will also probably involve

creating a file that lists those hosts. Also, before testing on a workstation cluster that has a shared file system, make sure that it is

possible to login to any node using ssh without a password, e.g. ssh `hostname` . If not, 

ssh-keygen -t rsa

cd $HOME/.ssh; cat id_rsa.pub >> authorized_keys

It may also be necessary to explicitly set permissions on the authorized_keys file

chmod 600 .ssh/authorized_keys
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Of course, proper functioning of the installed software should be verified. It must be possible to start, query, and stop the MPI

daemon

$ mpdboot

$ mpdtrace

localhost

$ mpdallexit

(listings that combine user entries and computer responses use  $ to  denote the system prompt, display user entries in  bold

monospace, and show computer responses as plain monospace). In addition, it is a good idea to build and run one or more of

the test programs that are distributed with MPICH2, such as cpi_anim.

$ cd $HOME/mpich2/share/examples_graphics

$ make

$ mpiexec -np 4 cpi_anim

Process 0 on localhost.localdomain

Process 2 on localhost.localdomain

Process 3 on localhost.localdomain

Process 1 on localhost.localdomain

pi is approximately 3.1416009869231249, Error is 0.0000083333333318

wall clock time = 0.041665

Observe that the -np 4 argument caused four processes to be launched. Ordinarily, the chosen number of processes will match

the number of processing units. However, to check that things are working properly, it is very useful to test with a single process

(-np 1). If the processes have a very wide range of run times, it may be useful to launch many more processes than there are

processing units, thereby letting the operating system balance the problem.

2.1.2 Building and testing NEURON

This sequence of commands will download and install NEURON 6.0 and InterViews 17:

mkdir $HOME/neuron

cd $HOME/neuron

# download and install InterViews

# unnecessary if you will only run in batch mode

curl http://www.neuron.yale.edu/ftp/neuron/versions/v6.0/iv-17.tar.gz | tar xzf

cd iv-17

./configure --prefix=`pwd`

make

make install

cd ..

# download and install NEURON

curl http://www.neuron.yale.edu/ftp/neuron/versions/v6.0/nrn-6.0.tar.gz | tar xzf

cd nrn-6.0

# if InterViews is not installed, replace "--with-iv..." with "--without-x"

./configure --prefix=`pwd` --with-iv=$HOME/neuron/iv-17 with-paranrn

make

make install

export CPU=i686 # or perhaps x86_64--to decide which you have,

                # list the directory, or run ./config.guess

export PATH=$HOME/neuron/iv-17/$CPU/bin:$HOME/neuron/nrn-6.0/$CPU/bin:$PATH

NEURON is distributed with several test programs that are located in nrn-x.x/src/parallel, where  x.x is the version

number. The simplest is test0.hoc 

objref pc

pc = new ParallelContext()

strdef s

{

system("hostname", s)

printf("There are %d processes. My rank is %d and I am on %s\n" pc.nhost, pc.id, s)

}
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{pc.runworker()}

{pc.done()}

quit()

pc.nhost is a synonym for the number of processes, i.e. the value of the -np argument. pc.id is a synonym for the MPI rank of

a process, and ranges from 0 to pc.nhost-1. Running test0.hoc under MPI with -np 4 

$ cd src/parallel

$ mpiexec -np 4 $HOME/neuron/nrn-6.0/$CPU/bin/nrniv -mpi test0.hoc

should generate this output on a "dual core, dual processor" PC 

There are 4 processes. My rank is 0 and I am on localhost.localdomain

There are 4 processes. My rank is 1 and I am on localhost.localdomain

There are 4 processes. My rank is 2 and I am on localhost.localdomain

There are 4 processes. My rank is 3 and I am on localhost.localdomain

Note the  -mpi switch in the command line, which tells NEURON that it is running in parallel mode, so that each process is

assigned a different rank. Trying again but omitting -mpi 

$ mpiexec -np 4 $HOME/neuron/nrn-6.0/$CPU/bin/nrniv test0.hoc

makes NEURON run in serial mode, so the four processes will execute with no communication between them, and NEURON sets

pc.id to 0 and pc.nhost to 1 

There are 1 processes. My rank is 0 and I am on localhost.localdomain

There are 1 processes. My rank is 0 and I am on localhost.localdomain

There are 1 processes. My rank is 0 and I am on localhost.localdomain

There are 1 processes. My rank is 0 and I am on localhost.localdomain

One small but very practical issue deserves mention: NEURON has many commonly used procedures and methods that return

a  numerical  result  which  is  printed  to  standard  output  when  they  are  executed  at  the  top  level  of  the  interpreter,  e.g.

load_file(), system(), pc.runworker(). This may be helpful for development and debugging, but can be a big nuisance

when a program runs in parallel mode on more than a few processors. Printing of dozens (or thousands) of lines of 0s and 1s can

be suppressed by surrounding offending statements with pairs of curly brackets, as in 

{pc.runworker()}

2.2 Important concepts

NEURON uses  an  event  delivery  system  to  implement  spike-triggered  synaptic  transmission  between  cells  ((Hines  and

Carnevale, 2004), chapter 10 in (Carnevale and Hines, 2006)). In the simplest case on serial hardware, the connection between a

spike source (presynaptic cell) and its target is made by executing a statement of the form 

nc = new NetCon(source, target)

This  creates  an  object  of  the  NetCon (Network  Connection)  class,  which monitors  a  source  (presynaptic  cell)  for  spikes.

Detection of a spike launches an event which, after an appropriate delay, will be delivered to the NetCon's target. The target is

either an artificial spiking cell or a synaptic mechanism attached to a biophysical model cell (Fig. 2.1; also see Fig. 3.2). In either

case, delivery of the event causes some change in the postsynaptic cell.

The basic problem that has to be overcome in a parallel simulation environment is that the source cell and its target usually do

not exist on the same host. The solution is to give each cell (spike source) its own global identifier (gid) that can be referred to by

every host. Then, if a presynaptic cell on one host generates a spike, a message that notes the gid and time of the spike will be

passed to all other hosts. NetCons on those hosts that have this gid as their source will then deliver events to PreCell's targets with

appropriate delays and weights (Fig. 2.2).

Synapses usually far outnumber spike sources, but fortunately synapse identifiers are unnecessary because we use a target-

centric strategy to set up network connections. That is, each host is asked to execute the following conceptual task

for each cell c on this host {

for each spike source gid s that targets c {

set up a connection between spike source s and the proper target synapse on c

}

}
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PreCell PostCell
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target

NetCon
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source
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PostCell

target
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Host 2 Host 4

Figure  2.1.  A  NetCon attached to  the presynaptic  neuron  PreCell detects

spikes  at  the  location  labeled  source,  and  delivers  events  to  the  synapse

target which is attached to the postsynaptic neuron PostCell.

Figure 2.2. A presynaptic spike source PreCell with gid = 7 is on host 2, but

its  target  is  a  synapse  attached to  PostCell on  host  4. If  PreCell spikes,  a

message is  passed to  all  hosts  so  that  NetCons that  have gid  7  as their

source will deliver events to their targets.

3. First example: a ring network

A good strategy for developing parallel network models is to first create a scalable serial implementation, and then transform

the implementation into a parallel form. The basic steps in constructing any network model are to define the cell types, create

instances of the cells, and finally to connect them together. For our first example of how to do this with NEURON, we imagine 20

cells connected in a ring where cell i projects to cell i+1, and the last cell (cell 19) projects to the first cell (cell 0) (Fig. 3.1). For

didactic purposes we give each cell some structure consisting of a soma and a dendrite, as in the classical ball and stick model

(Fig. 3.2). The soma has Hodgkin-Huxley channels so that it can generate spikes. The dendrite is passive, with an excitatory

synapse attached to it. Activating the synapse produces a large enough depolarization to trigger a somatic spike.

3.1 Define the cell type

To define  a  cell  type,  one would  either  write  hoc code,  or  use  the  Network  GUI  tools  as  described  in  the  tutorial  at

http://www.neuron.yale.edu/neuron/docs/netbuild/main.html, then export a hoc file and extract the cell type definition from it as

described in chapter 11 of The NEURON Book (Carnevale and Hines, 2006). In either case, the essential elements of a cell type

are its morphology and distributed membrane properties. It is also generally convenient to specify the location of the spike trigger

zone, and the threshold for spike detection (see Fig. 3.2), which are almost always the same for all cells of a given type. This

makes it easier to implement a source.connect2target procedure for connecting cells with simple syntax. 
0 119

     

0 5 10 15 20

−80

−40

0

40

B_BallStick[0].soma.v( 1 )

Fig. 3.1. A network of 20 ball and stick cells arranged in a ring. Each cell  i
makes an excitatory synaptic connection to the middle of the dendrite of cell

i+1, except for cell 19 which projects back to cell 0.

Fig. 3.2. Left: A ball and stick model cell driven by an excitatory synapse at

the middle of its dendrite. Right: Effects of weak and strong synaptic inputs

on membrane potential v observed at the junction of the dendrite and soma,

where a NetCon is attached whose threshold is 10 mV (dashed line).

The strong input elicits a spike, making v cross the NetCon's threshold in a

positive-going  direction  (arrow)  so  that  an  event  will  be  sent  to  the

NetCon's target.

3.1 Define the cell type

To define  a  cell  type,  one would  either  write  hoc code,  or  use  the  Network  GUI  tools  as  described  in  the  tutorial  at

http://www.neuron.yale.edu/neuron/docs/netbuild/main.html, then export a hoc file and extract the cell type definition from it as

described in chapter 11 of The NEURON Book (Carnevale and Hines, 2006). In either case, the essential elements of a cell type

are its morphology and distributed membrane properties. It is also generally convenient to specify the location of the spike trigger

zone, and the threshold for spike detection (see Fig. 3.2), which are almost always the same for all cells of a given type. This

makes it easier to implement a source.connect2target procedure for connecting cells with simple syntax. 
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Synapses are a different matter. The question is whether, apart from toy networks, it is possible to construct all synapses with

proper locations and types when a cell is created, without regard to what the connections are going to be. If synapse properties

depend in any way upon the source cell type and location, it will be simpler to create the synapse at the same time as the NetCon.

In any event, it is useful for each cell instance to have a list that holds the synaptic instances.

For  this  example  we can just  extract the  template that  defines  the  B_BallStick cell type from the  tutorial  example at

http://www.neuron.yale.edu/course/net2/net2run_.hoc .  Reading through the  template  (Listing 1), we find that  it follows our

recommendations  with  regard  to  specifying  the  spike  trigger  zone  and  detection  threshold;  obfunc connect2target()

contains the statements

soma nc = new NetCon(&v(1), $o1)

nc.threshold = 10

which specify the variable and location that is monitored for occurrence of a spike (membrane potential v at the 1 end of soma,

which also happens to be where the dendrite is attached), and the threshold at which the spike triggers an event (v rising above 10

millivolts). A bit farther into the listing, we discover that proc synapses() has this statement

/* E0 */   dend syn_ = new ExpSyn(0.8)  synlist.append(syn_)

where synlist is a public list that contains all synapses that are attached to a B_BallStick cell. In passing, we should mention

that:

1. The reversal potential e of this ExpSyn is left unchanged from its default value of 0 mV, so we know that ExpSyn is

excitatory.

2. geom_nseg() sets dend.nseg to 7 before synapses() is called (see proc init() for the execution sequence when

a new B_Ballstick is created), so the ExpSyn is actually located at 0.78571429 instead of 0.8.

3. If we were developing de novo, it would be essential to verify that the anatomical and biophysical properties are correct

and that the cell generates a spike when driven by activation of the excitatory synapse. However, from the tutorial

example, we already know that the B_Ballstick cell type works.

3.2 Serial implementation of the network

Listing 2 is a program that implements and exercises the network model in a manner that is suitable for execution on serial

hardware. For ease of development and debugging, the program has a modular structure with a sequence of procedures, each of

which has a particular purpose, and it makes extensive use of lists so that collections of objects can be treated as sets (see chapter

11 in (Carnevale and Hines, 2006)).

In broad outline, it starts by following the natural sequence of defining the cell types that are involved, creating the instances of

the cells, and then setting up the connections between them. The rest of the program is devoted to instrumentation (stimulating the

network and  recording the  times  at which cells fire),  simulation  control  (launching a  simulation for  a  specified time), and

reporting simulation results (printing out which cell fired when).

We already discussed the definition of the cell type in the previous section. Since all cells are to exist on a single host, the

remaining tasks are quite straightforward. 

3.2.1 Creating and connecting the cells

A simple for loop in proc mkcells() is sufficient to create all instances of cells that will be part of the ring, and append

them to a list called cells. 

proc mkcells() {local i  localobj cell

  cells = new List()

  for i=0, $1-1 {

    cell = new B_BallStick()

    cells.append(cell)

  }

}

Another for loop in proc connectcells() iterates over the contents of this list to set up the network connections by creating

a NetCon for each cell  i that will drive  the excitatory synapse on cell  i+1, and wraps around so that the last cell in the ring

drives the synapse on the first cell. These NetCons are appended to another list called nclist.

proc connectcells() {local i  localobj src, target, syn, nc

  nclist = new List()
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  for i=0, cells.count-1 {  // iterating over sources

    src = cells.object(i)

    target = cells.object((i+1)%cells.count)

    syn = target.synlist.object(0)  // the first object in synlist is an ExpSyn with e = 0,

                                    //  i.e. an excitatory synapse

    nc = src.connect2target(syn)

    nclist.append(nc)

    nc.delay = 1

    nc.weight = 0.01

  }

}

Note that the iteration in connectcells() is source-centric, i.e. each new i is treated as the index of a source cell, so that the

index of its target is i+1 modulo NCELL. We could just as easily have used a target-centric strategy by treating i as the index of a

target, and found the index of the source as  i-1 modulo  NCELL. In either case, the computational effort would have been the

same.  However,  in  a  parallel  environment  the  choice  of  source-centric  vs.  target-centric  iteration  has  a  bearing  on  setup

efficiency; we will return to this later.

3.2.2 Instrumentation and simulation control

Stimulation is achieved by  proc mkstim(), which creates a  NetStim that will generate a single spike event source and

attaches it via a NetCon to the excitatory synapse on cell 0. Recording of spike times is set up by proc spikerecord(), which

uses the  NetCon class's  record() method to capture spike times to a  Vector. Simulation control makes use of the  run()

procedure which is part of NEURON's standard run system, and proc spikeout() handles printout of spike times. 

3.3 Transforming the implementation from serial to parallel

A parallel implementation of the ring network is presented in Listing 3. Creating an instance of the ParallelContext class

gives us access to the methods that support the ideas discussed in 2.2 Important concepts. We will discuss these methods as they

come up in the revised implementation of our model network. 

Note the use of curly brackets around  load_file() to suppress printing of superfluous 0s and 1s to standard output, as

mentioned at the end of 2.1.2 Building and testing NEURON. This has also been done to several ParallelContext method calls

near the end of the listing.

3.3.1 Creating the cell instances

For the sake of illustration, the parallel implementation of  mkcells() is excerpted here with a  bold monospace typeface

that marks changes from the serial implementation. 

proc mkcells() {local i  localobj cell, nc, nil

  cells = new List()

  // each host gets every nhost'th cell, starting from the id of the host

  // and continuing until all cells have been dealt out

  for (i=pc.id; i < $1; i += pc.nhost) {

    cell = new B_BallStick()

    cells.append(cell)

    pc.set_gid2node(i, pc.id) // associate gid i with this host

    nc = cell.connect2target(nil) // attach spike detector to cell

    pc.cell(i, nc) // associate gid i with spike detector

  }

}

The for loop no longer iterates over all cells in the net; instead, on each host the for statement iterates  i over just those gid

values that belong on that host. In essence, this "deals out" the cells to the hosts, one at a time, so that the cells are distributed

more or less evenly over the hosts. In the end, each host will have its own cells list, which will be about 1/N as long as the

cells list in the serial implementation.

The for loop also associates each gid with a spike source on a particular host. In principle this could be done with a single

primitive method, but for the sake of flexibility the process has been divided into three steps. First, we call set_gid2node() on

the host that "owns" the cell to associate the cell's gid with the  id of  the host.  Second, we create a temporary  NetCon that
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specifies the location of the spike detector on the cell; this NetCon does not need to have a real target. Third, we use pc.cell()

to associate the spike detector location with the gid. Note that the gid of a cell's spike detector will have the same value as the

index of that cell in the cells list of the original serial implementation, and since there is only one spike detector per cell, we can

use the gids to refer to individual cells. If the number of hosts is N, the mapping of cells to hosts will be as shown in Table 1.

Table 1.

The mapping of cells to hosts in this example. There are

N hosts whose ids range from 0 to N - 1, and the gids are

the global identifiers of the cells.

host id gid

0 0, N, 2N . . .

1 1, 1 + N, 1 + 2N . . .

� �

N - 1 N - 1, 2N - 1, 3N - 1 . . .

3.3.2 Setting up the network connections

In the serial program, when we made connections between cells i and i+1, we were able to exploit the cells list as a map

between index integers and the corresponding cell objects. This is not possible in the parallel implementation because the indices

of  cells no longer have that meaning; as noted above, each host has its own cells list, which contains just those cells that

belong to that host.

Parallelizing this model requires several changes to  connectcells(), all of which are direct consequences of the need to

refer to cells by their gids instead of cells list indices (revisions indicated by bold monospace typeface).

proc connectcells() {local i, targid  localobj src, target, syn, nc

  nclist = new List()

  for i=0, NCELL - 1 {  // iterating over source gids

    targid = (i+1)%NCELL

    if (!pc.gid_exists(targid)) { continue }

    target = pc.gid2cell(targid)

    syn = target.synlist.object(0)  // the first object in synlist is an ExpSyn with e = 0,

                                    //  i.e. an excitatory synapse

    nc = pc.gid_connect(i, syn)

    nclist.append(nc)

    nc.delay = 1

    nc.weight = 0.01

  }

}

The first significant change is that the  for statement, which iterates over all spike source gids, must use  NCELL (the total

number of cells in the net) instead of cells.count to specify the number of iterations.

The simple rule that defined the architecture of the ring network must now be expressed in terms of gids, hence targid = (i

+1)%NCELL where  i is the  gid of a source and  targid is the  gid of the corresponding target. Also, before trying to set up a

synaptic connection on any host, we verify that targid belongs to a cell that actually exists on that host by executing

if (!pc.gid_exists(targid)) { continue }

If the target cell does not exist, the remaining statements inside the for loop will be skipped. Otherwise, gid2cell() gets an

objref for the cell, which is used to get an objref for the synapse that is to receive events from the spike source. The last

change in connectcells() is to use gid_connect(), which creates a NetCon that conveys events from spike source gid i to

target synapse syn.

Earlier  we noted that  the  computational  effort  required to set  up a  serial  implementation  of  this  network was the  same

regardless of whether the for loop iterated over sources or targets. On parallel hardware, however, it is less efficient to iterate

over sources. In this particular example, each host must iterate over all source gids in order to find the gids of the targets that

exist. The penalty is small because it doesn't take that much time to increment i from 0 to NCELL-1, generate the target's gid, and

check to see if that gid exists, but as a rule it is better for each host to iterate over the targets that exist on itself. Later in this paper

we will present a strategy for doing this.
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3.3.3 Instrumentation

As in the serial implementation, stimulation is accomplished by a NetStim that sends a single event to the excitatory synapse

on the first cell in the net, i.e. the cell whose gid is 0. This NetStim, and the NetCon that delivers its event, need to exist only on

the host that has the first cell, so we have inserted 

if (!pc.gid_exists(0)) { return }

at the start of proc mkstim() so that nothing is done on the hosts that do not have this cell. We also changed the statement that

creates the NetStim so that it uses gid 0 to retrieve the cell's objref 

ncstim = new NetCon(stim, pc.gid2cell(0).synlist.object(0))

Also  as  in the  serial  implementation, the  NetCon class's  record() method is  used to  capture  the  spiking  of  the  ring

network's cells into a pair of Vectors. However, each host can only record the spike times of the cells that exist on itself, so each

host must have its own tvec and idvec to hold the spike times and corresponding cell  gids. Furthermore, the  for loop must

iterate over all cells on any particular host, which is the same as all items in that host's cells list. Finally, we must remember to

record the cell's gid, which is unique to each cell, not its index i into the cells list. Consequently the record() statement must

be changed to 

nc.record(tvec, idvec, nc.srcgid)

where the NetCon class's srcgid method is used to retrieve the gid of the spike source to which a NetCon is attached.

3.3.4 Simulation control

With the serial implementation, it is only necessary to specify the duration tstop of a simulation, and then call the standard

run system's run(). In turn, run() calls stdinit() which initializes the model, and continuerun(tstop) which carries out

the simulation per se.

Simulations of distributed network models require replacing  run() by three statements. The first is  pc.set_maxstep(),

which examines all connections between cells on different hosts (i.e.  the delays of all  NetCons that were created by calling

gid_connect()) to find the minimum delay, then sets the maximum integration step size on every host to that value (but not

greater than the value of its argument). The second statement is just  stdinit() which initializes the model, and the third is

pc.psolve(tstop) which has an effect similar to  cvode.solve(tstop), i.e.  integrates until its step passes  tstop, then

interpolates the values of the states at exactly tstop and calls the functions necessary to update the assigned variables.

3.3.5 Reporting simulation results

Simulations on parallel hardware are generally done in batch mode with no graphical user interface, and typically produce a

large volume of data that must be stored for later analysis. For this toy example, we will just dump the spike times and cell gids to

the terminal.

The serial version collects all spike times and cell ids in a pair of Vectors called tvec and idvec, in the sequence in which

the spikes occurred. The spikeout() procedure prints a header, then uses a for loop to print out all contents of these Vectors,

e.g.
time     cell

2.05     0

5.1      1

8.15     2

 . . .

96.6     11

99.65    12

However, in the parallel version each host has its own tvec and idvec, which can only capture the spike times and gids of the

cells that exist on that host. Printing out these results requires a nested pair of for loops: the outermost iterates over the hosts, and

the inner one iterates over the contents of the individual host's tvec and idvec. Special care must be taken or else each host will

compete to print its own tvec and idvec, scrambling the printout because  there is no guarantee as to which host starts printing

first, nor is there any protection against one host's output stream being interrupted at any arbitrary point by the output stream from

another host.

We can prevent this by forcing the parallel computer to emulate a serial computer while outputting simulation results. This is

done with the ParallelContext class's barrier() method, which makes hosts that are racing ahead wait until all other hosts

have caught up before proceeding further. The first pc.barrier() statement in spikeout() ensures completion of all printing
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that must be finished before the header is printed. The second one is the last statement in the outermost for loop, so that each

host has sufficient time to finish printing its spike times. These changes are shown below in bold monospace typeface. 

proc spikeout() { local i, rank

  pc.barrier() // wait for all hosts to get to this point

  if (pc.id==0) printf("\ntime\t cell\n") // print header just once

  for rank=0, pc.nhost-1 { // host 0 first, then 1, 2, etc.

    if (rank==pc.id) {

      for i=0, tvec.size-1 {

        printf("%g\t %d\n", tvec.x[i], idvec.x[i])

      }

    }

    pc.barrier() // wait for all hosts to get to this point

  }

}

The parallel version's printout will be grouped according to which cells are on which hosts, as in this run with four hosts

time     cell

2.05     0

14.25    4

26.45    8

38.65    12

 . . .

72.2     3

84.4     7

96.6     11

But all the spike times and cells are the same as in the serial implementation, as we can verify by capturing the outputs of the two

programs to files, sorting the parallel output, and comparing 

$ # numeric sort on spike time, then cell id

$ sort -n -k 1 -k 2 serout.txt > sorted_serout.txt

$ sort -n -k 1 -k 2 parout.txt > sorted_parout.txt

$ cmp sorted_serout.txt sorted_parout.txt

$

Further tests (results not shown) confirm that this program generates identical firing patterns regardless of the number of hosts.

It also produces the same firing patterns when run on a single processor PC without MPICH2.

4. Second example: a network with random connectivity

A recurring theme in computational modeling is randomness, which may be manifested in the model specification (anatomical

and biophysical attributes of cells, locations and properties of synapses, network topology and latencies of connections between

cells) or as stochastic perturbations of variables in the course of a simulation (noisy voltage or current sources, fluctuation of

model parameters such as ionic conductances, stochastic transmitter release or channel gating, spatiotemporally varying patterns
of afferent spike trains). It is essential to achieve statistical independence of such parameters, while at the same time ensuring

reproducibility--i.e. the ability to recreate any particular model specification and simulation--no matter how many hosts there are,

or how the cells are distributed over them. Being able to generate quantitatively identical results on parallel or serial hardware is

particularly important for debugging.

The key to achieving this goal is for each cell to have its own independent random number generator. This is the one thing that

will be the same regardless of the number of hosts and the distribution of cells. To see how this is done with NEURON, let us

consider a network with 20 cells in which each cell receives excitatory inputs from three other cells, chosen at random. The

network is perturbed by an excitatory input to the "first" cell at t = 0. The cells and synapses are identical to those used in the first

example (Fig. 3.2), so we can omit any discussion of cell types and focus on how to set up the network. 

4.1 Serial implementation of the network

The problem of achieving reproducible, statistically-independent randomness can be solved by assigning each cell its own

pseudorandom sequence generator, which is seeded with a unique integer so that the sequences will be independent. For this

model, the sequences will be used to select the presynaptic sources that target each cell. 
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The final implementation of a program to create this network on serial hardware is presented in Listing 4. The general outline

of this program is very similar to the serial implementation of the ring network, and many the details are identical (especially

simulation control and reporting results). There are some cosmetic differences, e.g. the renaming of the  mkring() procedure,

which is now called mknet() and new parameter declarations, e.g. C_E which defines the number of excitatory inputs per cell,

and connect_random_low_start_ which is the lower 32 bit seed for the pseudorandom sequence generators that determine

network connectivity. The most substantive changes, however, are those that we have focused on in the preceding paragraphs,

which fall into two categories. The first category is code that introduces randomness into the network architecture. The second

category, which is necessitated by the first, is code that analyzes and reports the network architecture. The following discussion

examines these changes and the rationale behind them.

4.1.1 Planning ahead: verification of network architecture

Verification of network architecture is a critical test of reproducibility. The ring network was so simple that we could write a

program whose correctness could be determined almost by inspection. For a random net it is  not enough to write code that

purports to set up connections according to our plan; we must also make sure that the resulting network really does meet our

design specifications. This can be done by exploiting the same NetCons that are used to set up the network connections. In the

serial implementation, they are all contained in a single  nclist, so we can iterate over the elements of this list and use the

NetCon class's precell() and syn() methods to discover the identities of each spike source - target pair. What we really want,

however, are the identities of the presynaptic cell, the synaptic mechanism that receives input events, and the postsynaptic cell to

which that mechanism is attached. We can get these if we add "synapse id" and "cell id" variables to the synaptic mechanisms,

and initialize the contents of these variables when each cell instance is created. With slight modification, this same strategy will

work for the parallel implementation.

The  original  ball  and  stick  model  cell  used  the  ExpSyn  synaptic  mechanism,  so  we  make  a  local  copy  of

nrn-6.0/src/nrnoc/expsyn.mod (c:\nrn60\src\nrnoc\expsyn.mod under MSWin), and change its NEURON block to 

NEURON {

:       POINT_PROCESS ExpSyn

        POINT_PROCESS ExpSid

        RANGE tau, e, i, sid, cid

        NONSPECIFIC_CURRENT i

}

and change its PARAMETER block to 

PARAMETER {

        tau = 0.1 (ms) <1e-9,1e9>

        e = 0   (mV)

        sid = -1 (1) : synapse id, from cell template

        cid = -1 (1) : id of cell to which this synapse is attached

}

(changes indicated in bold monospace). We also copy cell.hoc to a new file called cellid.hoc, then edit cellid.hoc to

change each appearance of  ExpSyn to  ExpSid in the template that defines the  B_BallStick class. Below in  4.1.4 Verifying

network architecture we will see how to use these changes to discover the architecture of a network after it has been set up.

4.1.2 Creating the cell instances

A first draft of the mkcells() procedure is very similar to what we used for the ring network, with two new statements that

associate each cell with a pseudorandom sequence generator.

proc mkcells() {local i  localobj cell

  cell = new List()

  ranlist = new List()

  for i=0, $1-1 {

    cell = new B_BallStick()

    cells.append(cell)

    ranlist.append(new RandomStream(i))

  }

}

Page 11



Preprint of Hines and Carnevale, J. Neurosci. Meth. 169:425-455, 2008.

Every time a new cell is created and appended to the  cells list,  a corresponding object of the  RandomStream class is also

created  and  appended  to  a  list  called  ranlist by  the  statement  ranlist.append(new RandomStream(i)).  The  file

ranstream.hoc, which is loaded near the beginning of the program, defines the  RandomStream class plus an integer called

random_stream_offset_ as shown here:

random_stream_offset_ = 1000

begintemplate RandomStream

public r, repick, start, stream

external random_stream_offset_

objref r

proc init() {

  stream = $1

  r = new Random()

  start()

}

func start() {

  return r.MCellRan4(stream*random_stream_offset_ + 1)

}

func repick() {

  return r.repick()

}

endtemplate RandomStream

From this we see that the for i=0, $1-1 { } loop in mkcells() creates a set of RandomStream objects whose MCellRan4

generators have highindex values which differ by unique integer multiples of 1000. To quote from the entry on MCellRan4 in

NEURON's online Programmer's Reference, "each stream should be statistically independent as long as the highindex values

differ by more than the eventual length of the stream". A difference of 1000 is more than enough for our purpose, because it is

only necessary to draw a few samples from each cell's random stream in order to determine the three cells that drive its excitatory

synapse. Note that the argument to  r.MCellRan4 is  1 +  stream*random_stream_offset_,  which is always > 0. This is

necessary because an argument of 0 would result in the system automatically choosing a highindex value that depends on the

number  of  instances  of  the  random  generator  that  have  been  created--an  undesirable  outcome  that  would  defeat  the

reproducibility that we are trying to achieve.

Of course we must also initialize the  sid and  cid variables that belong to the synaptic mechanisms, as discussed in the

previous section. This is done by inserting this for loop 

for j=0, cell.synlist.count-1 {

  cell.synlist.o(j).sid = j

  cell.synlist.o(j).cid = i

}

after the cells.append(cell) statement in mkcells(). This inner loop iterates over all synapses in a new cell's  synlist to

assign the appropriate values to their sids and cids.

4.1.3 Setting up the network connections

The algorithm for setting up this network's connections can be expressed in pseudocode as

for each cell c in the network {

repeat {

pick a cell s at random

if s is not the same as c {

if s does not already send spikes to the excitatory synapse syn on c {

set up a connection between s and syn

}

}

} until 3 different cells drive syn

}
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Note that the network architecture lends itself naturally to a target-centric approach, so the outer loop iterates over target cells.

This algorithm is implemented in connectcells(), which is excerpted here. Substantive differences from the ring network's

connectcells() are in bold monospace.

proc connectcells() {local i, nsyn, r  localobj src, syn, nc, rs, u

  mcell_ran4_init(connect_random_low_start_)  // initialize the pseudorandom number generator

  u = new Vector(NCELL)  // for sampling without replacement

  nclist = new List() 

  for i=0, cells.count-1 { 

    // target synapse is synlist.object(0) on cells.object(i) 

    syn = cells.object(i).synlist.object(0)

    rs = ranlist.object(i)  // the corresponding RandomStream 

    rs.start() 

    rs.r.discunif(0, NCELL-1)  // return integer in range 0..NCELL-1 

    u.fill(0)  // u.x[i]==1 means spike source i has already been chosen

    nsyn = 0 

    while (nsyn < C_E) { 

      r = rs.repick() 

      // no self-connection, & only one connection from any source 

      if (r != i) if (u.x[r] == 0) { 

        // set up connection from source to target 

        src = cells.object(r) 

        nc = src.connect2target(syn) 

        nclist.append(nc) 

        nc.delay = 1 

        nc.weight = 0.01 

        u.x[r] = 1 

        nsyn += 1 

      } 

    } 

  } 

} 

The outer loop is a for loop that marches through the list of cells, one cell at a time. On each pass, the local object reference

syn is made to point to the excitatory synapse of the current target cell, and the u Vector's elements and the "connection tally"

nsyn are all set to 0. The inner loop is a while loop that repeatedly

� picks a new random integer  r from the range [0,  cells.count - 1] until it finds an  r that {is not the index of the

current target cell} and {is not the index of a cell that has already been connected to syn}

� creates a new NetCon nc that connects cell r's spike source to syn, and appends nc to nclist

� sets the corresponding element of the u Vector to 1 and increases the synapse count nsyn by 1

until nsyn equals the desired number of connections C_E.

4.1.4 Verifying network architecture

The network architecture is analyzed by tracenet(). This procedure iterates over each NetCon in  nclist to retrieve and

report the source cell id, target cell id, and target synapse id information for every network connection, using information that

was stored in the network's cells and synaptic mechanisms at the time they were created.

proc tracenet() { local i  localobj src, tgt

  printf("source\ttarget\tsynapse\n")

  for i = 0, nclist.count-1 {

    src = nclist.o(i).precell

    tgt = nclist.o(i).syn

    printf("%d\t%d\t%d\n", src.synlist.o(0).cid, tgt.cid, tgt.sid)

  }

}

For our random net, the output of tracenet() is

source  target  synapse

12      0       0
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16      0       0

17      0       0

9       1       0

16      1       0

 . . .

10      18      0

5       19      0

15      19      0

13      19      0

which immediately confirms that 

� each target cell receives only three streams of spike events

� all events are delivered to the excitatory synapse

� there is no obvious regularity to the pattern of connectivity

4.1.5 Instrumentation, simulation control, and reporting simulation results

Here the only difference from the code used for the ring network is in the spikerecord() procedure. With the ring network,

it was acceptable to let the for loop run from 0 to nclist.count-1 because nclist.count was identical to cells.count.

However, the random network has more connections than cells, so this loop must stop at cells.count-1.

4.2 A parallel implementation with reproducible randomness

As with the parallelized ring network model, the code starts by creating an instance of the ParallelContext class and uses

curly brackets to suppress printing of unwanted results (see Listing 5).

4.2.1 Creating the cell instances

The parallelized mkcells() procedure for the random net is excerpted here, with differences from the serial implementation

indicated by bold monospace. 

proc mkcells() {local i  localobj cell, nc, nil 

  cells = new List() 

  ranlist = new List() 

  gidvec = new Vector()

  for (i=pc.id; i < $1; i += pc.nhost) { 

    cell = new B_BallStick()

    cells.append(cell) 

    for j=0, cell.synlist.count-1 {

      cell.synlist.o(j).sid = j

      cell.synlist.o(j).cid = i

    }

    pc.set_gid2node(i, pc.id)  // associate gid i with this host 

    nc = cell.connect2target(nil)  // attach spike detector to cell 

    pc.cell(i, nc)  // associate gid i with spike detector 

    ranlist.append(new RandomStream(i))  // ranlist.o(i) corresponds to cell associated with gid i

    gidvec.append(i) 

  } 

  report_gidvecs()

} 

Most of these differences are similar to what we did with the ring network: a for loop deals out the cells across the hosts, so that

each host gets every nhost'th cell, starting from the id of the host and continuing until no more cells are left. Each host has its own

cells list to hold the cells that belong to it, plus a ranlist to hold the corresponding RandomStream objects. Two statements

have been added so that each host also has a Vector called gidvec. The elements of gidvec are the gids that correspond to the

cells in the cells list; in the next section we will see that this simplifies the task of setting up the network connections. Creating a

cell involves appending it to the cells list, initializing the sids and cids that belong to its synapses, attaching a spike detector

(NetCon) to it, associating a unique gid with the spike detector and with the host to which the cell belongs, creating a new

RandomStream object and appending it to ranlist, and appending the gid to gidvec.

Page 14



Preprint of Hines and Carnevale, J. Neurosci. Meth. 169:425-455, 2008.

For the sake of debugging and development, we have added a purely diagnostic report_gidvecs() that is called at the end

of mkcells():

proc report_gidvecs() { local i, rank 

  pc.barrier()  // wait for all hosts to get to this point 

  if (pc.id==0) printf("\ngidvecs on the various hosts\n") 

  for rank=0, pc.nhost-1 {  // host 0 first, then 1, 2, etc. 

    if (rank==pc.id) { 

      print "host ", pc.id 

      gidvec.printf() 

    } 

    pc.barrier()  // wait for all hosts to get to this point 

  } 

} 

This procedure prints out the gids of the cells that are on each host, one host at a time. With four hosts, the distribution of gids is

host 0

0       4       8       12      16

host 1

1       5       9       13      17

host 2

2       6       10      14      18

host 3

3       7       11      15      19

4.2.2 Setting up the network connections

We assembled cells, ranlist, and gidvec in tandem so that the nth element in each of these data structures corresponds to

the nth elements in the other two. Consequently we can use the same index i to iterate over each cell on a host plus its associated

RandomStream object and gid. This reduces the task of parallelizing connectcells() to making just two changes:

1. The test for "no self-connection and only one connection from any source" changes from 

if (r != i) if (u.x[r] == 0) { }

to 
if (r != gidvec.x[i]) if (u.x[r] == 0) { }

2. Setting up a connection from source to target changes from 

src = cells.object(r)

nc = src.connect2target(syn)

to 
nc = pc.gid_connect(r,syn)

4.2.3 Verifying network architecture

Most of the necessary revisions to tracenet() are required for the sake of orderly execution, and are similar to those that

were  necessary to parallelize  the  ring network's  spikeout() procedure: in essence, using  ParallelContext barrier()

statements and iteration over hosts to reduce a parallel computer to a serial machine. The other change, which is needed because

source cells may not be on the same host as their targets, consists of referring to the source cell by its gid, and affects two

statements in tracenet() (indicated in bold monospace):

proc tracenet() { local i, rank, srcid  localobj tgt

  pc.barrier()  // wait for all hosts to get to this point 

  if (pc.id==0) printf("source\ttarget\tsynapse\n")  // print header once 

  for rank=0, pc.nhost-1 {  // host 0 first, then 1, 2, etc. 

    if (rank==pc.id) { 

      for i = 0, nclist.count-1 {

        srcid = nclist.o(i).srcgid()

        tgt = nclist.o(i).syn

        printf("%d\t%d\t%d\n", srcid, tgt.cid, tgt.sid)

      }

    }
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    pc.barrier()  // wait for all hosts to get to this point

  }

}

On parallel hardware, the revised tracenet() prints out the connectivity information in a different sequence

source  target  synapse

12      0       0

16      0       0

17      0       0

1       4       0

0       4       0

2       4       0

10      8       0

0       8       0

 . . .

12      15      0

5       19      0

15      19      0

13      19      0

than it does on serial hardware, but sorting reveals that connectivity is identical regardless of the architecture of the computer on

which it is run, and also identical to the connectivity produced by the serial implementation of this model.

4.2.4 Instrumentation, simulation control, and reporting simulation results

These are identical to the parallel implementation of the ring network. The serial implementation's spike times are reported in a

monotonically increasing sequence

time     cell

2.05     0

5.1      16

5.1      8

 . . .

34.1     14

36.675   11

but, as with connectivity, the parallel implementation's output is grouped according to which cells are on which hosts

time     cell

2.05     0

5.1      4

5.1      8

 . . .

31.4     7

36.675   11

After  capturing  the  spike  times  of  the  serial  and  parallel  implementations  to files  and  sorting them,  comparison  finds  no

difference in simulation results between the output of the serial or parallel implementations regardless of whether the parallel

code is run on serial hardware with or without MPICH2, or on parallel hardware under MPICH2 with any number of hosts.

5. Discussion

This paper shows how to parallelize network models implemented with NEURON in such a way that the resulting code will

run and produce identical  results on computers  with serial  or  parallel  architectures. The strategy  we presented uses global

identifiers (gids) for two purposes: distributing cells over hosts to achieve load balance, and specifying connections between cells

that may exist on different hosts. A single gid was sufficient for both purposes because the example networks had a one-to-one

correspondence between each cell and its spike detector. Certain other network architectures (e.g. nets with dendrodendritic

synapses) require some cells to have multiple spike detectors. For such cases it may be convenient to use one set of gids strictly

for the purpose of assigning cells to hosts, and another set of gids for setting up connections. 

We should note that network modeling on parallel hardware raises a whole host of issues. Before ending this discussion, we

will briefly address testing and debugging, and performance optimization. There are many others that we must skip entirely, e.g.
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checkpointing (saving and restoring the state of a model) and how to how to deal with networks that involve gap junctions; for

those, interested readers are referred to the Programmer's Reference at http://www.neuron.yale.edu/neuron/docs/docs.html .

5.1 Testing and debugging

It is essential to verify a model before spending a great deal of time generating and analyzing simulation results.  For the

simple, small models in this paper, it was sufficient to print out the complete network connectivity, but this becomes impractical

with more complex network architectures.

A necessary--perhaps  approaching  sufficient--requirement  for  parallel  simulation  correctness  is  that  the  network  spiking

pattern be independent of the number of processors and the distribution of cells over the processors. Fortunately, quantitative

comparison of spiking patterns sorted by time and gid is easy, even for large networks.

The reason for any discrepancy between patterns must be determined. A difference that emerges in the first few hundred

milliseconds is almost certainly due to a bug. Differences that arise after a second or more, beginning as shifts of a single time

step in the same cell, may be caused by accumulation of roundoff error resulting from multiple spikes being handled at the same

time step at the same synapse, but in a different order. Roundoff errors can accumulate more rapidly when individual cells are

distributed over several processors. 

A good way to diagnose the cause of  spiking pattern discrepancies is to start  by identifying the time  terr of  the earliest

difference, and the gid of the "error cell" in which it appears. The question then becomes whether the problem lies in the error cell

and/or in the synaptic mechanisms attached to it, or if instead there is something wrong with the network architecture.

In order to distinguish between these alternatives, it is  necessary to monitor the stream of events that target the synapses

attached to the error cell. This can be done by adding some diagnostic code so that each input event to the error cell triggers

printing of the time, weight, source and target gid, and the id of the synapse itself. The diagnostic code includes modifications to

the PARAMETER and NET_RECEIVE blocks of synaptic mechanisms, which would look something like this (additions indicated by

bold monospace):

PARAMETER {

  . . .

  tgtid = -1

  synid = -1

  xid = -2

}

tgtid and synid are to be filled in with the corresponding gid and synlist index values after each cell and its synapses have

been constructed. xid is a GLOBAL variable that must be set to the gid of the error cell, so that only information about the inputs

to this particular cell will be printed.

NET_RECEIVE (w, srcgid) {

  . . .

  if (tgtid == xid) {

    printf ("%g %g %d %d %d\n", t, w, srcgid, tgtid, synid)

  }

}

The value of srcgid would have to be initialized at the hoc level by a statement of the form 

NetCon.weight[1] = gid_of_spike_source

after the connection has been set up. However, srcgid can often be omitted because differences in t, w, tgtid, and synid are

frequently sufficient to diagnose network connection problems.

With these changes, executing a simulation will generate a printout of all event streams that target the synapses of the error

cell. As a practical note, we should mention that there is no need for such diagnostic simulations to continue past terr.

If  the  input  streams to  the  error  cell  depend  on  the  number  of  processors,  then  something  is  wrong  with  the  network

architecture or  NetCon parameters. If the input streams are identical, the problem is with the error cell's parameters or state

initializations, and it will be necessary to print out and analyze the state variable trajectories leading up to terr.
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5.2 Performance

5.2.1 Basic improvement with parallelization

Using NEURON 5.8, Migliore et  al.  (2006) found that the  speedup from parallelizing large  network models  was nearly

proportional to the number of processors np. That is, as long as each processor had at least ~100 equations to integrate, run time

trun(np) � trun(1)/np where  trun(1) is  the  run time with a  single  processor. While  their findings  were  based primarily on

simulations on workstation clusters or parallel supercomputers, they obtained similar results with a PowerMac G5 that had two 2

GHz processors, each with 512 KB L2 cache (see their Fig. 4).

To see what kind of speedup an "ordinary user" might experience with a single multicore PC running a more recent version of

NEURON, we downloaded their source code from ModelDB (accession number 64229) and ran some tests using NEURON 6.1

on a PC with four processing units (a 3.2GHz x86_64 "dual core dual processor" with 2 MB L2 cache). We found that increasing
the number of processors (cores) from 1 to 4 sped up simulations by a factor of 3.8 to 4.8 depending on the particular model (see

Table 2). 
Table 2.

Speedup  with  four  processors  ranged  from  3.8  to  4.8.  These  tests  were

performed on three of the  models  used by Migliore  et al.  (2006): parbulbNet

(olfactory  bulb  (Davison  et  al.,  2003)),  pardentategyrus  (dentate  gyrus  of

hippocampus (Santhakumar et al., 2005)), and parscalebush (scalable model of

layer V of neocortex based on (Bush et al., 1999)), with 500 cells). See text for

other details.

trun for np =

Model 1 4 Speedup

parbulbNet 466 108 4.3

pardentategyrus 198 52.4 3.8

parscalebush 145 30.0 4.8

Superlinear speedup as the number of processors increases is a cache effect. While details of cache usage on this particular PC

have not been investigated, two likely explanations come to mind for the superlinear speedup seen in these tests. First, it may

simply be  that each core pair has its own cache,  so that  running with all  four cores makes twice as much cache available.

Alternatively, separation of the model into four equal cell groups, which communicate only by spike exchange and therefore can

be independently integrated over  the  minimum delay interval,  increases the efficiency of  cache usage because  each group's

memory is used for many time steps. This motivates us to seek further enhancement of NEURON by implementing the notion of

"cell groups," each of which fits into cache and can be integrated independently.

5.2.2 Performance optimization

In  the  course  of  implementing  network  models  on parallel  hardware,  one must  sooner  or  later  address  the  question  of

performance optimization. NEURON has several functions that  can be used to measure  simulation performance, in order to

obtain clues for improvements that might be made. Two particularly helpful measures are the processor computation times, and

the time that is spent on interprocessor communication.

A wide range of computation times suggests load imbalance, with some processors wasting time waiting for others to catch up

before the data exchange can occur that is necessary for the solution to advance to the next integration interval. Frequently a very

effective way to improve load balance is to use NEURON's multisplit feature to break one or more cells into subtrees that are

distributed over multiple processors.
Another clue is the ratio of communication time to computation time. Communication time becomes significant compared to

computation time if a simulation run involves an excessive number of interprocessor data exchanges. This may occur if each

processor has only a few equations to integrate, or if the maximum integration interval is very short. The former can be corrected

simply by reducing the number of processors that have been allocated for the simulation; this frees up computer resources for

other jobs. The latter may be susceptible to techniques for decreasing the overhead associated with spike exchange, e.g. spike

exchange compression, which reduces amount of data that must be transferred between processors, and bin queuing, which can be

used in fixed time step simulations to handle spike events much more quickly than the default splay tree queue does.
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Appendix A

Listing 1. Definition of the ball and stick model cell class.

begintemplate B_BallStick

public is_art

public init, topol, basic_shape, subsets, geom, biophys, geom_nseg, biophys_inhomo

public synlist, x, y, z, position, connect2target

public soma, dend

public all

objref synlist

proc init() {

  topol()

  subsets()

  geom()

  biophys()

  geom_nseg()

  synlist = new List()

  synapses()

  x = y = z = 0 // only change via position

}

create soma, dend

proc topol() { local i

  connect dend(0), soma(1)

  basic_shape()

}

proc basic_shape() {

  soma {pt3dclear() pt3dadd(0, 0, 0, 1) pt3dadd(15, 0, 0, 1)}

  dend {pt3dclear() pt3dadd(15, 0, 0, 1) pt3dadd(105, 0, 0, 1)}

}

objref all

proc subsets() { local i

  objref all

  all = new SectionList()

    soma all.append()

    dend all.append()

}

proc geom() {

  forsec all {  }

  soma {  /*area = 500 */ L = diam = 12.6157  }

  dend {  L = 200  diam = 1  }

}

external lambda_f

proc geom_nseg() {

  forsec all { nseg = int((L/(0.1*lambda_f(100))+.9)/2)*2 + 1 }

}

proc biophys() {

  forsec all {

    Ra = 100

    cm = 1

  }
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  soma {

    insert hh

      gnabar_hh = 0.12

      gkbar_hh = 0.036

      gl_hh = 0.0003

      el_hh = -54.3

  }

  dend {

    insert pas

      g_pas = 0.001

      e_pas = -65

  }

}

proc biophys_inhomo(){}

proc position() { local i

  soma for i = 0, n3d()-1 {

    pt3dchange(i, $1-x+x3d(i), $2-y+y3d(i), $3-z+z3d(i), diam3d(i))

  }

  x = $1  y = $2  z = $3

}

obfunc connect2target() { localobj nc //$o1 target point process, optional $o2 returned NetCon

  soma nc = new NetCon(&v(1), $o1)

  nc.threshold = 10

  if (numarg() == 2) { $o2 = nc } // for backward compatibility

  return nc

}

objref syn_

proc synapses() {

  /* E0 */   dend syn_ = new ExpSyn(0.8)  synlist.append(syn_)

    syn_.tau = 2

  /* I1 */   dend syn_ = new ExpSyn(0.1)  synlist.append(syn_)

    syn_.tau = 5

    syn_.e = -80

}

func is_art() { return 0 }

endtemplate B_BallStick
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Listing 2. Serial implementation of the ring network.

load_file("nrngui.hoc")  // load the GUI and standard run libraries

//////////////////////////////////

// Step 1: Define the cell classes

//////////////////////////////////

load_file("cell.hoc")

//////////////////////////////////////////////////////////////

// Steps 2 and 3 are to create the cells and connect the cells

//////////////////////////////////////////////////////////////

NCELL = 20  // total number of cells in the ring network

objref cells, nclist  // will be Lists that hold all network cell and NetCon instances, respectively

proc mkring() {

  mkcells($1)  // create the cells

  connectcells()  // connect them together

}

// creates the cells and appends them to a List called cells

// argument is the number of cells to be created

proc mkcells() {local i  localobj cell

  cells = new List()

  for i=0, $1-1 {

    cell = new B_BallStick()

    cells.append(cell)

  }

}

// connects the cells

// appends the NetCons to a List called nclist

proc connectcells() {local i  localobj src, target, syn, nc

  nclist = new List()

  for i=0, cells.count-1 {  // iterating over sources

    src = cells.object(i)

    target = cells.object((i+1)%cells.count)

    syn = target.synlist.object(0)  // the first object in synlist is an ExpSyn with e = 0,

                                    //  i.e. an excitatory synapse

    nc = src.connect2target(syn)

    nclist.append(nc)

    nc.delay = 1

    nc.weight = 0.01

  }

}

mkring(NCELL)  // go ahead and create the net!

//////////////////////////////////////////////////

// Instrumentation, i.e. stimulation and recording

//////////////////////////////////////////////////

// stim will be an artificial spiking cell that generates a "spike" event that is delivered to

// the first cell in the net by ncstim in order to initiate network spiking.

// We won't bother including this "external stimulus source" or its NetCon

// in the network's lists of cells or NetCons.

objref stim, ncstim

proc mkstim() {

  stim = new NetStim()

  stim.number = 1

  stim.start = 0

  ncstim = new NetCon(stim, cells.object(0).synlist.object(0))
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  ncstim.delay = 0

  ncstim.weight = 0.01

}

mkstim()

objref tvec, idvec  // will be Vectors that record all spike times (tvec)

        // and the corresponding id numbers of the cells that spiked (idvec)

proc spikerecord() {local i  localobj nc, nil

  tvec = new Vector()

  idvec = new Vector()

  for i=0, nclist.count-1 {

    nc = cells.object(i).connect2target(nil)

    nc.record(tvec, idvec, i)

    // the Vector will continue to record spike times even after the NetCon has been destroyed

  }

}

spikerecord()

/////////////////////

// Simulation control

/////////////////////

tstop = 100

run()

////////////////////////////

// Report simulation results

////////////////////////////

proc spikeout() { local i

  printf("\ntime\t cell\n")

  for i=0, tvec.size-1 {

    printf("%g\t %d\n", tvec.x[i], idvec.x[i])

  }

}

spikeout()

quit()
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Listing 3. Parallel implementation of the ring network.

{load_file("nrngui.hoc")}  // load the GUI and standard run libraries 

objref pc 

pc = new ParallelContext() 

////////////////////////////////// 

// Step 1: Define the cell classes 

////////////////////////////////// 

{load_file("cell.hoc")} 

////////////////////////////////////////////////////////////// 

// Steps 2 and 3 are to create the cells and connect the cells 

////////////////////////////////////////////////////////////// 

NCELL = 20  // total number of cells in the ring network 

  // identical to total number of cells on all machines 

objref cells, nclist  // cells will be a List that holds 

  // all instances of network cells that exist on this host 

  // nclist will hold all NetCon instances that exist on this host 

  // and connect network spike sources to targets on this host (nclist) 

proc mkring() { 

  mkcells($1)  // create the cells 

  connectcells()  // connect them together 

} 

// creates the cells and appends them to a List called cells 

// argument is the number of cells to be created 

proc mkcells() {local i  localobj cell, nc, nil 

  cells = new List() 

  // each host gets every nhost'th cell, starting from the id of the host 

  // and continuing until all cells have been dealt out 

  for (i=pc.id; i < $1; i += pc.nhost) { 

    cell = new B_BallStick() 

    cells.append(cell) 

    pc.set_gid2node(i, pc.id)  // associate gid i with this host 

    nc = cell.connect2target(nil)  // attach spike detector to cell 

    pc.cell(i, nc)  // associate gid i with spike detector 

  } 

} 

// connects the cells 

// appends the NetCons to a List called nclist 

proc connectcells() {local i, targid  localobj src, target, syn, nc 

  nclist = new List() 

  for i=0, NCELL - 1 {  // iterating over source gids 

    targid = (i+1)%NCELL 

    if (!pc.gid_exists(targid)) { continue } 

    target = pc.gid2cell(targid) 

    syn = target.synlist.object(0)  // the first object in synlist is an ExpSyn with e = 0,

                                    //  i.e. an excitatory synapse 

    nc = pc.gid_connect(i, syn) 

    nclist.append(nc) 

    nc.delay = 1 

    nc.weight = 0.01 

  } 

} 

mkring(NCELL)  // go ahead and create the net! 

////////////////////////////////////////////////// 
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// Instrumentation, i.e. stimulation and recording 

////////////////////////////////////////////////// 

// stim will be an artificial spiking cell that generates a "spike" event that is delivered to

// the first cell in the net by ncstim in order to initiate network spiking. 

// We won't bother including this "external stimulus source" or its NetCon 

// in the network's lists of cells or NetCons. 

objref stim, ncstim 

proc mkstim() { 

  if (!pc.gid_exists(0)) { return }  // exit if the first cell in the net does not exist on this host

  stim = new NetStim() 

  stim.number = 1 

  stim.start = 0 

  ncstim = new NetCon(stim, pc.gid2cell(0).synlist.object(0)) 

  ncstim.delay = 0 

  ncstim.weight = 0.01 

} 

mkstim() 

objref tvec, idvec  // will be Vectors that record all spike times (tvec) 

        // and the corresponding id numbers of the cells that spiked (idvec) 

proc spikerecord() {local i  localobj nc, nil 

  tvec = new Vector() 

  idvec = new Vector() 

  for i=0, cells.count-1 { 

    nc = cells.object(i).connect2target(nil) 

    nc.record(tvec, idvec, nc.srcgid) 

    // the Vector will continue to record spike times even after the NetCon has been destroyed 

  } 

} 

spikerecord() 

///////////////////// 

// Simulation control 

///////////////////// 

tstop = 100 

{pc.set_maxstep(10)} 

stdinit() 

{pc.psolve(tstop)} 

//////////////////////////// 

// Report simulation results 

//////////////////////////// 

proc spikeout() { local i, rank 

  pc.barrier()  // wait for all hosts to get to this point 

  if (pc.id==0) printf("\ntime\t cell\n")  // print header once 

  for rank=0, pc.nhost-1 {  // host 0 first, then 1, 2, etc. 

    if (rank==pc.id) { 

      for i=0, tvec.size-1 { 

        printf("%g\t %d\n", tvec.x[i], idvec.x[i]) 

      } 

    } 

    pc.barrier()  // wait for all hosts to get to this point 

  } 

} 

spikeout() 

{pc.runworker()} 

{pc.done()} 

quit() 
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Listing 4. Serial implementation of the network with random connectivity.

{load_file("nrngui.hoc")}  // load the GUI and standard run libraries 

////////////////////////////////// 

// Step 1: Define the cell classes 

////////////////////////////////// 

{load_file("cellid.hoc")} 

{load_file("ranstream.hoc")}  // to give each cell its own sequence generator 

////////////////////////////////////////////////////////////// 

// Steps 2 and 3 are to create the cells and connect the cells 

////////////////////////////////////////////////////////////// 

NCELL = 20  // total number of cells in the ring network 

C_E = 3  // # of excitatory connections received by each cell 

         // 2 gives more sustained activity! 

connect_random_low_start_ = 1  // low seed for mcell_ran4_init() 

objref cells, nclist  // will be Lists that hold all network cell and NetCon instances, respectively 

objref ranlist  // for RandomStreams, one per cell 

proc mknet() { 

  mkcells($1)  // create the cells 

  connectcells()  // connect them together 

} 

// creates the cells and appends them to a List called cells 

// argument is the number of cells to be created 

proc mkcells() {local i,j  localobj cell 

  cells = new List() 

  ranlist = new List() 

  for i=0, $1-1 { 

    cell = new B_BallStick() 

    for j=0, cell.synlist.count-1 {

      cell.synlist.o(j).cid = i

      cell.synlist.o(j).sid = j

    }

    cells.append(cell) 

    ranlist.append(new RandomStream(i)) 

  } 

} 

// connects the cells 

// appends the NetCons to a List called nclist 

// each target will receive exactly C_E unique non-self random connections 

proc connectcells() {local i, nsyn, r  localobj src, syn, nc, rs, u 

  mcell_ran4_init(connect_random_low_start_)  // initialize the pseudorandom number generator 

  u = new Vector(NCELL)  // for sampling without replacement 

  nclist = new List() 

  for i=0, cells.count-1 { 

    // target synapse is synlist.object(0) on cells.object(i) 

    syn = cells.object(i).synlist.object(0) 

    rs = ranlist.object(i)  // the corresponding RandomStream 

    rs.start() 

    rs.r.discunif(0, NCELL-1)  // return integer in range 0..NCELL-1 

    u.fill(0)  // u.x[i]==1 means spike source i has already been chosen 

    nsyn = 0 

    while (nsyn < C_E) { 

      r = rs.repick() 

      // no self-connection, & only one connection from any source 

      if (r != i) if (u.x[r] == 0) { 

        // set up connection from source to target 
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        src = cells.object(r) 

        nc = src.connect2target(syn) 

        nclist.append(nc) 

        nc.delay = 1 

        nc.weight = 0.01 

        u.x[r] = 1 

        nsyn += 1 

      } 

    } 

  } 

} 

mknet(NCELL)  // go ahead and create the net! 

////////////////////////// 

// Report net architecture 

////////////////////////// 

proc tracenet() { local i  localobj src, tgt

  printf("source\ttarget\tsynapse\n")

  for i = 0, nclist.count-1 {

    src = nclist.o(i).precell

    tgt = nclist.o(i).syn

    printf("%d\t%d\t%d\n", src.synlist.o(0).cid, tgt.cid, tgt.sid)

  }

}

tracenet()

////////////////////////////////////////////////// 

// Instrumentation, i.e. stimulation and recording 

////////////////////////////////////////////////// 

// stim will be an artificial spiking cell that generates a "spike" event that is delivered to

// the first cell in the net by ncstim in order to initiate network spiking. 

// We won't bother including this "external stimulus source" or its NetCon 

// in the network's lists of cells or NetCons. 

objref stim, ncstim 

proc mkstim() { 

  stim = new NetStim() 

  stim.number = 1 

  stim.start = 0 

  ncstim = new NetCon(stim, cells.object(0).synlist.object(0)) 

  ncstim.delay = 0 

  ncstim.weight = 0.01 

} 

mkstim() 

objref tvec, idvec  // will be Vectors that record all spike times (tvec) 

        // and the corresponding id numbers of the cells that spiked (idvec) 

proc spikerecord() {local i  localobj nc, nil 

  tvec = new Vector() 

  idvec = new Vector() 

// the next line causes problems if there are more NetCons than cells 

//  for i=0, nclist.count-1 { 

  for i=0, cells.count-1 { 

    nc = cells.object(i).connect2target(nil) 

    nc.record(tvec, idvec, i) 

    // the Vector will continue to record spike times 

    // even after the NetCon has been destroyed 

  } 

} 

spikerecord() 
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///////////////////// 

// Simulation control 

///////////////////// 

tstop = 100 

run() 

//////////////////////////// 

// Report simulation results 

//////////////////////////// 

proc spikeout() { local i 

  printf("\ntime\t cell\n") 

  for i=0, tvec.size-1 { 

    printf("%g\t %d\n", tvec.x[i], idvec.x[i]) 

  } 

} 

spikeout() 

quit() 
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Listing 5. Parallel implementation of the network with random connnectivity.

{load_file("nrngui.hoc")}  // load the GUI and standard run libraries 

objref pc 

pc = new ParallelContext() 

////////////////////////////////// 

// Step 1: Define the cell classes 

////////////////////////////////// 

{load_file("cellid.hoc")} 

load_file("ranstream.hoc")  // to give each cell its own sequence generator 

////////////////////////////////////////////////////////////// 

// Steps 2 and 3 are to create the cells and connect the cells 

////////////////////////////////////////////////////////////// 

NCELL = 20  // total number of cells in the ring network 

  // identical to total number of cells on all machines 

C_E = 3  // # of excitatory connections received by each cell 

         // 2 gives more sustained activity! 

connect_random_low_start_ = 1  // low seed for mcell_ran4_init() 

objref cells, nclist  // cells will be a List that holds 

  // all instances of network cells that exist on this host 

  // nclist will hold all NetCon instances that exist on this host 

  // and connect network spike sources to targets on this host (nclist) 

objref ranlist  // for RandomStreams on this host

proc mknet() { 

  mkcells($1)  // create the cells 

  connectcells()  // connect them together 

} 

objref gidvec  // to associate gid and position in cells List 

  // useful for setting up connections and reporting connectivity 

// creates the cells and appends them to a List called cells 

// argument is the number of cells to be created 

proc mkcells() {local i  localobj cell, nc, nil 

  cells = new List() 

  ranlist = new List() 

  gidvec = new Vector() 

  // each host gets every nhost'th cell, starting from the id of the host

  // and continuing until no more cells are left 

  for (i=pc.id; i < $1; i += pc.nhost) { 

    cell = new B_BallStick()

    for j=0, cell.synlist.count-1 {

      cell.synlist.o(j).cid = i

      cell.synlist.o(j).sid = j

    }

    cells.append(cell) 

    pc.set_gid2node(i, pc.id)  // associate gid i with this host 

    nc = cell.connect2target(nil)  // attach spike detector to cell 

    pc.cell(i, nc)  // associate gid i with spike detector 

    ranlist.append(new RandomStream(i))  // ranlist.o(i) corresponds to cell associated with gid i 

    gidvec.append(i) 

  } 

  report_gidvecs()

} 

// reports distribution of cells across hosts

proc report_gidvecs() { local i, rank 

  pc.barrier()  // wait for all hosts to get to this point 
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  if (pc.id==0) printf("\ngidvecs on the various hosts\n") 

  for rank=0, pc.nhost-1 {  // host 0 first, then 1, 2, etc. 

    if (rank==pc.id) { 

      print "host ", pc.id 

      gidvec.printf() 

    } 

    pc.barrier()  // wait for all hosts to get to this point 

  } 

} 

// connects the cells 

// appends the NetCons to a List called nclist 

proc connectcells() {local i, nsyn, r  localobj syn, nc, rs, u

  mcell_ran4_init(connect_random_low_start_)  // initialize the pseudorandom number generator 

  u = new Vector(NCELL)  // for sampling without replacement 

  nclist = new List() 

  for i=0, cells.count-1 { 

    // target synapse is synlist.object(0) on cells.object(i) 

    syn = cells.object(i).synlist.object(0) 

    rs = ranlist.object(i)  // the RandomStream that corresponds to cells.object(i)

    rs.start() 

    rs.r.discunif(0, NCELL-1)  // return integer in range 0..NCELL-1 

    u.fill(0)  // u.x[i]==1 means spike source i has already been chosen 

    nsyn = 0 

    while (nsyn < C_E) { 

      r = rs.repick() 

      // no self-connection, & only one connection from any source 

      if (r != gidvec.x[i]) if (u.x[r] == 0) { 

        // set up connection from source to target 

        nc = pc.gid_connect(r, syn) 

        nclist.append(nc) 

        nc.delay = 1 

        nc.weight = 0.01 

        u.x[r] = 1 

        nsyn += 1 

      } 

    } 

  } 

} 

mknet(NCELL)  // go ahead and create the net! 

////////////////////////// 

// Report net architecture 

////////////////////////// 

proc tracenet() { local i, srcid  localobj src, tgt, nil

  pc.barrier()  // wait for all hosts to get to this point 

  if (pc.id==0) printf("source\ttarget\tsynapse\n")  // print header once 

  for rank=0, pc.nhost-1 {  // host 0 first, then 1, 2, etc. 

    if (rank==pc.id) { 

      for i = 0, nclist.count-1 {

        srcid = nclist.o(i).srcgid()

        tgt = nclist.o(i).syn

        printf("%d\t%d\t%d\n", srcid, tgt.cid, tgt.sid)

      }

    }

    pc.barrier()  // wait for all hosts to get to this point

  }

}

tracenet()
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////////////////////////////////////////////////// 

// Instrumentation, i.e. stimulation and recording 

////////////////////////////////////////////////// 

// stim will be an artificial spiking cell that generates a "spike" event that is delivered to

// the first cell in the net by ncstim in order to initiate network spiking. 

// We won't bother including this "external stimulus source" or its NetCon 

// in the network's lists of cells or NetCons. 

objref stim, ncstim 

proc mkstim() { 

  // exit if the first cell in the net does not exist on this host 

  if (!pc.gid_exists(0)) { return } 

  stim = new NetStim() 

  stim.number = 1 

  stim.start = 0 

  ncstim = new NetCon(stim, pc.gid2cell(0).synlist.object(0)) 

  ncstim.delay = 0 

  ncstim.weight = 0.01 

} 

mkstim() 

objref tvec, idvec  // will be Vectors that record all spike times (tvec) 

        // and the corresponding id numbers of the cells that spiked (idvec) 

proc spikerecord() {local i  localobj nc, nil 

  tvec = new Vector() 

  idvec = new Vector() 

  for i=0, cells.count-1 { 

    nc = cells.object(i).connect2target(nil) 

    nc.record(tvec, idvec, nc.srcgid) 

    // the Vector will continue to record spike times even after the NetCon has been destroyed 

  } 

} 

spikerecord() 

///////////////////// 

// Simulation control 

///////////////////// 

tstop = 100 

{pc.set_maxstep(10)} 

stdinit() 

{pc.psolve(tstop)} 

//////////////////////////// 

// Report simulation results 

//////////////////////////// 

proc spikeout() { local i, rank 

  pc.barrier()  // wait for all hosts to get to this point 

  if (pc.id==0) printf("\ntime\t cell\n")  // print header once 

  for rank=0, pc.nhost-1 {  // host 0 first, then 1, 2, etc. 

    if (rank==pc.id) { 

      for i=0, tvec.size-1 { 

        printf("%g\t %d\n", tvec.x[i], idvec.x[i]) 

      } 

    } 

    pc.barrier()  // wait for all hosts to get to this point 

  } 

} 

spikeout() 

{pc.runworker()} 
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{pc.done()} 

quit() 
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