The NEURON Simulation Environment Parallel Simulations with NEURON

Parallel Simulations page 1 of 19

Parallel Simulations with NEURON

Installation (pages 2-3)

Tutorial notes: conceptual (pages 4-11)
Performance (pages 12-13)
Debugging (pages 14-15)

Ring example (pages 16-19)

Parallel Examples

Parallel network simulations with NEURON (Migliore et al 2006)
http://senselab.med.yale.edu/modeldb/showmodel.cshtml?model=64229

Translating network models to parallel hardware in NEURON (Hines, Carnevale 2008)
http://senselab.med.yale.edu/modeldb/showmodel.cshtml?model=96444

see: http://neuron.yale.edu/neuron/nrnpubs

Simulation of networks of spiking neurons: A review of tools and strategies (Brette et al
2007).

http://senselab.med.yale.edu/modeldb/showmodel.cshtml?model=83319
These are reminiscent of Vogels and Abbott (2005) J. Neurosci. 25, "Signal
Propagation and Logic Gating in Networks of Integrate-and-Fire Neurons.

FORTRAN to NEURON translation of Traub el al (2005)

Single-column thalamocortical network model exhibiting gamma oscillations sleep

spindles, and epileptogenic bursts. J Neurophysiol. 2005 Apr;93(4):1829-30.
http://senselab.med.yale.edu/modeldb/showmodel.cshtml?model=45539

But see the most recent parallelized version in the mercurial repository:
http://neuron.yale.edu/hg/z/models/nrntraub/

A sequence of transformations of the Dentate Gyrus network model (Santhakumar et al
2005)

http://senselab.med.yale.edu/modeldb/showmodel.cshtml?model=51781
into an MPI parallel (as well as threadsafe) version is in the mercurial repository:
http://neuron.yale.edu/hg/z/models/santhakumar2005

Further Info

http://neuron.yale.edu/neuron/static/new_doc/index.html
ParallelContext

Copyright © 1998-2016 N.T. Carnevale and M.L. Hines, all rights reserved Page 1

Didactic Presentations The NEURON Simulation Environment

Parallel Simulations page 2 of 19

Installation
http://neuron.yale.edu/ftp/neuron/versions/alpha (recommended, latest features and
bug fixes) or http://www.neuron.yale.edu/neuron/download (standard distribution)

MSWindows
Execute the latest 64 or 32 bit nrn*-setup.exe
(Works with full mswin python packages such as Enthought Canopy or Anaconda)

Test NEURON + MPI by opening the NEURON Group's “mintty bash” window, move to
the directory where you installed NEURON and type:
mpiexec -n 4 nrniv -mpi testO.hoc
Should get 4 lines of the style “I am <i> of 4” where <i> ranges from 0 to 3.
Try leaving out the -mpi argument. Also try
mpiexec -n 4 nrniv -mpi -python test0.py

Mac OSX 10.7 — 10.11 (El Capitan)

nrn-...-osx.pkg (open and follow instructions)

Installs in /Applications

Verify you can launch nrniv from a Terminal window. If not, try 'nrniv -nopython'.

The path is something like /Applications/NEURON-7.5/nrn/x86_64/bin

Install openmpi. See http://neuron.yale.edu/neuron/download/troubleshoot_mac_install .

Test by creating the file ‘test0.hoc'
http://neuron.yale.edu/hg/neuron/nrn/file/c5ef66325387/src/parallel/test0.hoc
mpiexec -n 4 nrniv -mpi testO.hoc

Linux
Is mpi installed? ie. mpiexec -n 2 echo 'hello'
prints “hello” twice.
If not, install openmpi. e.g. sudo apt-get install openmpi-dev
Install NEURON from a deb file (e.g. download latest nrn.*.deb from
http://neuron.yale.edul/ftp/neuron/versions/alpha/
and open with synaptic)
... or install NEURON from sources. (nrn...tar.gz or http://neuron.yale.edu/hg/neuron)
For the nrn source installation there are many possibilities, but all involve --with-paranrn
./configure --prefix="pwd --with-paranrn -with-nrnpython
Test with
mpiexec -n 4 nrniv -mpl <nrn sources>/src/parallel/test0.hoc

Page 2 Copyright © 1998-2016 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Parallel Simulations with NEURON

Parallel Simulations page 3 of 19

Supercomputers are usually special and often require cross-compiling.
e.g. EPFL IBM BlueGene/P 16384 cores 750MHz powerpc each with 512MB
../nrn/configure --prefix="pwd --without-x --with-nmodl-only

make; make install

./nrn/configure --prefix="pwd --enable-bluegeneP \
-with-paranrn —-with-nrnpython --host=powerpc64-suse-linux
make; make install

Copyright © 1998-2016 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

Didactic Presentations The NEURON Simulation Environment

Parallel Simulations page 4 of 19

Tutorial notes: conceptual (pages 4-11)

Performance vs clarity.

Clarity should win but want performance proportional to nhost. Can only get that
performance by paying attention to load balance. If balance attainable by an optimum
distribution of whole cells then great --- clarity is easy to preserve. Otherwise need to
use multsplit. Balance > 95% generally attainable :) Start with round robin (card
dealing algorithm) and measure balance. For heterogeneous networks often need to
distribute cells using the simple greedy LPT (least processing time) algorithm. Do not
worry about communication time for spike coupled nets on supercomputers.
“Performance proportional to nhost” should also include setup time.

Clarity.

Specification should be model centric and independent of the specific cell distribution
and nhost.

The model should be scalable. Helps with debugging since can quickly setup and run
on desktop.

Organization and hierarchical structure of the model should be compatible with your
various conceptual views of the model. This is generally dominated by the lowest
physical view you are interested in. Good when a small change in concept ends up as a
small change in the model.

Implementing a network model consists of:

1. Define cell types

2. Create cells (and distribute them)

3. Connect cells (on the processor where the target exists)
4. Specify stimulation

The most fundamental requirement for spike coupled cells is to watch source cells for a
spike triggering event, and deliver the spike event after some delay to target synapses.
In the NEURON parallel environment the channel from source cell to target synapse is
a NetCon object and is constructed via

netcon = pc.gid_connect(srcgid, target_synapse_object)
From this, several things naturally follow.
1) netcon is a NetCon object with delay and weight and must be on the same process
as the synapse object (which, of course, is on the same process as the cell).
2) the reason srcgid is an integer and not srccell.axon(1)._ref_v is because,
generally, the source cell does not exist on the same process as the target cell and
integers along with spike times are easy to transfer between machines. Below we will
show how to associate srcgid with srccell.axon(1)._ref v on the process where srccell
exists.

Page 4 Copyright © 1998-2016 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Parallel Simulations with NEURON

Parallel Simulations page 5 of 19

Except for defining the cell types, Python is preferred for implementing the network
model.
Because very easy to construct dictionaries that associate a property with a cell.
Can also define cell types in Python, but when creating a section, must tell the
section which cell it belongs to.

ParallelContext
http://neuron.yale.edu/neuron/static/new doc/modelspec/programmatic/network/parcon.

html

from neuron import h

pc = h.ParallelContext()
rank = int(pc.id())
nhost = int(pc.nhost())

rank is the unige integer in range(0, nhost) that identifies the process. nhost is the
number of processes. ParallelContext is mostly a namespace object that contains all
the methods relevant to parallel operations. Those operations serve the function of

Bulletin Board

Spike coupled nets

Voltage transfer (gap junctions)

Threads

A few MPI collective wrappers.

The above is used so often that we often put the above fragment in common.py and, in
every other file,

from common import h, pc, rank, nhost

Why take the trouble to wrap rank and nhost? Partly for debugging purposes. At the
most fundamental level, the only distinction between processes is the rank. Specific
cells and connections are only implicitly constructed based on the rank. We try to
describe the model in terms completely independent of the distribution of cells on ranks
and nhost. Sometimes it is useful on the desktop to pretend the single debugging
process we use has a user specified nhost and rank. Only occasionally do we use the
explicit pc.id() —- for example in printing progress information such as :

if pc.id() == 0: print ('setuptime = %g' % setuptime)

Want same result no matter how many machines or how cells distributed.
even with random connections even with random stimulation
Distribute cells on machines for load balance.
Target centric. Looking to use:
netcon = pc.gid_connect(srcgid, synapse_object)
on machine where synapse exists.

Copyright © 1998-2016 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

Didactic Presentations The NEURON Simulation Environment

Parallel Simulations page 6 of 19

GID distribution

Round robin
gids = [gid for gid in range(rank, ncell, nhost)]

GID distribution (instantiate)
for gid in gids:
pc.set_gid2node(gid, rank)

eg.

>>> rank=2; nhost=5; ncell=20

>>> print ([gid for gid in range(rank, ncell, nhost)])
[2, 7,12, 17]

Page 6 Copyright © 1998-2016 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Parallel Simulations with NEURON

Parallel Simulations page 7 of 19

Cell Types
Exactly the same as for the serial program

Cell creation
cells = {}
for gid in gids:
somehow figure out what class and parameters to
use based on gid.
cell[gid]= ...
netcon = cells[gid].connect2target(nil)
pc.set_gid2node(gid, rank)
pc.cell(gid, netcon)
netcon does not have to stay in existence after pc.cell

Real cells should be instantiated from a class and have connect2target method.
Artificial (spiking) cells can be bare.

cells[gid] = h.IntFirel()

The cells dictionary is very useful. NEURON also supplies a built-in dictionary.
If you know a gid you can:
1) know if the cell is on this machine
if pc.gid_exists(gid):
2) get a reference to the cell
cell = pc.gid2cell(gid)

It has not so far been essential that a cell contain a field that specifies the gid.
But iteration over all the gids on a rank is ubiquitous.

for gid in gids:
cell = cells[gid]
rs = ranstreams[gid]
other things in dicts indexed by gid

Of course, dicts, sets, lists, tuples, and your own property classes can be used
according to taste.

Copyright © 1998-2016 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

Didactic Presentations The NEURON Simulation Environment

Parallel Simulations page 8 of 19

Network Connections

It seems every network is unique, but if you can imagine making the connections in a
serial model, it is about as straightforward to make them in a parallel model. The goal is
to make setup speed proportional to nhost, and that is easiest if the connection rules fit
into the idiom:

for targetgid in gids:
iterate over all (global) srcgid:
#able to determine if there should be a connection
#between srcgid and targetgid and all the properties of
#the connection (including synapse creation).

NetCon needs to be on the same rank as the synapse.
Need an nclist to store all the NetCon objects.

For networks of stylized cells, synapses are often created when the cell is created and
the synapse (usually a generalized synapse so that it can receive inputs from many
sources) is known by its index.

for targid in gids:
cell = pc.gid2cell(targid) # or gids[targid]
for srcgid in range[ncell]:
if there should be a connection, determine the synlist
index, weight, and delay (some may be random)
netcon = pc.gid_connect(srcgid, cell.synlist.o(index))
nclist.append(netcon)
netcon.weight =
netcon.delay =

Generally, a synapse is created when the NetCon is created, the synapse type is
determined by source cell type, and the synapse location is determined by both source
and target cell properties. Complex connection rules are more easily implemented in
Python than HOC because of Python dictionaries. HOC is limited to its internal {gid :
cell} dictionary (the first purpose of gids is to implement spike exchange) and it might
be difficult or impossible to design a gid for which there are simple administration
functions:

property = gid2prop(gid)

gid = prop2gid(property)
(especially if the gid does not exist on the rank). However, in Python it is straightforward
for each rank to create {property : object} dictionaries for objects that they “have” and
then send those objects to the ranks which are interested in a specific set of property
values.

Page 8 Copyright © 1998-2016 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Parallel Simulations with NEURON

Parallel Simulations page 9 of 19

The (possibly) worst case is to find for each targid, the set of srcgids that satisfies
f(srcgid, targid) == True
when the function requires information that exists only on srcgid and targid ranks.

Naively, ncell*2 evaluations might be needed but we want to do it in time proportional to
(ncell*2)/nhost (or, if we are lucky, (ncell/nhost)*2 time) in circumstances where no rank
has enough memory to hold a nhost size list of data.

This is generally accomplished with the aid of rendezvous rank functions.

For example, suppose ncell gids are randomly distributed on nhost ranks, each gid has
a random (x,y,z) position property, and we want to give each target gid a set of source
gids that are within distance d of the target. If the network volume is divided into nhost
cubic voxels and d is smaller than the edge size of a voxel, then everyone only needs to
send their (rank, targid, (x,y,z)) data to the rank responsible for the voxel containing
(x,y,2) and their (rank, srcgid, (x,y,z)) data to the 3x3x3 voxel group where (x,y,z) is in
the center voxel. Each rendezvous rank can now compare its (on the order of)
ntarget/nhost targets with the 27*nsrc/nhost sources and send back the satisfying
srcgid set to the target rank for each targid. The “elementary” transfer operation that
underlies the algorithm is

destlist = pc.py_alltoall(srclist)
where destlist and srclist are nhost size lists of python objects (None is a possible

object). The jth object on rank i becomes the ith object on rank j. In this case, 3
py_alltoall operations are required.

Copyright © 1998-2016 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

Didactic Presentations The NEURON Simulation Environment

Parallel Simulations page 10 of 19

running
def prun():
pc.set_maxstep(10)
runtime=startsw()
h.stdinit()
pc.psolve(tstop)
if rank == 0 print ('runtime=%g' %(startsw() - runtime))

Always save spikes.

spiketime = h.Vector()

spikegid = h.Vector()
pc.spike_record(-1, spiketime, spikegid)

Save spikes to a file at end of run. (Note the serialization idiom).

def spike2file():
pc.barrier()
for r in range(nhost);
if r == rank:
outf = open(“out.dat”, 'a' if rank else 'w')
for 1 in range(len(spiketime)):
outf.write(“%g %d\n” % (spiketime.x[1], spikegid.x[1]))
outf.close()
pc.barrier()

Postprocess the file with the sortspike script. Basically,
sort -k 1n,1n -k 2n,2n out.dat > out.spk

Page 10 Copyright © 1998-2016 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Parallel Simulations with NEURON

Parallel Simulations page 11 of 19

Repeatable random simulations
A separate random stream for each cell using Random123

r{gid] = h.Random()
r{gid].Random123(gid, 0, 0)

Use the last two integers if you need more than one conceptual random stream per cell.
E.g. cell synapse id, several streams for distinct purposes.

Able to reproduce or do a statistically independent run by specifying a conceptually
global run_number variable, e.g before doing anything requiring randomness:
h.Random() .Random123_globalindex(run_number)

Copyright © 1998-2016 N.T. Carnevale and M.L. Hines, all rights reserved Page 11

Didactic Presentations The NEURON Simulation Environment

Parallel Simulations page 12 of 19

Performance Statistics

Always at least measure:
first thing in init.py
begintime = h.startsw()

after model setup
h.load_file(“loadbal.hoc”)

1b = h.LoadBalance()

cpu_cx = 1lb.cpu_complexity()

max_cX pc.allreduce(cpu_cx, 2)
avg_cx pc.allreduce(cpu_cx, 1)/nhost
expected_load_balance = avg_cx/max_cx
just before calling prun()

setuptime = startsw() - begintime

def prun():

runtime=startsw()

h.stdinit()

pc.psolve(h.tstop)

runtime = startsw() - runtime

computation_time = pc.step_time()

cw_time = computation_time + pc.step_wait()

max_cw_time = pc.allreduce(cw_time, 2)

avg_comp_time = pc.allreduce(computation_time, 1)/nhost
load_balance = avg_comp_time/max_cw_time

return runtime, load_balance, avg_comp_time

10 2 10 2 runtime = 24
B oy -
:\ !«-\‘ comp + wait = 20

avg comp =14

- ®-4 @ Load balance = 0.7

4

The load balance calculation is accurate even if there is significant dynamic spike
handling imbalance on a per integration interval basis.

10 24 2 runtime = 24
] = -
N comp + wait = 20
. . agcomp=14
]]
. B i Y Load balance =07

Sometimes useful to get more detailed statistics.

Page 12 Copyright © 1998-2016 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Parallel Simulations with NEURON

Parallel Simulations page 13 of 19

Efficiency
Setup: for the outer loop of connections, iterate over the gids on this rank.

Run: load balance (so that time to compute each subnet for maxstep time on each
machine is as similar as possible.)
1) Round robin gid distribution
2) h.load_file(“loadbal.hoc”)
1b = h.LoadBalance()
3) for each of the gids on this process, store the gid and
cx = 1lb.cell complexity(pc.gid2cell(gid))
into gidvec and cxvec
4) pc.gid_clear () and destroy the model (first nclist then cells list).
5) Gather all the gidvec and cxvec (using pc.alltoall or pc.py_alltoall) to rank 0 and
rankvec = lb.lpt(cxvec, nhost)
on rank 0 where rankvec.x]i] is the rank where gidvec]i] should be located.
6) Sort the gidvec according to rankvec and send each gidvec subset to the proper
rank.
7) Store gidvec for each rank in a file so 1-6 do not have to be done again.
8) Each rank constructs its balanced gidvec portion of the model.

If rate limited by spike exchange
and using fixed step method so spikes on fixed time step boundaries then
pc.spike_compress(nspike, gid_compress)
(nspike>0 and gid_compress=1 means 2 bytes per spike instead of at least 12)
"optimal” choice of nspike aided by perusal of spike exchange histogram statistics.
pc.max_histogram(histvec)
E.g. the Traub model with nhost=256, ncell=3560, and integration interval = 0.05
shows
histogram of #spikes vs #exchanges
40
708
1006
220
26
1
end of histogram

ab~hwWwNEFLO

If rate limited by the event queue
due to heavy use of self events, set second arg to 1 of
h.cvode.queue_mode(use_fixed_step_binqueue, use_self_queue)
and if you don't mind events being on fixed dt boundaries
set that first arg to 1

Copyright © 1998-2016 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

Didactic Presentations The NEURON Simulation Environment

Parallel Simulations page 14 of 19
Debugging
Design the model so that ncell is a parameter and does not have to be large.
SAVE the network spike pattern into a (spiketime gid) file, out.dat.
What to do when
sortspike out.dat out.np

diff out.1 out.np
says the files are not identical.

What is the spiketime and gid of the first difference? Focus on that gid.
Is the problem in the spike input to the cell or the cell parameters/initialization?

Print all parameters, states, synapses, incoming netcons for that gid.
prun(time_just_before_first_difference)
pc.prcellstate(gid, “t%g_%d”%(h.t, nhost))

will create an outpultt file of form <gid>_t<t>_<nhost>.nrndat

Do for earlier times til the files are the same and see what variable first goes bad.

When searching for what variable first goes bad, usually a good idea to first check at
h.t=0 just after stdinit().

See the prcellstate file format at
http://neuron.yale.edu/neuron/static/new doc/modelspec/programmatic/network/parcon.
html#ParallelContext.prcellstate

Can run on a serial machine that computes exactly the same thing as though it were a
particular rank on an nhost machine.

(If you use rank and nhost parameters as much as possible instead of pc.id() and
pc.nhost())

Use PatternStim

class ApplyPattern:
def __init_ (self, fname):
spikefile = open(fname, 'r')

spiketime = h.Vector()
idvec = h.Vector()
for line in spikefile:
values = [float(x) for x in line.split()]
spiketime.append(values[0])

Page 14 Copyright © 1998-2016 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Parallel Simulations with NEURON

Parallel Simulations page 15 of 19
idvec.append(values[1])

self.pattern = h.PatternStim()
self.pattern.play(spiketime, idvec)

pat = ApplyPattern(out.spk)

Copyright © 1998-2016 N.T. Carnevale and M.L. Hines, all rights reserved Page 15

Didactic Presentations The NEURON Simulation Environment

Parallel Simulations page 16 of 19

Ring Example (pages 16-19)

ModelDB accession #96444 (original HOC version) or mercurial repository version
http://neuron.yale.edu/hg/z/models/ring/ The latter includes an up to date Python
implementation as well as subworld implementations for HOC and Python.

NCELL BallStick cells where cell i is connected to cell i + 1 with large weight and cell 0
is stimulated with a NetStim. Cell NCELL-1 connected to cell 0.

$ mpiexec -n 4 nrniv -mpi -python ringpar.py

excerpts from cell.py

class BallStick(object):
def __init_ (self):
#print 'construct ', self
self.topol()
self.subsets()

gelf.synapses()

def topol(self):
self.soma = h.Section(name='soma', cell=self)
self.dend = h.Section(name='dend', cell= self)
self.dend.connect(self.soma(1))
self.basic_shape()

def subsets(self):
self.all = h.SectionList()
self.all.append(sec=self.soma)
self.all.append(sec=self.dend)

def connect2target(self, target):
nc = h.NetCon(self.soma(1)._ref_v, target, sec = self.soma)
nc.threshold = 10
return nc

def synapses(self):
s = h.ExpSyn(self.dend(0.8)) # EO
s.tau = 2
self.synlist.append(s)

Page 16 Copyright © 1998-2016 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Parallel Simulations with NEURON

Parallel Simulations page 17 of 19

ringpar.py

from neuron import h
h.load_file('nrngui.hoc')
pc = h.ParallelContext()
rank = int(pc.id())

nhost = int(pc.nhost())

from cell import BallStick
Network Creation
NCELL = 20

cells = []

nclist = []

def mkring(ncell):
mkcells(ncell)
connectcells()

def mkcells(ncell):

global cells, rank, nhost

cells = []

for 1 in range(rank, ncell, nhost):
cell = BallStick()
cells.append(cell)
pc.set_gid2node(i, rank)
nc = cell.connect2target(None)
pc.cell(i, nc)

def connectcells():
global cells, nclist, rank, nhost, NCELL
nclist = []
not efficient but demonstrates use of pc.gid_exists
for 1 in range(NCELL):
targid = (i+1)%NCELL
if pc.gid_exists(targid):
target = pc.gid2cell(targid)
syn = target.synlist[0O]
nc = pc.gid_connect(i, syn)
nclist.append(nc)
nc.delay = 1; nc.weight[0] = 0.01

mkring (NCELL)

Copyright © 1998-2016 N.T. Carnevale and M.L. Hines, all rights reserved Page 17

Didactic Presentations The NEURON Simulation Environment

Parallel Simulations page 18 of 19

#Instrumentation - stimulation and recording

def mkstim():

"'' stimulate gid © with NetStim to start ring '''
global stim, ncstim
if not pc.gid_exists(0):
return
stim = h.NetStim()
stim.number = 1
stim.start = 0
ncstim = h.NetCon(stim, pc.gid2cell(0).synlist[0])
ncstim.delay = 0
ncstim.weight[0] = 0.01

mkstim()

def spike_record():

record spikes from all gids '''
global tvec, idvec

tvec = h.Vector()

idvec = h.Vector()
pc.spike_record(-1, tvec, idvec)

def prun(tstop):

Page 18

simulation control '"'
pc.set_maxstep(10)
h.stdinit()
pc.psolve(tstop)

Copyright © 1998-2016 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Parallel Simulations with NEURON

Parallel Simulations page 19 of 19

def spikeout():
"'' report simulation results to stdout '"'
global rank, tvec, idvec
pc.barrier()
for 1 in range(nhost):
if 1 == rank:
for 1 in range(len(tvec)):
print '%g %d' % (tvec.x[1], int(idvec.x[1]))
pc.barrier()

def finish():
"'' proper exit '''
pc.barrier()
h.quit()

if __name__ == '__main__':
spike_record()
prun(100)
spikeout ()
if (nhost > 1):
finish()

Copyright © 1998-2016 N.T. Carnevale and M.L. Hines, all rights reserved Page 19

Didactic Presentations The NEURON Simulation Environment

Page 20 Copyright © 1998-2016 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Parallel Simulations with NEURON

Receipt

Received:
From:

For: Parallel Simulation component of NEURON 2016 Summer Course
http://www.neuron.yale.edu/neuron/static/courses/summer2016/summer2016.htmi

Date:

By: N.T. Carnevale
Director, NEURON 2016 Summer Course
203-494-7381
ted.carnevale@yale.edu

For deposit Yale University account "NNC--Fees"
in:

Copyright © 1998-2016 N.T. Carnevale and M.L. Hines, all rights reserved Page 21

Didactic Presentations The NEURON Simulation Environment

Page 22 Copyright © 1998-2016 N.T. Carnevale and M.L. Hines, all rights reserved

