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Introduction

Computer simulation allows us to compare the behavior of an idealized
model (a computational model) with the observed behavior of a biologi-
cal system (an experimental model). We see this relationship in terms of
two phases of experimental inquiry. The first phase starts when the inves-
tigator decides to study a general phenomenon in a particular experimen-
tal system, formulates hypotheses or conceptual models, and judges which
components of the system seem most important. This phase continues with
the design of experiments, selection of experimental subjects, and interpre-
tation of data to characterize these components. Fach of these activities
imposes inevitable choices and approximations: which details are essential,
and which can be omitted? Simulation, the second phase of this experimen-
tal inquiry, faces a question that is superficially more straightforward: does
recombining the components create a model that reproduces the behavior
of the original system? However, answering this question forces another se-
ries of choices and approximations. Regardless of the degree of behavioral
similarity that is achieved, every simulation is an analogy compounded from
multiple levels of approximation, each of which must be carefully examined.
The first level of approximation lies in our speculation about which compo-
nents of the conceptual model are most important and how faithfully they
must be represented in a mathematical or computational model to capture
the essential features of the phenomena displayed by the biological system.
In the case of electrical signals in neurons, the classic approximations are



to describe the spread of current and voltage in the longitudinal direction
with one-dimensional electrical cable theory, and to use phenomenological
descriptions of membrane conductances to emulate transmembrane ionic
currents.

The second level of approximation lies in the relation between the ab-
stract computational model and its particular instantiation on the computer.
Making something work on a computer compels us to move back from the ab-
stract to the concrete. This often means adding details we’d rather ignore,
or worse, being forced to invent them. Also, the computer program that
embodies this instance necessarily contains a huge amount of scaffolding al-
lowing one to interact with the computer model, solve the model equations,
etc.. It may be very difficult to verify that all this scaffolding is functioning
correctly for this particular instance.

Information processing in neurons is accomplished by the spread and
interaction of electrical and chemical signals. These signals are characterized
by spatial nonuniformity and complex temporal dynamics that are intrinsic
to the operation of biological neural networks. Models of neurons or neural
nets that are closely linked to experimentation must preserve the essential
spatiotemporal features of these signals.

This article focuses on a single but critical part of the process of creat-
ing a computer program for neural simulation: the numerical methods for
solving the cable equation with voltage dependent channel conductances.
We concentrate on electrical signaling for two reasons. First, many models
that include electrical signals while ignoring chemical signals have proven
useful. Second, both electrical and chemical signaling are susceptible to the
same computational strategies, since both are examples of the broad class of
reactive diffusion problems (Oran and Boris 1987; Carnevale and Rosenthal
1992a,b) and are described by parabolic partial differential equations.

We attempt to provide an intuitive rationale for the methods. The only
mathematical prerequisite is some algebra and two concepts from first year
calculus that are used very intuitively: differentiation and Taylor’s theorem.

Of the many previous articles that discuss numerical methods for solving
the cable equation, Mascagni’s chapter in Koch and Segev (1989) is notable
for a reasonably complete explanation and bibliography. Douglas (1961)
gives a fairly rigorous account of numerical methods for solving parabolic
partial differential equations. Hines (1984) discusses special techniques for
fast simulations of neurons. A textbook with good general coverage of nu-
merical methods for differential equations has been written by Dahlquist

and Bjo rck (1974)



The Basic Approach

The easiest and most commonly used method for dealing with quantities that
vary continuously with position and time is to approximate the differential
equations that describe the neuron’s electrical behavior with difference equa-
tions. This involves replacing continuous derivatives by finite differences in
a manner analogous to the definition of the derivative

df ~ f(x’o + h) - f(ro)
. ~ Y (1)

dw | y=y,

However, in a difference equation we don’t take the limit as h goes to zero
but instead treat it as a small constant. This converts differential equations
into a set of algebraic equations (one for each discrete value of x and t) that
can be solved by the computer. The practical issue is to choose a difference
replacement that optimizes the accuracy of the simulation results, the time
it takes for the computer to carry out the arithmetic, and the overhead
involved in determining that a given method yields correct results for the
specific discretization (Az, At) of a particular simulation.

The Cable Equation

The physical principle of conservation of charge is combined with Ohm'’s
law to derive the cable equation. We focus on these separately to provide
insight into the process of spatial discretization and the meaning of boundary
conditions.

Conservation of charge at any point along the cable requires that the
sum of currents flowing into a region from all sources (e.g., adjacent interior
regions, transmembrane ionic fluxes, and microelectrodes) must equal zero.

Zia—/imdA:O (2)

where the sum is over all the axial currents i, in units of charge/time (e.g.
milliAmperes) flowing into the region through cross-section boundaries, i,
is the transmembrane current density (mA/cm?), and the integral is taken
over the membrane area A of the region. This is illustrated in Figure 1. The
usual convention is that outward transmembrane current flow is positive and
axial current flow into a region is positive.

The standard approach in computer simulation is to divide the neuron
into regions or compartments small enough that the spatially varying .,



Figure 1: The sum of axial currents flowing into a region equals the current flowing
out of the membrane area. Note that the axial current ¢, varies with position.

in any compartment j is well approximated by its value at the center of
compartment j. Therefore equation 2 becomes

iy = Y )

where A; is the surface area of compartment j. Each axial current at the
cross-section between compartment j and an adjacent compartment k is ap-
proximated by the voltage drop between the centers of the compartments
divided by the resistance of the path between them. This transforms equa-

. Vi -V,
imjdj =) —— (4)
2 ik

tion 3 into

This automatically takes care of the direction of axial current flow, since V; <
Vi means that current flows into the compartment. The total membrane cur-
rent i, ;A; is the sum of capacitive and ionic components, C]‘%L + I(V;, 1),
where ¢; is the membrane capacitance of the compartment and I(V;,t) in-
cludes the effects of varying ionic channel conductances. In summary, the
spatial discretization of branched cables yields a set of ordinary differential



equations of the form

v, ) V-V, |
‘/‘jd—;‘i‘f("jsf):ZTj (5)
% j

Injected currents would be added to the right hand side of this equation.

In deriving this equation we made two approximations: representing
spatially varying ¢, by its value at the center of each compartment, and
specifying axial current ¢, in terms of the voltage drop between the centers
of adjacent compartments. If the compartments are of equal size, it is easy
to use Taylor’s series to show that both of these approximations have er-
rors proportional to the square of compartment length. Thus doubling the
number of compartments reduces the error by a factor of four.

Forward Euler: simple, inaccurate, unstable

Spatial discretization reduced the cable equation to a set of equations with
first order derivatives in time. This section covers the simplest possible
method for solving these kinds of equations, Euler’s method. While it can
suffer from low accuracy and can be numerically unstable; it has the ad-
vantage of being the easiest to understand, provides concrete examples of
the concepts of accuracy and stability, and is a platform from which we can
branch out to more complicated methods that have fewer pitfalls.

We illustrate Euler’s method with models of a passive neuron (constant
membrane resistance) that have only one or two compartments. In the one
compartment model the right hand side of Eq. 5 disappears, so

dv

— +kV =0 6
o+ (6)

where the membrane capacitance and conductance have been subsumed in
the constant & — the inverse of the membrane time constant. In this easy
linear case we can readily compare the results of our computer methods to
the analytic solution of this equation, which is

V(t)=V(0)e ™™ (7)

The numerical methods that we use to understand and control the error are
immediately generalizable to the nonlinear case.

FEuler’s method says that, since we know the initial value of our depen-
dent variable (V(0) ., given by the initial conditions) and its initial slope



Figure 2:
Simulate the behavior of equation 6 by successively marching forward by
a fixed interval assuming the current is constant within each interval. The

current value that is used for a given interval is found from the value of
the voltage at the beginning of the interval. The voltage values are shown
by filled circles. The slope of the line segment emanating from the voltage
value depends on the current at that time step. The dashed line shows the
value of the voltage after the first time step as a function of At.

(—=EV(0) , given by the equation), let’s assume the slope is constant for a
short period of time and extrapolate to a new value a brief interval into the
future. In Fig 2, we start with the initial condition V' (0) = 1 and use a rate
parameter £ = 1. The time interval over which we extrapolate is At = 0.5.

Consider the error in Fig. 2. For the first few time steps the absolute
error increases but then decreases as the analytic solution and the simulation
solution approach the same steady state (V' = 0). The total or global error
i1s a combination of errors from two sources. First, there is the local error,
which is due to the extrapolation process within a time step. This is easily
analyzed with Taylor’s theorem truncated at the term proportional to At?

2
V(t+ At) = V() + AtV (t) + A,Ttv”(t*).,t <tx <t+ At (8)

Euler’s method ignores the second order term, so the error at each step
is proportional to At?. Integrating over a fixed time interval T requires
T /At steps, so the error that accumulates in this interval is on the order of
At? - T/At, i.e. proportional to At . We can always decrease the error as
much as we like by reducing At.



The second contribution to the total error has to do with the cumulative
effect of past errors, which have moved the computed solution away from
the trajectory of the analytic solution. Thus, if our computer solution has
a nonzero total error at time #1, then even if we were to thereafter solve the
equations exactly using the state values at ¢ as our initial condition, the
future solution will be inaccurate because we are on a different trajectory.

The total error of the simulation is therefore not easy to analyze. In
the example of Fig. 2, all trajectories end up at the same steady state so
total error tends to decrease, but not all systems behave in this manner.
Particularly treacherous are systems that behave chaotically so that, once
the computed solution diverges even slightly from the proper trajectory, it
subsequently moves rapidly away from the original and the time evolution
becomes totally different.

The question is not so much how large the error of a simulation is relative
to the analytic solution but whether the simulation error puts us on trajec-
tories that are different from the set of trajectories defined by the error in
our parameters. There may be some benefit in treating the model equations
as sacred runes which must be solved to an arbitrarily high precision —
removal of any source of error has value. But judgment is required in order
to determine the meaning of a simulation run. For example, consider the
Hodgkin-Huxley membrane action potential elicited by a short but strong
current stimulus and one elicited by a much weaker stimulus. The top panel
of Fig. 3 compares these action potentials with those calculated by Euler’s
method using a time step of 25 ps. While the voltage hovers near threshold,
a little bit of error due to our time step is amplified into a considerable
error in the actual time of occurrence of the spike. However the behavior
around the threshold is highly sensitive to almost any parameter as is seen
by changing the sodium channel density by only 1%. Clearly it is crucial to
know the sensitivity of our results to every parameter of the model, and the
time step is just one more parameter which is added as a condition of being
able to simulate a model on the computer.

It might seem that using extremely small At would be the best way to
reduce error. However, computers represent real numbers as floating point
numbers with only a fixed number of digits, so if you keep adding 1072° to
1 you may always get a value of 1 — even if you iterate the process 10%°
times. Operations that involve the difference of similar numbers, as when
differences are substituted for derivatives, are especially prone to roundoff
error. Consequently there is a limit to the accuracy improvement that can
be achieved by decreasing At.
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Figure 3: Hodgkin Huxley membrane action potentials elicited by a current stimu-
lus of duration 0.3 ms and amplitudes 0.08 mA/em? and 0.022 mA /em?. In the top
panel the solid lines are for Euler’s method with At = 0.025 ms, and the dashed
line is computed using a very much smaller Af. All action potentials are calcu-
lated with g, = 0.12mA/em?. The bottom panel shows very accurate simulations
with §x, = 1%. In this panel, the three simulations that involve the large stimulus

superimpose.
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Figure 4: Euler’s method is numerically unstable whenever At is greater than twice
the smallest time constant. The analytic solution is the sum of two exponentials
with time constants 1 and 1/41. The solution step size is 0.001 ms for the first 0.2
ms, after which it is increased to 0.2 ms.

Generally speaking it would he nice to bhe able to use what might be
called “physiological” values of At. That is, time steps that give a good
representation of the state trajectories without having a numerical accuracy
that is many orders of magnitude better than the accuracy of our physio-
logical measurements.

Numerical stability

What would happen if the time step was very large in Figure 2, e.g.
At = 37 Now, the first step would extrapolate down to V = —2, the
second step would end up at V= —2 + 6 = 4, and each successive step
would oscillate with geometrically increasing magnitude — the simulation
is numerically unstable. An important aspect of instability is most easily
illustrated with a two compartment simulation in which the compartments
are connected by a small axial resistance so that the membrane potentials
are normally in quasi-equilibrium and at the same time are decaying fairly
slowly. Figure 4 shows the time course of the two compartments when the
initial condition is V' = 0 in one and V = 2 in the other. Now, if we use
the Euler method with At = 0.5 we realize that there will be a great deal
of trouble during the time where the voltages are changing rapidly, so we
might think that all we need to do is choose a At which will carefully follow
the time course of the voltage changes, i.e. a At which is small when they
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are changing rapidly and larger when they are changing slowly. Figure 4
illustrates the results of this strategy as well. After 0.2 units of time with
At = 0.001, the two voltages have nearly come into equilibrium. Then we
changed to At = 0.2 — still small enough to follow the slow decay closely.
Unfortunately what happens is that, no matter how small the difference
between the voltages (even if it consists only of roundoff error), the difference
grows geometrically at each time step. For Euler’s method, the time step
must never be more than twice the smallest time constant in the system.

The notion of “time constant” and its relationship to stability are clar-
ified by appealing to linear algebra. For a linear system with N compart-
ments, there are exactly N spatial patterns of voltage over all compartments
such that only the amplitude of the pattern changes with time, and the
shape of the pattern is preserved. These patterns, called eigenvectors, have
the property that the time course of change of the ith pattern is given by
et where \;is called the eigenvalue of the ith eigenvector. If the real part
of A; is negative, then the ith pattern decays exponentially to 0; if the real
part is positive, the amplitude grows catastrophically. If A; has an imaginary
component, then the pattern oscillates with frequency, w; =Im(\;).

Our two compartment model has two such patterns. In one pattern,
the voltage is the same in both compartments. This pattern decays with

the time course e™t.

The other pattern, in which the voltages in the two
compartments are equal but opposite in sign, decays with the time course
e~ | The key idea is that a problem involving N coupled differential
equations can always be transformed into a set of N independent equations,
each of which is solved separately as in the single compartment of Equation
6. It is essential to use a small enough At that the solution of each equation
is stable. This is the reason why stability criteria that involve At depend
on the smallest time constant.

Systems that have a very large ratio between their slowest and fastest
time constants are said to be stiff. Stiffness is a serious problem because we
may need to use a small At to follow changes due to the fast time constant,
while running the simulation for a very long time in order to observe changes
governed by the slow time constant.

Whether an imposed driving force changes the stability properties de-
pends on whether it alters the time constants that describe the system. A
current source (perfect current clamp) will not change the time constants
and therefore will not affect stability. Any other signal source introduces
a load into the compartment to which it is attached, changing the time

constants and their corresponding eigenvectors. The more closely it approx-
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1 Implicit

Figure 5: First order fully implicit (backward Euler) and second order Crank-
Nicholson methods. At the end of each implicit step the slope at the new value
points back to the beginning of the step. In the Crank-Nicholson method the slope
at the midpoint of the each step is used to determine the new value. The dashed
lines show the voltage after the first time step as a function of At.

imates a voltage source (perfect voltage clamp), the greater this effect will
be.

Implicit (Backward Euler) method: inaccurate but
stable

It turns out that we can avoid the numerical stability problems of Euler’s
method by evaluating the equations at time t + At, i.e.

V(4 Af) = V() + AF(V(E+ A1) 1+ A1) ©)

This is called the implicit method or sometimes “backwards Euler” since it
is derived from Taylor’s series truncated at the At term but with ¢t + At in
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Figure 6: Two compartments as in Figure 4 simulated with fully implicit method.
Top: At is much larger than the fast time constant. Bottom: for the first 0.2 time
units, At is small enough to accurately follow the fast time constant. Thereafter,
At 1s increased to 10 times the fast time constant, yet the simulation remains
numerically stable.

place of f. For our simple example we have

B o V()
V(t+ At) = T hAL (10)
Several iterations are shown in the top half of Fig. 5. At each step we move
to a new value such that the slope there points back to the beginning of
the step. If At is very large, then instead of geometrically increasing error
oscillations, we get an exponential approach to the steady state.

The attractive stability properties of the implicit method are illustrated
in Figure 6 where we use it to simulate the two compartment model. No-
tice that although a large At does not allow us to follow the fast changing
concentrations at the early times, it does give a reasonable qualitative un-
derstanding of the behavior. Also the artifice of changing the step size
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depending on how quickly the states are changing does work now without
blowing up on us. Of course, as in Euler’s method, the global error is pro-
portional to At for small At. Unfortunately we now have to solve a set of
nonlinear simultaneous equations at each step. Obviously this takes a lot of
extra work and we’ll want to use a step size a large as possible while still
getting good quantitative accuracy. It is safest to use the first order implicit
method for initial exploratory simulations because its robust stability prop-
erties give fast simulations that are almost always qualitatively correct given
reasonable values of At, and one does not have to worry about large error
oscillations between very tightly coupled compartments that really should
quickly come into equilibrium.

Central Difference (Crank-Nicholson) Method: sta-
ble and more accurate

This motivates us to look into a variation of the implicit method which
has global error that is proportional to the square of the step size and is
basically just an average of the two methods (or more precisely, advancing
by one half step using the implicit method and then advancing one half step
using Euler’s method). The bottom half of Figure 5 illustrates the idea.
The value at the end of a step is along the line determined by the estimated
slope at the midpoint of the step.

Generally, for a given At we can expect a large accuracy increase with
the central difference or Crank-Nicholson method (Crank and Nicholson,
1947). It’s proper to wonder, though, what effect the Euler half step has on
numerical stability. Figure 7 shows the two compartment model using this
central difference method with a much larger At than the fast time constant.
We say the method is stable because the error oscillations eventually decay
away. Clearly, this method will also work with a variable time step approach.
What is going on here is that the combination of implicit half step followed
by an explicit half time step approximates an exponential decay by

1— At/2

As Atgets very large the step multiplier approaches -1 from above so the
solution oscillates with decreasing amplitude.

The most interesting feature of the central difference method is that the
amount of computational work for the extra accuracy beyond the backward
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Crank Nicholson Method

Figure 7: The Crank-Nicholson method can have significant error oscillations when
there is a large amplitude component in the simulation that has a time constant
much smaller than At. However, the oscillation amplitude decreases at each step,
so the simulation is numerically stable.

difference method is trivial since after computing V(¢ + At/2) we just have
Ve _ I g \ Y4 ¢
V(t+At) =2V (t4+ 5= ) = V(1) (12)

so the extra accuracy does not cost extra computations of the model func-
tions.

This completes the basic ideas involved in simulation of branched cables.
But several details about the structure of these equations can be exploited
to greatly reduce the computation time over that required to solve general
sets of nonlinear ordinary differential equations.

Efficiency

Nonlinear equations generally need to be solved iteratively to maintain sec-
ond order correctness. However, voltage dependent membrane properties,
which are typically formulated in analogy to Hodgkin-Huxley (HH) type
channels, allow the cable equation to be cast in a linear form, still second
order correct, that can be solved without iterations. A direct solution of
the voltage equations at each time step ¢t — t + At using the linearized
membrane current I[(V.t) = G - (V — E) is sufficient as long as G and E
are known to second order at time ¢ + 0.5A¢ . (N()te: G is called the slope
conductance (dI/dV') and E is the effective reversal potential). HH type
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channels are easy to solve at ¢t 4+ 0.5A¢ since the conductance is a function
of state variables which can be computed using a separate time step that
is offset by 0.5At with respect to the voltage equation time step. That is,
to integrate a state from t — 0.5At to t + 0.5A¢ we only require a second
order correct value for the voltage dependent rates at the midpoint time 7.
Figure 8 contrasts this approach with the common technique of replacing
nonlinear coefficients by their values at the beginning of a time step. For
HH equations in a single compartment, the staggered time grid approach
converts four simultaneous nonlinear equations at each time step to four
independent linear equations that have the same order of accuracy at each
time step.

Neuronal architecture can also be exploited to increase computational
efficiency. Since neurons generally have a branched tree structure with no
loops, the number of arithmetic operations required to solve the cable equa-
tion by Gaussian elimination is exactly the same as for an unbranched cable
with the same number of compartments. That is, we need only O(N) arith-
metic operations for the equations that describe N compartments connected
in the form of a tree, even though standard Gaussian elimination generally
takes O(N?) operations to solve N equations in N unknowns. The tremen-
dous efficiency increase results from the fact that, in a tree, one can always
find a leaf compartment i which is connected to only one other compartment
j, so that: 1) the equation for compartment i (Equation 13a) involves only
the voltages in compartments i and j, and 2) the voltage in leaf compartment
iis involved only in the equations for compartments i and j (Equations 13
and 14).

a; Vi + (li]‘Vj = b (13)

a;;Vi +a;;V; +terms from other compartments = b; (14)

Using Equation 13 to eliminate the V; term from Equation 14, which requires
O(1) (instead of N) operations, gives Equation 15 and leaves N-1 equations
in N-1 unknowns.

a; ;Vj + terms from other compartments = b; (15)
where a;j = a;; — (a;;a;;/a;;) and b;j = b;; — (bija;;/a;;). This strategy can
be applied until there is only one equation in one unknown.

Asgsume that we know the solution to these N-1 equations, and in partic-
ular that we know V;. Then we can find V; from Equation 13 with O(1) step.
Therefore the effort to solve these N equations is O(1) plus the effort needed
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y Single iteration

Staggered time step

Figure 8: The equations shown at the top of the figure are computed using the
Crank-Nicholson method. Top: x(t+ At) and y(t + At) are determined using their
values at time ¢. Bottom: staggered time steps yield decoupled linear equations.
y(t + At/2) is determined using x(t), after which z(¢t + A?) is determined using
y(t + At/2) .



to solve N-1 equations. The number of operations required is independent
of the branching structure and thus a tree of N compartments uses exactly
the same number of arithmetic operations as a one-dimensional cable of N
compartments.

Efficient Gaussian elimination requires an ordering that can be found by
a simple algorithm that merely chooses the equation with the current min-
imum number of terms as the equation to use in the elimination step. The
minimum degree ordering algorithm is commonly used in standard sparse
matrix solver packages. One example written in C is Sparsel.3, the Sparse
Linear Equation Solver by Kundert and Sangiovanni-Vincentelli. This and
many other sparse matrix packages are freely available on the Internet via
anonymous ftp from netlib.att.com.
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