Hines, Michael (1993). NEURON - A program for simulation of nerve equa-
tions. In: Newral Systems: Analysis and Modeling. pp.127-136. F. Eeckman
(ed), Kluwer Academic Publishers.

NEURON — A Program for Simulation
of Nerve Equations

Michael Hines
Dept. of Neurobiology
Duke University Medical Center
Durham, NC 27710

Introduction

Programs designed specifically to simulate nerve equations compare favorably
with general purpose simulation programs in three areas. 1) The user deals
directly with concepts that are familiar at the neuroscience level and is not
required to translate the problem into another domain. 2) The program contains
functions better suited for controlling the simulation and graphing the results
of real neurophysiological problems. 3) Special methods and tricks can be used
to take advantage of the structure of nerve equations to solve them much more
quickly, e.g. Hines (1984) and Mascagni (1991).

However, the general domain of nerve simulation is still too large for any
single program to optimally deal with every problem. In practice, programs
have their genesis in the attempt to solve a much restricted class of problems
— although sometimes provision is made in the underlying implementation to
incrementally extend the domain of applicability. Programs do one kind of
problem best but degrade, as the problem changes, both in allowing the user
to maintain conceptual control and in speed of simulation.

This article describes a program, NEURON, developed in collaboration with
John W. Moore, written in C, and with source code freely available to any in-
terested person. With NEURON, nerve properties are specified, the simulation
controlled, and the results graphed by writing procedural statements to an
interpreter. This has the advantage of generality but the disadvantage that
it 1s more difficult to learn than a menu driven interface. The usefulness of
NEURON degrades very slowly with increased complexity of morphology and

127

ANALYSIS AND MODELING OF NEURAL SYSTEMS 11

membrane mechanisms. NEURON is best suited, in terms of efficiency, for
problems ranging from parts of single cells to small numbers of cells in which
cable properties play a crucial role. It is best suited, in terms of conceptual
control, for stylized morphologies represented as connected cable sections and
where membrane channel parameters are conveniently represented as piece-wise
linear functions of position within each section. Two special classes of problems
for which 1t is well suited are those in which it is important to calculate ionic
concentrations and those where one needs to compute the extracellular poten-
tial just next to the nerve membrane. It is well suited for investigating new
kinds of membrane channels since they are described using a high level model
description language which allows the expression of models in terms of kinetic
schemes or sets of simultaneous equations.

Section
l\vlode
[[[[\\.
0 < Segment- 1
v(1.5/nseg)
v(1)
A Membrane
v(1)
Membrane
B vext(1)
Extracellular
barrier

Figure 1: Section representation as electrical equivalent circuit. B shows the
representation when the “extracellular” mechanism is used.

Every nerve simulation program solves for the longitudinal spread of voltage
and current by approximating the cable (parabolic partial differential) equation
as a series of compartments connected by resistors (Fig. 1). The compartments
represent a membrane area that contains all the channels and other mechanisms
that govern the total transmembrane current. The sum of all the compartment
areas 18 the total membrane area of the whole nerve. Unfortunately, it is usually
not clear at the outset how many compartments should be used. The accuracy
of the approximation as well as the computation time increases as the number of
compartments used to represent the cable increases. When the cable is “short”,

128

NEURON SIMULATION PROGRAM

a single compartment can be made to adequately represent the entire cable. For
long cables or highly branched structures, it may be necessary to use a very
large number of compartments.

The problem of “conceptual control” is how best to manage all the pa-
rameters which exist within these compartments. For example, consider the
membrane capacitance. The values are different in every compartment but
rather than specify them all individually it is better to deal in terms of a single
specific membrane capacitance that is constant over the entire cell and have
the program compute the values of the individual capacitances within the com-
partments based on the area of the compartments.

NEURON is a program designed around the notion of continuous cable
“sections” which are connected together to form any kind of branched tree
structure. The value of this notion lies in the ability to specify the physical
properties of a neuron without regard for the purely numerical issue of how
many compartments will be used to represent each of the cable sections. This
means that one can easily trade off between accuracy and speed and makes for
convenient verification of the numerical correctness of the simulation.

Numerical Methods

Spatial discretization

Figure 1 showed how NEURON represents a cable section in terms of a dis-
crete set of nodes connected by resistors. The section 1s divided into a number
(denoted by the section parameter, nseg) of segments of equal length. A node
(location where the internal voltage is defined) is placed at the center of each
segment along with one extra node (representing 0 area) at the distal end of
the section. A node at the center of a segment represents the entire area of the
segment. The distal node represents 0 area and facilitates numerical compu-
tation of membrane potential when multiple branches are attached to the end
of a section. NEURON takes care to calculate the value of the circuit parame-
ters based on the position of these nodes and it can be shown that the spatial
accuracy 1s proportional to the square of the number of segments.

Sections which have the “extracellular” membrane mechanism inserted are
represented by an extra layer of of nodes representing the extracellular potential
just next to the membrane (bottom of figure 1).

Time integration

NEURON uses a fully implicit (backward euler) integration method to compute
the membrane voltage (cf. Hines, 1989). This method has the advantage of
being numerically stable for large time steps and, in fact, a single large time step
suffices to determine the steady state for passive neurons. Although the implicit
method gives good qualitative results for large time steps the simulation error
is proportional to the integration time step. The results of this method for two

129

ANALYSIS AND MODELING OF NEURAL SYSTEMS 11

time steps can be seen in the left panel of figure 2 which shows the membrane

Implicit C-N
100 100
\ < dt=.025 ms
mV' 50 dt=.005ms 50
0 0
5r- 5r-
ik ik
0 T p) 0 T p)
mA/cm2 ms / ms
ina Ina
5+ 5+
dt=.005 dt=.005ms
ms dt=.025 ms
-10b -10-

*—dt=.025 ms

Figure 2: Frankenhaeuser - Huxley action potential: Comparison of implicit
and Crank-Nicholson methods with two time steps.

voltage and ionic currents for an action potential using the Frankenhaeuser-
Huxley (1964) model of the frog node. Tt is clear that the accurate simulation
of fast changing ionic currents requires smaller time steps than that needed for
the membrane potential.

A more accurate integration method (analogous to that of Crank and Nichol-
son, 1947) can be selected which has numerical errors proportional to the square
of the time step. In fact, the simulation using the .025 ms time step in the right
panel of figure 2 1s more accurate than the .005 ms time step simulation with
the fully implicit method. The reason the implicit method is used by default is
that the C-N method doesn’t work with fast voltage clamps or when the resis-
tance coupling adjacent segments is very small. The C-N method may produce
membrane potential artifacts that oscillate with large amplitude when the time
step becomes too large.

Both integration methods use several efficiency tricks (Hines, 1984) that
make simulations run faster. First, the geometry of the neuron is limited to a
tree like structure which allows a fast direct method for solving the simultaneous
equations representing charge conservation at each voltage node. Simulation
time 1s proportional to the total number of nodes plus the total number of
branches. Second, iterative solution of the nonlinear simultaneous equations is
avoided by calculating channel states at the midpoint of each time step. This
saves a lot of time but makes results a bit more complicated since for the C-

130

NEURON SIMULATION PROGRAM

N method the user must be aware that voltage and concentration are most
accurate at the indicated value of the time variable, dt, but channel states are
second order correct at time, t + dt/2, and currents are second order correct
at time, t — dt/2. Third, integration of channel states can be done analytically
(actually second order since the voltage dependent rates use the voltage at the
midpoint of the integration step) in just a single addition and multiplication
operation and two table lookup operations. The tradeoff here is that the tables
depend on the value of the time step and must be recomputed whenever the
time step changes.

User Interface

The user interface uses broadly the same style as our previous nerve simulation
program, CABLE (Hines, 1989). That is, simulation control at the user level is
via a C-like interpreter called HOC (Kernighan and Pike, 1984). The built in
editor for writing interpreted functions is microemacs. The integration of the
nerve equations is accomplished by repeatedly calling a function which advances
all the variables through a short time interval, dt.

The process of setting up and running a simulation consists in writing pro-
cedures to: 1) Define the physical properties of the neuron. This includes
declaring the names of various components (continuous cable sections which
may be short or long) of the cell, connecting these sections together, inserting
membrane mechanisms (channels, synapses, stimulus electrodes, ionic concen-
trations, etc) into the sections, and setting the values of parameters for these
membrane mechanisms. 2) Control the time course of the simulation. This
is generally divided into at least two procedures. One initializes the mem-
brane potential and the states of the inserted mechanisms (channel states, ionic
concentrations, or extracellular potential next to the membrane). The sec-
ond procedure repeatedly calls the built-in single step integration function and
saves, plots, or computes functions of the desired variables at each step. In this
procedure 1t 1s possible to change the value of membrane parameters during a
run.

The flexibility of an interpreter makes it convenient to write procedures to
handle families of related simulations, calculate new variables such as impulse
propagation velocity, optimize parameters, search for thresholds, etc.

Cable Sections

The greatest problem with our previous program was that the user was respon-
sible for knowing the correspondence between segment number and position on
the nerve. All nerve properties were assigned via vector variables in which the
index of the vector was the segment number. Changing the number of segments
that describe the nerve was an error prone and laborious process.

This problem is overcome by the notion of a named section which can be
thought of as a one-dimensional cable of length, L, (in wm) with a continuous

131

ANALYSIS AND MODELING OF NEURAL SYSTEMS 11

position parameter, 0 < < 1, in which # = 1 corresponds to absolute position
L. Most properties are functions of the position parameter and are called “range
variables”. Examples are the diameter in gm, diam, the membrane potential
in mV, v, and, if the Hodgkin - Huxley mechanism 1is inserted, the maximum
HH sodium conductance in mho/cm?, gnabar. Specifying the values of range
variables does not depend on the number of segments (parameter nseg) used
to represent the section.

Because the same names for parameters are used in all sections it is necessary
for the user to specify which section is intended. The interpreter provides several
methods to determine which 1s the currently specified section. For example,
forall { statements }, executes the statements within the brackets once with
every section name set to the currently specified section. Special functions are
provided to determine the name of the currently specified section and whether
a particular membrane mechanism is inserted in that section.

The simplest use of a range variable is to assign a constant value to it as in:

diam=10

This statement places the value, 10, in every segment of the currently specified
section. For values which vary along the length of a section, the assignment
syntax

rangevar(zmin : zmaz) = el : el

with 0 < zmin < zmaz < 1 is used to store any piecewise linear function into
the segments of the current section. The value of a range variable can appear in
any expression using the syntax, “rangevar(z)”, where 0 < x < 1. The value
is the value at the center of the segment containing point .

Membrane Mechanisms — Model Description
Language

Our previous program (CABLE) contained several built-in membrane mech-
anisms such as radial calcium diffusion, calcium channel, etc. However, in
practice, only the Hodgkin-Huxley squid channels were enough of a standard
to be used “as 18” across more than one series of simulations. The other chan-
nels all required some type of modification to be useful as new situations arose.
Sometimes the modifications were minor, such as changing the coordinate sys-
tem for radial calcium diffusion so that there were more compartments near
the membrane, but often we were forced to add an entirely new mechanism
from scratch such as Frankenhaeuser-Huxley channels for Xenopus node. The
problem was greatly compounded for other users of CABLE who needed to add
new channels but were not familiar with the numerical issues or the detailed
interface requirements.

The NEURON system overcomes this problem by allowing the incorpora-
tion of new membrane mechanisms that are defined using a high level model

132

NEURON SIMULATION PROGRAM

description language, NMODL! (Kohn, et. al, 1989). NMODL with NEURON
is a significant improvement over CABLE with regard to adding new membrane
mechanisms:

e Interface details are handled automatically. Function tables are automat-
ically generated.

e Consistency of units 1s ensured.

e Mechanisms described by a kinetic scheme are written with a syntax in
which the reactions are clearly apparent.

e There is often a great increase in clarity since statements are at the model
level instead of the C programming level and are independent of the nu-
merical method.

At the same time, since the model description is translated into C, the compu-
tation speed remains the same or better than a user programmed mechanism

in CABLE.

Types of mechanisms

The kinds of mechanisms that can be translated by NMODL and linked into
NEURON are:

e Channels in which the model consists of current-voltage relationships.
This includes HH, calcium channels, etc.

e (Calculation of internal and external ionic concentration changes due to
currents carried by specific ions. This includes radial calcium diffusion,
extracellular potassium accumulation, etc.

e Point processes which are inserted at a particular point in a section instead
of being distributed throughout a section. This includes current stimuli,
voltage clamps, and synapses.

More than one user defined mechanism can be simultaneously inserted into
sections and NEURON will keep track of the total current for each ionic species
used and the effect of that current on the membrane potential.

Types of equations

Models consisting of a mixed set of nonlinear algebraic and differential equations
are written using an expression syntax of the form

1The model description language was originally developed at the National Biomedical
Simulation Resource to specify models for simulation with their “Simulation Control Pro-
gram”. Only modest extensions to the syntax were necessary to allow it to translate model
descriptions into a form suitable for compiling and linking with NEURON.

133

ANALYSIS AND MODELING OF NEURAL SYSTEMS 11

x? = f(x, y, t)
“glx, y) = hix, y)

where the prime refers to the derivative with respect to time (multiple primes
such as x’? refer to higher derivatives) and the tilde introduces an algebraic
equation. The algebraic portion of such systems of equations is solved by New-
ton’s method and a variety of methods are available for solving the differential
equations, e.g. variable step Runge-Kutta or backward euler.

Chemical reactions and kinetic schemes are expressed using a reaction style
syntax illustrated with

“ A+ 2B <->C+D (k1, k2)

Where the k1 and k2 are the forward and reverse rate constants. As an example
of the power and convenience of the kinetic scheme approach consider a stylized
model of transmitter release at the nerve terminal in response to inward calcium
current. Figure 3 illustrates a model which focuses on the diffusion of calcium

Saturable Calcium Buffer

Figure 3: Calcium evoked transmitter release.

toward the interior of the terminal and its reaction with an immobile calcium
buffer. At the same time, near the cell surface, three molecules of free calcium
can react with a vesicle filled with neurotransmitter in such a way as to cause the
vesicle to release its contents extracellularly. This transmitter is then destroyed
by an enzyme.

The description of the kinetic process in the NMODL language follows. To
save space the blocks which declare the parameters and variables have been
left out as well as the procedure which computes factors that depend on the
specific coordinate system. Ca[0] refers to the internal compartment closest to
the membrane (there are N compartments indexed from 0 to N-1).

KINETIC calcium_evoked_release {
: Release
Vesicle + 3Cal0] <-> VRel (Agen, Arev)

“ VRel <-> Ach (krel, 0)
~ Ach + Achase <-> Ach2ase (Aasef, Aaseb)

134

NEURON SIMULATION PROGRAM

~ Ach2ase <-> X + Achase (hase2, 0)

: Buffering
FROM i = 0 TO N-1 {

- Cal[i] + Buffer[i] <—> CaBuffer[i] (kCaB, kmCaB)
¥

: Diffusion
FROM i = 1 TO N-1 {

- cal[i-1] <-> calil (Dcaxf[i], Dca*f[i])
¥

Inward flux
- cal0] << (ica*fac)

COMPARTMENT i, vol[i] {Ca CaBuffer Buffer}

COMPARTMENT vol[0] {Vesicle VRel}

COMPARTMENT ext {Ach Achase Ach2ase X}
¥

Especially note the elegance in the way calcium diffusion is specified. The
vector parameters vol[] and f[] take into account the size and surface area of
adjacent compartments. More importantly, modifications to the model (such as
increasing the stoichiometry of release to four calcium ions) can be easily made
without introducing errors.

The above KINETIC block is translated into a C function 150 lines long
which explicitly sets up the associated matrix equation — clearly the leverage
is tremendous. The generated code is very efficient and the solution method
is stable for all time steps (Steady state solutions are found in one step when
the time step is very large; equilibrium reactions are simulated with extremely
large rate constants). Furthermore the simultaneous equations are solved using
a direct sparse matrix method using minimum degree ordering resulting in a
tremendous decrease in computation time over the standard full matrix method.

Units

The units checking feature of NMODL has proved invaluable. Its usefulness
can be illustrated by the following example, especially if the reader takes the
trouble to calculate the conversion factor on her/his own.

Consider the concentration change of sodium (M) in a sphere of radius
(um) in response to a uniform inward current density (mA/cm?) with time
measured in (ms). The equation for the concentration change (the prime refers
to the derivative with respect to time, the Faraday is measured in coulombs) is
written in NMODL as

nai’ = ina/FARADAY * (4*PI*radius~2)/(4/3*PI*radius”3)

135

ANALYSIS AND MODELING OF NEURAL SYSTEMS 11

but is missing a conversion factor to make the units consistent.
The units checker not only generates an error message stating that the above
equation is inconsistent but suggests the proper conversion factor.

References

Crank, J. and Nicholson, P.N. (1947) A practical method for numerical evalu-
ation of solutions of partial differential equations of the heat-conduction
type. Proc. Cambridge Phil. Soc. 43: 50-67.

Frankenhaeuser, B. and Huxley, A.F. (1964). The action potential in the
myelinated nerve fibre of Xenopus laevis as computed on the basis of
voltage clamp data. J. Physiol. (Lond.) 171: 302-315.

Hines, Michael. (1984). Efficient computation of branched nerve equations.
Int. J. of Biomed. Computing. 15: 69-76.

Hines, Michael. (1989). A program for simulation of nerve equations with
branching geometries. Int. J. of Biomed. Computing. 24. 55-68.

Kernighan, B.W. and Pike, R. (1984). The Uniz Programming Environment.
Prentice hall, Englewood Cliffs, New Jersey.

Kohn, M. C.; Hines, M., Kootsey, J. M., and Feezor, M. D. (1989). A block
organized model builder. Proceedings of the symposium on physiological
modeling at the 7th ICCM, Chicago. In press.

Mascagni, Michael. (1991). A parallelizing algorithm for computing solutions
to arbitrarily branched cable neuron models. J. Neurosci. Methods. 36:

105-114.

136

