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Preface

I promise nothing complete; because any human thing supposed to
be complete, must for that very reason infallibly be faulty.

Who should read this book

This book is about how to use the NEURON simulation environment
to build and use empirically-based models of neurons and neural net-
works. It is written primarily for neuroscience investigators, teachers,
and students, but readers with a background in the physical sciences
or mathematics who have some knowledge about brain cells and cir-
cuits and are interested in computational modeling will also find it
helpful. The emphasis is on the most productive use of NEURON as a
means for testing hypotheses that are founded on experimental obser-
vations, and for exploring ideas that may lead to the design of new
experiments. Therefore the book uses a problem-solving approach,
with many working examples that readers can try for themselves.

What this book is, and is not, about

Formulating a conceptual model is an attempt to capture the essential
features that underlie some particular function. This necessarily in-
volves simplification and abstraction of real-world complexities. Even
so, one may not necessarily understand all implications of the concep-
tual model. To evaluate a conceptual model it is often necessary to
devise a hypothesis or test in which the behavior of the model is com-
pared against a prediction. Computational models are useful for per-
forming such tests. The conceptual model and the hypothesis should
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determine what is included in a computational model and what is left
out. This book is not about how to come up with conceptual models
or hypotheses, but instead focuses on how to use NEURON to create
and use computational models as a means for evaluating conceptual
models.

What to read, and why

The first chapter conveys a basic idea of NEURON’s primary domain
of application by guiding the reader through the construction and
use of a model neuron. This exercise is based entirely on NEURON’s
GUI, and requires no programming ability or prior experience with
NEURON whatsoever.

The second chapter considers the role of computational modeling
in neuroscience research from a general perspective. Chapters 3 and 4
focus on aspects of applied mathematics and numerical methods that
are particularly relevant to computational neuroscience. Chapter 5
discusses the concepts and strategies that are used in NEURON to
simplify the task of representing neurons, which (at least at the level
of synapses and cells) are distributed and continuous in space and
time, in a digital computer, where neither time nor numeric values
are continuous. Chapter 6 returns to the topic of model construction,
emphasizing the use of programming.

Chapters 7 and 8 provide ”inside information” about NEURON’s
standard run and initialization systems, so that readers can make best
use of their features and customize them to meet special modeling
needs. Chapter 9 shows how to use the NMODL programming lan-
guage to add new biophysical mechanisms to NEURON. This theme
continues in Chapter 10, which starts with mechanisms of communi-
cation between cells (gap junctions, graded and spike-triggered synap-
tic transmission), and moves on to models of artificial spiking neurons
(e.g. integrate and fire cells). The first half of Chapter 11 is a tutorial
on NEURON’s GUI tools for creating simple network models, and
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the second half shows how to use the combined strength of the GUI
and hoc programming to create more complex networks.

Chapter 12 discusses the elementary features of the hoc program-
ming language itself. Chapter 13 describes the object-oriented exten-
sions that have been added to hoc. These extensions have greatly
facilitated construction of NEURON’s GUI tools, and they can also
be very helpful in many other complex programming tasks such as
creating and managing network models. Chapter 14 presents an ex-
ample of how to use object oriented programming to increase the
functionality of NEURON.

Appendix 1 presents a mathematical analysis of the IntFire4 ar-
tificial spiking cell mechanism, proving a result that is used to achieve
computational efficiency. Appendix 2 summarizes the commands for
NEURON’s built-in text editor.

Typeface conventions

Program listings, names of sections and density mechanisms, classes,
objects, methods, procedures, functions, statements, and URLs are
printed in a monospaced typeface. Optional code, or items that
are generic placeholders that the reader should substitute with his
or her own specific entries, are indicated by slanted monospace.
Samples of command-line usage employ bold monospace to signify
user input. Labels and menus that appear in NEURON’s graphical
interface are presented with a sans serif typeface.
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A tour of the NEURON simulation
environment

. . . so, entering, the first thing I did was to stumble over an
ash-box in the porch. Ha! thought I, ha, as the flying particles
almost choked me, are these ashes from that destroyed city,

Gomorrah?

1.1 Modeling and understanding

Modeling can have many uses, but its principal benefit is to improve
understanding. The chief question that it addresses is whether what
is known about a system can account for the behavior of the sys-
tem. An indispensable step in modeling is to postulate a conceptual
model that expresses what we know, or think we know, about a sys-
tem, while omitting unnecessary details. This requires considerable
judgment and is always vulnerable to hindsight and revision, but it
is important to keep things as simple as possible. The choice of what
to include and what to leave out depends strongly on the hypothesis
that we are studying. The issue of how to make such decisions is out-
side the primary focus of this book, although from time to time we
may return to it briefly.

The task of building a computational model should only begin af-
ter a conceptual model has been proposed. In building a computa-
tional model we struggle to establish a match between the conceptual
model and its computational representation, always asking the ques-
tion: would the conceptual model behave like the simulation? If not,
where are the errors? If so, how can we use NEURON to help under-
stand why the conceptual model implies that behavior?
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1.2 Introducing NEURON

NEURON is a simulation environment for models of individual neu-
rons and networks of neurons that are closely linked to experimen-
tal data. NEURON provides numerically sound, computationally ef-
ficient tools for conveniently constructing, exercising, and managing
models, so that special expertise in numerical methods or program-
ming is not required for its productive use. Increasing numbers of
experimentalists and theoreticians are incorporating it into their re-
search strategies. As of this writing, well over 1000 scientific publica-
tions have reported work done with NEURON on topics that range
from the molecular biology of voltage-gated channels to the operation
of networks containing tens of thousands of neurons (see Research re-

ports that have used NEURON at http://www.neuron.yale.
edu/neuron/static/bib/usednrn.html).

In the following pages we introduce NEURON by going through the
development of a simple model from start to finish. This will require
us to perform each of these tasks:

1. State the question that we are interested in
2. Formulate a conceptual model
3. Implement the model in NEURON
4. Instrument the model, i.e. attach signal sources and set up graphs
5. Set up controls for running simulations
6. Save the model with instrumentation and run controls
7. Run simulation experiments
8. Analyze results

Since our aim is to provide an overview, we have chosen a simple
model that illustrates just one of NEURON’s strengths: the conve-
nient representation of the spread of electrical signals in a branched
dendritic architecture. We could do this by writing instructions in
NEURON’s programming language hoc, but for this example we will
employ some of the tools that are provided by its graphical user in-
terface (GUI). Later chapters examine hoc and the graphical tools
for constructing models and managing simulations in more detail, as
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A.

B.

Figure 1.1 A. Two neuronal morphologies obtained from Neuro-
Morpho.org (http://neuromorpho.org/). Ca1 pyramidal cell
(left, ri04 from Golding et al. (2005), scale 100 µm) and calretinin-
positive interneuron (right, cr20b from Gulyás et al. (1999), scale
50 µm). B. Conceptual model neuron used for the example in this
chapter. The synapse can be located anywhere on the cell.

well as many other features and applications of the NEURON simu-
lation environment (e.g. customization of the user interface, complex
biophysical mechanisms, neural networks).

1.3 State the question

The scientific issue that motivates the design and construction of this
model is the question of how synaptic efficacy is affected by synaptic
location and the anatomical and biophysical properties of the post-
synaptic cell. This has been the subject of too many experimental
and theoretical studies to reference here. Interested readers will find
numerous relevant publications in NEURON’s on-line bibliography
(cited above), and may retrieve working code for many of these from
ModelDB (http://senselab.med.yale.edu/modeldb/).
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1.4 Formulate a conceptual model

Most neurons have many branches with irregularly varying diameters
and lengths (Fig. 1.1A), and their membranes are populated with
a wide assortment of ionic channels that have different ionic speci-
ficities, kinetics, dependence on voltage and second messengers, and
spatial distributions. Scattered over the surface of the cell may be
hundreds or thousands of synapses, some with a direct effect on ionic
conductances (which may also be voltage-dependent) while others act
through second messengers. Synapses themselves are far from simple,
often displaying stochastic and use-dependent phenomena that can
be quite prominent, and frequently being subject to various pre- and
postsynaptic modulatory effects. Given all this complexity, we might
well ask if it is possible to understand anything without understand-
ing everything. From the very onset we are forced to decide what to
include and what to omit.

Suppose we are already familiar with the predictions of the basic
ball and stick model (Rall, 1977; Jack et al., 1983), and that exper-
imental observations motivate us to ask questions such as: How do
synaptic responses observed at the soma vary with synaptic location
if dendrites of different diameters and lengths are attached to the
soma? What happens if some parts of the cell have active currents,
while others are passive? What if a neuromodulator, or shift of the
background level of synaptic input, changes membrane conductance?

Then our conceptual model might be similar to the one shown in
Fig. 1.1B. This model includes a neuron with a soma that gives rise
to an axon and two dendritic trunks, and a single excitatory synapse
that may be located at any point on the cell. Although deliberately
more complex than the prototypical ball and stick, the anatomical
and biophysical properties of our model are much simpler than the
biological original (Table 1.1). The axon and dendrites are simple
cylinders, with uniform diameters and membrane properties along
their lengths. The dendrites are passive, while the soma and axon have
Hodgkin-Huxley (HH) sodium, potassium, and leak currents, and are
capable of generating action potentials (Hodgkin and Huxley, 1952).
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Table 1.1 Model cell parameters
Length
(µm)

Diameter
(µm)

Biophysics

Soma 30 30 HH gNa , gK , and gleak

Apical
dendrite

600 1 Passive with Rm= 5000 Ω cm2,
Epas= -65 mV

Basilar
dendrite

200 2 Same as apical dendrite

Axon 1000 1 Same as soma

Cm = 1µf/cm2, cytoplasmic resistivity = 100 Ω cm, temperature = 6.3◦C.

Table 1.2 Synaptic mechanism parameters
gmax 0.05 µS
τs 0.1 ms
Es 0 mV

A single synaptic activation causes a localized transient conductance
increase with a time course described by an alpha function

gs (t) =

{
0 t < tact

gmax
(t−tact)

τs
e

(t−tact)
τs t ≥ tact

(1.1)

where tact is the time of synaptic activation, and gs reaches a peak
value of gmax at t = τs (Equation 1.1; see Table 1.2 for parameter
values). This conductance increase mechanism is just slightly more
complex than the ideal current sources used in many theoretical stud-
ies (Rall, 1977; Jack et al., 1983), but it is still only a pale imitation of
any real synapse (Bliss and Lømo, 1973; Ito, 1989; Castro-Alamancos
and Connors, 1997; Thomson and Deuchars, 1997).
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1.5 Implement the model in NEURON

With a clear picture of our model in mind, we are ready to express it
in the form of a computational model. Instead of writing instructions
in NEURON’s programming language hoc, for this example we will
employ some of the tools that are provided by NEURON’s graphical
user interface.

We begin with the CellBuilder, a graphical tool for construct-
ing and managing models of individual neurons. At this stage, we
are not considering synapses, stimulating electrodes, or simulation
controls. Instead we are focussing on creating a representation of
the continuous properties of the cell. Even if we were not using the
CellBuilder but instead were developing our model entirely with
hoc code, it would probably be best for us to follow a similar ap-
proach, i.e. specify the biological attributes of the model cell sepa-
rately from the specification of the instrumentation and control code
that we will use to exercise the model. This is an example of modular
programming, which is related to the ”divide and conquer” strategy
of breaking a large and complex problem into smaller, more tractable
steps.

The CellBuilder makes it easier for us to create a model of
a neuron by allowing us to specify its architecture and biophysical
properties through a graphical interface. When we are satisfied with
the specification, the CellBuilder will generate the corresponding
hoc code for us. Once we have a model cell, we will be ready to use
other graphical tools to attach a synapse to it and plot simulation
results (see 1.6 Instrument the model).

The images in the following discussion were obtained under MSWin-
dows; the appearance of NEURON under UNIX, Linux, and OS X is
quite similar.

1.5.1 Starting and stopping NEURON

No matter what a program does, the first thing you have to learn is
how to start and stop it. To start NEURON under UNIX or Linux,
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just type nrngui on the command line and skip the remainder of
this paragraph. Under MSWindows, double click on the nrngui icon
on your desktop (Fig. 1.2A); if you don’t see one there, bring up the
NEURON program group (i.e. use Start / Program Files / NEURON)
and select the nrngui item (Fig. 1.2B). If you are using OS X, open the
folder where you installed NEURON and double click on the nrngui

icon.
You should now see the NEURON Main Menu toolbar (Fig. 1.2C),

which offers a set of menus for bringing up graphical tools for creating
models and running simulations. If you are using UNIX or Linux, a
”banner” that includes the version of NEURON you are running will
be printed in the xterm where you typed nrngui, and the prompt
will change to oc> to indicate that NEURON’s hoc interpreter is
running. Under OS X and MSWindows, the banner and oc> prompt
will appear in a new terminal window (Fig. 1.2D).

There are three different ways to exit NEURON; use whichever is
most convenient:

1. type ^D (i.e. control D) at the oc> prompt
2. type quit() at the oc> prompt
3. click on File in the NEURON Main Menu, scroll down to Quit, and

release the mouse button (Fig. 1.3)

1.5.2 Bringing up a CellBuilder

To get a CellBuilder just click on Build in the NEURON Main Menu

toolbar, scroll down to the CellBuilder item, and release the mouse
button (Fig. 1.4A). A CellBuilder will appear, displaying its About

page which contains some useful hints (Fig. 1.4B).
Across the top of the CellBuilder is a row of radio buttons

and a checkbox that correspond to the sequence of steps involved in
building a model cell. Each radio button brings up a different page
of the CellBuilder, and each page provides a view of the model
plus a graphical interface for defining properties of the model. The
Topology, Subsets, Geometry, and Biophysics pages are used to create
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A. B.

C.

D.

Figure 1.2 A and B. Under MSWindows, it is convenient to start
NEURON by clicking on the nrngui icon on the desktop, or by
selecting the nrngui item in the NEURON program group. C. Re-
gardless of the operating system, the NEURON Main Menu toolbar
looks and works the same. D. NEURON’s banner and oc> prompt
in an rxvt terminal under MSWindows.

a complete specification of a model cell. On the Topology page, we will
set up the branched architecture of the model and give a name to each
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Figure 1.3 One way to exit NEURON is to click on File / Quit in
the NEURON Main Menu toolbar.

branch, without regard to diameter, length, or biophysical properties.
The Subsets page is for grouping sections that share common features.
Well-chosen subsets can save a lot of effort later by helping us create
very compact specifications of anatomical and biophysical properties.
We will deal with length and diameter on the Geometry page, and the
Biophysics page is where we will define the properties of the membrane
and cytoplasm of each of the branches.

1.5.3 Entering the specifications of the model cell

1.5.3.1 Topology

We start by using the Topology page to set up the branched architec-
ture of the model. As Fig. 1.5 shows, when a new CellBuilder is
created, it already contains a branch (or ”section,” as it is called in
NEURON) that serves as the root of the branched architecture of the
model (the root of a tree is the branch that has no parent). This root
section is initially called “soma,” but we can rename it if we desire
(see below).

The Topology page offers many functions for creating and edit-
ing individual sections and subtrees. We can make the section that
will become our apical dendrite by following the steps presented in
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A.

B.

Figure 1.4 A. Using the NEURON Main Menu to bring up a
CellBuilder. B. The About page of a CellBuilder contains
some useful hints.

Fig. 1.6. Repeating these actions a couple more times (and resort-
ing to Undo Last, Reposition, and Delete Section as needed to correct
mistakes) gives us the basilar dendrite and axon.

Our model cell should now look like Fig. 1.7. At this point some
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Figure 1.5 The Topology page. The left panel shows a simple dia-
gram of the model (a ”shape plot”). The buttons in the right panel
are controls for editing the branched architecture of a model cell.

Place the cursor near one end of an existing section.

Click to start a new section. One end of the new
section will automatically attach to the nearest end
of an existing section; the other end is tethered to
the cursor while the mouse button is held down.

Drag to the desired length and orientation.

Release the mouse button.

Figure 1.6 Making a new section. Verify that the Make Section
radio button is on, then perform the steps shown above.

minor changes would improve its appearance: moving the labels away
from the sections so they are easier to read (Fig. 1.8), and then re-
naming the apical and basilar dendrites and the axon (Figs. 1.9 and
1.10). The final result should resemble Fig. 1.11.
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Figure 1.7 The model after all sections have been created.

Click on the Move Label radio button,

then click on the label,

drag it to its new position,

and release the mouse button.

Figure 1.8 How to change the location of a label.
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Click the Basename button.

This pops up a Section name prefix
window.

Click inside the text entry field, and type
the desired name. It is important to keep
the mouse cursor inside the text field
while typing; otherwise keyboard entries
may not have an effect.

After the new base name is complete,
click on the Accept button. This closes
the Section name prefix window, and the
new base name will appear next to the
Basename button.

Figure 1.9 Preparing to change the name of a section. Each sec-
tion we created was automatically given a name based on “dend.”
To change these names, we must first change the base name as
shown here.



14 A tour of the NEURON simulation environment

First make sure that the base name is what you
want; if not, change the base name (see Fig. 1.9).

Click the Change Name radio button.

Place the mouse cursor over the section whose
name is to be changed.

Click the mouse button to change the name of
the section.

Figure 1.10 Changing the name of a section.

Figure 1.11 The Subsets page. The middle panel lists the names of
all existing subsets, and the right panel has controls for managing
subsets. In the shape plot, the sections that belong to the currently
selected subset are shown in red. When the Subsets page initially
appears, it already has an all subset that contains every section
in the model.
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1.5.3.2 Subsets

The Subsets page deserves special comment. In almost every model
that has more than one branch, two or more branches will have at
least some biophysical attributes that are identical, and there are of-
ten significant anatomical similarities as well. Furthermore, we can
almost always apply the d lambda rule for compartmentalization
throughout the entire cell (see below). Subsets allow us to take ad-
vantages of such regularities by assigning shared properties to several
branches at once. The Subsets page (Fig. 1.11) is where we group
branches into subsets, on the basis of shared features, with an eye
to exploiting these commonalities on the Geometry and Biophysics

pages. This allows us to create a model specification that is compact,
efficient, and easily understood.

The properties of the sections in this particular example suggest
that we create two subsets: one that contains the basilar and apical
branches, which are passive, and another that contains the soma and
axon, which have Hodgkin-Huxley (HH) spike currents. To make a
subset called has HH that contains the sections with HH currents,
follow the steps in Fig. 1.12. Then make another subset called no HH

that contains the basilar and apical dendrites.

1.5.3.3 Geometry

In order to use the Geometry page (Fig. 1.13) to specify the anatomical
dimensions of the sections and the spatial resolution of our model, we
must first set up a strategy for assigning these properties. After we
have built our (hopefully efficient) strategy, we will give them specific
values.

The geometry strategy for our model is simple. Each section has
different length L and diameter diam, so the properties of each section
must be entered individually. As far as the spatial resolution of the
model is concerned, for this model (and most others) the best choice
is to let NEURON automatically determine the spatial discretization
of each section based on a fraction of the length constant at 100 Hz
(spatial accuracy and NEURON’s tools for adjusting the spatial grid
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With the Select One radio button on
(Fig. 1.11), click on the axon, then hold
down the shift key and click on the soma.
The selected sections will be indicated in
red . . .

. . . and the list of subsets will change to
show that all is not the same as the set
{axon, soma}.

Next, click on the New SectionList button
(a subset is a list of sections).

This pops up a window that asks you to
enter a name for the new SectionList.

Click inside the text entry field of this new
window and type the name of the new
subset, then click on the Accept button.

The new subset name will appear in the
middle panel of the CellBuilder.

Figure 1.12 Making a new subset.

are discussed in Chapter 5). Figure 1.14 shows how to set up this
strategy.

Having set up the strategy, we are ready to assign the geometry
parameters (Fig. 1.15). At the top of the list is d_lambda. By specify-
ing that spatial discretization will follow the d lambda rule, we have
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Figure 1.13 When the Geometry page in a new CellBuilder is
first viewed, a red check mark should appear in the Specify Strategy
checkbox. If not, click on the checkbox to toggle Specify Strategy
on.

stipulated that NEURON will automatically discretize the model,
breaking each section into just enough compartments so that none is
longer than d_lambda times the AC length constant at 100 Hz. The
default value of d_lambda is 0.1, i.e. 10% of the AC length constant.
This is short enough for most purposes, so we do not need to change
it.

Scrolling through the other geometry parameters reveals that the
default values of many lengths and diameters differ from our desired
specification (cf. Table 1.1). Figure 1.16 shows how to change soma
length to 30 µm. After all revisions have been made, the geometry
parameters should look like Fig. 1.17. Note the x in the middle panel,
which signifies that one or more parameters associated with the ad-
jacent section or subset name have been altered. In the right panel,
note the red marks in checkboxes; these identify the parameters that
have been changed from their default values.



18 A tour of the NEURON simulation environment

Figure 1.14 Specifying strategy for assignment of geometry pa-
rameters. First make sure that Specify Strategy contains a red
check (see Fig. 1.13). For models in which the geometry of each
section is unique, like this one, click on the L and diam boxes un-
der “Distinct values over subset.” To allow NEURON to take care
of spatial discretization automatically, click on the d lambda box
under “Spatial Grid.”
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Figure 1.15 Assigning values to the geometry parameters. Tog-
gling Specify Strategy off makes the middle panel show the sub-
sets and sections that we selected when setting up our strategy.
Our strategy is based entirely on the all subset, so all is the only
item that appears in the middle panel. The buttons in the right
panel display the names of the sections and parameters that are
associated with the all subset, and offer us the means to change
parameters as necessary. The vertical scroll bar along the right
edge indicates that some buttons fall below the bottom edge of
the CellBuilder’s window; these can be revealed by dragging
the scroll bar up or down.

To set the length of the soma to 30 µm, first
click inside the numeric field for soma.L so
that a red editing cursor appears.

Then use the backspace key to delete the old
value, type in the new value, and press
“Enter” on your keyboard. The red mark in
the checkbox indicates that this parameter
has been changed from its default value.

Figure 1.16 Assigning values to the geometry parameters continued.
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Figure 1.17 The revised geometry parameters. The x in the middle
panel and the red marks in the right panel signal changes from
default values.

Figure 1.18 The Biophysics page, ready for specification of strat-
egy. The right panel shows the mechanisms that are available to
be inserted into our model. For this simple example, the number
of mechanisms is deliberately small; adding new mechanisms is
covered in Chapter 9.



1.5 Implement the model in NEURON 21

For the all subset, toggle Ra
(cytoplasmic resistivity) and cm
(specific membrane capacitance)
on.

Select the has HH subset in the
middle panel, and then toggle hh
on.

Finally select the no HH subset
and toggle pas on.

Figure 1.19 Specifying strategy for assignment of biophysical pa-
rameters. First make sure that Specify Strategy contains a red
check, then proceed with the steps described above.

1.5.3.4 Biophysics

The Biophysics page (Fig. 1.18) is used to specify the biophysical
properties of membrane and cytoplasm (e.g. Ra, Cm, ion channels,
buffers, pumps) for subsets and individual sections. As with the Ge-

ometry page, first we set up a strategy, then we review and adjust pa-
rameter values. After we have applied the steps outlined in Figs. 1.19
and 1.20, the CellBuilder will contain a complete specification of
our model.
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For the all subset, change
Ra from its default
35.4 Ω cm to the desired
100 Ω cm.

The sections in the
no HH subset have a
passive current whose
parameters must be
changed from their
defaults (shown here).

The value of g_pas can
be set by deleting the
default value, then
typing 1/5000
( = 1/Rm).

The final values of
g_pas and e_pas. Not
shown: cm (all subset)
and the parameters of
the hh mechanism
(has HH subset), which
have the desired values
by default and do not
need to be changed,
although it is good
practice to review them.

Figure 1.20 Assigning values to the biophysical parameters. Tog-
gling Specify Strategy off shows a list of the names of the subsets
that are part of the strategy. Beneath each subset are the names
of the mechanisms that are associated with it. Clicking on a mech-
anism name brings up controls in the right panel for displaying
and adjusting its parameters.
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1.5.4 Saving the model cell

Having invested time and effort to set up our model, we would be
wise to take a moment to save it. The CellBuilder, like NEURON’s
other graphical tools, can be saved to disk as a ”session file” for future
re-use, as shown in Figs. 1.21 and 1.22. For more information about
saving and retrieving session files, including how to use the Print &

File Window Manager GUI tool to select and save specific windows,
see Using Session Files for Saving and Retrieving Windows at
http://www.neuron.yale.edu/neuron/static/docs/saveses/
saveses.html

1.5.5 Executing the model specification

Now that the CellBuilder contains a complete specification of the
model cell, we could use the Export button on the Management page
(see Chapter 6) to write out a hoc file that, when executed by NEU-
RON, would create the model. However, for this example we will just
turn Continuous Create on (Fig. 1.23). This makes the CellBuilder
send its output directly to NEURON’s interpreter without bothering
to write a hoc file. The model cell whose specifications are contained
in the CellBuilder is now available to be used in simulations.

If we make any changes to the model while Continuous Create is
on, the CellBuilder will automatically send new code to the in-
terpreter. This can be very convenient during model development,
since it allows us to quickly examine the effects of any change. Auto-
matic updates might bog things down if we were dealing with a large
model on a slow machine. In such a case, we could just turn Continu-

ous Create off, make whatever changes were necessary, and then cycle
it on and off again.
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A.

B. C.

Figure 1.21 A. To save all of NEURON’s graphical windows to
a session file, first click on File in the NEURON Main Menu and
scroll down to save session. B. This brings up a directory browser
that can be used to navigate to the directory where the session file
will be saved. C. Click in the edit field at the top of the directory
browser and type the name to use for the session file, then click
on the Save button.
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A.

B.

Figure 1.22 A. To recreate the graphical windows that were saved
to a session file, first click on File in the NEURON Main Menu and
scroll down to load session. B. Use the directory browser that ap-
pears to navigate to the directory where the session file was saved.
Then double click on the session file that you want to retrieve.
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Continuous Create is initially off,

but clicking on the checkbox toggles it on

and off.

Figure 1.23 Using Continuous Create.

Figure 1.24 Bringing up a PointProcessManager in order to
attach a synapse to our model cell. In the NEURON Main Menu,
click on Tools / Point Processes / Managers / Point Manager, then
proceed as shown in Fig. 1.25
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A. B.

Figure 1.25 Configuring a new PointProcessManager to emu-
late a synapse. A. Note the labels in the top panel. None means
that a signal source has not yet been created. The bottom panel
shows a stick figure of our model cell. B. SelectPointProcess / Al-
phaSynapse creates a point process that emulates a synapse with
a conductance change governed by Eq. 1.1, and shows us a panel
for adjusting its parameters.
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1.6 Instrument the model

1.6.1 Signal sources

In the NEURON simulation environment, a synapse or electrode for
passing current (current clamp or voltage clamp) is represented by
a point source of current which is associated with a localized con-
ductance. Such localized signal sources are called ”point processes”
to distinguish them from properties that are distributed over the cell
surface (e.g. membrane capacitance, active and passive ionic conduc-
tances) or throughout the cytoplasm (e.g. buffers), which are called
”distributed mechanisms” or “density mechanisms.”

We have already seen how to use one of NEURON’s graphical tools
for dealing with distributed mechanisms (the CellBuilder). To
attach a synapse to our model cell, we turn to one of NEURON’s
tools for dealing with point processes: the PointProcessManager
(Fig. 1.24). Using a PointProcessManager we can specify the
type and parameters of the point process (Fig. 1.25) and where it is
attached to the cell.

1.6.2 Signal monitors

Since one motivation for the model is to examine how synaptic re-
sponses observed at the soma vary with synaptic location, we want
a graph that shows the time course of somatic membrane potential.
In the laboratory this would ordinarily require attaching an electrode
to the soma, so in a NEURON simulation it might seem to require
a point process. However, the computer automatically evaluates so-
matic Vm in the course of a simulation. In other words, graphing Vm

doesn’t really change the system, unlike attaching a signal source,
which adds new equations to the system. This means that a point
process is not needed; instead, we just bring up a graph that includes
somatic Vm in the list of variables that it plots (see Fig. 1.27).

We could monitor Vm at other locations by adding more variables
to this graph, and bring up additional graphs if this one became
too crowded. However, it can be more informative and convenient to
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The top panel of the
PointProcessManager indicates
what kind of point process has been
specified, and where it is located (in
this case, at the midpoint of the
soma). The bottom panel shows the
parameters of an AlphaSynapse: its
start time onset and time constant
tau (tact and τs in Eq. 1.1), peak
conductance gmax (gmax in Eq. 1.1),
and reversal potential e (Es in
Table 1.2). The button marked i (nA)
is just a label for the adjacent numeric
field, which displays the instantaneous
synaptic current.

For this example change onset to
0.5 ms and gmax to 0.05 µS; leave
tau and e unchanged.

Figure 1.26 Specifying the properties of an AlphaSynapse.

create a ”space plot”. A space plot is a Graph in which a variable
is plotted as a function of distance along one or more branches of a
cell. Figures 1.28-1.30 show how to set up a space plot of membrane
potential that can change throughout a simulation, displaying the
evolution of Vm as a function of space and time.
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Click on Graph / Voltage
axis in the NEURON Main
Menu.

The horizontal axis of a
“voltage axis graph” is in
milliseconds and the
vertical axis is in millivolts.
The label v(.5) signifies that
this graph will show Vm at
the middle of the default
section. With the
CellBuilder, this is
always the root section, (for
this model, the soma). The
concepts of root section and
default section are
discussed in Chapter 5.

Figure 1.27 Creating a graph to display somatic membrane po-
tential as a function of time.
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A.

B. C.

Figure 1.28 The first step in setting up a space plot is to create a
Shape object, which is used to specify the space plot’s path. A. To
create a Shape, click on Graph / Shape plot in the NEURON Main
Menu. B. This brings up a Shape window, which can be used to
set up graphs of a range variable–membrane potential (v) in this
case–vs. time or distance. C. Click on the menu box in the Shape
window to bring up its primary menu. While still depressing the
mouse button, scroll down the menu to the Space Plot item, then
release the button. The Shape window is now ready to be used
to specify the space plot’s paths.
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Place the cursor just to the left of the
distal end of the axon and press the
left mouse button.

While still holding the button down,
drag the cursor across the window to
the right, finally releasing the button
when the cursor has passed the distal
end of the apical dendrite.

The branches along the selected path
(axon, soma, and apical dendrite) are
now shown in red, and a new window
pops up that shows a space plot of v
along this path (see Fig. 1.30). At this
point, you may click on the Close
button at the upper left corner of the
Shape window to conserve screen
space.

Figure 1.29 Specifying a space plot’s paths.
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Figure 1.30 The space plot of membrane potential created by the
steps shown in Figs. 1.28 and 1.29. The x axis shows the distance
from the 0 end of the default section, which in this example is the
left end of the soma.
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A.

B.

Figure 1.31 A. To bring up a window with controls for run-
ning simulations, click on the RunControl button in NEU-
RON Main Menu / Tools. B. The RunControl provides many
options for controlling the overall time course of a simulation run.

1.7 Set up controls for running the simulation

At this point we have a model cell with a synapse attached to the
soma, and a graphical display of somatic Vm. All that is missing is a
means to start and control the subsequent course of a simulation run.
This is provided by a RunControl panel (Fig. 1.31), which offers a
great deal of control over simulations.

Of the many options that this tool allows us to specify, these three
are most relevant to this example:

1. Init (mV) sets time t to 0, assigns the displayed starting value
(-65 mV) to Vm throughout the model cell, and sets the ionic
conductances to their their steady state values at this potential.
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2. Init & Run performs the same initialization as Init (mV), and then
starts a simulation run.

3. Points plotted/ms determines how often the graphical displays are
updated during a simulation.

Three other items in this panel are of obvious interest, although we
will not do anything with them for now. The first is dt, which sets
the size of the time intervals at which the equations that describe
the model are solved. The second is Tstop, which specifies the du-
ration of a simulation run. Finally, the button marked t doesn’t ac-
tually do anything but is just a label for the adjacent numeric field,
which displays the elapsed simulation time. Additional features of the
RunControl panel are discussed in Chapter 7.

The last item to add to our user interface is a Movie Run tool, as
shown in Fig. 1.32. We will use this tool to launch simulations in
which the space plot of membrane potential evolves smoothly.



36 A tour of the NEURON simulation environment

A.

B.

Figure 1.32 A. To bring up a tool for running simulations that
update space plots smoothly, click on the Movie Run button in
NEURON Main Menu / Tools. B. Clicking on the Init & Run button
in the Movie Run tool starts a simulation in which space plots
are refreshed at intervals specified by the value shown in the the
Seconds per step field.
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1.8 Save model with instrumentation and run
control

After some rearrangement, our customized user interface for running
simulations and observing simulation results should look something
like Fig. 1.33. For the sake of safety and possible future convenience,
it is a good idea to use NEURON Main Menu / File / save session to
save this custom GUI to a session file.

1.9 Run the simulation experiment

We are now ready to use our ”virtual experimental rig” to exercise
the model. Clicking on the Init & Run button in the RunControl
panel (Fig. 1.34) launches a simulation, and the graph of somatic
membrane potential vs. time shows that the synaptic input triggers
a spike at that location (Fig. 1.35).

To examine how Vm evolves throughout the cell, let us now turn
to the space plot. If a simulation is launched with RunControl’s
Init & Run button, NEURON takes the time-saving shortcut of defer-
ring shape plot updates until the end of the run. Consequently our
shape plot only shows the distribution of Vm at the end of the sim-
ulation. In order to see the shape plot evolve over the course of the
simulation, it is necessary to click on the Movie Run tool’s Init & Run

button. This makes NEURON update the shape plot at each new
time step, and reveals how the spike starts at the soma and spreads
out to the axon and apical dendrite (Fig. 1.36).

The utility of the space plot as a tool for understanding the spa-
tiotemporal evolution of a variable can be enhanced by using it like a
storage oscilloscope (Figs. 1.37 and 1.38; also see Fig. 1.39 for how to
erase “stored” traces). This can make it easier to evaluate and com-
pare the spatial distribution of variables at successive intervals during
a run.

NEURON’s GUI greatly simplifies the task of constructing and us-
ing models. In particular, the GUI makes it easy to perform experi-
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Figure 1.33 Our user interface for running simulations and ob-
serving results. Other windows that are present on the screen but
not shown in this figure are the NEURON Main Menu and the
CellBuilder.

mental manipulations of a model and see what happens. For example,
we can explore the effect of changing the location of the synaptic in-
put. If we move the synapse even a small distance away from the
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Press Init & Run in the RunControl panel to
launch a simulation.

This makes time t advance from 0 . . .

. . . to 5 ms in 0.025 ms increments.

Figure 1.34 Running a simulation. The response to an excitatory
synaptic input at the soma is shown in Figs. 1.35, 1.36, and 1.38.

Figure 1.35 The excitatory synapse at the soma elicits a somatic
spike.

soma along the apical dendrite (Fig. 1.40) and run a new simulation,
the epsp at the soma is too small to evoke a spike (Fig. 1.41).

1.10 Analyze results

In this section we turn from our specific example to a consideration
of the analysis of results. Models are generally constructed either for
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Figure 1.36 Snapshots of simulation results taken at 1 ms inter-
vals. Each pair of graphs shows Vm vs. distance and Vm at the
soma (v(.5)) vs. t. Synaptic input at the soma triggers a spike
that propagates actively along the axon and spreads with passive
decrement into the apical dendrite.

didactic purposes or as a means for testing a hypothesis. Both the
design and analysis of any model are strongly dependent on this orig-
inal motivation, which determines what features are included in the
model, what variables are regarded as important enough to measure,
and how these measurements are to be interpreted.

While computational models are arguably simpler than any (in-
teresting) experimental preparation, analysis of simulation results
presents its own special problems. In the first place, attempting to use
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Bring up the space plot’s
primary menu by placing
the mouse cursor in the
menu box (square in upper
left corner) and pressing on
the mouse button.

While still depressing the
button, scroll the cursor
down to Keep Lines, then
release the mouse button.
The next time the primary
graph menu is examined, a
red check mark will appear
next to this item, indicating
that keep lines has been
toggled on (e.g. see
Fig. 1.39).

To keep the graph from
filling up with an opaque
tangle of lines, we should
make sure the stored traces
will be sufficiently different
from each other. Plotting
only 5 traces per
millisecond is sufficient for
this example (leave dt =
0.025 ms).

Figure 1.37 Preparing to capture “multiple exposures” of the spa-
tial distribution of Vm.

a digital computer to mimic the behavior of a biological system in-
troduces many potential complexities and artifacts. Some arise from
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Now clicking on Init & Run
in the Movie Run tool
generates a set of traces
that facilitate examination
of impulse initiation and
propagation through the
model.

For this example the
synapse was at the middle
of the soma (soma(0.5)).
Before running another
simulation with a different
synaptic location, it would
be a good idea to erase
these traces (see Fig. 1.39).

Figure 1.38 Capturing “multiple exposures” of the spatial distri-
bution of Vm.

the fact that neurons are continuous in space and time, but a digital
computer can only generate approximate solutions for a finite number
of discrete locations at particular instants. Even so, under the right
conditions the approximation can be very good indeed. Furthermore,
a well-designed simulation environment can reduce the difficulty of
achieving good results.

Other difficulties can arise if there is a mismatch between the ex-
pectations of the user and the level of detail that has been included in
a model. For example, the most widely used computational model of
a conductance change synapse is designed to do the same thing each
and every time it is “activated,” yet most real synapses display many
kinds of use-dependent plasticity, and many also have a high degree of
stochastic variability. And even the venerable Hodgkin-Huxley model
(1952), which is probably the classical success story of computational
neuroscience, does not replicate all features of the action potential
in the squid giant axon, because it does not completely capture the
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Bring up the primary graph
menu and scroll down to
Erase.

When the mouse button is
released, all traces vanish
but one: the trace that that
shows the current values of
Vm along the path.

Figure 1.39 How to erase traces.

dynamics of the currents that generate the spike (Moore and Cox,
1976; Fohlmeister et al., 1980; Clay and Shlesinger, 1982). Such dis-
crepancies are potentially a problem only if a user who is unaware
of their existence attempts to apply a model outside of its original
context.

The first analysis that is required of all computational modeling
is actually the verification that what has been implemented in the
computer is a faithful representation of the conceptual model. At the
least, this involves checking to be sure that the intended anatom-
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In the top panel of the
PointProcessManager, click on
Show and scroll down to Shape.

The top panel remains unchanged, but
the bottom panel of the
PointProcessManager now
displays a shape plot of the cell, with
a blue dot that indicates the location
of the synapse.

Clicking on a different point in the
shape plot moves the synapse to a new
location. This change is reflected in
the top and bottom panels of the
PointProcessManager.

Figure 1.40 Changing synaptic location.

ical and biophysical features have been included, that parameters
have been assigned the desired values, and that appropriate initial-
ization and integration methods have been chosen. It may also be
necessary to test the model’s biophysical mechanisms to ensure that
they show the correct dependence on time, membrane potential, ionic
concentrations, and modulators. This means understanding the inter-
nals of the computational model, which in turn demands a nontrivial
grasp of the programming language in which it is expressed. A cus-
tom graphical interface that includes well-designed menus and ”vari-
able browsers” can make it easier to answer the frequently occurring
question ”what are the names of things?” Even so, every simulation
environment is predicated on a set of underlying concepts and as-
sumptions, and questions inevitably arise that can only be answered
on the basis of knowledge of these core concepts and assumptions.

Verification should also involve the qualitative, if not quantita-
tive, comparison of simulation results with basic predictions obtained
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Figure 1.41 Pressing Init & Run starts a new simulation. Even
though the synapse is still quite close to the soma, the somatic
depolarization is now too small to trigger a spike (space plot not
shown).

from experimental observations on biological preparations or gener-
ated with prior models. Discrepancies between prediction and simu-
lation are usually caused by trivial errors in model implementation,
but sometimes the fault lies in the prediction. Detecting these more
interesting outcomes requires practical facility with the simulation en-
vironment, so that the level of effort does not obscure one’s thinking
about the problem.

Agreement between prediction and simulation is reassuring and
suggests that the model itself may be useful for generating experimentally-
testable predictions. Thus the effort shifts from verifying the model
to characterizing its behavior in ways that extend beyond the ini-
tial test runs. Both verification and characterization of neural models
may entail determining not only membrane potential but also rate
functions, levels of modulators, and ionic conductances, currents, and
concentrations at one or more locations in one or more cells. Thus
it is necessary to be able to gather and manage measurements, both
within a single simulation run and across a family of runs in which
one or more independent variables are assigned different values.

Similar concerns arise in connection with optimization, in which
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one or more parameters are adjusted until the behavior of the model
satisfies certain criteria. Optimization also opens a host of new ques-
tions whose answers depend in part on the user’s judgment, and in
part on the resources provided by the simulation environment. Which
parameters should remain fixed and which should be adjustable?
What constitutes a “run” of the model? What are the criteria for
goodness of fit? What constraints, if any, should be imposed on ad-
justable parameters, and what rules should govern how they are ad-
justed?

In summary, analysis of results can be the most difficult aspect
of any experiment, whether it was performed on living neurons or
on a computer model, yet it can also be the most rewarding. The
issues raised here are critical to the informed use of any simulation
environment, and in the following chapters we will reexamine them
in the course of learning how to develop and exercise models with
NEURON.



2

The modeling perspective

. . . can you not tell water from air? My dear sir, in this world it is
not so easy to settle these plain things. I have ever found your

plain things the knottiest of all.

This chapter and the next deal with concepts that are not NEURON-
specific but instead pertain equally well to any tools used for neural
modeling.

2.1 Why model?

In order to achieve the ultimate goal of understanding how nervous
systems work, it will be necessary to know many different kinds of
information:

• the anatomy of individual neurons and classes of cells, pathways,
nuclei, and higher levels of organization

• the pharmacology of ion channels, transmitters, modulators, and
receptors

• the biochemistry and molecular biology of enzymes, growth factors,
and genes that participate in brain development and maintenance,
perception and behavior, learning and forgetting, health and dis-
ease

But while this knowledge will be necessary for an understanding of
brain function, it isn’t sufficient. This is because the moment-to-
moment processing of information in the brain is carried out by the
spread and interaction of electrical and chemical signals that are dis-
tributed in space and time. These signals are generated and regulated
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by mechanisms that are kinetically complex, highly nonlinear, and
arranged in intricate anatomical structures. Hypotheses about these
signals and mechanisms, and how nervous system function emerges
from their operation, cannot be evaluated by intuition alone, but re-
quire empirically-based modeling. From this perspective, modeling is
fundamentally a means for enhancing insight, and a simulation envi-
ronment is useful to the extent that it maximizes the ratio of insight
obtained to effort invested.

2.2 From physical system to computational model

Just what is involved in creating a computational model of a physical
system?

2.2.1 Conceptual model: a simplified representation
of a physical system

The first step is to formulate a conceptual model that attempts to
capture just the essential features that underlie a particular function
or property of the physical system. If the aim of modeling is to provide
insight, then formulating the conceptual model necessarily involves
simplification and abstraction (Fig. 2.1 left). When a physical system
is already simple enough to understand, there is no point in further
simplification because we won’t learn anything new. If instead the
system is complex, a conceptual model that omits excess detail can
foster understanding.

But some models contain essential irreducible complexities, and
even conceptual models that are superficially simple can resist in-
tuition. To evaluate such a model it is often necessary to devise a
hypothesis or test in which the behavior of the model is compared
against a prediction. Computational models are useful for perform-
ing such tests. The conceptual model, and the hypothesis behind it,
determine what is included in the computational model and what is
left out.
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Computational
model

Conceptual
model

Physical
system

simplify
be

faithful

Figure 2.1 Creating a computational model of a physical system
involves two steps. The first step deliberately omits real-world
complexities to produce a conceptual model. In the second step,
this conceptual model must be faithfully translated into a compu-
tational model, without any further subtractions or additions.

When we formalize our description of a biological system, the first
language we use is mathematics. The conceptual model is usually ex-
pressed in mathematical form, although there are occasions when it
is more convenient to express the concept in the form of a computer
algorithm. Chapter 3 is concerned with mathematical representa-
tions of chemical and electrical phenomena relevant to signaling in
neurons.

2.2.2 Computational model: an accurate
representation of a conceptual model

A computational model is a working embodiment of a conceptual
model through the medium of computer simulation. It can assist hy-
pothesis testing by serving as a virtual laboratory preparation in
which the functional consequences of the hypothesis can be exam-
ined. Such tests can be valid only if the computational model is as
faithful to the conceptual model as possible. This means that the
computational model must be implemented in a way that does not
impose additional simplifications or introduce new properties that
were not consciously chosen by the user; otherwise how can the user
tell whether simulation results truly reflect the properties of the con-
ceptual model, and are not a byproduct of distortions produced by
trying to implement the model with a computer? This ideal is impossi-
ble to achieve, and the proper use of any simulator requires judgment
by the user as to whether discrepancies between concept and concrete
representation are benign or vicious.
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A useful simulation environment enables experimental tests of hy-
potheses by facilitating the construction, use, and revision of compu-
tational models that are faithful to the original idea and its subse-
quent evolution. NEURON is designed to meet this goal, and one of
the aims of this book is to show you how to tell whether the model
you have in mind is matched by the NEURON simulation you create.

2.2.3 An example

Figure 2.2A shows the side view of a Ca1 pyramidal neuron. Suppose
we are interested in how this cell responds to current injected at
the soma. We could imagine an enormously complicated conceptual
model that attempts to mimic all of the detail of the physical system.
But if we are trying to gain insight into the charging properties of
the cell as observed at the soma, we might start with a much simpler
conceptual model, like the ball and stick shown in Fig. 2.2B. Most of
the anatomical complexity of the physical system lies in the dendritic
tree, but our conceptual model approximates the entire dendritic tree
by a very simple abstraction: a cylindrical cable.

So going from the physical system to the model involved simplifi-
cation and abstraction. What about going from the conceptual model
to a computational model? The statements in Fig. 2.2C specify the
topology of the computational model hoc, NEURON’s built-in pro-
gramming language. Note that everything in the conceptual model
has a direct counterpart in this computational implementation, and
vice versa: the transition between concept and computational model
involves neither simplification nor additional complexity. All that re-
mains is to assign physical dimensions and biophysical properties,
and the computational model can be used to generate simulations
that reflect the behavior of the conceptual model.
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dendrite

soma
create soma, dendrite
connect dendrite(0), soma(1)

(A) (B) (C)

Figure 2.2 A. Side view of Ca1 pyramidal neuron (ri04 from
Golding et al. (2005), data available at http://neuromorpho.
org/). B. “Ball and stick” conceptual model. C. Computational
implementation of the conceptual model.
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equation, 82
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summary, 112

numerical error, 109
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creating, 26
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changing, 44
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PointProcessManager, 28
location, 29, 44
parameters, 29
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qualitative results, 90
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RunControl
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Manager, 23
saving
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Manager, 23
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Main Menu: Graph: Shape plot
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electrical, 69
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simplification, 48–50
simulation

running, 39
starting, 39
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simulation control, 6, 34
simulation environment
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Taylor’s series, 89, 109
temporal accuracy
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understanding, 47, 48
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