
The NEURON Simulation Environment Hands-on Exercises

NEURON Hands-on Course

EXERCISES

Table of Contents

1. Lipid Bilayer 3

2. Hodgkin - Huxley axon 5

3. Ball - Stick model 7

4. Model Control : Arbitrary forcing functions 19

5. NMODL : HH type channels 23

6. HOC exercises 25

7. Working with morphometric data 35

8. Specifying inhomogeneous channel distributions with
the CellBuilder

45

9. Using ModelDB and Model View 49

10. Linear Circuits : Two electrode voltage clamp 55

11. Optimizing a model 61

12. Greater performance on Multicore workstations 77

13. Networks : discrete event simulations with artificial 81

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 1

Hands-on Exercises The NEURON Simulation Environment

cells

14. Networks : continuous simulations of nets with
biophysical model cells

85

15. Hopfield Brody synchronization (sync) model 89

16. State and parameter discontinuities 97

17. Custom initialization 99

18. Analyzing electrotonus 103

Informal extras

Some useful hoc idioms 111

Vector/Matrix : Reading data 113

Vector/Matrix : Subtracting linear response 115

MyFirstNEURON by Arthur Houweling (remote)

Model Control : Simulation families 117

Linear Circuits 2: Rectifying gap junction 123

Parallel Computing: MPI 129

Python 131

Page 2 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

Hands-on Exercises The NEURON Simulation Environment

Page 4 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Hodgkin - Huxley axon

Physical System

 From http://www.mbl.edu

Model

Hodgkin-Huxley cable equations

Simulation

Representation

 create axon
 axon {
 nseg = 75
 diam = 100
 L = 20000
 insert hh
 }

Using the Representation

Run NEURON with above spec.

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

Hands-on Exercises The NEURON Simulation Environment

Exercises

1) Stimulate with current pulse and see a propagated action potential.

The basic tools you’ll need from the NEURON Main Menu :
Tools / Point Processes / Manager / Point Manager to specify stimulation
Graph / Voltage axis and Graph / Shape plot to create graphs of v vs t and v vs x.
Tools / RunControl to run the simulation

2) Change excitability by adjusting sodium channel density.

Tool needed:
Tools / Distributed Mechanisms / Viewers / Shape Name

3) Use two current electrodes to stimulate both ends at the same time.

4) Up to this point, the model has used a very fine spatial grid (nseg = 75).
Change nseg to 15 and see what happens.

Help reference

NEURON hands-on course
Copyright © 1998-2001 by N.T. Carnevale and M.L. Hines, all rights reserved.

Page 6 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Ball - Stick model

Physical System

Model

Ball-Stick approximation to cell

Simulation

The computational implementation of the conceptual model will use the CellBuilder, a graphical tool for building and

managing models of individual cells. In overview, you will

set up a "virtual experimental preparation" (the model cell itself).1.

set up a "virtual lab rig".

Simulation control: RunControl

Instrumentation:

 Stimulator--PointProcessManager configured as IClamp

 Graphs--v vs. t, v vs. distance ("space plot")

2.

You will also learn a simple but effective strategy for modular organization of your programs.

Separate the specification of the representation of the biological system (anatomy, biophysics, connections between

cells in a network . . .) from other items, such as the specification of instrumentation (voltage or current clamps,

graphs etc.) and controls (e.g. RunControl panel).

Use a short program that pulls all of the pieces together.

Modular organization makes it easier to

develop and debug models

reuse the same model cell in many different kinds of simulation experiments

perform the same kind of experiment on many different model cells

Getting started

Get to a working directory where you have permission to write files.

Suggestion: start NEURON with course/ballstk as the working directory.

Hints

UNIX/Linux: cd to the course/init directory, and enter the command line

 nrngui

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

Hands-on Exercises The NEURON Simulation Environment

MSWin: double-click the nrngui icon on the desktop. Look at NEURONMainMenu / File / recent dir. If

course/ballstk appears in the menu list, select it. Otherwise, use NEURONMainMenu / File / working

dir to bring up a directory browser that you can use to navigate to the desired location.

Making the representation of the biological properties

Use the CellBuilder to make a simple ball and stick model that has these properties:

Section Anatomy Compartmentalization Biophysics

soma length 20 microns

diameter 20 microns

nseg = 1 Ra = 160 ohm cm, Cm = 1 uf/cm
2

Hodgkin-Huxley channels

dend length 1000 microns

diameter 5 microns

nseg = 1 Ra = 160 ohm cm, Cm = 1 uf/cm
2

passive with Rm = 10 ,000 ohm cm
2

Hints

To start a CellBuilder, click on

 NEURONMainMenu / Build / CellBuilder.

1.

CellBuilder overview and hints.2.

Helpful items in the on-line Programmer's Reference :

diam L nseg hh pas

3.

Using the representation of the biological properties

At this point you should have :

1. entered the specification of the ball & stick model in the CellBuilder

2. saved the CellBuilder to a session file called ballstk.ses and verified what you saved

3. exited NEURON

In the course/ballstk directory, make an init.hoc file with the contents

// load the GUI tools

load_file("nrngui.hoc")

// your specification of the model

load_file("ballstk.ses")

// your GUI

load_file("rig.ses")

Make a beginning rig.ses file with the single line

print "ready!"

Actually you could put any innocuous statements you like into the rig.ses
file, because you' ll eventually overwrite this file with a custom user
interface that you construct .

Start NEURON with the init.hoc argument. Under UNIX use the command

nrngui init.hoc

Under MSWindows just double click on the init.hoc file in the file manager ("Windows Explorer").

Exercises

1. Establish that the representation in the computer basically corresponds to the model.

Connectivity? (type topology())

Page 8 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Soma area? (type area(0.5))

Are the properties what you expect? Try

soma psection()

dend psection()

2. Use the NEURONMainMenu toolbar to construct an interface that allows you to inject a stimulus current at the soma

and observe a plot of somatic Vm vs. time.

3. When a current stimulus is injected into the soma, does it flow into the dendrite properly? Hint: examine a space plot of

membrane potential.

Saving and Retrieving the Experimental Rig

You now have a complete setup for doing simulation experiments. The CellBuilder, which specifies your "experimental

preparation," is safe because you saved it to the session file ballstk.ses. However, the GUI that constitutes your nicely-

configured "lab rig" (the RunControl, PointProcessManager, graph of v vs. t, and space plot windows) will be lost if

you exit NEURON prematurely or if the computer crashes.

To make it easy to reconstitute the virtual lab rig, use the Print and File Window Manager (PFWM) to save these windows

to a session file. Here's how to bring up the PFWM and use it to select the windows for everything but the CellBuilder,

then save these windows to a session file called rig.ses. This will allow you to immediately begin with the current GUI.

Test rig.ses by using NEURONMainMenu / File / load session to retrieve it. Copies of the "lab rig" windows should

overlay the originals. If so, exit NEURON and then restart it with the init.hoc argument. It should start up with the

windows that you saved.

More exercises

4. How does the number of segments in the dendrite affect your simulation?

Turn on Keep Lines in the graph of Vm vs. t so you will be able to compare runs with different nseg.

Then in the interpreter window execute the command

 dend nseg *= 3

and run a new simulation. Repeat until you no longer see a significant difference between consecutive runs.

Finally, use the command

 dend print nseg

to see how many dendritic segments were required.

5. Is the time step (dt) short enough?

6 . Here's something you should try on your own, perhaps after class tonight: using the CellBuilder to manage models

"on the fly."

Footnotes and Asides

Here are sample init.hoc and initial rig.ses files.1.

The CellBuilder can be used to make your own "digital stem cells." If you have a model cell that you would like

to return to later, save the CellBuilder to a session file. To bring the model back, just retrieve the session file. This

is a good way to create an "evolutionary sequence" of models that differ only in certain key points.

2.

The CellBuilder can also be used to manage models based on detailed morphometric reconstructions. This is

covered in a later exercise.

3.

NEURON hands-on course
Copyright © 1998-2010 by N.T. Carnevale and M.L. Hines, all rights reserved.

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

Hands-on Exercises The NEURON Simulation EnvironmentOverviewoftheCellBuilderTheCellBuilderisagraphicaltoolforcreating,editing,andmanagingmodelsofnervecells.Itisprobablymostusefulintwodifferentsettings..1Buildingamodelfromscratchthatwillhaveonlyafewsections.Ifyouneedmorethan5,10sections,itmaybemoreconvenienttowriteanalgorithmthatcreatesthemodelunderprogramcontrol..2Managingthebiophysicalpropertiesofamodelthatisbasedoncomplexmorphometricdata,withouthavingtowriteanycode.TheCellBuilderbreakstheprocessofcreatingandmanagingamodelofacellintotasksthatareanalogoustowhatyouwoulddoifyouwerewritingaprograminhoc.Theyare.1settingupthemodel'stopology(branchingpattern).2groupingsectionsintosubsets.Forexample,itmightmakesensetogroupdendriticbranchesintosubsetsaccordingtosharedanatomicalcriteria(e.g.basilar,apical,oblique,spiny,aspiny),orbiophysicalcriteria(passive,active)..3assigninganatomicalorbiophysicalpropertiestoindividualsectionsorsubsetsofsectionsTheCellBuildercanimportamodelthatalreadyexistsduringaNEURONsession.ItcanalsobeusedinconjunctionwithNEURON'sImport3Dtooltocreatenewmodelcellsbasedondetailedmorphometricreconstructions.StartingtheCellBuilderUnderUNIX,gototheworkingdirectoryofyourchoiceandenterthecommandlinenrnguiThismakesNEURONopenahocfilethatloadsthegraphicaluserinterface($NEURONHOME/lib/hoc/nrngui.hoc)andbringsuptheNEURONMainMenu.UnderOSXorMSWinitiseasiesttodouble,clickthenrnguiicononthedesktop.TakealookatNEURONMainMenu/File/recentdir.Ifyourdesiredlocationappearsinthemenulist,selectit.Otherwise,useNEURONMainMenu/File/workingdirtobringupadirectorybrowsersoyoucannavigatetothedesiredlocation.ThenselectNEURONMainMenu/Build/CellBuildertostarttheCellBuilder.UsingtheCellBuilderAcrossthetopoftheCellBuilderthereisarowofradiobuttons,plusacheckboxlabeled"ContinuousCreate".Fornowyoushouldleavethecheckboxempty.Usetheradiobuttonstoselectthefollowingpages.AboutScanthisinformation,butdon'tworryifeverythingisn'timmediatelyobvious.Youcanrereaditanytimeyouwant.TopologyThisiswhereyouchangethebranchingarchitectureofthecell.Select"MakeSection"fromthelistofactions,andthenLclickinthegraphpanelonablankspacetotherightofthesoma.Usetheotheractionsasnecessarytomakeyourmodellooklikethefigureinthisexercise.
Page 10 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on ExercisesSubsetsSubsetscansimplifymanagementofmodelsthathavemanysections.TheCellBuilderautomaticallycreatesthe"all"subset,whichcontainseverysectioninthemodel.Thereisnoneedtodefinesubsetsfortheballandstickmodel,sojustskipthispage.GeometryThisisforsettingthedimensionsandspatialgrid(nseg)ofthesomaanddendrite..1MakesuretheSpecifyStrategybuttonischecked.Choosesomafromthelistofsubsetsandsectionnames,andthenselectL,diam,andnseg.Repeatfordend.Note:choosingnsegletsyousetthenumberofsegmentsmanually.TheCellBuilderalsooffersyoutheoptionofautomaticallyadjustingnsegaccordingtooneofitsbuilt1incompartmentalizationstrategies;wewillreturntothislater..2CleartheSpecifyStrategybutton.Usethelistofsectionnamestoselectthesomaanddendriteindividually,andenterthedesireddimensionsinthenumericfieldsforLanddiam.Fornowleavenseg=1.BiophysicsUsethistoendowthesectionswithbiophysicalproperties(ioniccurrents,pumps,buffersetc.)..1SpecifyStrategy.Thisisforinsertingbiophysicalmechanismsintothesectionsofyourmodel(Raandcmfor"all,"hhforthesoma,andpasforthedendsection)..2Toexamineandadjusttheparametersofthemechanismsthatyouinserted,cleartheSpecifyStrategybutton.ManagementThispanelisnotusedintheballandstickexercise.Whenyouaredone,theCellBuilderwillcontainacompletespecificationofyourmodelcell.However,nosectionswillactuallyexistuntilyouclickontheCellBuilder'sContinuousCreatebutton.AtthispointyoushouldturnContinuousCreateON,becausemanyofNEURON'sGUItoolsrequiresectionstoexistbeforetheycanbeused(e.g.thePointProcessManager).SavingyourworkThistookalotofeffortandyoudon'twanttohavetodoitagain.SosavethecompletedCellBuildertoasessionfilecalledballstk.sesintheworkingdirectorycourse/ballstk.Todothis,clickonNEURONMainMenu/File/savesessionThisbringsupafilebrowser/selectorpanel.Clickinthetopfieldofthistoolandtypeballstk.sesasshownhere
Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 11

Hands-on Exercises The NEURON Simulation Environment

ThenclickontheSavebutton.CheckingwhatyousavedRetrieveballstk.sesbyclickingonNEURONMainMenu/File/loadsessionandthenclickingonballstk.ses.AnewCellBuilderwindowcalledCellBuild[1]willappear.SinceContinuousCreateisON,thisnewCellBuilderforcesthecreationofnewsectionsthatwillreplaceanypre8existingsectionswiththesamenames.NEURON'sinterpreterannouncesthatthishappened:oc>Previouslyexistingsoma[0]pointstoasectionwhichisbeingdeletedPreviouslyexistingdend[0]pointstoasectionwhichisbeingdeletedCheckTopology,Geometry,andBiophysics.Whenyouaresuretheyarecorrect,exitNEURON.QuestionsandanswersaboutsessionsandsesfilesWhat'sasession?What'sasesfilegoodfor?What'sinasesfile?Foranswerstotheseandotherquestionsaboutsessionsandsesfiles,readthis.NEURONhandstoncourseCopyright©1998t2009byN.T.CarnevaleandM.L.Hines,allrightsreserved.
Page 12 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on ExercisesSavingWindowsSavingthewindowsofaninterfaceforlaterre�useisanessentialoperation.Theposition,size,andcontentsofallthewindowsyouhaveconstructedoftenrepresentagreatdealoflaborthatyoudon'twanttodooveragain.LosingaCellBuilderorMultipleRunFitterwindowcanbepainful.Thisarticleexplainshowtosavewindows,howtosavethemingroupsinseparatefilesinordertokeepseparatetheideasofspecification,control,graphing,optimization,etc,andhowtorecoverasmuchworkaspossibleintheeventthatasavedwindowgeneratesanerrorwhenreadingitfromafile.Whatisasession?Wecallthesetofwindows,includingtheonesthatarehidden,a"session".ThesimplestwaytosavethewindowsistosavethemallatoncewithNEURONMainMenu/File/savesession.Thiscreatesasessionfile,whichNEURONcanusetorecreatethewindowsthatweresaved.Sessionfilesarediscussedbelow.When(andhow)tosaveallwindowstoasesfileNearthebeginningofaprojectit'sanexcellentpracticetosavetheentiresessioninatemporaryfilewheneveracrash(losingalltheworksincetheprevioussave)wouldcausedistress.DothiswithNEURONMainMenu/File/savesession.Besuretoverifythatthesessionfilecanberetrieved(NEURONMainMenu/File/loadsession)beforeyouoverwriteanearlierworkingsessionfile!ItismostusefultoretrievesuchasessionfilerightafterlaunchingNEURON,whennootherwindowsarepresentonthescreen.ItisespeciallyusefulifoneofthewindowsisaCellBuildorNetGUI("NetworkBuilder"),becausemostwindowsdependontheexistenceofinformationdeclaredbythem.ConflictscanariseiftherearemultipleCellBuildorNetGuiwindowsthatcouldinterferewithoneanother,especiallyiftheycreatesectionswiththesamenames.When(andhow)tosaveselectedwindowsForsmallmodelingtasks,itismostconvenienttosaveallwindowstoasinglesessionfile.Themaindrawbacktosavingallwindowsinasinglesessionfileisthatitmixesspecification,control,parameter,andgraphingwindows.Formorecomplexmodelingtasks,itmaybenecessarytohavemorecontroloverwhatgroupsofwindowsarecreated.ThisallowsyoutoeasilystartasimulationbyretrievingthedesiredvariantofaCellBuilderwindow,separatelyretrievingoneofseveralpossiblestimulusprotocolsandparametersets,andlastlyretrievinggroupsofgraphwindows.ThePrint&FileWindowManager(PFWM)ThePFWMhasmanyusefulfeatures,especiallysavingsessionfiles,unhidinghiddenwindows,printinghardcopy,andgeneratingPostScriptandASCII(plaintext)outputfiles.Thisdiscussionfocussesonhowtouseittosaveselectedwindowstoasessionfile.
Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

Hands-on Exercises The NEURON Simulation EnvironmentTobringupthePFWM,clickonNEURONMainMenu/Window/Print&FileWindowManager

ThefigureabovecontainsseveralNEURONwindows,withaPFWMinthelowerrightcorner.NoticethetworedboxesinthebottompanelofthePFWM.Theboxontheleftisavirtualdisplayofthecomputermonitor:eachofthebluerectanglescorrespondstooneofNEURON'swindows.Therelativepositionsandsizesoftheserectanglesrepresentthearrangementofthewindowsonthemonitor.Thetoolbarjustabovetheredboxescontainstwomenuitems(Print,Session),andthreeradiobuttons(select,move,resize)thathelpyouusethePFWM.Theradiobuttonssetthe"mode"ofthePFWM,i.e.theydeterminewhathappenswhenyouclickontheblue
Page 14 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercisesrectangles.WhenthePFWMfirstcomesup,itisinselectmodeandtheradiobuttonnexttotheword"select"ishighlighted.HowtoselectanddeselectwindowsFirstmakesurethePFWMisinselectmode.Ifitisn't,clickon"select"inthetoolbar.Decidewhichoftherectanglesinthevirtualdisplaycorrespondtothewindowsyouwanttosavetoasesfile.Ifyouaren'tsurewhichbluerectanglegoeswithwhichwindow,dragawindowonyourscreentoanewlocation,andseewhichrectanglemoves.Whenyouhavedecided,clickinsidethedesiredrectangleinthevirtualdisplay,andanewbluerectangle,labeledwiththesamenumber,willappearinthePFWMtotherightofthevirtualscreen.Youcanselectasmanywindowsasyoulike.Todeselectawindow,justclickinsidethecorrespondingbluerectangleontherighthandsideofthePFWM.SavingtheselectedwindowsTosavetheselectedwindows,clickonSession/SaveselectedinthePFWM,andusethefilebrowser/selectorpaneltospecifythenameofthesesfilethatistobecreated.What'sinasesfileAsessionfileisactuallyjustasequenceofhocinstructionsforreconstructingthewindowsthathavebeensavedtoit.Sessionfilesaregenerallygiventhesuffix".ses"todistinguishthemfromuserCwrittenhocfiles.Inasessionfile,theinstructionsforeachwindowareidentifiedbycomments.Itisofteneasytouseatexteditortomodifythoseinstructions,e.g.changethevalueofaparameter,ortoremovealltheinstructionsforawindowifitispreventingthesesfilefrombeingloaded.Whatcangowrong,andhowtofixitThemostcommonreasonforanerrorduringretrievalofasessionfileiswhenvariablesusedbythewindowhavenotyetbeendefined.Thus,retrievingapointprocessmanagerwindowbeforetheprerequisitecablesectionhasbeencreatedwillresultinahocerror.RetrievingaGraphofSEClamp[0].iwillnotsucceedifSEClamp[0]doesnotexist.Inmostcases,loadingtheprerequisitesessionsfirstwillfixtheerror.Theinit.hocfileisanexcellentplacetoputasequenceofload_filestatementsthatstartadefaultsession.ErrorsduetomismatchedobjectIDsareeasytocorrectbyeditingthesessionfile.MismatchedobjectIDscanoccurfromparticularsequencesofcreationanddestructionofwindowsbytheuser.Forexample,supposeyou.1StartaPointProcessManagerandcreatethefirstinstanceofanIClamp.ThiswillbeIClamp[0].2StartanotherPointProcessManagerandcreateasecondinstanceofanIClamp.ThiswillbeIClamp[1].3ClosethefirstPointProcessManager.ThatdestroysIClamp[0]..4StartagraphandplotIClamp[1].i.5Savethesession.
Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 15

Hands-on Exercises The NEURON Simulation EnvironmentIfyounowexitandre�launchNEURONandretrievethesession,theoldIClamp[1]willbere�createdasIClamp[0],andthecreationoftheGraphwindowwillfailduetotheinvalidvariablenameitisattemptingtodefine.ThefixrequireseditingthesessionfileandchangingtheIClamp[1].istringtoIClamp[0].iPageandgraphicscopyright©199992009N.T.CarnevaleandM.L.Hines,AllRightsReserved.

Page 16 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Managing Models on the Fly

If the CellBuilder's Continuous Create button is checked, changes are passed from the CellBuilder to the interpreter as

they occur. This means that you can immediately explore the effects of anything you do with the CellBuilder.

To see how this works, try the following.

1. Start NEURON with its standard GUI in the /course/ballstk directory (remember how?).

2. Bring up the CellBuilder and construct a cell that looks like this:

Use any anatomical and biophysical properties you like; these might be interesting to start with:

Section L (um) diam (um)

soma 30 30

trunk 400 3

trunk[1] 400 2

oblique 300 1.5

tuft 300 1

basilar 300 3

nseg = 1 for all sections

Ra = 160 , Cm = 1, both uniform throughout the cell

soma has hh

trunk and all its tributaries have hh, but with gnabar & gkbar reduced by a factor of 10 and gleak = 0 (Subsets

makes this easy)

all dendrites have pas with gpas = 3e-5

3. Toggle Continuous Create ON.

4. In the interpreter verify the structure and parameters of your model with topology() and forall psection()

5. At the proximal end of tuft, place an alpha function synapse that has onset = 0 ms, tau = 1 ms, gmax = 0 .01 umho,

and e = 0 mV (hint: NEURON Main Menu / Tools / Point Processes / Managers / Point Manager).

6 . Open a graph window to plot soma Vm vs. time. Also set up a space plot that shows Vm along the length of the cell

from the distal end of the basilar to the distal end of the tuft.

7. Run a simulation. If necessary, increase Tstop until you can see the full time course of the cell's response to synaptic

input.

8. Increase nseg until the spatial profile of Vm is smooth enough (a couple of applications of

forall nseg *= 3

in the interpreter window should do the trick). You may need to adjust the peak synaptic conductance in order to trigger a

spike. Then use the command

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 17

Hands-on Exercises The NEURON Simulation Environment

forall print secname(), " ", nseg

to see how many segments are in each section.

9 . You can also set nseg for any or all sections using the CellBuilder according to options that you select by

Geometry/Specify Strategy. You can set the number of segments manually, or let the CellBuilder adjust them

automatically according to one of these criteria:

d_lambda (the maximum length of any segment, expressed as a fraction of the AC length constant at 100 Hz for a

cylindrical cable with identical diameter, Ra, and cm) (Hines, M.L. and Carnevale, N.T. NEURON: a tool for

neuroscientists. The Neuroscientist 7:123-135, 2001; preprint available at http://www.neuron.yale.edu

/neuron/static/papers/thensci/spacetime_rev1.pdf)

or

d_X (the maximum anatomical length of any segment)

Try each of these criteria, setting different values for d_lambda or d_X, and see what happens to nseg in each section and

how this affects the spatial profile of membrane potential.

Comments:

Don't forget that that execution of your strategy is sequential. In other words, if your strategy specifies d_lambda

for the all subset, but then sets nseg = 1 for the tuft section, the tuft will end up with nseg = 1 despite the fact that

it needs a much finer grid according to the d_lambda criterion.

Whether you choose d_lambda or d_X, the final value of nseg will be an odd number (this preserves the node at x

= 0 .5).

Of these two options, d_lambda is usually preferable. A value of 0 .1 is generally adequate.

10 . What happens if the sodium channels are blocked throughout the apical dendrites? Use the CellBuilder to reduce

apical gnabar to 0 and then run a simulation.

NEURON hands-on course
Copyright © 1998-2010 by N.T. Carnevale and M.L. Hines, all rights reserved.

Page 18 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on ExercisesModelControl:ArbitraryforcingfunctionsItisoftenusefultomakesomemodelparameterfollowapredeterminedtimecourseduringasimulation.Forexample,youmightwanttodriveavoltageorcurrentclampwithacomplexwaveformthatyouhavecomputedormeasuredexperimentally,orhaveasynapticconductanceorequilibriumpotentialchangeinaparticularmanner.Youcoulddothisattheinterpreterlevelbyinsertingthenecessaryhocstatementsinsidethemaincomputationalloop,butthisiscumbersomeandimposesextrainterpreteroverheadateachtimestep.TherecordandplayfunctionsoftheVectorclassareabetteralternative.TheseareaccessibleusinghocstatementsandalsothroughtheGUI.Tohelpyoulearnhowtogenerateandusearbitraryforcingfunctions,inthisexerciseyouwillusetheGUItomakearampclamp.YouwillsetupandtestavoltageclampwithastandardstepcommandgeneratethedesiredwaveformusethiswaveformasthecommandforthevoltageclampButfirst,youneedsomemembranewithHHchannels<<PhysicalSystemApatchofexcitablemembraneModelHodgkin<HuxleygNa,gK,andgleakinparallelwithmembranecapacitanceSimulationStartNEURONwithitsstandardGUIwith/course/arbforcastheworkingdirectory.ThenuseBuild/singlecompartmentfromtheMainMenu.Thiscreatesasinglesectionwithatotalsurfaceareaof100um2andnseg=1.ItalsobringsupaDistributedMechanismInserter(asmallwindowwithcheckboxes)thatyoucanusetospecifywhichmechanismsarepresent.Anaside:thetotalcurrentinunitsof[nA](nanoamperes)throughapatchofmembranewitharea=100um2isnumericallyequaltothecurrentdensityinunitsof[mA/cm2]Themembraneofthissingle<compartmentmodelhascm=1uf/cm2,butitlacksionchannels.Usetheinsertertoendowitwithionchannels(hh),andthensetupinstrumentationtoexperimentonit.Thetoolsyou'llbringupwiththeNEURONMainMenu:RunControlVoltageaxisgraphforaplotofvvs.t
Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 19

Hands-on Exercises The NEURON Simulation EnvironmentaPointProcessManagerconfiguredasanIClamptodeliverastimuluspulse(verifythatthemembraneisexcitable)SetupandtestavoltageclampTurnthepointprocessintoasingleelectrodeclamp(SEClamp)thathastheseparameters:dur1=1ms,amp1=165mVdur2=3ms,amp2=135mVdur3=1ms,amp3=165mVYouneedanothergraphtoshowclampcurrentvs.t(Graph/Currentaxis,thenusethegraph'sPlotwhat?tospecifySEClamp[0].i)Runasimulationtotestthevoltageclamp.Ifvoltagecontrolisvisiblypoor,dividersby10andtryagain.Repeatuntilmembranepotentialiswellcontrolled.GeneratetherampwaveformYouwantavoltagerampthatstartsatv_initmVwhent=0,andrisesataconstantrate.Thiscouldbedoneinhocbycreatingavectorwiththerightnumberofelements(oneforeachtimestepinthesimulation),andthenassigningthedesiredvaluetoeachelement.However,itismoreconvenienttousetheGrapher(NEURONMainMenu/Graph/Grapher).Readaboutitandtrythissimpleexample:UsePlotwhat?,andentertheexpressionsin(t)intothe"Variabletograph"field.ThenLclickontheGrapher'sPlotbutton.TheGraphercanplotanyfunctionthatyouspecifyinhoc.Oncethedesiredwaveformisplotted,youcanusePickVectortocopyittoNEURON'sClipboard.Let'smakearampthatstartsattheholdingpotentialv_initanddepolarizessteadilyatarateof1mV/msfor50ms.Todothis,setthefollowingparametersintheGrapher:PARAMETERVALUECOMMENTIndepBegin0tatstartoframpIndepEnd50tatendoframpSteps 50/dtNEURON'sGUIdefineddtforusIndependentVartXsexpr tGenerator leaveblankNexttelltheGrapherwhattoplot(usePlotwhat?,andentertheexpressionv_init+t*1intothe"Variabletograph"field).Plotandexaminetheresultingwaveform(mayneedtouseView=plot).Whenyouaresatisfiedwiththeresult,usePickVectortocopytherampintoNEURON'sClipboard.Usethewaveformasthecommandforthevoltageclamp
Page 20 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on ExercisesTheplayfunctionoftheVectorclasscanbeexercisedinhoc,butitismoreconvenienttousetheGUI'sVectorPlaytool(NEURONMainMenu/Vector/Play).Thistoolhasa"Specify"buttonthatbringsupamenuwithseveralitems.Forthisexercise,themostimportantare"VariableName"and"VectorfromClipboard"."VectorfromClipboard"willdeposittherampwaveformintotheVectorPlaytool.Usethetool'sView=plottoverifythatthishashappened.Thenuse"VariableName"tospecifySEClamp[0].amp1Youarealmostreadytotesttherampclamp11butfirstyoushouldincreaseSEClamp[0].dur1tosomethingBIG.Anything>=50mswilldo,andifyouplantoplaywithotherwaveforms,youmightaswellmakeitmuchlarger,say1000ms(whyisthisnecessary?).Finally,LclickonVectorPlay's"Connected"button,andthenrunasimulation.Wheneverythingisworking,savetheconfiguredSEClamp,thegraphofclampcurrentvs.t,theVectorPlaytool,andtheGraphertoanewsessionfile(callitrampclamp.ses).Exercises1.Trychangingdt.TurningonKeepLinesinthevoltageandcurrentplotswillletyoucomparethenewandoldresultsside1by1side.IntheRunControlwindow,cutdtinhalf.WhathappenstothetimecourseofVmandclampcurrent?Whatdoyouthinkwouldhappenifyouincreaseddtto0.05ms?Whydoesthisoccur?Don'tforgettorestoredtto0.025mswhenyou'redone.2.Trychangingtheramp'sdv/dt.IntheGrapher'sgraphwindow,invokeChangeTextandedittheexpression,thenPlotthenewwaveformandcopyittotheVectorPlaytool.Try2mV/ms,3mV/ms,whatever11youcan'tfrythiscell!3.Howdoyougetaplotofclampcurrentvs.Vm?Answer:useaPhasePlanegraph(Graph/PhasePlane).Forthexaxisexpressionenterv(OKforthissimpleone1compartmentmodel,butSEClamp[0].amp1wouldbeamoreflexiblechoiceforacellwithmanysectionsifyouwanttomovetheclampawayfromthedefaultsection).4.Tryadifferentdrivingfunction,e.g.v_init+sin(2*PI*t/10)*5Aninterestingvariation:reconfigurethePointProcessManagerasanIClampanddrivetheamplitudeofthecurrentitdeliverswithasinusoidorsomeotherwaveform.5.Trytherampclampwithadifferentcell,e.g.theballandstickmodelusedinpreviousexercises.UseNEURONtoexecutetheinit.hocfileinthe/course/arbforcsubdirectory.Incidentally,Ihaveincludedthestatement
 dend nseg = 27intheinit.hocfileforimprovedspatialaccuracy.Afterplayingwiththecellundercurrentclamp,closetheIClampPointProcessManagerand

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 21

Hands-on Exercises The NEURON Simulation Environmentretrievethesessionfilerampclamp.ses(agoodcopyofthisfilealreadyexistsunderthenamerampclamp.se).Animportantaside:whenrampclamp.seswassaved,itsSECreferredtoasectionwiththename"soma".Thereforeitwillworkwithanycellthathasasectioncalled"soma".IfyoutrytouseitwithacellthatdoesNOThavesuchasection,itwon'tworkandyou'llgetanerrormessage.Firsttrya1mV/msrampappliedtothesoma,thentrya2mV/msramp.CanyouimprovecontrolofVmbycuttingtheSEClamp'saccessresistance(rs)?SeewhathappenswhenyoumovetheSEClampoutontothedendrite.ItmightbeinstructivetobringupaspaceplotthatmonitorsVmalongtheentirelengthofthemodel;inthiscase,youmayalsowanttospeedthingsupbyreducingPointsplotted/msfrom40to20.Hints&tips0.TheGraphercandisplaymorethanonefunctionatatimeTTjustinvokePlotwhat?morethanonce.Avoidvisualconfusionbymakingthetraceshavedifferentcolors(Color/Brush).1.TheforcingfunctioncanbefarmorecomplicatedthanaoneTliner.Createahocfilethatcontainsyourownfunction,xopen()thefile,andthenplotit.SimplescalingandbaselineshiftscanbeaccomplishedintheGrapheritself(ChangeText).Example:
func whatnot() { local abc

 if ($1 < 10) abc = sin(2*PI*$1/10)

 if ($1 >= 10 && $1 < 20) abc = (sin(4*PI*$1/10) > 0)

 if ($1 >= 20) abc = exp(($1-20)/30)*sin(2*PI*(($1-20)/10)^2)

 return abc

}2.Alternatively,youcouldcreateavectorgraphicallywiththeMakeCurvetool(NEURONMainMenu/Vector/Draw).Thisisbestsuitedtowaveformsthatconsistofasequenceofrectangularsteps(andlinearramps,ifyouactivatetheVectorPlaytool's"piecewisecontinuous"optionbyclickingonSpecify/Piecewisecontinuous).3.Experimentaldata(e.grecordingsofmembranepotentialorclampcurrent)canalsobeusedasforcingfunctions.Filei/ocanbedonethroughtheGUIwiththeClipboard,orunderprogramcontrolwiththeseVectorclassmethods:fread,fwrite,vread,vwrite,scanf,printf,scantil.NEURONhandsmoncourseCopyright©1998m2009byN.T.CarnevaleandM.L.Hines,allrightsreserved.
Page 22 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

HH potassium channel model
Download the hhkchan.mod file into an empty directory.

Part 1:

On a PC . . .

Launch mknrndll from the icon in the NEURON program group.

Navigate to the directory containing the desired mod files.
Select "Make nrnmech.dll".

and the "mknrndll" script will create a nrnmech.dll file which contains the HHk model.

On a unix workstation . . .

Go to the directory that holds the hhkchan.mod file and run the shell script

 nrnivmodl

This will create a new executable called "special" which is a complete copy of NEURON and
also includes the HHk model.

Part 2:

Using the location of hhkchan.mod as the working directory, start NEURON with its standard
GUI.

On a PC . . .

Under MSWin, double clicking on a hoc file opens that file using NEURON which
automatically looks in the working directory for a nrnmech.dll file.

Alternatively, you can launch nrngui from the icon in the NEURON program group
and use NEURONMainMenu/File/WorkingDir or RecentDir to navigate to the
directory containing the nrnmech.dll file.

On a unix workstation . . .

when you run the script nrngui in a working directory, it will automatically look for
the special i.e. i686/special, that you created with nrnivmodl in the previous step. If
it doesn’t find one, it will execute the standard nrniv, which contains only the
"built-in" mechanisms (hh, pas, IClamp etc..).

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 23

Hands-on Exercises The NEURON Simulation Environment

Bring up a single compartment model with surface area of 100 um2 (NEURON Main Menu /
Build / single compartment) and toggle the HHk button in the Distributed Mechanism Inserter
ON. Verify that the new HHk model (along with the Na portion of the built-in HH channel)
produces the same action potential as the built-in HH channel (using both its Na and K portions).

NEURON hands-on course
Copyright © 1998-2001 by N.T. Carnevale and M.L. Hines, all rights reserved.

Page 24 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

HOC exercises
// Executable lines below are shown with the hoc prompt // Typing these, although trivial, can be
a valuable way to get familiar with the language

oc> // A comment

oc> /* ditto */

Data types: numbers strings and objects

anything not explicitly declared is assumed to be a
number

oc> x=5300 // no previous declaration as to what ’x’ is

numbers are all doubles (high precision numbers)

there is no integer type in Hoc

Scientific notation use e or E

oc> print 5.3e3,5.3E3 // e preferred (see next)

there are some useful built-in values

oc> print PI, E, FARADAY, R

Do you have anything to declare?: objects and strings

Must declare an object reference (=object variable) before making
an object

Objref: manipulate references to objects, not the objects
themselves

often names are chosen that make it easy to remember what an object reference is to
be used for (eg g for a Graph or vec for a Vector) but it’s important to remember that
these are just for convenience and that any object reference can be used to point to
any kind of object

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 25

Hands-on Exercises The NEURON Simulation Environment

Objects include vectors, graphs, lists, ...

oc> objref XO,YO // capital ’oh’ not zero

oc> print XO,YO // these are object references

oc> XO = new List() // ’new’ creates a new instance of the List class

oc> print XO,YO // XO now points to something, YO does not

oc> objref XO // redeclaring an objref breaks the link; if this is the only reference to
that object the object is destroyed

oc> XO = new List() // a new new List

oc> print XO // notice the List[#] -- this is a different List, the old one is gone

After creating object reference, can use it to point a new or old
object

oc> objref vec,foo // two object refs

oc> vec = new Vector() // use ’new’ to create something

oc> foo = vec // foo is now just another reference to the same thing

oc> print vec, foo // same thing

oc> vec=XO

oc> print vec, foo // vec no longer points to a vector

oc> objectvar vec // objref and objectvar are the same; redeclaring an objref breaks
the link between it and the object it had pointed to

oc> print vec, foo // vec had no special status, foo still points equally well

Can create an array of objrefs

oc> objref objarr[10]

oc> objarr[0]=XO

oc> print objarr, objarr[0] // two ways of saying same thing

oc> objarr[1]=foo

oc> objarr[2]=objarr[0] // piling up more references to the same thing

Page 26 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

oc> print objarr[0],objarr[1],objarr[2]

Exercises: Lists are useful for maintaining pointers to objects so
that they are maintained when explicit object references are
removed

1. Make vec point to a new vector. Print out and record its identity (print vec). Now
print using the object name (ie print Vector[#] with the right #). This confirms that
the object exists. Destroy the object by reinitializing the vec reference. Now try to
print using the object name. What does it say.

2. As in Exercise 1: make vec point to a new vector and use print to find the vector
name. Make XO a reference to a new list. Append the vector to the list:
{XO.append(vec). Now dereference vec as in Exercise 1. Print out the object by
name and confirm that it still exists. Even though the original objref is gone, it is still
point to by the list.

3. Identify the vector on the list: (print XO.object(0)). Remove the vector from the
list (print XO.remove(0)). Confirm that this vector no longer exists.

Strings

Must declare a string before assigning it

oc> mystr = "hello" // ERROR: needed to be declared

oc> strdef mystr // declaration

oc> mystr = "hello" // can’t declare and set together

oc> print mystr

oc> printf("-%s-", mystr) // tab-string-newline; printf=print formatted; see
documentation

There are no string arrays; get around this using arrays of String
objects

Can also declare number arrays, but vectors are often more useful

oc> x=5

oc> double x[10]

oc> print x // overwrote prior value

oc> x[0]=7

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 27

Hands-on Exercises The NEURON Simulation Environment

oc> print x, x[0] // these are the same

Operators and numerical functions
oc> x=8 // assignment

oc> print x+7, x*7, x/7, x%7, x-7, x^7 // doesn’t change x

oc> x==8 // comparison

oc> x==8 && 5==3 // logical AND, 0 is False; 1 is True

oc> x==8 \\ 5==3 // logical OR

oc> !(x==8) // logical NOT, need parens here

oc> print 18%5, 18/5, 5^3, 3*7, sin(3.1), cos(3.1), log(10), log10(10), exp(1)

oc> print x, x+=5, x*=2, x-=1, x/=5, x // each changes value of x; no x++

Blocks of code {}
oc> { x=7

print x

x = 12

print x

}

Conditionals
oc> x=8

oc> if (x==8) print "T" else print "F" // brackets optional for single statements

oc> if (x==8) {print "T"} else {print "F"} // usually better for clarity

oc> {x=1 while (x<=7) {print x x+=1}} // nested blocks, statements separate by space

oc> {x=1 while (x<=7) {print x, x+=1}} // notice difference: comma makes 2 args of print

oc> for x=1, 7 print x // simplest for loop

Page 28 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

oc> for (x=1;x<=7;x+=2) print x // (init;until;change)

Procedures and functions
oc> proc hello () { print "hello" }

oc> hello()

oc> func hello () { print "hello" return 1.7 } // functions return a number

oc> hello()

Numerical arguments to procedures and functions

oc> proc add () { print $1 + $2 } // first and second argument, then $3, $4...

oc> add(5, 3)

oc> func add () { return $1 + $2 }

oc> print 7*add(5, 3) // can use the returned value

oc> print add(add(2, 4), add(5, 3)) // nest as much as you want

String ($s1, $s2, ...) and object arguments ($o1, $o2, ...)

oc> proc prstuff () { print $1, "::", $s2, "::", $o3 }

oc> prstuff(5.3, "hello", vec)

Exercises

*** Use printf in a procedure to print out a formatted table of powers of 2

*** Write a function that returns the average of 4 numbers

*** Write a procedure that creates a section called soma and sets diam and L to 2 args

Built-in object types: graphs, vectors, lists,
files

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 29

Hands-on Exercises The NEURON Simulation Environment

Graph

oc> objref g[10]

oc> g = new Graph()

oc> g.size(5, 10, 2, 30) // set x and y axes

oc> g.beginline("line", 2, 3) // start a red (2), thick (3) line

oc> {g.line(6, 3) g.line(9, 25)} // draw a line (x, y) to (x, y)

oc> g.flush() // show the line

Exercises

write proc that draws a colored line ($1) from (0, 0) to given
coordinate ($2, $3) assume g is a graph object

write a proc that puts up two new graphs

bring up a graph using GUI, on graph use right-button right
pull-down to "Object Name"; set ’g’ objectvar to point to this
graph and use g.size() to resize it

Vector

oc> objref vec[10]

oc> for ii=0, 9 vec[ii]=new Vector()

oc> vec.append(3, 12, 8, 7) // put 4 values in the vector

oc> vec.append(4) // put on one more

oc> vec.printf // look at them

oc> vec.size // how many are there?

oc> print vec.sum/vec.size, vec.mean // check average two ways

oc> {vec.add(7) vec.mul(3) vec.div(4) vec.sub(2) vec.printf}

oc> vec.resize(vec.size-1) // get rid of last value

oc> for ii=0, vec.size-1 print vec.x[ii] // print values

Page 30 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

oc> vec[1].copy(vec[0]) // copy vec into vec[1]

oc> vec[1].add(3)

oc> vec.mul(vec[1]) // element by element; must be same size

Exercises

write a proc to make $o1 vec elements the product of $o2*$o3
elements

(use resize to get $o1 to right size; generate error if sizes wrong eg

if ($o2.size!=$o3.size) { print "ERROR: wrong sizes" return }

graph vector values: vec.line(g, 1) or vec.mark(g, 1)

play with colors and mark shapes (see doc for details)

graph one vec against another: vec.line(g, vec[1]); vec.mark(g,
vec[1])

write a proc to multiply the elements of a vector by sequential
values from 1 to size-1

hint: use vec.resize, vec.indgen, vec.mul

File
oc> objref file

oc> mystr = "AA.dat" // use as file name

oc> file = new File()

oc> file.wopen(mystr) // ’w’ means write, arg is file name

oc> vec.vwrite(file) // binary format

oc> file.close()

oc> vec[1].fill(0) // set all elements to 0

oc> file.ropen(mystr) // ’r’ means read

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 31

Hands-on Exercises The NEURON Simulation Environment

oc> vec[1].vread(file)

oc> if (vec.eq(vec[1])) print "SAME" // should be the same

Exercises

proc to write a vector ($o1) to file with name $s1

proc to read a vector ($o1) from file with name $s1

proc to append a number to end of a file: tmpfile.aopen(),
tmpfile.printf

List
oc> objref list

oc> list = new List()

oc> list.append(vec) // put an object on the list

oc> list.append(g) // can put different kind of object on

oc> list.append(list) // pointless

oc> print list.count() // how many things on the list

oc> print list.object(2) // count from zero as with arrays

oc> list.remove(2) // remove this object

oc> for ii=0, list.count-1 print list.object(ii) // remember list.count, vec.size

Excercise

write proc that takes a list $o1 with a graph (.object(0)) followed
by a vector (.object(1)) and shows the vector on the graph

modify this proc to read the vector out of file given in $s2

Simulation
oc> create soma

Page 32 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

oc> access soma

oc> insert hh

oc> ismembrane("hh") // make sure it’s set

oc> print v, v(0.5), soma.v, soma.v(0.5) // only have 1 seg in section

oc> tstop=50

oc> run()

oc> print t, v

oc> print gnabar_hh

oc> gnabar_hh *= 10

oc> run()

oc> print t, v // what happened?

oc> gnabar_hh /= 10 // put it back

Recording the simulation
oc> cvode_active(0) // this turns off variable time step

oc> dt = 0.025

oc> vec.record(&soma.v(0.5)) // ’&’ gives a pointer to the voltage

oc> objref stim

oc> soma stim = new IClamp(0.5) // current clamp at location 0.5 in soma

oc> stim.amp = 20 // need high amp since cell is big

oc> stim.dur = 1e10 // forever

oc> run()

oc> print vec.size()*dt, tstop // make sure stored the right amount of data

Graphing and analyzing data
oc> g=new Graph()

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 33

Hands-on Exercises The NEURON Simulation Environment

oc> vec.line(g, dt, 2, 2)

oc> g.size(0, tstop, -80, 50)

oc> print vec.min, vec.max, vec.min_ind*dt, vec.max_ind*dt

oc> vec[1].deriv(vec, dt)

oc> print vec[1].max, vec[1].max_ind*dt // steepest AP

Exercises

change params (stim.amp, gnabar_hh, gkbar_hh), regraph and
reanalyze

bring up the GUI and demonstrate that the GUI and command
line control same parameters

write proc to count spikes and determine spike frequency (use
vec.where)

Roll your own GUI
oc> proc sety () { y=x print x }

oc> xpanel("test panel")

oc> xvalue("Set x", "x")

oc> xvalue("Set y", "y")

oc> xbutton("Set y to x", "sety()")

oc> xpanel()

Exercises

put up panel to run sim and display (in an xvalue) the average
frequency

Last updated: Jun 16, 2003 (11:09)

Page 34 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on ExercisesWorkingwithmorphometricdataIfyouhavedetailedmorphometricdata,whynotuseit?Thismaybeeasiersaidthandone,sincequantitativemorphometrytypicallyproduceshundredsorthousandsofmeasurementsforasinglecell**youwouldn'twanttotranslatethisintoamodelbyhand.Severalprogramshavebeenwrittentogeneratehoccodefrommorphometricdatafiles,buttheonethatisprobablymostpowerfulandup*to*dateisNEURON'sownImport3Dtool.CurrentlyImport3DcanreadEutectic,Neurolucida(v1andv3textfiles),swc,andMorphMLfiles.Itcanalsodetectandlocalizeerrorsinthesefiles,andrepairmanyofthemorecommonerrorsautomaticallyorwithuserguidance.ExercisesAsurprisingresultSomemorphometricdatafilescontainsurprises,buttheImport3Dtoolhandledthisonenicely.ReadingamorphometricdatafileandconvertingittoaNEURONmodel.ExploringmorphometricdatawiththeImport3Dtool.A"litmustest"formodelswithcomplexarchitectureSomemorphometricreconstructionscontainorphanbranches,ormeasurementpointswithdiametersthatare(incorrectly)excessivelysmallorevenzero.Here'satestthatcanquicklydetectsuchproblems:.1Usethedatatocreateamodelcell..2Insertthepasmechanismintoallsections.Ifyou'redealingwithaveryextensivecell(especiallyiftheaxonisincluded),youmightwanttocutRato10ohmcmandreduceg_pasto1e*5mho/cm2..3TurnonContinuousExport(ifyouhaven'talready)..4BringupaShapePlot..5TurnthisintoaShapePlotofVm(RclickintheShapePlotandscrolldownthemenuto"ShapePlot".ReleasethemousebuttonandacolorscalecalibratedinmVshouldappear)..6Examinetheresponseofthecelltoa3nAcurrentsteplasting5msappliedatthesoma.Forveryextensivecells,especiallyifyouhavereducedg_pas,youmaywanttoincreasebothTstopandthedurationoftheinjectedcurrentto1000msandusevariabledt.Here'sanexamplethatusesatoycell.

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 35

Hands-on Exercises The NEURON Simulation Environment

Left:Vmatt=0.Right:Vmatt=5ms.QuantitativetestsofanatomyThisonelinehocstatementchecksforpt3ddiameterssmallerthan0.1um,andreportsthenamesofthesectionswheretheyarefound:
forall for i=0, n3d()-1 if (diam3d(i) < 0.1) print secname(), i, diam3d(i)Therearemanyotherpotentialstrategiesforcheckinganatomicaldata,suchascreatingaspaceplotofdiam.BringupaShapePlotanduseitsPlotwhat?menuitemtoselectdiam.ThenselectitsSpaceplotmenuitem,clickanddragoverthepathofinterest,andvoila!makingahistogramofdiametermeasurements,whichcanrevealoutliersandsystematicerrorssuchas"favoritevalues"andquantizationartifacts(whatisthesmallestdiameterthatwasmeasured?howfineisthesmallestincrementofdiameter?).Thisrequiressomecoding,whichisleftasanexercisetothereader.Detailedmorphometricdata:sources,caveats,andimportingintoNEURONCurrentlythelargestcollectionofdetailedmorphometricdatathatIknowofisNeuroMorpho.org.Therearemanypotentialpitfallsinthecollectionanduseofsuchdata.BeforeusinganydatayoufindatNeuroMorpho.orgoranywhereelse,suretocarefullyreadanypapersthatwerewrittenaboutthosedatabytheanatomistswhoobtainedthem.Someoftheartifactsthatcanafflictmorphometricdataarediscussedinthesetwopapers,whicharewellworthreading:KaspirzhnyAV,GoganP,Horcholle[BossavitG,Tyc[DumontS.2002.Neuronalmorphologydatabases:morphologicalnoiseandassesmentofdataquality.Network:ComputationinNeuralSystems13:357[380.Scorcioni,R.,Lazarewicz,M.T.,andAscoli,G.A.Quantitativemorphometryofhippocampal
Page 36 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercisespyramidalcells:differencesbetweenanatomicalclassesandreconstructinglaboratories.JournalofComparativeNeurology473:177�193,2004.NEURONhands,oncourseCopyright©1998,2009byN.T.CarnevaleandM.L.Hines,allrightsreserved.

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 37

Hands-on Exercises The NEURON Simulation Environment

Data input and model output

To import morphometric data into NEURON, bring up an Import3d tool, and specify the file that
is to be read. Look at what you got, then export the data as a NEURON model.

A. Get an Import3D tool.

Start NEURON and go to course/morphometric_data, if you're not alredy there.

Open an Import3D tool by clicking on Tools / Miscellaneous / Import3D in the
NEURON Main Menu.

B. Choose a file to read.

In the Import3D window, click on the "choose a file" checkbox.

This brings up a file browser. Since you're already in the directory that contains the data,
just click on the name of the data file (111200A.asc), and then click the file browser's Read
button.

NEURON's xterm (interpreter window) prints a running tally of how many lines have been
read from the data file.

 oc>

 21549 lines read

After a delay that depends on the size of the file and the speed of the computer, a figure will
appear on the Import3D tool's canvas. Each point at which a measurement was made is
marked by a blue square.

Page 38 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

If the Import3D tool finds errors in the data file, a message may be printed in the xterm,
and/or a message box may appear on the screen. For this particular example there were no
errors--that's always a good sign!

The top of the right panel of the Import3D tool will show the name and data format of the file
that was read. The other widgets in this panel, which are described elsewhere, can be used
to examine and edit the morphometric data, and export them to the CellBuilder or the hoc
interpreter.

C. Let's see what it looks like.

It's always a good idea to look at the results of any anatomical data conversion--but those
blue squares are in the way!

To get rid of the blue squares that are hiding the branched architecture, click on the Show
Points button in the right panel of the Import3D tool. The check mark disappears, and so do
the blue squares.

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 39

Hands-on Exercises The NEURON Simulation Environment

That's a very dense and complex branching pattern.

D. Exporting the model.

The Import3D tool allows us to export the topology (branched architecture) and geometry
(anatomical dimensions) of these data to a CellBuilder, or straight to the hoc interpreter. It's
generally best to send the data to the CellBuilder, which we can then save to a session file
for future re-use. The CellBuilder, which has its own tutorial, is a very convenient tool for
managing the biophysical properties and spatial discretization of anatomically complex cell
models.

So click on the Export button and select the CellBuilder option.

Page 40 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

But this example contains a surprise: instead of one CellBuilder, there are two! Under
MSWin, they are offset diagonally as shown here, but under UNIX/Linux they may lie right on
top of each other so you'll have to drag the top one aside.

Does getting two CellBuilders mean that the morphometric data file contained measurements
from two cells? Maybe that's why the branching pattern was so dense and complex.

But there is an unpleasant alternative: maybe all this data really is from one cell. If there
was a mistake in data entry, so that the proximal end of one branch wasn't connected to its
parent. one CellBuilder would contain the orphan branch and its children, and the other
CellBuilder would contain the rest of the cell.

How can you decide which of these two possibilities is correct?

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 41

Hands-on Exercises The NEURON Simulation Environment

Examining the Topology pages of these CellBuilders shows that CellBuild[0] got most of the
branches in the bottom half of the Import3D's canvas, and CellBuild[1] got most of the
branches in the top half. The morphologies are ugly enough to be two individual cells; at least,
neither of them is obviously an orphan dendritic or axonal tree.

Until you know for sure, it is safest to use the Print & File Window Manager (PFWM) to save
each CellBuilder to its own session file. I optimistically called them bottomcell.ses and
topcell.ses, respectively.

At this point, you should really use the Import3D tool to closely examine these data, and try to
decide how many cells are present.

Go back to the main page to learn more about the Import3D tool.

NEURON hands-on course
Copyright © 2005 - 2009 by N.T. Carnevale and M.L. Hines, all rights reserved.

Page 42 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Examining morphometric data with Import3D

Take a new look at the shape in the Import3D tool.

Those two little green lines in the dense clusters are new. They appeared after exporting to

the CellBuilder. And is there a little orange blob at one end of each green line?

To find out what this is all about, it is necessary to discover what lies at the center of these

dense clusters.

A. Zooming in

To zoom in for a closer look, first make sure that the Import3D tool's Zoom button is on (if it

isn't, just click on it).

Then click on the canvas, just to the right of the area of interest, and hold the mouse button

down while dragging the cursor to the right. If it becomes necessary to re-center the image,

click on the Translate button, then click on the canvas and drag the image into postion. To

start zooming again, click on the Zoom button.

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 43

Hands-on Exercises The NEURON Simulation Environment

Repeat as needed until you get what you want.

The irregular shape at the center, with the transverse orange lines, is the soma of a neuron.

The green line is its principal axis, as identified by the Import3D tool. At least 9 neurites

converge on it, and a fine red line connects the proximal end of each branch to the center of

the soma.

If you zoom in on the other green line and orange blob, you'll find another soma there.

So by zooming in, it is possible to discover that this particular morphometric data file

contained measurements from at least two different cells.

To zoom out, make sure the Zoom button is on,

then click near the right edge of the canvas and drag toward the left. To fit the image to the

window, just use the graph's "View = plot" menu item.

Go back to the main page

Page 44 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Inhomogeneous channel distribution

Physical System

Conceptual Model

The conceptual model is a much simplified stylized representation of a pyramidal cell with
active soma and axon, passive basilar dendrites, and weakly excitable apical dendrites.

Computational Model

Here is the complete specification of the computational model:

Geometry

Section

L

(um)

diam

(um) Biophysics

soma 20 20 hh
ap[0] 400 2 hh*
ap[1] 300 1 hh*
ap[2] 500 1 hh*
bas 200 3 pas
axon 800 1 hh

*--gnabar_hh, gkbar_hh, and gl_hh in the apical dendrites decrease linearly with
path distance from the soma. Density is 100% at the origin of the tree, and falls to
0% at the most distant termination.
To ensure that resting potential is -65 mV throughout the cell, e_pas in the basilar
dendrite is -65 mV.

Other parameters: cm = 1 uf/cm
2
, Ra = 160 ohm cm, nseg governed by d_lambda

= 0.1.

The exercise

1. Use the GUI to implement and test a model cell with the anatomical and biophysical
properties described above.

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 45

Hands-on Exercises The NEURON Simulation Environment

Start by using the CellBuilder to make a "version 0 model" that has uniform membrane
properties in the apical dendrites (hh mechanism with default conductance densities).

Verify that the anatomical and biophysical properties of the model are correct--
especially the channel distributions.
Test the model with a virtual lab rig that includes a RunControl, IClamp at the
soma, and plots of v vs. t and v vs. distance. Employ a modular strategy so that
you can reuse this experimental rig with a different model cell.

Next, copy the "version 0 model" CellBuilder and modify this copy to implement version
1: a model in which gnabar_hh, gkbar_hh, and gl_hh in the apical tree decrease linearly
with distance from the origin of the apical tree, as described above.

Verify the channel distributions, and test this new model with the same rig you used for
version 0.

2. Pick any anatomically detailed morphology you like, import it into NEURON, and implement
a model with biophysical channel densities similar to those described above.

Hints

1. Before doing anything, think about the problem. In particular, determine the formulas that
will govern channel densities in the apical tree.

In each apical section, gnabar_hh at any point x in that section will be
 gnabar_hh = gnabar_max * (1 - distance/max_distance)
where
distance = distance from origin of the apical tree to x
and
max_distance = distance from {origin of the apical tree} to {the most remote dendritic
termination in the apical tree}.

The formulas for gk_hh and gl_hh are similar.

distance/max_distance is "normalized distance into the apical tree from its origin." So the
distance metric p should be 0 at the origin of the apical tree, and 1 at the end of the most
remote dendritic termination in the apical tree.

2. Hints for using the CellBuilder to specify an inhomogeneous channel distribution.

NEURON hands-on course
Copyright © 2010 by N.T. Carnevale and M.L. Hines, all rights reserved.

Page 46 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Overview of the task

Specify the
subset
distance metric p
parameter param that depends on distance
function f that governs the relationship between the parameter and the distance
metric
param = f(p)

1.

Verify the implementation.2.

Details

This involves a lot of steps--remember to save intermediate results to session files!

Act 1: Specify the subset

On the CellBuilder's Subsets page, create the subset.

Act 2: Specify the distance metric

Do this with a SubsetDomainIterator.

Create a SubsetDomainIterator.
Click on the subset, then click on "Parameterized Domain Page"
Click on "Create a SubsetDomainIterator".
The name of the SubsetDomainIterator will appear in the middle panel of the
CellBuilder. It will be called name_x, where name is the name of the subset.

Use the SubsetDomainIterator to specify the distance metric.
Click on name_x.
The right panel of the CellBuider will show the controls for specifying the distance
metric. Default is path length in um from the root of the cell (0 end of soma).
Drag the slider back and forth to see the corresponding location(s) in the shape
plot (boundary between red and black). Distance from the root to the red-black
boundary is shown on the canvas as "p=nnn.nnn". You can also click on the
canvas near the shape and drag the cursor back and forth; the canvas will now
show the "range" of the boundary in the nearest section, and the name of that
section.
metric offers three choices: path length from root, radial (euclidian) distance from
root, and "projection onto line" (distance from a plane that passes through the root
and is orthogonal to the principal axis of the root section).
proximal allows specifying an "offset" for the proximal end(s) of the subset. This
lets you assign a distance of 0 to the origin of the apical tree.
distal allows specifying whether or not to normalize the distance metric, and if
normalized, whether the metric is to become 1 only at the most distal end, or at all
distal ends.

Act 3: Specify the parameters that depend on distance

Do this on the CellBuilder's Biophysics page.

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 47

Hands-on Exercises The NEURON Simulation Environment

Select Strategy (make a check mark appear in the box).
name_x (the name of the SubsetDomainIterator) will appear in the middle panel.
Click on name_x.
In the right panel of the CellBuider, select the parameters that the
SubsetDomainIterator will control.

termezzo

Time to step back and see where we are.
At this point, name_x "knows" these things:

the sections that are in its subset
the distance metric for each spatial location in these sections
the parameters in these sections that will be governed by this distance metric

But it doesn't know the functional relationships between the parameters and the distance
metric--and each parameter can have its own function. Defining these functions is the next
item to take care of.

Act 4: Specify the functional relationship between each parameter and the distance

metric

Clear the Strategy checkbox.
name_x will appear in the middle panel of the CellBuilder, and beneath it will be the
names of each of the paramters that were selected in the strategy.
Click on one of the parameter names.
The right hand panel presents controls for specifying f.
The default is a Boltzmann function. f(p) offers this and three other choices:

Ramp (linear)
Exponential

New lets you enter your own function
Each of these has its own list of user-settable parameters.

show allows you to bring up a graph or shape plot for visual confirmation of how the
biophysical parameter varies in space. This is convenient, but you'll probably want to
check the finished model with Model View.

Finale trionfale

Turn on Continuous Create, and use Model View to verify the channel distributions.

NEURON hands-on course
Copyright © 2010 by N.T. Carnevale and M.L. Hines, all rights reserved.

Page 48 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 49

Hands-on Exercises The NEURON Simulation Environment

Page 50 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 51

Hands-on Exercises The NEURON Simulation Environment

Page 52 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

J Physiol. 1983 Mar;336:301-11.
On the site of impulse initiation in a neurone.
Moore JW, Stockbridge N, Westerfield M.

In the preceding paper (Moore & Westerfield, 1983) the
effects of changes in membrane properties and non-uniform
geometry on impulse propagation and threshold parameters
were investigated. In this paper the contributions of these
and other parameters to the site of initiation of an
impulse were determined by computer simulations using the
Hodgkin-Huxley membrane description, the cable equations,
and geometry appropriate for a simplified motoneurone with
a non-myelinated axon. Antidromic invasion of action
potentials into the soma was found to depend upon (a) the
ionic channel rate constants (determined by the
temperature), (b) the abruptness of the transition from the
small-diameter axon to the larger diameter (and increased
load) of the soma-dendrite, (c) extensions of active
properties into the dendrite, and (d) density of ion
channels. The location of the apparent site of initiation
of impulses was not necessarily at the site of synaptic
input nor the nearest active membrane. Its position
depended upon (a) the fraction of the dendritic tree with
excitable membrane, and secondarily on (b) the stimulus
strength. Even with uniform excitability in the active
membrane, the apparent site of initiation could be moved a
considerable distance from the soma and the site of
stimulation by appropriate choice of the various parameters
noted above.

Nature. 1996 Jul 25;382(6589):363-6.
Influence of dendritic structure on firing pattern in model
neocortical neurons.
Mainen ZF, Sejnowski TJ.
Howard Hughes Medical Institute, Computational Neurobiology
Laboratory, Salk Institute for Biological Studies, La
Jolla, California 92037, USA.

Neocortical neurons display a wide range of dendritic
morphologies, ranging from compact arborizations to highly
elaborate branching patterns. In vitro electrical
recordings from these neurons have revealed a
correspondingly diverse range of intrinsic firing patterns,
including non-adapting, adapting and bursting types. This
heterogeneity of electrical responsivity has generally been
attributed to variability in the types and densities of
ionic channels. We show here, using compartmental models of
reconstructed cortical neurons, that an entire spectrum of
firing patterns can be reproduced in a set of neurons that
share a common distribution of ion channels and differ only
in their dendritic geometry. The essential behaviour of the
model depends on partial electrical coupling of fast active
conductances localized to the soma and axon and slow active
currents located throughout the dendrites, and can be
reproduced in a two-compartment model. The results suggest
a causal relationship for the observed correlations between
dendritic structure and firing properties and emphasize the
importance of active dendritic conductances in neuronal
function.

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 53

Hands-on Exercises The NEURON Simulation Environment

Page 54 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Introduction to the Linear Circuit Builder
The linear circuit builder is a graphical interface for electrical circuits consisting of idealized
resistors, capacitors, and first order operational amplifiers. Circuits may have intra- and
extra-cellular connections to cells at multiple locations. Batteries and current sources use a 3 step
protocol similar to the IClamp.

During a simulation, the voltages at each circuit node and the currents through each battery and
op amp are computed along with the voltage and state variables of each cable section. At present,
simulation runs can only use the default implicit fixed time step method (don’t use cvode).

Linear circuits are simulated as a specific instance of the more general LinearMechanism class.
This latter class allows NEURON to transcend its historical limitation to tree structure and allows
simulation of arbitrary extracellular fields and low resistance gap junctions. Unfortunately this
generality comes at a significant performance cost. In the worst case (gap junctions connecting
every compartment to every compartment) the simulation time for gaussian elimination increases
from order N to order N^3. A single gap junction between two cells does not increase the
gaussian elimination time. But a gap junction connecting one end of a cable to the other end
doubles the gaussian elimination time.

Physical System

Two electrode Voltage clamp of an HH axon.

Model

Ideal voltage clamp of axon containing standard hh channels. The axon is 300 um long and 10 um
in diameter. Ra=35 ohm-cm. The ideal voltage recording electrode is 100 um from the left and
the ideal current injection electrode is 100 um from the right.

At least a plausible case can be made for how the voltage clamp circuit works by realizing that
the input to the high gain amplifier can only be 0 volts if (assuming the resistors are equal) the
membrane potential of the recording electrode is equal to VC. If it is less than VC then the input
will be negative and the op amp will produce a high voltage output thus injecting current into the
cell and causing the membrane potential to increase toward VC. Whether this circuit will be
stable remains to be seen.

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 55

Hands-on Exercises The NEURON Simulation Environment

Simulation

1) Use the cellbuilder to create the HH axon. This axon should be in three pieces each 100 um
long so that regardless of the values of nseg, the electrodes can be placed precisely at 100 and 200
microns.
Example

2) Arrange components to define the structure of an ideal voltage clamp circuit using the Linear
Circuit Builder. When arranged and labeled, the Linear Circuit Builder should look like

Construction Hints

Notice that the battery has its negative terminal connected to R1 so that Vm will have the same
sign as VC.

3) Set the parameters of the circuit. R1 and R2 should have the same value and be large so that
not much current goes through the recording electrode to change the membrane potential. The
Control amplifier gain should be large so that e can be a good virtual ground. Set the battery pulse
currents to start at rest (-65 mV), jump to 10mV at 2 ms for 3 ms and then return to rest

Page 56 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

4) Simulate the circuit and plot the Control current and Vm. Also show a space plot of the entire
cable.

Completed example

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 57

Hands-on Exercises The NEURON Simulation Environment

Building and labeling a two electrode voltage
clamp with the Linear Circuit Builder
Pop up a Linear Circuit Builder with

The usage style is to

1) With the "Arrange" tool, place the components of the circuit so they are properly connected.

2) With the "Label" tool, rename components and specify the names of important circuit nodes.
Move the labels so they are clearly associated with the proper component/node. Also, cell
locations, if any, are specified with the "Label" tool.

3) With the "Parameters" tool, specify values for the components and pulse protocols for any
batteries and constant current devices.

4) With the "Simulate" tool, one specifies states (node voltages and/or internal component states)
for plotting. The circuit is not added to the neuron equations unless the "Simulate" tool is active.

Page 58 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Each of these tools has a brief "Hints" button which gives basic usage information.

Arranging the voltage clamp parts on the graph panel is done by selecting parts on the left of the
scene which are then dragged to their desired position.

Unconnected ends of components are indicated by red circles. When the ends of two components
overlap, a connection is implied and that fact is indicated by a small black square. Selecting the
center of a component allows positioning. Selecting and dragging an end of a component allows
scaling and rotation. An attempt is made to keep the ends of components on implicit grid points.
The completed arrangement of parts

gives a fairly understandable circuit topology. However the components are labeled according to
component type with indices in the order in which they were created. Those labels are not
pleasingly formatted in relation to the components. The default cell connections are not our
desired locations. And important voltage nodes of the circuit are unlabeled. All these problems
are overcome with the "Label" tool.

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 59

Hands-on Exercises The NEURON Simulation Environment

It is probably best to start by moving the existing labels to better locations.

When "Change" is selected, clicking on a component label pops up a string input dialog. Clicking
on a cell name pops up a location browser.

Page 60 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on ExercisesOptimizingaModelPhysicalSystemTwopatchelectrodeswereattachedtoapyramidalcellinlayer5oftheneocortex.Oneelectrodewasattachedtothesoma,andtheotherwasattachedtoadendriteintheapicaltree.Therestingpotentialofthecellwas270mV,anditsI2Vrelationshipwaslinearfrom290to250mV.

Thisfigureshowstheresponseofthecelltoinjectedcurrentpulses(0.1nAx5ms).

Twoexperimentalprotocolswereused.Protocol1(left):somaticcurrentinjection.Protocol2(right):dendriticcurrentinjection.Eachtraceistheaverageoffourrecordings.Attheendoftheexperiment,thecellwasfixedandstained,anddetailedanatomicalmeasurementsweremade.Experimentalevidence(StuartandSpruston,1998)suggeststhatmembraneconductanceintheapicaldendritesofpyramidalneuronsincreaseswithdistancefromthesomainawaythatcanbedescribedbythesigmoidalfunctiong=A0+A/(1+exp(k*(d2p)))
Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 61

Hands-on Exercises The NEURON Simulation Environmentwherepisthedistancefromthesoma,A0istheconductanceatthesoma,A0+Aisthemaximumconductanceaspbecomesverylarge,disthedistanceatwhichgishalfwaybetweenA0andA0+A,andkgovernsthemaximumslopeofthesigmoid.WewillusethesamekasStuartandSprustondid(k=1/(50um),buttheotherbiophysicalparameters(notjustA0,A,d,butalsoRa,cm,andmembraneconductanceintheapicaldendritesandelsewhere)aretobeestimatedfromtheexperimentaldata.TheexerciseThetaskistoadjustthebiophysicalparametersofamodelcellsothatitsresponsetoinjectedcurrentmatchestheexperimentaldata.InthisexerciseyouwilllearnhowtousetheMultipleRunFitter(MRF),NEURON'sGUItoolforautomatingoptimization.Here'sanoutlineofthestepsthatareinvolvedinaccomplishingthistask..1Createaspecificationofthemodelcellbasedonitsanatomyandanintialguessatitsbiophysicalproperties,includingthespatialdistributionofionchannels..2Setupa"virtualexperimentalrig"tousewiththiscellforthepurposeofrecreatingtheexperimentalprotocols..3CreateandconfigureanMRFthatwillsimulatetheprotocolsandadjustthemodelparameterstominimizethedifferencesbetweenthesimulationandexperimentalresults..4UsetheMRF.TimeisshortandweneedtofocusontheMRFitself,soinsteadofbuildingeverythingfromscratch,we'llstartwithsomepreconfiguredbuildingblocks.Theseare:cell.hocAmodelspecificationthatcombinescellularanatomywitha"reasonablefirstguess"atitsbiophysicalproperties(whatchannelsarepresentandhowtheyaredistributedinspace).AfirstdraftwascreatedwiththeCellBuilder(veryhandyforsettinguptheg_pasgradientintheapicaldendrites!)andexportedtoahocfile.ThehocfilewasrevisedsothatwecanuseitsbuiltCinproceduresforassigningvaluestoRa,cm,g_pas,A0,A,andd.Intheoriginalversionofcell.hoc,theseparameterswereassignedfixednumericalvaluesthatwereburiedinsideprocedures,andsomeofthemwere"local"variablesthatwouldbeinaccessibletotheMRF.Therevisioninvolvedadding"surrogateparameters"calledRa_,cm_,g_pas_,A0_,A_,andd_thattheMRFcanaccess.Here'showthecellmodelwassetup,andadescriptionofthespecificchangestocell.hoc(forleisurereadingafteryouhavefinishedtherestofthisexercise).rig.sesCreatesa"virtualexperimentalrig"forreplicatingprotocols1and2:aRunControl,avoltageaxisgraph,andapairofPointProcessManagersconfiguredasIClamps.IClamp[0]isattachedtosoma(0.5),andIClamp[1]todendrite_1[9](0.5).init_opt.hoc
Page 62 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on ExercisesDoesthefollowing:Loadsnrngui.hoc,cell.hoc,andrig.ses.Thiscreatesthemodelcellandthevirtualexperimentalrig.DefinesstartingvaluesfortheparametersthattheMRFwilladjust.Definesset_biophys(),whichusesprocsincell.hocandthesurrogatevariables(Ra_etc.##seedescriptionofcell.hocabove)toassignthemodel'sbiophysicalparameters.UsesanFInitializeHandlertoensurethatset_biophys()iscalledbeforeeachsimulationrun.Enoughwordsalready77let'sgetgoing!Gotocourse/optimizeanduseNEURONtoruninit_opt.hocChecktheparametersofthetwoIClamps.SeewhathappenswhenyourunsimulationswithbothIClampsdelivering0.1nA,andafterchangingeitherIClamp'sampto0.Thisisanoutlineofhowtoproceedfromhere..1ConfigureaMultipleRunFittertodoa"runfitness"optimization..2LoadexperimentaldataintotheRunFitnessGenerator..3TelltheMRFwhatparameterstoadjust..4Performtheoptimization.ReferenceStuart,G.andSpruston,N.Determinantsofvoltageattenuationinneocorticalpyramidalneurondendrites.J.Neurosci.18:3501#3510,1998.NEURONhandsioncourseCopyright©1998i2009byN.T.CarnevaleandM.L.Hines,allrightsreserved.

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 63

Hands-on Exercises The NEURON Simulation Environment

Listing of init_opt.hoc

load_file("nrngui.hoc")
load_file("cell.hoc")
load_file("rig.ses") // instrumentation

// model cell and instrumentation exist
// everything below this point is related to optimization

// assign starting values to the parameters defined in cell.hoc
// that will be adjusted by the MRF
Ra_ = 100
cm_ = 1
g_pas_ = 1/10000
A0_ = 1/10000 // ~ g_pas at prox end of apical tree
A_ = 9*A0_ // difference between g_pas at distal end and prox end
 // if apical tree were infinitely long
d_ = 1000 // distance at which g_pas is halfway between A0_ and A_

proc set_biophys() {
 // the following procs are defined in cell.hoc
 biophys() // may change Ra and cm
 geom_nseg() // so must adjust spatial grid
 // spatial grid may have changed so must call biphys_inhomo()
 // instead of g_pas_apicals_x()
 biophys_inhomo() // set up gradient of g_pas in apicals
}

// make sure that set_biophys() is called before finitialize() is called
objref fih
fih = new FInitializeHandler(0, "set_biophys()")

// load_file("mrf.ses")

Page 64 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on ExercisesOverviewWewilluseanMRFtoadjusttheparametersofamodeltotrytogetthebestmatchtodataobtainedwithtwoexperimentalprotocols.Tothisend,wemustsetuptwoGenerators$$oneforeachprotocol.ForeachGenerator,wemustspecifyalistof"protocolconstants"thatdescribetheexperimentalconditions(think"independentvariables")alistofthe"observedvariables"("dependentvariables")theexperimentalresultsInthecontextofthisexercise,theprotocolconstantsareIClamp[0].ampandIClamp[1].amp,theobservedvariablesaresoma.v(0.5)anddendrite_1[9](0.5),andtheexperimentalresultsaretherecordingsofthesevariables.Let'sstartbysettinguptheGeneratorforprotocol1.ConfigureanMRFtodoa"runfitness"optimzationIntheNEURONMainMenutoolbar,clickonTools/Fitting/MultipleRunFitterReleasethemousebuttonandanMRFappears.Dragittoaconvenientlocationonyourscreen.Weneedatooltoperforma"runfitness"optimization.CreateaRunFitnessGeneratorbyclickingontheMRF'sGenerators/AddFitnessGenerator/AddRunFitnessReleasethemousebutton,andtherightpaneloftheMRFshowsanitemcalled"Unnamedsinglerunprotocol".GivetheRunFitnessGeneratoradescriptivename.ThisistheRunFitnessGeneratorforprotocol1,inwhichcurrentisinjectedintothesoma,sochangeitsnameto"iclampsoma"..1ClickonGenerators/ChangeName"Change"shouldappeartorightoftheGeneratorsbutton..2IntheMRF'srightpanel,doubleclickon"Unnamedsinglerunprotocol".3Type"iclamp"inthedialogbox'seditfield,thenclickitsAcceptbutton.TherightpaneloftheMRFwillshowtheGenerator'snewname.WeneedtoseethisGenerator.WehavetoseetheGeneratorbeforewecangetourexperimentaldataintoit..1ClickonGenerators/DisplayNow"Display"appearstotherightoftheGeneratorsbutton.
Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 65

Hands-on Exercises The NEURON Simulation Environment.2Doubleclickon"iclampsoma",anduppopsupatinywindowtitled"MulRunFitter[0]Generators".
.3Tellitthenameofthedependentvariable.ClickontheiclampsomaGenerator'sFitnessbutton,andselecttheitem"Variabletofit"fromthepopupmenu.

Thisbringsupa"variablenamebrowser"thatlooksandworksjustlikeagraph's"Plotwhat?"tool..4Clickinsidetheeditfieldofthevariablenamebrowserandtype
 soma.v(0.5)ThenclickonitsAcceptbutton.Thevariablenamebrowserwillgoaway,butourGeneratorlooksunchanged.WeneedtomaketheMRFredrawit.Butfirst,savetheMRFtoasessionfile!Icalledminemrf.sesRedrawingtheiclampsomaGeneratorClickontheiclampsomaGenerator's"Close"button(NOTtheMRF'sClosebutton!).ToseetheGeneratoragain,makesuretheMRFisin"Display"mode,thenclickon"iclampsoma"initsrightpanel.IfyoumadeamistakeandclickedontheMRF'sClosebutton,boththeMRFandtheiclampsomaGeneratorwentaway.ButsinceyousavedtheMRFtoasessionfile,it'seasytorestoreffjustxopenmrf.sesHere'swhattheredrawnGeneratorlookslike.Noticethattheblueareaabovethegraphhasthreerows.Thetoprowshowsthenameoftheprotocolontheleft.Themiddlerowshowsthenameofthevariabletofitontheright.

Page 66 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Nexttodo:loaddataintothisGenerator.[Outline|Next]NEURONhands�oncourseCopyright©1998�2009byN.T.CarnevaleandM.L.Hines,allrightsreserved.

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 67

Hands-on Exercises The NEURON Simulation EnvironmentLoadingdataintotheRunFitnessGeneratorThisactuallyinvolvestworelatedtasks:loadingdataintotheGenerator,andtestingtheGenerator.Therearefourdatafiles.Eachonehasanamethatstartswiththeletternandendswith.datThefirstpartofthefilenametellswherecurrentwasinjected,andthesecondparttellswherevoltagewasrecorded.Thefilewewantnowiscallednisoma_vsoma.datbecauseitshowshowcurrentinjectedatthesomaaffectedmembranepotentialatthesoma.Readnisoma_vsoma.datintoNEURON'sclipboard,thenpasteitintotheiclampsomaGenerator..1NEURONMainMenu/Vector/RetrievefromFile.2Navigatethedirectorytreeandchoosenisoma_vsoma.dat.3IntheiclampsomaGenerator,clickonRegions/DatafromClipboardTheGenerator'sgraphareashouldnowcontainaredtracethatshowsthetimecourseofmembranepotentialatthesomaelicitedbyinjectinga0.1nAx5mscurrentpulseatthesoma.TestingtheGeneratorTimetotesttheiclampsomaGenerator.ClickonitsErrorValuebutton.Thisshouldlaunchasimulation,producingablacktracethatshowsthetrajectoryofthesimulatedsoma.v(0.5),andreportinganerrorvalue(seebelow).

Addingasecondvariabletofit
Page 68 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on ExercisesThisprotocolalsoproducedarecordingofdendriticmembranepotential,solet'saddthatasthesecondvariabletofit.Youalreadyknowhowtodothis��clickonFitness/VariabletofitThenameofthevariabletoaddisdendrite_1[9].v(0.5)Ifyoudon'tseethisnewvariableinthetoppaneloftheGenerator,maybeit'shidingbehindsomething.GrabthebottommarginoftheGenerator'swindowanddragdownabit,andyoushouldseeanewradiobuttonwith"dendrite_1[9].v(0.5)"rightnexttoit.Havingaddedanewvariable,wemustalsoaddthecorrespondingexperimentaldata.Clickonthedendrite_1[9].v(0.5)radiobuttonandtheGeneratorshowsanemptygraph.Readnisoma_vdend.datintoNEURON'sclipboard,thenpasteitintotheGenerator.NowclickonErrorValueagainandtheGeneratorshouldlooklikethis:

Theexperimentaldata(red)lookOK,butthesimulationlookslikecurrentisbeinginjectedintothedendrite.Anditis.WeforgotaboutusingprotocolparameterstotellIClamp[1]thatitsampshouldbe0forthe"iclampsoma"protocol.Easytofix.ClickonFitness/ProtocolConstant,thenusethe"variablenamebrowser"toaddIClamp[0].amp.DothesameforIClamp[1].amp.
Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 69

Hands-on Exercises The NEURON Simulation EnvironmentClosetheGeneratorandopenitagain,andnoticethatbothIClampampparametersare0.1.Enter0inthenumericfieldnexttotheIClamp[1].ampbutton,thensavetheMRFtoasessionfile.FinallyclickontheErrorValuebuttonandcomparetheexperimentalandsimulatedmembranepotentials.Here'swhatthevoltageinthedendritelookslike.

Usetheradiobuttonstoswitchbackandforthbetweenthegraphsofsoma.v(0.5)anddendrite_1[9].v(0.5).Hint:torescaletheverticalaxes,usethegraphs'"SetView"Next:specifythemodelparametersthataretobeadjusted.[Outline|Previous|Next]NEURONhands?oncourseCopyright©1998?2009byN.T.CarnevaleandM.L.Hines,allrightsreserved.

Page 70 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on ExercisesSpecifyingtheparametersthataretobeoptimizedLet'sreviewtheparametersthatwewanttheMRFtoadjust.ParameterDescriptionRacytoplasmicresistivitycmspecificmembranecapacitanceg_passpecificmembraneconductanceeverywhereexceptapicaldendritesA0minimumvalueofthesigmoidalfunctionofdistancethatgovernsspecificmembraneconductanceintheapicaldendritesAA+A0isthemaximumvalueofthesigmoidalfunctionddistanceatwhichspecificconductanceintheapicaldendritesishalfwaybetweenA0andA+A0Butwe'renotgoingtohavetheMRFaccessthesedirectly.Instead,wewanttotelltheMRFtocontrolthesurrogatevariablesRa_,cm_,g_pas_,A0_,A_,andd_..1ClickontheMRF'sParameters/AddParameterThisbringsupavariablenamebrowser(wherehaveweseenthatbefore?)..2Clickintheeditfieldofthevariablenamebrowser,typeRa_,thenclickontheAcceptbutton..3Dothesameforcm_,g_pas_,A0_,A_,andd_.ThesurrogatevariableswillappearintheleftpaneloftheMRF.SavetheMRFtoasessionfile!Viewing(andchanging)parametervaluesClickontheMRF'sParameters/ParameterPanel

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 71

Hands-on Exercises The NEURON Simulation Environment

Changecm_andseewhathappens.IntheParameterpanel,increasecm_to2,thenclickonErrorValueintheiclampsomaGenerator.Torestorecm_backtoitsoriginalvalue,clickonthecheckboxtotherightofthecm_button.ThecheckboxestotheleftoftheparameterbuttonsspecifywhichparameterstheMRFisallowedtoadjust.AcheckmarkmeanstheMRFcanalterthatparameter'svalue.AtthispointwehavesetuptheiclampsomaGenerator,whichemulatesprotocol1,andtoldtheMRFwhatparameterstooptimize.ThenextstepistotryoptimizingthemodelwiththisGenerator.[Outline|Previous|Next]NEURONhands9oncourseCopyright©199892009byN.T.CarnevaleandM.L.Hines,allrightsreserved.

Page 72 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on ExercisesOptimizingthemodelwithprotocol1TesttheMRFFirst,testtheMRFbyclickingonitsErrorValuebutton.Nothinghappens22thenumberinthefieldnexttotheErrorValuebuttonisstill0.WehavetotelltheMRFtouseourGenerator.Lookat"iclampsoma"intherighthandpaneloftheMRF.Seethelittle2(minus)sign?Thatmeanswehaven'ttoldtheMRFtousetheiclampsomaGenerator.Tofixthis,intheMRFclickonGenerators/UseGeneratorandnotetheappearanceof"Toggle"nexttotheGeneratorsbutton.Doubleclickon"iclampsoma"intherightpaneloftheMRF,andthe2changestoa+(plus).NowwhenweclickontheMRF'sErrorValuebutton,theiclampsomaGeneratorwillrunasimulationandcontributetothetotalerrorthatappearsinMRF'serrorvaluefield.ChooseanduseanoptimizationalgorithmIntheMRFclickonParameters/SelectOptimizer/PraxisThisbringsupaMulRunFitterOptimizepanel,whichwe'llcallthe"Optimizepanel".Changethe"#quadformsbeforereturn"(numericfieldnearthebottomoftheOptimizepanel)from0to1.

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 73

Hands-on Exercises The NEURON Simulation Environment

NowclickontheOptimizebuttoninthispanel.WhentheMRFstops,notetheerrorvalue,thenclickonOptimizeagain.Andagain.Doesitseemtobestuck?Watchthevaluesintheparameterspanel doanyofthemoccasionallygonegative?TryconstrainingtheparametersItwouldbemeaninglessforanyoftheactualbiophysicalparameters(Ra,cm,g_pas,A0,andA)tobecomenegative.Andanegativevalueford(distanceatwhichmembraneconductanceishalfwaybetweenA0andA)wouldalsomakenosense.Soalloftheparametersarepositivedefinite.Toapplythisconstraint,bringuptheMRF'sDomainpanelbyclickingonitsParameters/DomainPanelIntheMulRunFitterDomainpanelclickongroupattributes/positivedefinitelimitsNowdoafewmoreoptimizationruns.Theerrordecreasesverygradually,andNEURON'sinterpreterprintsalotofcomplaintsaboutparameterstryingtogonegative.Whatelsecanwetry?
Page 74 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on ExercisesThePRAXISoptimizeroftenbenefitsfromlogarithmicscalingofparameters.Thisseemstobemosthelpfulwhentwoormoreparametersareverydifferentinsize,i.e.whentheydifferbyordersofmagnitude.Whichisthecaseinthisproblem.Toapplylogarithmicscalingtoalltheparameters,intheMulRunFitterDomainpanelclickongroupattributes/uselogscaleClickonOptimizeoncemore...muchnicer!Rangeconstraintsandlogvs.linearscalingcanalsobesetforindividualparameters.JustdoubleclickonaparameterintheDomainpanel,thenchangethecontentsoftheeditfieldinthewindowthatpopsup))seethe"DomainPanel"discussionintheProgrammers'ReferenceentryabouttheMulRunFitter.Foranexpandeddiscussionofparameterconstraints,seeD.Constrainingparametersathttp://www.neuron.yale.edu/neuron/docs/optimiz/func/params.htmlMorethingstotryAddaGeneratorforprotocol2SetupanotherGeneratorthatusesthedataobtainedbyinjectingcurrentintothedendrite.YoucansaveyourselfsomeeffortbycloningtheiclampsomaGenerator,andthenrevisingtheclone..1IntheMRF,clickonGenerators/Clonethendoubleclickon"iclampsoma"intheMRF'srightpanel.ThenameofthenewGeneratorwillhavea)signinfrontofit..2ChangethenameofthenewGeneratorto"iclampdend"..3DisplaythenewGenerator.Noticethatithascontrolsforspecifyingtheprotocolconstants,andradiobuttonsforviewingthegraphsthatshowsoma.v(0.5)anddendrite_1[9].v(0.5)..4Changetheprotocolconstantssothattheyareappropriateforprotocol2..5Getprotocol2'sexperimentaldataintothisGenerator.Theseareinfilescallednidend_vsoma.datandnidend_vdend.dat.UseNEURONMainMenu/Vector/RetrievefromFiletoreadthesomaticmembranepotentialrecordingintoNEURON'sclipboard,thenmakesuretheGenerator'ssoma.v(0.5)buttonhasbeenselected,andclickonRegions/DatafromClipboardFollowsimilarstepstoretrievethedendriticmembranepotentialrecordingandpasteitintotheGenerator.UsetheGeneratorsSeeifusingtheiclampdendGeneratorbyitselfdoesabetterjobofoptimizingthismodel.BesuretoGenerators/UseGeneratorandthen"toggle"theGeneratorssoyouareusingtheiclampdendGenerator,andnottheiclampsomaGenerator.Also,forafairtest,beforestartingtooptimizebesuretorestoretheparameterstotheiroriginalvalues(Ra100,cm1,g_pas=A0=0.0001,A_0.0009,d_1000).
Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 75

Hands-on Exercises The NEURON Simulation EnvironmentFinally,tryusingbothGeneratorstogetherandseeifyougetabetterresult,oratleastfasterconvergence.Hints:.1Ifyouthinktheoptimizermayhavefallenintoalocalminimum,orisinaparameterregionwheretheerrorsurfaceisveryshallow,tryrandomizingtheparameters.IntheMRFOptimizepanel,clickonRandomizewithfactor(afactorof2isgenerallysufficient)onceortwice,thenrunanotherseriesofoptimizationsimulationsandseehowsoontheerrorfallsbelowapredeterminedlevel,andwhatthenewparametervaluesare..2Youmightfinditinteresting,andmaybeevenuseful,tocapturearecordofparametervaluesandassociatederrors.Toturnon"pathlogging",clickon"Appendthepathtosavepath.fit"intheMRFOptimizepanel.[Outline|Previous]NEURONhands7oncourseCopyright©199872009byN.T.CarnevaleandM.L.Hines,allrightsreserved.

Page 76 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on ExercisesGreaterperformanceonmulticoreworkstationsIfamodelhasmorethanafewthousandstates,itmayrunfasterwithmultiplethreads.PhysicalSystemPurkinjeCellModelMiyashoetal.2001SimulationLaunchthemodel,letitrunforabout30secondsofwalltimeandstopit.Whatmsofsimulationtimediditgetto?PopuptheNEURONMainMenu/Tools/ParallelComputingpanel.Howlargeisthemodel?(The"Totalmodelcomplexity"valueisapproximatelythenumberofstatesinthemodel).Thisisalargemodelthatshouldbeabletorunfasteronamulticoreworkstationifwecanparallelizethesimulationusingthreads.Pressthe"Refresh"buttontoseehowmanyusefulprocessorsyourmachinehas.Mayhavetopressitseveraltimestogetastablenumber.ThevalueisdeterminedbyhowmuchtimeittakesNthreadstocountto1e8.IfNisgreaterthanthenumberofcoresonyourmachine,thenthetotaltimewillgoup.Enterthenumberofprocessorsintothe"#Threads"field.Threadperformancehasachanceofbeinggoodonlyifthe"Loadimbalance"islessthan20%.Thatcanonlyhappeniftherearemorecellsthanthreadsandthecellscanbedistributedsothatthetotalcomplexityoneachthreadisaboutthesame.Here,thereisonlyonecellsowehavetosplitthecellintopiecesandputthepiecesintodifferentthreads.Thisisdonebypressingthe"Multisplit"button.Onmy4Wcorecomputer,itsplitsthecellinto26piecesanddistributesthepieceson4threadsforaloadimbalanceofjust4%.Unfortunately,anerrormessageisprintedtotheterminalwindowsaying:
cad is not thread safeAlookatthenmodltranslatormessagesshowsthatnotallofthemodfilesarethreadsafe.Weneedtorepairthosemodfiles(cellsthatuseanonWthreadsafemechanismareplacedontothemainthreadunlessyouforcethemontoadifferentthread,asabove,inwhichcaseNEURONwillgenerateanerrormessage).Ascripttoaidintherepairiscalled"mkthreadsafe"andisruninabashterminalwindow.Onmswinmachines,startabashterminalusingtherxvticon.Whenexecutedintheprknjdirectoryitfirstcomplainsabout
 VERBATIM

 return 0;

 ENDVERBATIM

Translating K22.mod into K22.c

Notice: VERBATIM blocks are not thread safe

...

Force THREADSAFE? [y][n]: n

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 77

Hands-on Exercises The NEURON Simulation EnvironmentThisVERBATIMblockisanoldandneverneededidiomthatsomepeopleusetoreturnavaluefromaPROCEDUREorFUNCTION.YoucanedittheK22.modfiletoremoveitbutitdoesnotaffectthreadsafetysoyoucantype
ysothatthescriptaddstheTHREADSAFEkeywordtotheNEURONblock.ThescriptcontinueswiththesamemessagesforK23.mod,K2.mod,KC2.mod,KC3.mod,KC.mod,forwhichitissafetotypey.Somethingnewcomesupwith
NEURON {

 SUFFIX Khh

 USEION k WRITE ik

 RANGE gk, gkbar, ik

 GLOBAL ninf, nexp

}

Translating Khh.mod into Khh.c

Notice: This mechanism cannot be used with CVODE

Notice: Assignment to the GLOBAL variable, "nexp", is not thread safe

Notice: Assignment to the GLOBAL variable, "ninf", is not thread safe

Warning: Default 37 of PARAMETER celsius will be ignored and set by NEURON.

Force THREADSAFE? [y][n]: nThisisanevenmorecommonidiomthatusesglobalvariablestosavespace.I.eAblockcallsarateprocedurethatcomputesratevaluesandtemporarilystoresthemforuselaterintheblock.Theassumptionwasthatbetweenassignmentanduse,nootherinstanceofthemodelassignsavaluetothosevariables.Thatassumptionisfalsewhentherearemultiplethreads.Type"y"forthiscaseaswell.ThescriptwilladdtheTHREADSAFEkeywordtotheNEURONblockofthemodfilewhichwillcauseGLOBALsthatareassignedvaluestobecomethreadvariables.Thatwasthelastproblemmentionedbythescript.Unfortunately,thereisoneotherprobleminCalciumP.modwhichisnottestedbythescriptandyouwillcontinuetogetthe"cadisnotthreadsafe"errorifyoulaunchthemodel.Theproblemis
 SOLVE state METHOD eulerIneverbotheredtomakeeulerthreadsafesincethebestpracticalmethodsare"cnexp"forhh1likeequationsand"derivimplicit"foralltheothers.Sochangethe"euler"to"cnexp"manuallyinCalciumP.mod.Nowoneshouldbuildthedllasnormallydoneonyourmachineandtrythe"ParallelComputing"toolagain.Mycomputerrunsthemodelin76swithonethreadand12swith4threads.Thereasonforthesuperlinearspeedupisthatmultisplitforces"CasheEfficient"on.Itisoftenworthwhileturningthatonevenwithasinglethread(inmycase,49s).Note:Multisplit,dividesthecellintomanyindependentcellswhichareconnectedtogetherinternally(checkwith"topology()").Whendividedintopiecesthecellasawholeisdifficulttodealwith(forexample,distance()andShapetoolsdon'tworkwell.Eventopology()givesanincompleteideaofwhatisgoingon).Soitisbesttoturnoff"Multisplit"tore1assemblethecelltoitsoriginalconditionbeforedoinganyGUImanipulation.Let'stryanothercaseusinganetworkmodel.
Page 78 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on ExercisesPhysicalSystemCortexintegratessensoryinformation.Whatisamomentintime?ModelTransientsynchrony.HopfieldandBrody2001implementedbyMicheleMigliore.SimulationThismodelhasahome/brewinterfacethatdoesnotshowelapsedwalltime,buttotimethe"beforetraining"simulationonecancopy/pastethefollowingintotheterminalwindow.
{tt = startsw() run_u() print startsw()-tt }Thismodelalsohasnon/threadsafemechanisms.Soweneedtorepairwithmkthreadsafe(AnothercaseofusingGLOBALvariablesfortemporarystorage.)However,runningasimwithtwothreadsgivesanerror
...usable mindelay is 0 (or less than dt for fixed step method)Sadly,threadscannotbeusedwhenanyNetCon.delayis0.Fortunately,thismodelisnotcriticallysensitivetothedelay,sotryagainbysettingalldelaysto.5ms.(Copy/pastethefollowingintotheterminalwindow)
objref xx

xx = new List("NetCon")

for i=0, xx.count-1 xx.o(i).delay = .5Withtwothreadstherunwillbefaster,butfarfromtwiceasfast.Tryagainwith"CacheEfficient"checked.NEURONhandsKoncourseCopyright©2009byN.T.CarnevaleandM.L.Hines,allrightsreserved.

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 79

Hands-on Exercises The NEURON Simulation Environment

Page 80 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Introduction to the Network Builder
The Network Builder tools are principally of didactic value, in that the graphical creation of simple
networks can generate "readable" hoc code which in turn embodies our notion of a fairly flexible
programming style for construction of more complicated networks.

Model

Artificial Integrate and Fire cell stimulated by a burst of action potentials. This is a "hello world"
level exercise that shows how to use the Network Builder and supporting tools to create artificial cell
types, use those types to create cell objects, and connect the cell objects together. A subsequent
exercise discusses how to create network ready cell types from more complicated cells specified by
the cell builder.

Simulation

The strategy is to 1) define the types of cells (and stimulators), 2) create each cell in the network, 3)
connect the cells together, 4) specify parameters such as delays and connection weights, 5) run a
simulation and plot the input and output spike trains. If you have trouble with the following
instructions, this executes a working exercise.

Define artificial cell types

What is an artificial cell in NEURON?

Start an ArtCellGUI tool by selecting the menu item:
NEURONMainMenu/Build/NetworkCell/ArtificialCell

Create a "C" type via a New/IntFire1 followed by a Rename. This type will be used to create our
model cell.

Create an "S" type via a New/NetStim followed by a Rename. We will use this type later on to create
a stimulator. The interval and number parameters should be set to 10 and 10 respectively.

The interface should now look something like this.

Cell creation

Start a NetGUI tool by selecting the menu item: NEURONMainMenu/Build/NetworkBuilder

The NetGUI instance should have its "Locate" radiobutton selected.

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 81

Hands-on Exercises The NEURON Simulation Environment

Drag an "S" into the middle of the canvas. This creates an "S0". The text in the canvas explains what
is happening during dragging.

Drag a "C" into the canvas. This creates a "C1".

The NetGUI window should now look something like this but won’t have the explanatory text in the
canvas unless you just selected the "Locate" radio button.

Note that cells are indexed according to the order of creation starting at 0. Dragging a created cell off
the canvas destroys it (and reduces the indices of cells greater than that index by 1. That is, the
largest index is total number of cells - 1. Dragging a new cell onto an existing cell replaces the
existing cell and its index is unchanged. Currently, replacing a cell destroys all the connections to
that cell -- possibly the wrong gui behavior when cells have only one possible input connection point.

At this point, what you see in the NetworkBuilder is just a specification and the cells don’t yet exist.
The pointprocesses aren’t created (and therefore the network can’t be simulated) until the "Create"
button is pressed. After "Create" is pressed, no new cell type can be added to the NetGUI. Within the
confines of the existing types, any number of cells can be created or destroyed along with their
connections and the "real (simulatable)" network will be constantly updated to reflect the NetGUI
specification.

It is a good idea to save the NetGUI tool often (or at least if substantial effort has gone into changing
it since it was last saved).

Connections

In the NetGUI window, select the "Src->Tar" radiobutton and drag a line from S0 to C1.

Use the "Weights" button to pop up a NetEdgeGUI panel. With this panel, selecting an item on the
left list places the number in the field editor. Selecting an item in the right list assigns the field editor
value to its connection weight. This makes it convenient to assign the same weight to a subset of
connections.

Enter "2" into the field editor.

Click on the right list item labeled "S0->C1 0". The label should change to "S0->C1 2". This weight
is large enough so that every input event (from S0) should elicit an output event from C1

The NetGUI and NetEdgeGUI windows should now look something like this.

Simulation

In the NetGUI window, press the "Create" button.

Press the "SpikePlot" button to pop up a plot window.

Start a NEURONMainMenu/Tools/RunControl and VariableStepControl. Set TStop to 1000 and
invoke "Use variable dt"

Do an Init&Run. You should see spikes in the SpikePlot graph.

The relevant windows should now look something like this.

Page 82 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Compare the discrete event simulation run time with the fixed step method ("Use variable dt" turned
off).

Other Simulation Exercises

Reduce the fast interspike interval of the stimulus to 2 ms. Why are spikes missing from the C1
output?

For the remaining exercises, set the fast interspike interval back to 10.

For the C cell type, set the integration time constant to 100 ms and set the input connection weight to
0.2 . Observe the output spike train and its relation to the input train.

Plot the value of the state variable m in the IntFire1 pointprocess that implements the C1 cell. Why
does m remain constant between events instead of decaying exponentially (even with the fixed time
step)?

Note: The "ShowCellMap" button in the NetGUI panel helps identify the actual
C_IntFire1 object instance that contains the "pp" public object reference to the actual
IntFire1 point process object instance (which is located in the dummy section,
acell_home_) .

The automatically generated hoc code

It’s one thing to manage a few cells and connections, quite another to manage thousands. Some help
in this task is provided by functions that return various kinds of NetCon lists, e. g. all the NetCons that
connect to the same postcell, post synaptic point process, precell, etc. However, at this time there are
no generic gui tools to view or manage large networks and it is necessary to craft viewing, control,
and management routines based on the details of the particular network being investigated.

Specifying large networks practically requires interpreter programming and this in turn requires
familiarity with a programming style suitable for conceptual control of such networks. The hoc code
generated by the NetGUI tool for small networks can be used as a basic pattern and a large part of it
re-used for the construction of larger networks involving procedural specification of network
architecture with random connections, weights, etc. Certainly the cell types are re-usable as is and
without change. Those of you with an interest in networks that are beyond the scope of the current
NetGUI tool should save the above NetGUI specification as a hoc file and look at it with an editor.
Hoc files are constructed using the "Hoc File" button in the NetGUI window. The ideas involving
cell templates, the cell creation procedure (cell_append), and the connection procedure (nc_append)
have wide applicability.

Cell templates are probably essential programming practice with regard to simulation of large
numbers of non-artificial cells. Each template has a position procedure to set the 3-d location of the
cell and public position coordinates x, y, z. The connect2target function creates a NetCon with "this"
as the source, and the first objref argument as the target.

The hoc file for the above spec looks like this.

NEURON hands-on course
Copyright © 1998-2001 by N.T. Carnevale and M.L. Hines, all rights reserved.

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 83

Hands-on Exercises The NEURON Simulation Environment

In NEURON, artificial cells are point processes that serve as both a target and source object for a
network connection object. That they are targets mean that they have a NET_RECEIVE block which
handles discrete event input streams through one or more NetCon objects. That they are also sources
means that the NET_RECEIVE block also generates discrete output events which are delivered
through one or more NetCon objects. Generally, such cells are computationally very efficient
(hundreds of times faster than cells we have simulated up to now whose voltage response is a
consequence of membrane conductance) because their computation time does not depend on the
integration step, dt, but only on the number of events. That is, handling 100000 spikes in one hour for
100 cells takes the same time as handling 100000 spikes in 1 second for 1 cell. The total computation
time is proportional to the total number of spikes delivered during a run and is independent of the
number of cells or number of connections or interval between spikes.

NEURON has four built-in point process classes which can be used to construct artificial cell types:

NetStim produces a user-specified train of one or more output events, and can also be triggered
by input events

1.

IntFire1, which acts like a leaky integrator driven by delta function inputs. That is, the state
variable m decays exponentially toward 0. Arrival of an event with weight w causes an abrupt
change in m. If m exceeds 1, an output event is generated and the cell enters a refractory
period during which it ignores further inputs. At the end of the refractory period, m is reset to 0
and the cell becomes responsive to new inputs.

2.

IntFire2, a leaky integrator with time constant taum driven by a total current that is the sum of
 { a user-settable constant "bias" current }
plus
 { a net synaptic current }.
Net synaptic current decays toward 0 with time constant taus, where taus > taum (synaptic
current decays slowly compared to the rate at which "membrane potential" m equilibrates).
When an input event with weight w arrives, the net synaptic current changes abruptly by the
amount w.

3.

IntFire4, with fast excitation current (rises abruptly, decays exponentially) and slower alpha
function like inhibition current that is integrated by even slower membrane.

4.

NEURON requires that all point processes be located in a section. To meet this (in this context,
conceptually irrelevant) requirement, the Network Builder tool locates each point process of its
instantiated artificial cells in the dummy section called acell_home_

NEURON hands-on course
Copyright © 2000-2001 by N.T. Carnevale and M.L. Hines, all rights reserved.

Page 84 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Network ready cells from the CellBuilder

Model

Ball-Stick model cell with distal excitation and proximal inhibition. This is another "hello world"
level exercise. It shows how to use the a specification from a cell builder to create a network ready
cell (spike initiation site and a set of synapses) from a NetReadyCellGUI. It shows how to use these
cell types in a NetGUI to make connections between spike initiation sites and synapses.

Simulation

The strategy is to
1) Use a CellBuilder window to create a cell type with specific morphology and membrane
properties. The CellBuilder also specifies the type name and the spike initiation site.
2) Define synapse types with a SynTypeGUI. E.g. inhibitory and excitatory synapses from suitable
PointProcesses.
3) Define a network ready cell type with a NetReadyCellGUI. I.e. specify where instances of the
synapse types should be located on the cell. The NetReadyCellGUI references a CellBuilder to
obtain the basic cell morphology and membrane properties. It references a SynTypeGUI which is
used to obtain the synapse types.
4) Use a NetGUI to construct the network
5) Run a simulation and plot the input and output spike trains. If you have trouble with the following
instructions, this executes a working exercise --- the NetReadyCellGUI (for the ball stick cell) and
ArtCellGUI (for the stimulators) are in the "cell types" window group.

Ball-Stick cell model

Start with the ball-stick specification in course/net2/start.ses . This model has
soma area = 500 um2 with hh channels (standard density)
dendrite L = 200 um, diam = 1 um with pas channel (g_pas = .001 S/um2 and e_pas = -65 mV)
Ra = 100 ohm-cm
cm = 1 uF/cm2
and uses d_lambda=.1 compartmentalization policy.

From the CellBuild Management/CellType panel, the classname should be declared as "BallStick"

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 85

Hands-on Exercises The NEURON Simulation Environment

and the output variable which is watched for spike event should be soma.v(1). At this point the
windows should look something like this.

Ball-Stick cell model with synapses.

The NEURONMainMenu/Build/NetworkCell/FromCellBuilder menu item starts a dialog box which
requests references to a "Synapse type set" (left list) and a "CellBuild type" (right list). The synapse
type set list is empty now but the CellBuild type list should have a reference to the cell builder
previously loaded. Select "CellBuild[0]" and press the "Use Selection" button.

This starts a NetReadyCellGUI window (nrc) and a SynTypeGUI window. (It would have also
started a new CellBuild window as well if no CellBuild type had been selected in the dialog). Note
that the nrc contains a drawing of the cell topology. At this time you can close the CellBuild window
--- It can always be re-created with the nrc’s Info menu. In fact, when saving the nrc in a session, it
is best to first close both the cell builder and the SynTypeGUI to avoid saving duplicate copies in the
session file. After closing the CellBuild[0] window the interface should look something like this.

From the SynTypeGUI window, create a "E" synapse type via a New/ExpSyn followed by a
Rename. Since the reversal potential for the standard ExpSyn is 0 mV, it is already excitatory.
However, change the time constant from 0.1 to 2 ms.

In the same SynTypeGUI window create a "I" synapse type via a New/ExpSyn followed by a
Rename. Set the reversal potential "e" to -80 mV so that it will be inhibitory and set tau to 5ms.

In the NetReadyCellGUI, press the Refresh button so that the new SynTypes appear.
Change the cell name to "B" so the label won’t take up so much space later on when we use it in a
NetGUI tool.

In the NetReadyCellGUI, press the "Locate" radiobutton and drag an E to location .8 on the dendrite.
Then drag an I to location .1 on the dendrite. The label in the canvas will show whether the synapse
type is close enough to be attached or not. Each synapse on the cell is given an index which is the
order of creation. Several synapses can be attached to the same location. The synapse label can be
dragged up to two font sizes above or below the location to avoid label overlap. If a label is dragged
too far away from the cell it will become detached and the larger synapse indices will be reduced by
1. The interface at this point should look something like this. Enough work has been done up to this
point so that you should save the NetReadyCellGUI in a session by itself (without the CellBuild or
SynTypeGUI windows -- these may safely be closed as well).

This cell type is now ready for use in the NetGUI.

Stimulators

In analogy with the previous hands-on exercise create two stimulus types, "SE" and "SI" to provide
event streams to stimulate the ball-stick model.
For SE, set interval=5 , number=50 , and start=0.
For SI, set interval=10, number=5, and start=20.
I.e. from NEURONMainMenu/Build/NetworkCell/ArtificialCell get an ArtCellGUI and use NetStim
to define the stimulus types. After setting it up the window will look something like this.

At this point I created a Window Group called "cell types", placed the ArtCellGUI and

Page 86 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

NetReadyCellGUI in it, and saved the group. In case things go wrong I can easily return to this
point.

Cell creation

Start a NetGUI tool and create a "B0" ball-stick cell and "SE1" and "SI2" stimulators as shown in
this picture

Connections

In the NetGUI window, select the "Src->Tar" radiobutton and drag a line from SE1 to B0. The string
near the top of the canvas describes the operation to be performed when the mouse button is
released. When the connection line gets near B0 a picture of the BallStick topology will be drawn
and the mouse should be moved to the E0 synapse label. The following three figures illustrate the
process.
Select the source cell
Select the target cell
Select the synapse on the target cell

Connect SI1 to I1 of B0

The NetGUI window should now look something like this.

Use the "Weights" button to pop up a NetEdgeGUI panel and enter the following weights.

Simulation

In the NetGUI window, press the "Create" button. The topology() statement should produce

oc>topology()

|-| acell_home_(0-1)
|-| B_BallStick[0].soma(0-1)
 ‘------| B_BallStick[0].dend(0-1)

 1
oc>

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 87

Hands-on Exercises The NEURON Simulation Environment

Press the "SpikePlot" button to pop up a plot window.

Start a NEURONMainMenu/Tools/RunControl and VariableStepControl. Set TStop to 500 and
invoke "Use variable dt"

Get a voltage style graph window and plot the soma voltage for the ball-stick cell. The
ShowCellMap button on the NetGUI is useful here. The relevant interface looks something like this

Do an Init&Run.

The relevant windows should now look something like this.

Other Simulation Exercises

Plot the value of the conductance and current of the inhibitory synapse.

The automatically generated hoc code

The hoc file for the above spec looks like this.

NEURON hands-on course
Copyright © 2000 by N.T. Carnevale and M.L. Hines, all rights reserved.

Page 88 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Hopfield Brody synchronization (sync) model
The exercises below are intended primarily to familiarize the student with techniques and tools useful
for the implementation of networks in Neuron. We have chosen a relatively simple network in order
to minimize distractions due to the complexities of channel kinetics, dendritic trees, detailed network
architecture, etc. The following network uses an artificial integrate-and-fire cell without channels or
compartments. There is only one kind of cell, so no issues of organizing interactions between cell
populations. There is only one kind of synapse. Additionally, suggested algorithms were chosen for
ease of implementation rather than quality of results.

Although this is a minimal model, learning the ropes is still difficult. Therefore, we suggest that you
go through the entire lesson relatively quickly before returning to delve more deeply into the
exercises. Some of the exercises are really more homework projects (eg design a new
synchronization measure). These are marked with asterisks.

As you know, Neuron is optimized to handle the complex channel and compartment simulations that
have been omitted from this exercise. The interested student might wish to convert this network into
a network of spiking cells with realistic inhibitory interactions or a hybrid network with both realistic
and artificial cells. Such an extended exercise would more clearly demonstrate Neuron’s advantages
for performing network simulations.

Standard intfire implementation (eg IntFire1 from
intfire1.mod))

Individual units are integrate-and-fire neurons.

The basic intfire implementation in neuron utilizes a decaying state variable (m as a stand-in
for voltage) which is pushed up by the arrival of an excitatory input or down by the arrival of
an inhibitory input (m = m + w). When m exceeds threshold the cell "fires," sending events to
other connected cells.

 if (m > 1) { ...

 net_event(t) // trigger synapses

IntIbFire in sync model

The integrate-and-fire neuron in the current model must fire spontaneously with no input, as
well as firing when a threshold is reached. This is implemented by utilizing a firetime() routine
to calculate when the state variable m will reach threshold assuming no other inputs during that
time. This firing time is calculated based on the natural firing interval of the cell (invl) and the
time constant for state variable decay (tau). When an input comes in, a new firetime is
calculated after taking into account the synaptic input (m = m + w) which perturbs the state
variable’s trajectory towards threshold.

Cell template

IntIBFire is enclosed in a template named "Cell." An instantiation of this template provides

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 89

Hands-on Exercises The NEURON Simulation Environment

access to the underlying mechanism through object pointer pp. Execute the following:

oc> objref mycell

oc> mycell = new Cell()

oc> print mycell.pp, mycell.pp.tau, mycell.pp.invl

The Cell template also provides 3 procedures. connect2target() is optionally used to hook this
cell to a postsynaptic cell.

Network

The network has all-to-all inhibitory connectivity with all connections set to equal negative
values. The network is initially set up with fast firing cells at the bottom of the graph (Cell[0],
highest natural interval) and slower cells at the top (Cell[ncell-1], lowest natural interval).
Cells in between have sequential evenly-spaced periods.

How it works
The synchronization mechanism requires that all of the cells fire spontaneously at similar
frequencies. It is obvious that if all cells are started at the same time, they will still be roughly
synchronous after one cycle (since they have similar intrinsic cycle periods). After two cycles, they
will have drifted further apart. After many cycles, differences in period will be magnified, leading to
no temporal relationship of firing.

The key observation utilized here is that firing is fairly synchronized one cycle after onset. The trick
is to reset the cells after each cycle so that they start together again. They then fire with temporal
differences equal to the differences in their intrinsic periods. This resetting can be provided by an
inhibitory input which pushes state variable m down far from threshold (hyperpolarized, as it were).
This could be accomplished through an external pacemaker that reset all the cells, thereby imposing
an external frequency onto the network. The interesting observation in this network is that
pacemaking can also be imposed from within, though an intrinsic connectivity that enslaves all
members to the will of the masses.

Exercises to gain familiarity with the model

Increase to 100 neurons and run.

Many neurons do not fire. These have periods that are too long -- before they can fire,
the population has fired again and reset them. Notice that the period of network firing is
longer than the natural periods of the individual cells. This is because the threshold is
calculated to provide this period when m starts at 0. However, with the inhibition, m
starts negative.

Narrow the difference between fast and slow cells so as to make more
of them fire.

Alternatively, increase the delay.

Page 90 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Reduce the inhibition and demonstrate that synchrony worsens.

With inhibition set to zero, there is no synchrony and each cell fires at its natural period.

Increase cell time constant.

This will destroy synchrony. Increase inhibitory weight; synchrony recovers. This is a
consequence of the exponential rise of the state variable. If the interval is short but the
time constant long, then the cell will amplify small variations in the amount of
inhibition received.

Beyond the GUI -- Saving and displaying
spikes

Spike times are being saved in a series of vectors in a
template: sp.vecs[0] .. sp.vecs[ncell-1]

Count the total number of spikes using a for loop and total+=sp.vecs[ii].size

We will instead save spike times in a single vector (tvec),
using a second vector (ind) for indices

oc> load_file("ocomm.hoc") // additional routines

oc> savspks() // record spike times to tvec; indices to ind

oc> run() // or hit run button on GUI

Make sure that the same number of spikes are being saved
as were saved in sp.vecs[]

oc> print ind.size,tvec.size

Wise precaution -- check step by step to make sure that nothing’s
screwed up

Can use for ... {vec.append(sp.vecs[ii]) vec.sort tvec.sort vec.eq(tvec)}
to make sure have all the same spike times (still doesn’t tell you they
correspond to the same cells)

Graph spike times -- should look like SpikePlot1 graph

oc> g=new Graph()

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 91

Hands-on Exercises The NEURON Simulation Environment

oc> ind.mark(g,tvec) // throw them up there

oc> showspks() // fancier marking with sync lines

Synchronization measures

Look at synchronization routine

oc>syncer()

oc>for (w=0;w>-5e-2;w-=5e-3) {weight(w) run() print w,syncer()}

Exercise*: write (or find and implement) a better
synchronization routine

Graph synchronization

 oc> for ii=0,1 vec[ii].resize(0) // clear

 oc> for (w=0;w>-5e-2;w-=5e-3) {

 weight(w)

 run()

 vec[1].append(w)

 vec[2].append(syncer())

 }

 oc> print vec[1].size,vec[2].size // make sure nothing went wrong

 oc> g.erase() // assuming it’s still there, else put up a new one

 oc> vec[2].line(g,vec[1]) // use "View = plot" on pull down to see it

 oc> vec[2].mark(g,vec[1],"O",8,2,1) // big (8) red (2) circles ("O")

Make sure that the values graphed are the same as the values printed
out before

Exercises

enclose the weight exploration above in a procedure

write a similar routine to explore cell time constant (param is called
ta; set with tau(ta)); run it

write a similar routine to explore synaptic delay (param is called del;
set with delay(del)); run it

Page 92 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

* write a general proc that takes 3 args: min,max,iter that can be
used to explore any of the params

(hint: call a general setpar() procedure that can be redefined eg proc setpar() {
weight($1) } depending on which param you are changing

Procedure interval2() in ocomm.hoc sets cell
periods randomly

can be used instead of interval() in synchronize.hoc

randomizing cell identities is easier than randomizing connections

with randomized identities can attach cell 0 to cells 1-50 and not have
interval uniformity

To replace interval() with interval2(), overwrite interval():

oc> proc interval () { interval2($1,$2) }

Run interval() from command line or by changing low and high in GUI
panel

Check results

oc> for ii=0,ncell-1 printf("%g ",cells.object(ii).pp.invl)

Exercise: check results graphically by setting wt to 0, running sim, and
graphing results

Rewiring the network
All of the programs discussed in the lecture are available in ocomm.hoc. The student may wish to use
or rewrite any of these procedures. Below we suggest a different approach to wiring the network.

procedure wire() in ocomm.hoc is slightly simplified from
that in synchronize.hoc but does the same thing

 proc wire () {

 nclist.remove_all()

 for i=0,ncell-1 for j=0,ncell-1 if (i!=j) {

 netcon = new NetCon(cells.object(i).pp,cells.object(j).pp)

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 93

Hands-on Exercises The NEURON Simulation Environment

 nclist.append(netcon)

 }

 }

Exercises

rewrite wire() to connect each neuron to half of the neurons

suggestion: for each neuron, pick an initial projection randomly

eg

 rdm.discunif(0,ncell-1)

 proj=rdm.repick()}

 if (proj < ncell/2) {

 // project to 0->proj

 } else { // project to proj->ncell-1

This algorithm is not very good since cells in center get more convergence

* rewrite wire to get even convergence

suggestions: counting upwards from proj, use modulus (%) to wrap-around and get
values between 0 and ncell-1

run(), graph and check synchrony

generalize your procedure to take argument pij=$1 that defines
connection density

* assess synchrony at different connection densities

Assessing connectivity

cvode.netconlist(cells.object(0).pp,"","") gives a divergence
list for cell#0

cvode.netconlist("","",cells.object(0).pp) gives a
convergence list for cell#0

Exercise: use these lists to calculate average, min, max for
conv and div

Page 94 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Graphing connectivity

use fconn(prevec,postvec) to get parallel vecs of pre and
postsyn cell numbers

use postvec.mark(g,prevec) to demonstrate that central cells
get most of the convergence (if using original suggestion for
wire() rewrite)

use showdiv1(cell#) and showconv1(cell#) to graph
connections for selected cells

* Exercise: write a procedure to count, print out and graph
all cells with reciprocal connectivity, eg A->B and B->A

* Exercise: modify your wire() to eliminate reciprocal
connectivity

Animate

Use animplot() to put up squares for animating simulation

Resize and shift around as needed but afterwards make
sure that "Shape Plot" is set on pulldown menu

After running a simulation to set tvec and ind, run anim()
to look at the activity

* Difficult or extended exercises

Last updated: Jun 17, 2003 (16:35)

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 95

Hands-on Exercises The NEURON Simulation Environment

Page 96 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on ExercisesStateandParameterDiscontinuitiesinHOCPhysicalSystemTransientvoltageclamptoassessactionpotentialstability.ModelForceadiscontinuouschangeinpotentialduringanActionPotentialSimulationToworkproperlywithvariabletimestepmethods,modelsthatchangestatesand/orparametersdiscontinuouslyduringasimulationmustnotifyNEURONwhensucheventstakeplace.Thisexerciseillustratesthekindsofproblemsthatoccurwhenamodelischangedwithoutreinitializingthevariablestepintegrator.1)StartwithacurrentpulsestimulatedHHpatch.E.g.HHPatch2)Discontinuouslychangethevoltageby+20mVusing
objref fih

fih = new FInitializeHandler("cvode.event(2, \"change()\")")

proc change() {

 print "change at ", t

 v += 20

}Noticethedifferencebetweenfixedandvariablestepmethods.3)Replacethe"change"procedurewiththefollowingandtryagain.
proc change() {

 print "change at ", t

 v += 20

 cvode.re_init()

}4)Whathappensifyoudiscontinuouslychangeaparametersuchasgnabar_hhduringtheinterval2U3mswithoutnotifyingthevariabletimestepmethod.
objref fih

fih = new FInitializeHandler("cvode.event(2, \"change(1)\")")

proc change() {

 print "change at ", t

 if ($1 == 1) {

 gnabar_hh *= 2

 cvode.event(3, "change(2)")

 } else {

 gnabar_hh /= 2

 }

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 97

Hands-on Exercises The NEURON Simulation Environment

 // cvode.re_init // should be here for varstep method

}ItwillbehelpfultousetheCrank�Nicholsonfixedstepmethodandcomparethevariablestepmethodwithandwithoutthecvode.re_init().Zoominaroundthediscontinuityat2ms.Extra:ParameterDiscontinuitiesinNMODLThisolderexercisemakesuseofthedeprecatedat_timewayofnotifyingcvodeofthetimeforadiscontinuity.Nowadays,aNET_RECEIVEblockisrecommendedfordealingwithdiscontinuitiesbuttheoldexercisestillisagoodcautionaryexampleofwhathappenswhenthereisadiscontinuitywithoutnotifyingthevariablestepmethod.NEURONhandsBoncourseCopyright©1998B2009byN.T.CarnevaleandM.L.Hines,allrightsreserved.

Page 98 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on ExercisesCustominitializationPhysicalSystem

ModelBall�Stickapproximationtocell
SimulationTheaimofthisexerciseistolearnhowtoperformoneofthemostcommontypesofcustominitializaton:initializingtosteadystate.Westartbymakingaball&stickmodelinwhichthenaturalrestingpotentialofthesomaticsphereanddendriticcylinderaredifferent.Nomatterwhatv_inityouchoose,defaultinitializatontoauniformmembranepotentialresultsinsimulationsthatshowaninitialdriftofvasthecellsettlestowardastablestate.Afterdemonstratingthisinitialdrift,wewillimplementandtestamethodforinitializingtosteadystatethatleavesmembranepotentialnonuniforminspacebutconstantintime.GettingstartedInthisexerciseyouwillbecreatingseveralfiles,soyouneedtobeinaworkingdirectoryforwhichyouhavefile"write"permission.StartNEURONwithcourse/initastheworkingdirectory.MakingtherepresentationUsetheCellBuildertomakeasimpleballandstickmodelthathastheseproperties:

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 99

Hands-on Exercises The NEURON Simulation EnvironmentSectionAnatomyCompartmentalizationBiophysicssomalength20micronsdiameter20micronsd_lambda=0.1Ra=160ohmcm,Cm=1uf/cm2Hodgkin$Huxleychannelsdendlength1000micronsdiameter5micronsd_lambda=0.1Ra=160ohmcm,Cm=1uf/cm2passivewithRm=10,000ohmcm2TurnContinuousCreateONandsaveyourCellBuildertoasessionfile.UsingtheRepresentationBringupaRunControlandavoltageaxisgraph.SetTstopto40msandrunasimulation.UseView=plottoseethetimecourseofsomaticmembranepotentialmoreclearly.Adddend.v(1)tothegraph(usePlotwhat?),thenrunanothersimulation.UseMoveTextandView=plotasneededtogetabetterpicture.AddaspaceplotanduseitsSetViewtochangetheyaxisrangetoa70a65.Runanothersimulationandwatchhowdrasticallyvchangesfromtheinitialcondition.Saveeverythingtoasessionfilecalledall.ses(useFile/savesession)andexitNEURON.Exercise:initializingtosteadystateInthecourse/initdirectory,makeaninitss.hocfilewiththecontents
 // load the GUI tools

 load_file("nrngui.hoc")

 // the model and user interface

 load_file("all.ses")

 // custom steady state init

 load_file("ssprocinit.hoc")Alsomakeafilecalledssprocinit.hocthatcontainstheselines:
proc init() { local dtsav, temp

 finitialize(v_init)

 t = -1e10

 dtsav = dt

 dt = 1e9

 // if cvode is on, turn it off to do large fixed step

 temp = cvode.active()

 if (temp!=0) { cvode.active(0) }

 while (t<-1e9) { fadvance() }

 // restore cvode if necessary

 if (temp!=0) { cvode.active(1) }

 dt = dtsav

 t = 0

Page 100 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

 if (cvode.active()) {

 cvode.re_init()

 } else {

 fcurrent()

 }

 frecord_init()

}NowuseNEURONtoexecuteinitss.hoc.ClickonInit&Runandseewhathappens."Specialcredit"exerciseAnothercommoninitializationisfortheinitializedmodeltosatisfyaparticularcriterion.Createaninitializationthatwillensurethatrestingpotentialthroughoutthecellequalsv_init.NEURONhands:oncourseCopyright©2003:2009byN.T.CarnevaleandM.L.Hines,allrightsreserved.

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 101

Hands-on Exercises The NEURON Simulation Environment

Page 102 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 103

Hands-on Exercises The NEURON Simulation Environment

Page 104 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 105

Hands-on Exercises The NEURON Simulation Environment

Page 106 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 107

Hands-on Exercises The NEURON Simulation Environment

Page 108 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Working with Shape plots

This is the Shape plot for the Pyramidal cell model in neurondemo as it first appears on the screen. Its X axis is
horizontal, the Y axis is vertical, and the Z axis is perpendicular to the page. Shape plots can be rotated,
magnified or reduced, and translated.

Rotation

R click in the graph window and select 3D Rotate.1.
Lift the mouse carefully off the pad, so that its cursor remains in the graph window.2.
Press the L mouse button and hold it down.3.
Use the A, X, and Z keys to examine the cell from three orthogonal directions.

A top view down the Y axis

X side view down the X axis, i.e. from the right

Z side view down the Z axis (standard view seen above)

4.

Place the mouse back down on the pad, press the L mouse button, and run the mouse around on the pad to
see the cell rotate wildly.

5.

Restore the standard view by pressing Z while holding the L mouse button down.6.

Use ^X, ^Y, or ^Z (^ = Ctrl key) to rotate the cell in 10o increments around the X, Y, or Z axis.7.

Other operations

Use the secondary menu of the Shape plot window to

zoom in or out by 10% increments
click and drag to open a NewView that focusses on a particular area
zoom in or out continuously (Zoom in/out) by clicking and dragging to R or L
click and drag the image around the window (Translate).
Note: you can also move the image by holding down the shift key and then doing click and drag

When you’re done

be sure to set View/Section so you don’t inadvertently cause other changes to the image.

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 109

Hands-on Exercises The NEURON Simulation Environment

Page 110 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 111

Hands-on Exercises The NEURON Simulation Environment

Page 112 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Vector/matrix: reading data

Exercises

1) Run the plotdata.hoc file in the vec directory. This reads the contents of data4.dat and displays
all the lines in a Graph. Look at the hoc file and the format of the data file. Notice that the first
number is the number of rows of data (Strings like #9 are not numbers. Numbers are strings that
start with a 0-9, ., or +-. Modify the plotdata.hoc file so it uses a File chooser to read the file.

The following hints may help with this exercise. For information about File.chooser, in the
NEURON console, type

 help File

or else navigate there manually with the web browser.
Is a file open for the File referenced by f? Type f.isopen()
Define the chooser to be a read type: f.chooser("r")
Pop up the chooser: f.chooser() : and select data4.dat
Is a file open?

2) Save these data using the Print&FileWindowManager/PrintFile/Ascii menu item into the file
temp1.dat . Look at the format of the temp1.dat file. Fix the temp1.dat file so it can be read with
plotdata.hoc.

3) The data are in a Matrix. Prove this to yourself by typing m and then m.printf. Save the matrix
by opening the file with f.wopen("temp2.dat") and then m.fprint(f). Look at the contents of the
file and verify that it can be read with plotdata.hoc.

4) Pick one of the data lines into the clipboard and save it using the
NEURONMainMenu/Vector/SaveToFile menu item as temp2.dat . Verify that temp2.dat can be
read correctly with the NEURONMainMenu/Vector/RetrieveFromFile. Fix the temp2.dat file so
it can be read with plotdata.hoc.

An observation

There are probably more data formats than there are programs that write data files. Data in ASCII
can generally be read with a hoc program (see File.scanvar, File.gets, sscanf, Vector.x and
Matrix.x). Some formats are very complicated and are in binary, e.g. PClamp binary data files.
Cases like this can only be handled with model descriptions like clampex.mod. After the data are
in a Matrix or Vector set, they are generally fairly easy to display with the GUI or manipulate
with simple hoc programs.

NEURON hands-on course
Copyright © 1998, 1999 by N.T. Carnevale and M.L. Hines, all rights reserved.

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 113

Hands-on Exercises The NEURON Simulation Environment

Page 114 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Vector/matrix: subtracting linear response

Exercises

1) Run plotdata.hoc in the course/vec directory. This reads the contents of data4.dat and displays
four curves: the voltage responses to hyperpolarizing current pulses of -9, -18, -27, and -36 nA.
Scale these curves according to the magnitude of the current pulse to see if the response was
linear.

Hints

A good way to test a Vector method is to pick a curve into the clipboard, apply the method, and
either printf the result or plot it in a NEURONMainMenu/Display tool. For example, if we pick
the 36nA curve and put it in a Vector/Display and then pick the 9nA curve, scale it with

 hoc_obj_.mul(4)

and then put it in the tool, we suddenly realize that the curves need to be shifted to 0 before being
scaled. One way to shift would be merely to select a point on the resting curve and subtract that
value from the entire curve, ie

 hoc_obj_.sub(hoc_obj_.x[10])

If the resting value is noisy, we could subtract the mean value over a short range as in

 hoc_obj_.sub(hoc_obj_.mean(5,15))

To modify a column in a matrix, get it into a Vector with m.getcol(i) and put a Vector into the
column with m.setcol(i, vector). i.e one can scale a column in one statement with

m.setcol(i, m.getcol(i).sub(m.getcol(i).mean(5,15)).div(9*i))

but long nested chains get easier to write than to read and it is generally better to do only one or
two Vector operations per statement.

2) This has nothing to do with data but it will give you practice in Vector manipulations. Set up a
simulation with several action potentials, e.g. with a long but low amplitude current pulse in an
HH patch. Run it with the variable time step method. Now, plot log10(dt) as a function of t.

Hints

Use the clipboard. The t values are in hoc_obj_[1]. Calculate the dt values in hoc_obj_ (a
synonym for hoc_obj_[0]) and use a Vector/Display to plot it.

Some pertinent Vector methods are
vec.c return a clone (new identical copy) of the vector instance

vec.deriv(1, 1) v.x[i+1]-v.x[i] -> v.x[i] , size is 1 less than before

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 115

Hands-on Exercises The NEURON Simulation Environment

vec.resize(vec.size-1) reduce size of vector by 1

vec.log10 log10(v.x[i]) -> v.x[i] , log10(0) is an error

vec.remove(index_vector) remove all elements at values given by index_vector

index_vector = vec.where("==", 0) indices where v.x[i] == 0

If removing 0 elements seems too complicated, it is less elegant but just as effective to add 1e-9
to every element before taking the log.

NEURON hands-on course
Copyright © 1998, 1999 by N.T. Carnevale and M.L. Hines, all rights reserved.

Page 116 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on ExercisesModelControl:SimulationFamiliesModelingprojectsofteninvolveexecutingaseriesofsimulationruns,analyzingtheoutputofeachrun,andsummarizingtheresults.Thisexercisewillhaveyouexaminehowthelocationofanexcitatorysynapseaffectsthepeakdepolarizationatthesoma.Indoingthis,youwilllearn:howtosetanddeterminethepositionofapointprocessunderprogramcontrolhowtousetheVectorclasstocollectandanalyzesimulationoutputmoreaboutmanagingmodelswiththeCellBuilderModelThisexerciseusestheballandstickmodelyouhavealreadyseen.SimulationInthecourse/familydirectory,startNEURONwiththeinit.hocargument(UNIX:nrnguiinit.hoc,MSWin:doubleclickoninit.hoc).Thisparticularinitfile
// start the GUI and load the ballstk cellbuilder

load_file("nrngui.hoc")

load_file("ballstk.ses")

// eventually becomes a custom GUI

load_file("rig.ses")makesNEURONreadthesessionfileforaCellBuilderthatcontainsthespecificationofthemodel.YouwillusethisCellBuildertoadjustthemodelparameters.Note:MakesuretheCellBuilder'sContinuousCreatebuttonischecked.Otherwisethesectionsoftheballandstickmodelwillnotexist.UsingtheCellBuildertomanagethespatialgrid1.Geometry/SpecifyStrategy:selectd_lambdafortheallsubset.Alsomakesurethatnosectionhasanoverridingstrategy.2.toggleSpecifyStrategyoff3.makesurethatd_lambda=0.1spaceconstantat100HzHowmanysegmentswerecreated?
forall print secname(), " nseg = ", nsegWherearethenodeslocated?
dend for (x) print x, " ", x*LIftheselocationsaren'tparticularly"esthetic,"youcanassignnseganew(larger)valuemanually(oddmultiplesof5arenice).Youcoulddothiswithahocstatementlike
dend nseg=25butthiswouldbeapotentialcauseofconfusion,soyoushouldspecifynsegthroughtheCellBuilderinstead.Remember,youareusingtheCellBuilderwithContinuousCreateon.Thismeansthat,ifyouchangethemodelspecificationintheCellBuilder,oreven

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 117

Hands-on Exercises The NEURON Simulation EnvironmentjusttoggleContinuousCreateoffandon,whatyoudidinhoccodecouldbeoverridden.UsingtheRepresentation1.BUILDTHEGUISetupagraphicalinterfacethatletsyouapplyanAlphaSynapsetothemodel(timeconstant1.0ms,peakconductance0.005umho)whileobservingVmatthemiddleofthesoma.2.TESTTHEMODELPutthesynapseattheproximalendofthedendrite,turnonKeepLinesinthevoltagegraph,andrunasimulation.Thenreducethepeaksynapticconductanceto0andrunanother.UseView=plottogetabetterlookatsomaticVm.What'swrongwiththeseresponses?(hint:increaseTstopto50msandrunanothersimulation)Changedendritice_pastoJ65mV(usetheCellBuilder'sBiophysicspage!)andtryanotherrun.Doesthishelp?Why?3.INITIALEXPLORATIONOFTHEMODELPlacethesynapseatseveraldifferentpositionsalongthedendrite.FindandplotthepeakamplitudeofthesomaticEPSPvs.synapticlocation.Youwillneedaprocedurethatmovesthesynapsetoaspecifiedlocation.Ihaveprovidedputsyn.hoc,whichcontainsaprocedure(putsyn())thattakesasinglenumericargumentintherange[0,1](i.e.thedesiredsynapticlocation).
putsyn()
doesthesethings:.1Verifiesthattherequestedlocationisactuallyintherange[0,1]..2Placesthesynapseinthesection(usesthePointProcess.loc()function)..3Sincepointprocessesarealwaysplacedatthenearestnode,andnodesarelocatedat0,1,andthecenterofeachsegment,putsyn()mustdeterminetheactuallocationofthesynapse(uses.get_loc()).Thisisassignedtoaglobalvariablecalledsynloc..4Executesthestatementrun()(equivalenttoclickingtheInit&Runbutton).Loadputsyn.hoc(usethestatementxopen("putsyn.hoc"),andtheninvokeputsyn()withacoupleofdifferentargumentstoseewhathappens.Usethevoltageaxisgraph'scrosshairstofindthepeakamplitudeoftheepspatthesoma.Youmightalsowanttoappendthestatement

xopen("putsyn.hoc")
totheendofinit.hocforfutureuse.4.SWITCHINGTOPRODUCTIONMODEInprinciple,youcouldtypeputsyn()manytimes,withdifferentnumericalarguments,measuretheepsppeaksmanually,writedownthesynapticlocationandthecorrespondingpeakdepolarization,andthenplottheresultsbyhand,butthatwouldbeapooruseofyourtime.It'smuchbettertolearnhowtoautomaterepetitivetasks.Here'sanoutlineofoneapproachtoautomatingthisparticularmodelingexperiment:Foreachnodealongdend

Page 118 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on ExercisesmovethesynapsetothatnoderunasimulationdeterminethemostdepolarizedsomaticVmproducedbyasynapseatthatlocationsavethisvalueandthesynapticlocationinapairofvectorsPlotthevectorofpeakvaluesvs.thevectorofsynapticlocationsUseatexteditortocreateaprocedurethatimplementsthisapproach.Putitinafilecalledmyprofile.hoc,andthenusethecommand
xopen("myprofile.hoc")orjustusetheNEURONMainMenu's"File/loadhoc"buttontomakeitavailabletoyourmodel.Youalreadyhaveputsyn(),whichtakescareofthesecondandthirditemsinthisoutline.Itmaybehelpfultoknowabout:for(x)objrefnewtheVectorclassingeneralVectorrecord()Vectormax()Vectorappend()Vectorplot()theGraphclassHereisaskeletonofonepossibleimplementationofsuchaprocedure.5.THINGSTOTRY1.ComputetheactualEPSPamplitudesbysubtractingthe<65mVbaselinefromthesomaresponsesandplottheresults.2.PlotpeakEPSPamplitudeasafunctionofanatomicaldistancealongdendinmicrons.2.WhatwouldhappenifthesomaticHHcurrentswereblocked?UsetheCellBuildertoreducegnabar_hhandgkbar_hhto0.Makesuretochangeel_hhto<65mVbeforerunninganewseriesofsimulations(whyorwhynot?andwhatifyoudon't?).ComparetheseresultswithwhatyousawwhenHHcurrentswerenotblocked.DospikecurrentsinthesomaenhanceallEPSPs,ordoesthenatureoftheeffectdependonsynapticlocation?NEURONhandsPoncourseCopyright©1998P2009byN.T.CarnevaleandM.L.Hines,allrightsreserved.

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 119

Hands-on Exercises The NEURON Simulation Environment

/* putsyn.hoc for somatic epsp as a function of synaptic location
 last modified 7/15/99 NTC
*/

synloc=0 // accessible to the Gather Values tool

proc putsyn() {
 if ($1 < 0 || $1 > 1) {
 printf("%c",7) // ring bell
 print "ERROR--location must be in the range [0, 1]"
 synloc = -1
 } else {
 // say what we want
 dend AlphaSynapse[0].loc($1)
 // find out what we got
 synloc = AlphaSynapse[0].get_loc()
 /* Note: get_loc() pushes the section of the target point
 process onto the section stack, so that it becomes the
 currently accessed section. We must restore the currently
 accessed section to what it was before get_loc(). */
 pop_section()
 run()
 }
}

Page 120 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on ExercisesHereisaskeletonofonepossibleimplementationofthefinalprocedure.Ordinarycommentsareindicatedby//,thingsthatremaintobedoneareindicatedbyremarksinside
/* */
pairs.Inbroadoutline,theprocedureprofile()walksthesynapsealongthelengthofdend.Ateachnode(the0and1endsplusthecenterofeachsegment),thetimecourseofsomaticVmiscomputedandstoredinthevector

vm,whichisthenexaminedtofinditsmaximumvalue.Thesynapticlocationandthepeakamplitudeofthesomaticallyobservedepsparethenstoredinthevectors
location
and

amplitude,respectively.Finally,thegraphgdisplaysaplotof
amplitude
vs.location.

// objects must first be declared _outside_ procedures

objref location, amplitude

location = new Vector() // stores locations along the dendrite

amplitude = new Vector() // stores peak amplitude at each location

objref vm

vm = new Vector() // to hold the time course of somatic Vm

 // evoked by a synaptic input

/* use Vector class .record() to "attach" vm to soma.v(0.5) */

objref g

g = new Graph() // for plot of amplitude vs. location

proc profile() {

 // next three statements discard prior results, if any

 location = new Vector()

 amplitude = new Vector()

 g = new Graph()

 dend for (x) { // loop over each node in dend

 putsyn(x)

 // at this point, vm should contain a record of soma.v(0.5)

 /* find maximum element in vm */

 /* append this to amplitude vector */

 /* append x to location vector */

 }

 /* plot amplitude vs. location */

}NEURONhands.oncourseCopyright©1998.2009byN.T.CarnevaleandM.L.Hines,allrightsreserved.
Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 121

Hands-on Exercises The NEURON Simulation Environment

Page 122 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 123

Hands-on Exercises The NEURON Simulation Environment

Page 124 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 125

Hands-on Exercises The NEURON Simulation Environment

Page 126 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on Exercises

: rectifying gap junction. Can only be used in conjunction with
: extracellular mechanism and the LinearMechanism class

NEURON {
POINT_PROCESS RectifyingGapJunction
RANGE g, i
NONSPECIFIC_CURRENT i

}

PARAMETER {
g = 0 (microsiemens)

}

ASSIGNED {
v (millivolt)
i (nanoamp)

}

BREAKPOINT {
if (v > 0) {

i = g*v
}else{

i = 0
}

}

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 127

Hands-on Exercises The NEURON Simulation Environment

Page 128 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on ExercisesParallelComputingwithMPIGettingstartedThefirststepistogettotheplacewhereyoucanrunthe"helloworld"levelprogramtest0.hocbylaunchinginaterminalwindowwith
mpiexec -n 4 nrniv -mpi test0.hocandseetheoutput
...

I am 1 of 4

I am 3 of 4

I am 0 of 4

I am 2 of 4MSWINTheNEURONsetupinstallerhasalreadyputalltherequiredsoftwareonyourmachinetouseMPI.I.e.asubsetofMPICH2compiledunderCYGWIN.1)startanrxvtterminalwindow2)startthempddaemon
mpdtrace # is it already running

mpd&

mpdtrace # it will persist until you do an mpdallexit or close the terminal3)launchtheprogram(mpiexeccommandabove)inthedirectorycontainingtest0.hoc(orgiveafullpathtotest0.hoc)MacOSXandLinuxUnfortunatelyMPIcan'tbeapartofthebinaryinstallationbecauseIdon'tknowif,which,orwhereMPIwasinstalledonyourmachine.SoyouhavetoinstallMPIyourself,checkthatitworks,andbuildNEURONfromthesourceswiththeconfigureoption'\\with\paranrn'.Seethe"installingandtestingMPI"sectionoftheHinesandCarnevale(2008)paper,"TranslatingnetworkmodelstoparallelhardwareinNEURON",J.Neurosci.Meth.169:425\465.Thepaperisreprintedinyourhandoutbooklet.OrseetheModelDBentryGoingfurtherTheringmodelfromtheaboveModelDBentryisagoodnextstep.SeealsothedocumentationfortheParallelContextclass,especialythesubsetofmethodsgatheredundertheParallelNetworkheading.AlargeportionoftheParallelNetManagerwrapperisbetteroffdonedirectlyfromtheunderlyingParallelContextthoughitcanbeminedforinterestingpieces.AgoodplacetofindthemostrecentidiomsistheNEURONimplementationoftheVogelsandAbbottmodelfoundintheBretteetal.ModelDBentry.However,toruninparallel,theNetCondelaybetweencellsneedstobesetgreaterthanzero.NEURONhandswoncourseCopyright©1998w2009byN.T.CarnevaleandM.L.Hines,allrightsreserved.
Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 129

Hands-on Exercises The NEURON Simulation Environment

Listing of test0.hoc

objref pc
pc = new ParallelContext()
{
printf("I am %d of %d\n", pc.id, pc.nhost)
}
{pc.done()}
quit()

Page 130 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Hands-on ExercisesUsingPythonasNEURON'sinterpreterGettingStartedFromaterminalwindow,launchwith
nrniv -pythonTogainaccesstotheHOCinterpreter,use
from neuron import hEverythingyoucoulddoinHOCyoucandothroughthehobject.
#execute a hoc statement

h('printf("hello world\\n")') #but note how we had to escape the backslash

#create a hoc Object and execute its methods

v = h.Vector(5)

v.indgen() # parentheses are not optional

v.printf()

v.x[2]

for x in v:

 print x

#create sections, etc.

soma = h.Section()

axon = h.Section()

axon.connect(soma, 1)

axon.nseg = 3

h.topology() # sadly, they are anonymous in the hoc world

for sec in h.allsec():

 sec.insert('hh')

axon.gnabar_hh = .1 # for whole section must use old hoc rangevar name

axon(.5).hh.gnabar = .09 # for a segment, can use either

for sec in h.allsec():

 for seg in sec:

 print sec, seg.x, seg.hh.gnabar

 SeethePythonAccessingHOCdocumentationforfurtherinformation.GoingfurtherSomehocfunctionsusecallbacks.
from neuron import h

h.load_file('nrngui.hoc')

def callback1():

 print "callback1: t=%s" % h.t

Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved Page 131

Hands-on Exercises The NEURON Simulation Environment

 interval = 10000

 print "next callback1 at %s" % (h.t+interval)

 h.cvode.event(h.t + interval, callback1)

h.cvode_active(1)

fih = h.FInitializeHandler(callback1)

h.stdinit()

h.cvode.solve(50000)SomehocfunctionsusepointerstoHOCvariables.
from neuron import h

h.load_file('nrngui.hoc')

soma = h.Section()

soma.L = 10

soma.diam = 10

soma.insert('hh')

stim = h.IClamp(.5, sec=soma)

stim.delay = .1

stim.dur = .1

stim.amp = .3

vvec = h.Vector()

vvec.record(soma(.5)._ref_v, sec=soma)

tvec = h.Vector()

tvec.record(h._ref_t, sec=soma)

h.run()

g = h.Graph()

g.size(0,5,-80,40)

vvec.line(g, tvec)NEURONhands oncourseCopyright©1998 2009byN.T.CarnevaleandM.L.Hines,allrightsreserved.

Page 132 Copyright © 1998-2010 N.T. Carnevale and M.L. Hines, all rights reserved

