Networks:
spike-triggered synaptic transmission,
events, and artificial spiking cells

1. Define the types of cells
2. Create each cell In the network
3. Connect the cells

Communication between cells

Gap junctions

Synaptic transmission
graded
spike-triggered

Graded synaptic transmission

Physical system:

A presynaptic variable governs
continuous transmitter release

Transmitter modulates
a postsynaptic property

V

pre

4@ gsynpost = f(vpre)

gsynpost

Problem: how does postsynaptic cell know Vpre?

Graded synaptic transmission continued

Answer: use POINTER to link postsynaptic variable
to the presynaptic variable

NMODL specification of synaptic mechanism:
NEURON {

POINT PROCESS Syn
POINTER v_pre

}
hoc usage
objref syn
dend syn = new Syn(0.5)
setpolnter syn.v_pre, precell.axon.v(1l)

Spike-triggered synaptic transmission

®
Physical system: O
Presynaptic neuron with axon
that projects to synapse on target cell

Conceptual model:
Spike In presynaptic terminal
triggers transmitter release;
presynaptic details unimportant

Postsynaptic effect described by
DE or kinetic scheme that is perturbed by
occurrence of a presynaptic spike

Spike-triggered transmission:
computational implementation

Basic idea
Complete
representation
of propagation Spike Synaptic g Postsynaptic
from Sﬁike Init. detector latency ~1 7S/4 region
zone through
axon to terminal

More efficient: "virtual spike propagation”

Delay
Spike - conduction -
LT Spike Postsynaptic
initiation latency ng :
Zone detector 1, region
synaptic
latency

The NetCon class

Python usage

nc = h.NetCon(source, target)
nc = h.NetCon(source_ref_v, target
[, threshold, delay, weight,
sec = section])
Defaults

nc.threshold = 10
nc.delay = 1 # must be >= 0
nc.welght[0] = 0 # welight 1s an array

NMODL specification of synaptic mechanism
NET_RECEIVE(weight(microsiemens)) {

}

Efficient divergence

Multiple NetCons with a common source
share a single threshold detector

Spike - .
initiation = giejtlggor | Delay 0 N gsg E%Si’ésnygapnc
zone

Postsynaptic
> Delay 1 ——> gsgregiom

Efficient convergence

Path O
O ———— O
Path 1
Multiple NetCons can share
a single target (many Iinputs,
but only one equation)
Spike Spj :
SDpIhE pike Postsynaptic
{antr!]aetlgn ~| detector O | Pelay 0 = gsg region
Spike Spi
g g p|ke
'ch')tr']ae“? " detector 1 Delay 1

Example: g, with fast rise
and exponential decay

NEURON {
POINT_PROCESS ExpSyn
RANGE tau, e, i
NONSPECIFIC_CURRENT i

}

. declarations .
INITIAL { g = 0 }

BREAKPOINT {
SOLVE state METHOD cnexp
1 =9%(v-e)
h
DERIVATIVE state { g' = -g/tau }

NET_RECEIVE(w (uS)) { g =g + w }

g with fast rise and exponential decay
continued

e :
9._45___Lh__¢$LMM¢$k, _
V.__Lhr_f\h_l4*$00N~\s_____.

BREAKPOINT {
SOLVE state METHOD cnexp
1 g*(v-e)
h
DERIVATIVE state { g' = -g/tau }

NET_RECEIVE(w (uS)) { g =g + w }

Example: use-dependent synaptic plasticity

GSyn[0].g

\
|

e _
60 80 100

0.003 —

Hl

D i

=

l
=

l/
<
~

I/

vl

=

0 20 4

Use-dependent synaptic plasticity continued

BREAKPOINT { -
SOLVE state METHOD cnexp oo -
g=B - A
T
ks
DERIVATIVE state { ooo \\\\\\\\
A' = -A/taul
B' = -B/tau? ; LN
} 0 20 40 60 80 100

NET_RECEIVE(weight (uS), w, G1, G2, tO (ms)) {
INITIAL {w=0 G1=0 G2=0 tO=t}

Gl = Gl*exp(-(t-tO0)/Gtaul)
G2 = G2*exp(-(t-tO)/Gtau2)
Gl = G1 + Ginc*Gfactor

G2 = G2 + Ginc*Gfactor

t0 = t

w = weight*(1 + G2 - G1)
g=0g+Ww

A = A + w*factor

B = B + w*factor

Artificial spiking cells

"Integrate and fire" cells

Prerequisite: all state variables must be
analytically computable from a new initial condition

Orders of magnitude faster than numerical integration

Event-driven simulation run time is
proportional to # of recelved events
Independent of # of cells, # of connections,

and problem time

Hybrid networks

Example: leaky integrate and fire model

ST L | ||
S2 | L 1 1 1 | | |

Leaky integrate and fire model continued

NEURON {
ARTIFICIAL_CELL IntFire
RANGE tau, m

}

. declarations .
INITIAL {m =0 t0 =t }

NET_RECEIVE (w) {
m = m*exp(-(t-tO)/tau)
to = ¢t
m=m+ w
if (m > 1) {
net_event(t)
m= 0
h
b

IntFirel

IntFire2

IntFire4

IntFire1[0]
2
K
IntFire2[0]
E
3
Kl
IntFire4[0]
taue (ms) e
2l
3
taum (ms) g [50 @
g 0
i 0
12 0
m 0

0.8

0.6

0.4

0.2

IntFire1[0].M

80 100

IntFire2[0].!

IntFire2[0].M
0.2[7
0 | | | | J
0 20 410 60 80 100
051
IntFire4[0].M
03[

IntFire4[0].E

Defining the types of cells

Artificial spiking cells
ARTIFICIAL_CELL with a NET_RECEIVE block
that calls net_event

NetStim, IntFirel, IntFire2, IntFire4

Biophysical model cells
"Real" model cells
Sections and density mechanisms

Synapses are POINT_PROCESSes

that affect membrane current
and have a NET_RECEIVE block,

e.g. ExpSyn, EXp2Syn

Defining types of biophysical model cells

Encapsulate in a class

Export hoc class definition from CellBuilder or Network Builder

or
write your own in Python.

class Cell:
def _ _init_ (self)
specify geom, topol, biophys
soma = h.Section(name='soma')
self.soma = soma
. etc.

cells|[]

N = 1000

for 1 1n range(N):
cell = Cell() # h.Cell() 1f Cell 1is defined in hoc
cells.append(cell)

Connecting cells

Which setup strategy is more efficient?

[terate over sources

for each cell {
connect this cell to its targets

}
or iterate over targets?

for each cell {
connect sources to this cell

}

Connecting cells

For a net distributed over multiple CPUs,
It Is most efficient to iterate over targets first.

for each cell {
connect sources to this cell
)

