Spike-triggered synaptic transmission homework

Create a 1 section model cell called 'soma' with surface area 100 um2 nseg 1 pas channels with e -65 mV and g 5e-5 S/cm2 (membrane time constant 20 ms)

Attach an ExpSyn with tau 3 ms, e 0 mV to soma(0.5).

Drive the ExpSyn with events from a NetStim with interval 10 ms number 1 start 5 ms noise 0

Set the NetCon's delay to 1 ms.

Homework continued

Run a simulation for 100 ms. How big must the NetCon's weight[0] be to elicit a 1 mV EPSP at soma(0.5)? (2 significant figures)

Now uninsert pas and insert hh. What is the minimum positive weight[0] that triggers a spike?

My implementation strategy: exploit the fact that this is the same task applied to different model cells.

Writing code that works with different model cells

pascell.py

defines passive Cell class

hhcell.py

defines Cell class that has hh

netex1.py

- imports specified Cell class and creates an instance
- sets up
 - cell-class-specific parameters
 - common instrumentation (signal sources, Vector recording)
 - simulation flow control and GUI (RunControl panel and graphs via rig.ses)

Homework continued

Extra credit:

Using the model with hh, adjust weight[0] to a value that elicits a 1 mV EPSP.

Next change the NetStim's interval to 1 ms, number 1e9, and noise to 1. Run 100 simulations that include 1000 ms of synaptic input and record the number of spikes per run. Generate a histogram of number of spikes per run (binwidth = 1).

Strategy:

- reuse netex1.py, hhcell.py, and rig.ses
- for new task create netex2.py based on netex1.py