
Networks:
spike-triggered synaptic transmission,

events, and artificial spiking cells

1. Define the types of cells

2. Create each cell in the network

3. Connect the cells



Communication between cells

Gap junctions

Synaptic transmission
graded
spike-triggered



Graded synaptic transmission

Physical system:

A presynaptic variable governs
continuous transmitter release

Transmitter modulates
a postsynaptic property

Problem: how does postsynaptic cell know Vpre?

Vpre

gsynpost

gsynpost = f(Vpre)



Graded synaptic transmission continued

Link postsynaptic variable to the presynaptic variable
with a POINTER

NMODL specification of synaptic mechanism:

NEURON {
POINT_PROCESS Syn
POINTER vpre

}

hoc usage

objref syn
dend syn = new Syn(0.5)
setpointer syn.vpre, precell.axon.v(1)

Python usage

syn = h.Syn(dend(0.5))
syn._ref_vpre = precell.axon(1)._ref_v



Spike-triggered synaptic transmission

Physical system:

Presynaptic neuron with axon
that projects to synapse on target cell

Conceptual model:

Spike in presynaptic terminal
triggers transmitter release;
presynaptic details unimportant

Postsynaptic effect described by
DE or kinetic scheme that is perturbed by
occurrence of a presynaptic spike



Spike-triggered transmission:
computational implementation

Basic idea

More efficient: "virtual spike propagation"



The NetCon class

Python usage

nc = h.NetCon(source, target)
nc = h.NetCon(source_ref_v, target 

[, threshold, delay, weight], 
sec = section)

Defaults

nc.threshold = 10
nc.delay = 1 # must be >= 0
nc.weight[0] = 0 # weight is an array

NMODL specification of synaptic mechanism

NET_RECEIVE(weight(microsiemens)) {
    . . .
}



Efficient divergence

Multiple NetCons with a common source
share a single threshold detector



Efficient convergence

Multiple NetCons can share
a single target (many inputs,
but only one equation)



Example: gs with fast rise

and exponential decay

NEURON {
  POINT_PROCESS ExpSyn
  RANGE tau, e, i
  NONSPECIFIC_CURRENT i
}

  . . . declarations . . .

INITIAL { g = 0 }

BREAKPOINT {
  SOLVE state METHOD cnexp
  i = g*(v-e)
}

DERIVATIVE state { g' = -g/tau }

NET_RECEIVE(w (uS)) { g = g + w }



gs with fast rise and exponential decay

continued

BREAKPOINT {
  SOLVE state METHOD cnexp
  i = g*(v-e)
}

DERIVATIVE state { g' = -g/tau }

NET_RECEIVE(w (uS)) { g = g + w }



Example: use-dependent synaptic plasticity



BREAKPOINT {
  SOLVE state METHOD cnexp
  g = B - A
  i = g*(v-e)
}

DERIVATIVE state {
  A' = -A/tau1
  B' = -B/tau2
}

NET_RECEIVE(weight (uS), w, G1, G2, t0 (ms)) {
  INITIAL {w=0 G1=0 G2=0 t0=t}
  G1 = G1*exp(-(t-t0)/Gtau1)
  G2 = G2*exp(-(t-t0)/Gtau2)
  G1 = G1 + Ginc*Gfactor
  G2 = G2 + Ginc*Gfactor
  t0 = t
  w = weight*(1 + G2 - G1)
  g = g + w
  A = A + w*factor
  B = B + w*factor
}

Use-dependent synaptic plasticity continued



Artificial spiking cells

"Integrate and fire" cells

Prerequisite: all state variables must be
analytically computable from a new initial condition

Orders of magnitude faster than numerical integration

Event-driven simulation run time is
proportional to # of received events
independent of # of cells, # of connections,

and problem time

Hybrid networks



Example: leaky integrate and fire model



Leaky integrate and fire model continued

NEURON {
  ARTIFICIAL_CELL IntFire
  RANGE tau, m
}
  . . . declarations . . .

INITIAL { m = 0   t0 = t }

NET_RECEIVE (w) {
  m = m*exp(-(t-t0)/tau)
  t0 = t
  m = m + w
  if (m > 1) {
    net_event(t)
    m = 0
  }
}



IntFire1

IntFire2

IntFire4



Defining the types of cells

Artificial spiking cells

ARTIFICIAL_CELL with a NET_RECEIVE block 

that calls net_event

NetStim, IntFire1, IntFire2, IntFire4

Biophysical model cells

"Real" model cells

Sections and density mechanisms

Synapses are POINT_PROCESSes

that affect membrane current
and have a NET_RECEIVE block,

e.g. ExpSyn, Exp2Syn



Defining types of biophysical model cells

Encapsulate in a class

Export hoc class definition from CellBuilder or Network Builder

    or

write your own in Python. 

class Cell:
  def __init__(self)
    # specify geom, topol, biophys
    soma = h.Section(name='soma')
    self.soma = soma
    ... etc. ...

cells[]
N = 1000
for i in range(N):
  cell = Cell() # h.Cell() if Cell is defined in hoc
  cells.append(cell)



Homework

Create a 1 section model cell called 'soma' with 
surface area 100 um2
nseg 1
pas channels with e -65 mV and g 5e-5 S/cm2 
(membrane time constant 20 ms)

Attach an ExpSyn with tau 3 ms, e 0 mV to soma(0.5).

Drive the ExpSyn with events from a NetStim with
interval 10 ms
number 1
start 5 ms
noise 0

Set the NetCon's delay to 1 ms.



Homework continued

Run a simulation for 100 ms. How big must 
the NetCon's weight[0] be to elicit a 1 mV EPSP 
at soma(0.5)? (2 significant figures) 

Now uninsert pas and insert hh. What is the minimum 
positive weight[0] that triggers a spike?

Extra credit:

Using the model with hh, adjust weight[0] to a value 
that elicits a 1 mV EPSP.

Next change the NetStim's interval to 1 ms, number 
1e9, and noise to 1. Run 100 simulations that include 
1000 ms of synaptic input and record the number of 
spikes per run. Generate a histogram of number of 
spikes per run (binwidth = 1).


