
from neuron import h
from neuron.units import mV, ms
from matplotlib import cm
import plotly
h.load_file('stdrun.hoc')

h.load_file('c91662.ses')
h.hh.insert(h.allsec())

ic = h.IClamp(h.soma(0.5))
ic.delay = 1 * ms
ic.dur = 1 * ms
ic.amp = 10

Scripting NEURON I
Robert A. McDougal

24 June 2021

h.finitialize(-65 * mV)
h.continuerun(2 * ms)

ps = h.PlotShape(False)
ps.variable('v')
ps.plot(plotly, cmap=cm.cool).show()

What is a
script?

• A script is a file with computer-readable
instructions for performing a task.

• In NEURON, scripts can:
• set-up a module
• define and perform an experimental protocol
• record data
• save and load data
• and more …

Why write
scripts for
NEURON?

• Automation ensures consistency and
reduces manual effort.
• Facilitates comparing the suitability of

different models.
• Facilitates repeated experiments on the

same model with different parameters
(e.g. drug dosages).
• Facilitates re-collecting data after change

in experimental protocol.
• Provides a complete, reproducible

version of the experimental protocol.

neuron.yale.edu

Use the “Switch to HOC” link in the upper-right corner of every page if you need documentation for HOC, NEURON’s original programming language. HOC may be used in combination
with Python: use h.load_file to load a HOC library; the functions and classes are then available with an h. prefix.

neuron.yale.edu

There are many Python distributions. Any should work, but many
people prefer Anaconda as it comes with a large set of useful libraries.

Introduction to Python

Displaying results: the print function

Variables

• Give things a name to access them later:

Lists and for loops

• To do the same thing to several items, put the items in a list and use a
for loop:

• Items in a list can be accessed directly using the [] notation.
Note: lists start at position 0.

• To check if an item is in a list, use in:

Dictionaries

• If there is no natural order, specify your own key-value pairs:

• Loop over keys and values using .items():

Functions

• If a calculation is used more than once, give it a name via def and
refer to it by the name.
• If there is a complicated self-contained calculation, give it a name.
• Return the result of the calculation with the return keyword.

Libraries (aka “modules”)

• Python modules provide functions, classes, and values that your
scripts can use.
• To load a module, use import:

• Use dot notation to access a function or value from the module:

• One can also load specific items from a module or give a short-hand
name for the module:

Other useful Python modules

• math
• Basic math functions

• numpy
• Advanced math functions

• pandas
• Basic data science and database access

• sklearn
• Machine learning

• plotly, plotnine, matplotlib, mayavi
• Plotting

plotly

Free (MIT licensed), full-
featured graphics library

Graphs are interactive and
can be saved.

Supports both Python and
JavaScript.

https://plotly.com/python/basic-charts/

For NEURON built-in graphs, we’ll just use:

import plotly

String formatting

• We’ll often want to insert variables into text
• labeling time points in graphs, storing parameters in data filenames, …

• In Python, this is done using an f-string:
tstop = 10
my_string = f"We should stop at t = {tstop} ms"

• Formatting can be specified e.g. to round to a certain number of
digits.
f"pi is approximately {pi:.5}"
f"pi is approximately {pi:.7}"

pi is approximately 3.1416

pi is approximately 3.141593

Getting help

• To get a list of functions, etc. in a module (or class) use dir:

Getting help

• To see help information for a specific function, use help:

Getting help

Python is widely used, and there are many online resources available,
including:

• docs.python.org – the official documentation
• Stack Overflow – a general-purpose programming forum
• The NEURON programmer’s reference – NEURON documentation
• The NEURON forum – for NEURON-related programming questions

ycmi.github.io/summer-course-2020

Basic NEURON Scripting

Loading NEURON

• Core NEURON functionality

• Unit definitions

• Chemical dynamics

You will
almost always
need these.

NEURON run control library

h.load_file("stdrun.hoc")

stdrun.hoc loads NEURON’s “standard run” system,
which provides the h.continuerun function for
running a simulation until a specific time.

Creating and naming sections

• A Section in NEURON is an unbranched stretch of e.g. dendrite.
• To create a Section, use h.Section and assign the result to a variable:

• A single Section can have multiple references to it.

• Printing a Section displays its name. Use str(section) to get the name
as a string:

Basic unit:
h.Section

soma = h.Section(name='soma')

Length: soma.L

Diameter: soma.diam

Discretization: soma.nseg

Inside a cell class, specify the cell argument as well:
soma = h.Section(

name='soma',
cell=self)

Didactic Presentations The NEURON Simulation Environment

#"#$%$%
!"#$%&"!'%$(""#'%$(")%'

&)%#*+%$,-#%.',#.!"#$%&"

%$.$01.+-2%$,-#.2-))1*3-#4,#5.$-.'%$("

%221**.$01.(%+71.-8.'%$(")%'$

)$%:3+1*%
%&'&()&*+,,-.&/0&,.1,

,.1,!2#3"#'&%&45/6)78)9&,.1,#'

%&()&.(75&:/+1)&+1&,.1,
%&;5.6.&'&+4&7(-78-().,

%&:6+1)&6(1<.=&(1()&,+4)(17.=&(1,&'
0/6&4.<&+1&,.1,#(--4.<!"9

:6+1)&4.<#>=&4.<#> ,.1,#!=&,.1,!4.<#>"#'

14.<

$01.#7:;1).-8.3-,#$*.,#.%.*12$,-#.%$.*0,20

$01.4,*2)1$,=14.2%;+1.1+7%$,-#.,*.,#$15)%$14

14.<"#

14.<"$

14.<"%

)$%:3+1%..(>/1#14.<&"&%

&-.$1*$.*3%$,%+.)1*-+7$,-#
0/6&4.7&+1&5#(--4.7!"9

4.7#14.<& "&%

%#4.)131%$.$01.*,:7+%$,-#

Page 18 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

Didactic Presentations The NEURON Simulation Environment

Separating Anatomy and Biophysics
from Purely Numerical Issues

section

a continuous length of unbranched cable

Anatomical data from A.I. Guly·s

Page 14 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

!"#$%&'"()"*+%,

!"#$ %$"&'&()&'*+

!"#$ -)".%/%(01.2

%$,3%4)5)4&.%.*("#% 01564.72

4"3"4)/"#4%

&'(#)&89:4; ,3%4)5)4&4:#-<4/"#4% 0,)%.%#,64.72

(#)*&&8=>/9:#; :5&/9%&(#)&.%49"#),.

+ .%.*("#%&3:/%#/)"+ 0.'2

("#$%

#:(."+)?%-&3:,)/):#&"+:#$&/9%&+%#$/9&:5&"&,%4/):#

 &!&("#$%&!&"

0 1
distance
normalized

0
distance
physical

length
physical

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 17

Anatomical data from A.I. Gulyas .

Images from Ted Carnevale.

The connect method joins Section objects to define arbitrary morphologies.

Looping over a Section
gives the Segments

Select specific
Segments; they can have
different properties

Not limited to cylinders

Getting 𝑥 and Section

Connecting sections

To construct a neuron’s full branching structure, individual sections
must be connected using .connect:

Each section is oriented and has a 0- and a 1-end. In NEURON,
traditionally the 0-end of a section is attached to the 1-end of a section
closer to the soma. In the example above, dend2’s 0-end is attached to
dend1’s 1-end.

To print the topology of cells in the model, use h.topology().

If no position is specified, the 0-end will be connected to the 1-end as in the example.

Example
from neuron import h

define sections
soma = h.Section(name="soma")
papic = h.Section(name="proxApical")
apic1 = h.Section(name="apic1")
apic2 = h.Section(name="apic2")
pb = h.Section(name="proxBasal")
db1 = h.Section(name="distBasal1")
db2 = h.Section(name="distBasal2")

connect them
papic.connect(soma)
pb.connect(soma(0))
apic1.connect(papic)
apic2.connect(papic)
db1.connect(pb)
db2.connect(pb)

list topology
h.topology()

Output:

|-| soma(0-1)

`| proxApical(0-1)

`| apic1(0-1)

`| apic2(0-1)

`| proxBasal(0-1)

`| distBasal1(0-1)

`| distBasal2(0-1)

Morphology:

Length, diameter, and position

Set a Section’s length with .L and diameter with .diam:
sec.L = 20 * um
sec.diam = 2 * um

If no units are specified, NEURON assumes µm.

To specify the (𝑥, 𝑦, 𝑧; 𝑑) points a section sec passes through, use e.g.
sec.pt3dadd(x, y, z, d). The section sec has sec.n3d()
3D points; their 𝑖th x-coordinate is sec.x3d(i). The methods .y3d,
.z3d, and .diam3d work similarly.

diameter may also be specified per segment

Caution: Squid

NEURON’s defaults are based on
the squid giant axon.

sec.diam: 500 µm
sec.Ra: 35.4 Ω cm
h.celsius: 6.3 C

Comingio Merculiano (1845–1915) - Jatta di Guiseppe (1896) Cefalopodi viventi nel Golfo di Napoli (sistematica), Berlin: R. Friedländer & Sohn.

https://archive.org/stream/icefalopodiviven00jatt
https://en.wikipedia.org/wiki/en:Berlin

Tip: define classes of cells not individual cells

• Consider the code

• The __init__ method is run whenever a new Pyramidal cell is
created; e.g. via

• The soma can be accessed using dot notation:

Tip: define classes of cells not individual cells

• By defining a cell in a class, once we are happy with it, we can a copy
of the cell in a single line of code:

• Or even many copies:

• For network models, helpful to associate a number (a gid) with each
cell.

Viewing the morphology with h.PlotShape

Passing True instead of False will plot
in an InterViews window instead.

The InterViews windows can be saved as
postscript using e.g.

ps.printfile("filename.eps")

Viewing voltage, sodium, etc…

• Suppose we make the voltage (‘v’) nonuniform which we can do via:

• We can create a PlotShape that color-codes the sections by voltage:

Viewing voltage, sodium, etc…

• After increasing the spatial resolution:

• We can plot the voltage as a function of distance from
main(0) to dend2(1):

Viewing voltage, sodium, etc…

Variable Value Pointer (e.g. for recording) With PlotShape or RangeVarPlot

Voltage seg.v seg._ref_v "v"

Na+ (inside membrane) seg.nai seg._ref_nai "nai"

Na+ (outside membrane) seg.nao seg._ref_nao "nao"

Na+ (current) seg.ina seg._ref_ina "ina"

Na+ (reversal potential) seg.ena seg._ref_ena "ena"

d(sodium current)/dv seg.dina_dv_ seg._ref_dina_dv_ "dina_dv_"

Potassium is the same as for sodium, except with “k” replacing “na”; Chloride is the same except with “cl”;
Calcium is the same except with “ca”, etc… ions may only be accessed when a mechanism using them is present
or when they are explicitly inserted via sec.insert or rxd.

Distributed mechanisms

• Insert a distributed mechanism (e.g. from a mod file) into a section or
list of sections with .insert:

• Mechanisms may also be inserted one-at-a-time into a single section
via e.g.

Ion Channels

• Specify using insert
method.

• Built-in:
Hodgkin-Huxley (h.hh),
passive (h.pas)

• Hundreds more on ModelDB
(.mod files)

• Compile mod files via:
nrnivmodl

The NEURON Simulation Environment Didactic Presentations

!"#$%&'()*#$+,-

!"#$%&''()**+++,$-.,/01*

./012%34.56(,#)&'7(,),85'+%/3$

!

! "#

!"$

! %"
" &'

!$
! (

$)'
#
*%&$'+,#(# $)-,

!%&$'+-(#).%&$'+.(

/'

/(
"')'' # *'&$''()' "

%&$&$ #!%(

$'''%&$&$ #!%(
*'" !'

'&$ #()(+$*

/*

/(
"')* * # **&$'*()* " %&%+'

'%&%)&$#()(** "
$

$#''%&$&$##)(

/,

/(
"'), , # *,&$',(), "

%&%$&$ #))(

$'''%&$&$ #))(*, " %&$")'
'&$ #()(+*%

9/0,(

./012%34.56(,#)&'7(,),85'+%/3$

9/0,(

!"#$%&%'()*+,-#$.$!/*%&%0!"#$01
!"#$(2%&%3*4
!"#$(5-!/%&%677
!"#$($8*9%&%4:
!"#$(-$8*;,.0''01

/'

/(
"')'' # *'&$''()'"

%&$&$ #!%(

$'''%&$&$ #!%(
*'" !'

'&$ #()(+$*

/*

/(
"')* * # **&$'*()* " %&%+'

'%&%)&$#()(** "
$

$#''%&$&$##)(

/,

/(
"'), , # *,&$',(), "

%&%$&$ #))(

$''
'%&$&$ #))(*, " %&$")'

'&$ #()(+*%

$)'# *%&$'+
,#
(# $)- ,

!%&$'+
-
(#)

.
%&$'+

.
(

:,;<,$,3+'+%/3

*%-5('+%/3

!

! "#

!"$

! %"
" &'

!$
! (

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 15

Illustration adapted from one by Ted Carnevale.

h.hh

Defining
ion channels,
synapses, etc
tinyurl.com/hhmodfile
tinyurl.com/expsyn

Compile mod files on your local machine using:
nrnivmodl Hundreds of mod files from published work are available at modeldb.yale.edu

https://tinyurl.com/hhmodfile
https://tinyurl.com/expsyn

Point processes

• To insert a point process, specify the segment when creating it, and
save the return value. e.g.

• To find the segment containing a point process pp, use

• The section is then seg.sec and the normalized position is seg.x.

• The point process is removed when no variables refer to it.

Setting and reading parameters

• In NEURON, each section has normalized coordinates from 0 to 1.
• To read the value of a parameter defined by a range variable at a

given normalized position, use: sec(x).MECHANISM.VARNAME
e.g.

• Setting variables works the same way:

Setting and reading parameters

• To specify how many evenly-sized pieces (segments) a section should
be broken into (each potentially with their own value for range
variables), use section.nseg:

• To specify the temperature, use h.celsius:

Setting and reading parameters

• Often you will want to read or write values on all segments in a section. To do
this, use a for loop over the Section:

• The above is equivalent to apical.gkbar_hh = 0.037, however the first
version allows setting values nonuniformly, e.g.

• A list comprehension can be used to create a Python list of all the values of a
given property in a segment:

Note: looping over a Section only returns true Segments. If you want to include the voltage-only nodes at 0 and 1, iterate over, e.g. apical.allseg() instead. HOC’s for
(x,0) and for (x) are equivalent to looping over a section and looping over allseg, respectively.

h.allsec() is an
iterable of all
sections

Recording Results

We can read the
instantaneous membrane
potential at a location via, e.g.

axon(0.5).v

To record this value over time,
we use an h.Vector and
pass in the pointer (prefixed
with _ref_) to the record
method.

0 1x

v = h.Vector().record(axon(x)._ref_v)
t = h.Vector().record(h._ref_t)

Recording Results II

NetCon objects can be used
as shown to detect the times
when a variable crosses a
threshold from below.

As the name suggests, a
NetCon can be used to
connect cells together in a
network. To do this, pass in a
synapse as the second
argument or use
ParallelContext.

0 1x

spike_times = h.Vector()
nc = h.NetCon(axon(0.1)._ref_v, None, sec=axon)
nc.threshold = 0 * mV
nc.record(spike_times)

Stimulating a model

Set potential

• soma(0.5).v = 10 * mV

• Voltage clamp
• cl = h.SEClamp(soma(0.5))
• cl.amp1 = -65 * mV
• cl.dur1 = 10 * ms
• Similarly for .amp2, .amp3,

.dur2, .dur3

• Could also:
vec.play(cl._ref_amp2)

• SEClamp – single electrode
• VClamp – two electrode

Current Clamp

• ic = h.IClamp(soma(0.5))

• ic.delay = 5 * ms
• ic.dur = 0.1 * ms
• ic.amp = 1 # nA

Synaptic input

• ns = h.NetStim()
• ns.number = 1
• ns.start = 5 * ms
• ns.noise = False
• ns.interval = 20 * ms

• Only matters for
number > 1

• sy = h.ExpSyn(soma(0.5))
• sy.tau = 5 * ms
• sy.e = 0 * mV

• nc = h.NetCon(ns, sy)
• nc.weight[0] = 1

Running simulations: the basics

Run until time 10 ms:

h.continuerun(10 * ms)

Initialize to -65 mV:

h.finitialize(-65 * mV)

For convenience, we use a high-level simulation control functions defined in the stdrun.hoc library. Load this via:

h.load_file('stdrun.hoc')

Running simulations: the basics

Advance one timestep:

h.fadvance()

Initialize to -65 mV:

h.finitialize(-65 * mV)

For convenience, we use a high-level simulation control functions defined in the stdrun.hoc library. Load this via:

h.load_file('stdrun.hoc')

Running simulations: improving accuracy

Increase time resolution (by reducing time steps) via, e.g.
h.dt = 0.01 * ms

Enable variable step (allows error control):
h.CVode().active(True)

Set the absolute tolerance to e.g. 10−5:
h.CVode().atol(1e-5)

Increase spatial resolution by e.g. a factor of 3 everywhere:
for sec in h.allsec(): sec.nseg *= 3

Example: Hodgkin-Huxley
Note: Here we trigger the action potential by
injecting a current. We could alternatively include
a model of a synapse and trigger the synapse using
an h.NetStim. See the documentation for more
information.

Example: spike detection

Many
inputs

Recording
spikes

Networks of neurons

• Suppose we have the simple model:

• and two cells:

Networks of neurons

• If the first cell has a sufficient current clamp injection, we know that it
will fire, but how can we get that to send a signal to another cell?
• We do this with a synapse.
• On the post-synaptic side:

• On the pre-synaptic side, specify a source pointer, the corresponding
post-synaptic side, the transmission delay, and synaptic weight:

Networks of neurons

Record, run, and plot as normal:

due to the iclamp
(code not shown)

due to the synapse

Storing and loading data with pandas

• Saving as CSV with pandas:

import pandas as pd
pd.DataFrame({"t": t, "v": v}).to_csv("data.csv", index=False)

• Loading from CSV with pandas:

import pandas as pd
data = pd.read_csv("data.csv")
t = h.Vector(data["t"])
v = h.Vector(data["v"])

t,v
0.0,-65.0
0.025,-64.99925452909274
0.05,-64.9985207095132
0.075,-64.99779768226396
0.09999999999999999,-64.99708468737194
0.12499999999999999,-64.9963810528078
0.15,-64.99568618464123

t and v are h.Vector instances

NEURON Resources

Unified documentation
• tinyurl.com/neuron-docs

Forum
• tinyurl.com/neuron-forum

NEURON models on ModelDB
• tinyurl.com/neuron-models

CNS 2020 Tutorial
• tinyurl.com/neuron-cns2020

https://tinyurl.com/neuron-docs
https://tinyurl.com/neuron-forum
https://tinyurl.com/neuron-models
https://tinyurl.com/neuron-cns2020

Exercise 1
• Visualize a propagating action potential in an axon with Hodgkin-

Huxley dynamics. Trigger your action potential using a current clamp.
Plot membrane potential vs position at several time points.

• Do the same thing but with axon.Ra=100 Ω cm.
How does that change affect wave propagation?

Exercise 2
• Compare the Hodgkin-Huxley sodium and potassium current responses to being voltage

clamped at v = 0 mV.
• Compare the response of Hodgkin-Huxley potassium current to being voltage clamped at

various potentials.

• Plot the potassium concentration over time. How does this compare to your
expectations? Can you explain the results?

Exercise 3

• Start an action potential in a long
axon with a NetStim and an
ExpSyn.
• Plot the speed of AP propagation

as a function of position.
• Should look like the blue curve.

• Why is the speed faster near the
beginning/end of the axon?
• Hypothesize a morphological

explanation for the red curve.
Test your hypothesis.

original • what happened here?

