
The NEURON Model Description Language

Used to add:
� ion channels
� accumulation, diffusion, transport
� reactions described by ODEs, kinetic schemes
� algebraic equations, e.g. waveform generators
� synaptic mechanisms
� events, state machines, artificial spiking cells

Advantages

� Specification only--independent of solution method

� Efficient--translated into C

� Compact

� One NMODL statement � many C statements

� Interface code automatically generated

� Consistent ion current / concentration interactions

� Consistent units

 hoc in
terpreter

 Python interpreter

NMODL
compiled

Computational
engine

data structures
and

compiled code

NMODL general block structure

What the model looks like from outside

NEURON {
SUFFIX kchan
USEION k READ ek WRITE ik
RANGE gbar, . . .

}

What names are manipulated by this model

UNITS { (mv) = (millivolt) . . . }
PARAMETER { gbar = 0.036 (S/cm2) <0, 1e9> . . . }
STATE { n . . . }
ASSIGNED { ik (mA/cm2) . . . }

Default initial values for states

INITIAL {
rates(v)
n = ninf

}

Calculate currents (if any) as functions of v, t, states

(and specify how states are integrated)

BREAKPOINT {
SOLVE deriv METHOD cnexp
ik = gbar * n^4 * (v - ek)

}

State equations

DERIVATIVE deriv {
rates(v)
n' = (ninf - n)/ntau

}

Functions and procedures

PROCEDURE rates(v(mV)) {
. . .

}

Any OS nrnivmodl

MSWin only

Result: NEURON has a new mechanism

Density mechanism

NEURON {
SUFFIX leak
NONSPECIFIC_CURRENT i
RANGE i, e, g

}

PARAMETER {
g = 0.001 (mho/cm2) <0, 1e9>
e = 65 (millivolt) �

}

ASSIGNED {
i (milliamp/cm2)
v (millivolt)

}

BREAKPOINT {
i = g*(v - e)

}

Point Process

NEURON {
POINT_PROCESS Shunt
NONSPECIFIC_CURRENT i
RANGE i, e, r

}

PARAMETER {
r = 1 (gigaohm) <1e 9,1e9>�

e = 0 (millivolt)
}

ASSIGNED {
i (nanoamp)
v (millivolt)

}

BREAKPOINT {
i = (0.001)*(v e)/r�

}

NMODL

GUI

Interpreter

Density mechanism

NEURON {
SUFFIX leak
NONSPECIFIC_CURRENT i
RANGE i, e, g

}

soma {
insert leak
g_leak = 1e-4

}
print soma.i_leak(0.5)

soma.insert.h.leak
soma.leak.g = 1e-4
print(soma(0.5).leak.i)

Point Process

NEURON {
POINT_PROCESS Shunt
NONSPECIFIC_CURRENT i
RANGE i, e, r

}

objref s
soma s = new Shunt(0.5)
s.r = 2

print s.i

s = h.Shunt(soma(0.5))
s.r = 2.0
print(s.i)

hoc:

python:

Ion Channel Ion Accumulation

NEURON {

 USEION k READ ek WRITE ik

}

BREAKPOINT {

 SOLVE states METHOD cnexp

 ik = gbar*n*n*n*n*(v − ek)

}

DERIVATIVE states {

 rate(v*1(/mV))

 n’ = (inf − n)/tau

}

NEURON {

 USEION k READ ik WRITE ko

}

BREAKPOINT {

 SOLVE state METHOD cnexp

DERIVATIVE state {
 ko’ = ik/fhspace/F*(1e8)
 + k*(kbath − ko)
}

}

0 2 4 6 8 10

−80

−40

0

40

v(.5)

soma.ek(0.5)

0 2 4 6 8 10

0

5

10

15

20

soma.ko(0.5)

0 2 4 6 8 10

0

1

2

3

soma.ik(0.5)

(ms)

(mM) (mV) (mA/cm2)

STATE {

 Vesicle Ach Achase Ach2ase X Buffer[N] CaBuffer[N] Ca[N]

}

KINETIC calcium_evoked_release {

 : release

 ~ Vesicle + 3Ca[0] <−> Ach (Agen, Arev)

 ~ Ach + Achase <−> Ach2ase (Aase2, 0) : idiom for enzyme reaction

 ~ Ach2ase <−> X + Achase (Aase2, 0) : requires two reactions

 : Buffering

 FROM i = 0 TO N−1 {

 ~ Ca[i] + Buffer[i] <−> CaBuffer[i] (kCaBuffer, kmCaBuffer)

 }

 : Diffusion

 FROM i = 1 TO N−1 {

 ~ Ca[i−1] <−> Ca[i] (Dca*a[i−1], Dca*b[i])

 }

 : inward flux

 ~ Ca[0] << (ica)

}

Internal Free Calcium

Vesicle

Saturable Calcium Buffer

ica

Ach

Achase

UNITS Checking

NEURON { POINT_PROCESS Shunt ... }

PARAMETER {

 e = 0 (millivolt)

 r = 1 (gigaohm) <1e−9,1e9>

}

ASSIGNED {

 i (nanoamp)

 v (millivolt)

}

BREAKPOINT {

 i = (v − e)/r

}

Units are incorrect in the "i = ..." current assignment.

BREAKPOINT {

 i = (v − e)/r

}

The output from

 modlunit shunt

is:

 Checking units of shunt.mod

 The previous primary expression with units: 1−12 coul/sec

 is missing a conversion factor and should read:

 (0.001)*()

 at line 14 in file shunt.mod

 i = (v − e)/r<>

To fix the problem replace the line with:

What conversion factor will make the following consistent?

(uM/ms) (mA/cm2) (coulomb/mole) (um)

 nai’ = ina / FARADAY * (c/radius)

/ /

 i = (0.001)*(v − e)/r

NEURON's source code from github.com/neuronsimulator/nrn

look in nrn/src/nrnoc

ModelDB modeldb.yale.edu | modeldb.science

"but be careful"

Hines, M.L. and Carnevale, N.T. Expanding NEURON's Repertoire
of Mechanisms with NMODL. Neural Computation 12:995-1007,
2000. Get the enhanced preprint
https://neuron.yale.edu/neuron/static/papers/nc2000/

nmodl400.pdf

Chapters 9 and 10 of The NEURON Book

"Why not just write my own?"
� start with something close to what you want
� make small changes and check results

Or resort to the Channel Builder.

Where to find mod files?

(URLs relative to https://neuron.yale.edu/neuron/static/

unless otherwise noted)

Hines, M.L. and Carnevale, N.T. Expanding NEURON's Repertoire
of Mechanisms with NMODL. Neural Computation 12:995-1007,
2000. Get the enhanced preprint papers/nc2000/nmodl400.pdf

Chapters 9 and 10 of The NEURON Book

"Integration methods for SOLVE statements"
https://neuron.yale.edu/phpBB/viewtopic.php?f=28&t=592

Programmer's Reference documentation of NMODL
py_doc/modelspec/programmatic/mechanisms/nmodl.html

and the NEURON block in particular
py_doc/modelspec/programmatic/mechanisms/nmodl2.html

Future developments: https://github.com/BlueBrain/nmodl

Learn more about NMODL

In this experiment you will use a computational model to
perform a virtual knockout and rescue experiment.

First, you will create a "control" model cell with Hodgkin-
Huxley ion channels and verify that it can generate a spike.

Then you will "knock out" its potassium channels (by
reducing the hh mechanism's gkbar to 0), and see what
that does to its electrical activity.

Finally, you will "rescue" the cell's excitability by making it
"express" a potassium channel that replaces the one that
is bundled with the hh mechanism.

Homework: virtual molecular biology!

Part 1. Create a "control" model cell and verify that
it can generate a spike.

1. Copy
https://www.neuron.yale.edu/ftp/neuron/

2021_NEURON_Online_Course/hhkchan.mod

into an empty directory.

2. In a terminal, navigate to the directory that contains
hhkchan.mod and execute

nrnivmodl

3. In that same directory, start Python and then
from neuron import h, gui

Part 1 continued

4. Use a CellBuilder to create a single compartment model
with these properties:

surface area 100 um2

Ra = 100 ohm cm, cm = 1 uf/cm2

hh channels with default channel densities

HHk channels with gkbar set to 0

5. Set up a user interface that includes

a RunControl panel

a voltage axis graph (plot of v at soma(0.5) vs. t)

a PointProcessManager configured as an IClamp with
del 1 ms, dur 0.1 ms, and amp 0.1 nA.

6. Run a simulation.

Do you see a normal hh action potential?

Part 2. "Knock out" the hh potassium channels.

Knock out the hh potassium channels by using the
CellBuilder to set gkbar_hh to 0 S/cm2

Without changing the IClamp's parameters, run a new
simulation. Do you get a spike? Can you elicit a spike by
adjusting the IClamp's dur or amp parameters?

When you are finished exploring the effects of changing
the IClamp's dur and amp, restore these parameters to
0.1 ms and 0.1 nA, respectively.

Part 3. "Rescue" excitability.

Change gkbar_HHk to 0.036 S/cm2. Run a new simulation
to verify that the model generates a normal action potential
waveform.

Consider using Keep Lines and Color/Brush to generate a
figure that confirms that the control and rescued action
potentials have the same waveform.

