
NEURON 2021 Online Course

An Introduction to Mechanistic Modeling
with NEURON

Instructors: Ted Carnevale, Robert McDougal,
and Adam Newton

Associate instructors: Mandy Hanes, 
Joanna J drzejewska-Szmek,�

and Kelvin Jones

 
Supported in part by NIH and NSF



The NEURON Simulation Environment

For models of neurons and neural circuits that are
� closely linked to experimental observations

and involve
� complex anatomical and biophysical properties
� electrical and/or chemical signaling

Features
� Performance
� Ease of use
� Active development
� User support
� Large user base



The NEURON Simulation Environment

Active development
� Open source project directed by Michael Hines at Yale

https://github.com/neuronsimulator/nrn

� Supported by NIH and European Human Brain Project

User support

� Downloads, documentation, tutorials at  
https://www.neuron.yale.edu/

� Individual user support via Forum
https://www.neuron.yale.edu/phpBB/, 

email, phone / Zoom / Skype etc.
� Courses: meetings (SFN, OCNS, other), 

summer course, workshops, webinars



The NEURON User Community

Used by experimentalists, theoreticians, and educators 
for neuroscience research and teaching

As of February 2021

� more than 2400 publications

� more than 2000 subscribers to Forum and mailing list

� source code for > 1600 published models 
(> 750 using NEURON)
at ModelDB https://modeldb.yale.edu/

 



The What and the Why
of Neural Modeling

The moment-to-moment processing of information 
in the nervous system involves the propagation 
and interaction of electrical and chemical signals 
that are distributed in space and time.

Empirically-based modeling is needed to test 
hypotheses about the mechanisms that govern 
these signals and how nervous system function 
emerges from the operation of these mechanisms.



Topics

1. How to create and use models of 
neurons and networks of neurons

� How to specify anatomical and biophysical 
properties

� How to control, display, and analyze models 
and simulation results

2. How NEURON works

3. How to add user-defined biophysical 
mechanisms



From Physical System
to Computational Model

Conceptual model: 
simplified representation of the physical system

Computational model: 
accurate representation of the conceptual model

A close match between the conceptual model
and

the computational model
is essential ("conceptual control").

Computational
Model

Conceptual
Model

Physical
System



From Physical System
to Computational Model

dendrite

soma

Conceptual
model

ball
and
stick

Computational
model

# python
soma = h.Section(name='soma')
dendrite = h.Section(name='dendrite')
dendrite.connect(soma(1))

// hoc
create soma, dendrite
connect dendrite(0), soma(1)

Physical
system

Ca1
pyramidal

cell

v



Fundamental Concepts

Signals

Electrical

Chemical

What
moves

charge
carriers

solute

Driving
force

voltage
gradient

concentration
gradient

What is
conserved

charge

mass



Conservation of Charge

C m

dV
m

d t
+ i ion =� i a

i
m

i
m

i
m

i
m

i
a

i
a

i
a

i
a



Electrically Compact Model

C
m

d V
m

d t
� i

ion
=� i

a

Injected
current



Is NEURON 8.x installed and working?

In a terminal (user entries bold):

[ted@blitz Desktop]$ neurondemo
NEURON -- VERSION 8.0a-575-gd9462cc master (d9462cc) 2021-05-27
Duke, Yale, and the BlueBrain Project -- Copyright 1984-2021
See http://neuron.yale.edu/neuron/credits

loading membrane mechanisms from 
/home/ted/bin/nrn/share/nrn/demo/release/x86_64/.libs/libnrnmech.
so
Additional mechanisms from files
 "cabpump.mod" "cachan1.mod" "camchan.mod" "capump.mod" 
"invlfire.mod" "khhchan.mod" "mcna.mod" "nacaex.mod" "nachan.mod" 
"release.mod"

oc>quit()



Can Python use NEURON as a module?

. . . and do you have Python 3.6?

In a terminal (user entries bold):

[ted@blitz Desktop]$ python3
Python 3.6.8 (default, Nov 16 2020, 16:55:22) 
[GCC 4.8.5 20150623 (Red Hat 4.8.5-44)] on linux
Type "help", "copyright", "credits" or "license" for more 
information.
>>> from neuron import h, gui
>>>

import h, gui should generate no error message, 

and you should see the NEURON Main Menu toolbar.

>>> quit()



Exercise: Single Compartment Model

Start with a lipid bilayer (no channels)

Add linear ion channels (passive leak)

Use the GUI to:
� build a model and an interface for using it
� run simulations and analyze results
� change stimulus params (intensity and duration)
� adjust graphical displays of simulation results
� adjust simulation params dt and Points Plotted / ms



An aside: why the GUI?

Very convenient for interactive tasks--development, debugging, 
exploratory simulations (how well do you understand your own 
models?).

Graphical model specifications and presentations of simulation 
results are intuitive and easily understood.

Adding a custom user interface to your own programs makes it 
easier to collaborate with non-programmers.

Many GUI tools do things that would be hard to accomplish 
by writing your own code, e.g. CellBuilder, Channel Builder, 
Linear Circuit Builder, Impedance tools, VariableStepControl, 
ModelView, even the lowly Shape Plot.

The GUI always works--no typos, can't violate syntax.

The most powerful approach to using NEURON: combine the 
GUI and your own code to exploit the strengths of both.



Single Compartment continued

Open a terminal window. 
In that window enter these commands:

cd Desktop

mkdir simplecell

cd simplecell

Now you have a place to work.

Start Python and tell it to use the neuron module.

python3

At python's >>> prompt enter this command:

from neuron import h, gui



Single Compartment continued

Get a CellBuilder by clicking on

Neuron Main Menu / Build / CellBuilder

Set soma's surface area to 100 um2.

CellBuilder / Geometry tab

Click on soma

Click on the area checkbox.

Toggle Specify Strategy off.

Make sure numeric field next to the
area(um2) button says 100.



Single Compartment continued

Make sure that the soma has membrane 
capacitance, and that cm = 1 uF/cm2.

CellBuilder / Biophysics tab

Click on soma

Click on the cm checkbox to toggle it on.

The other checkboxes (Ra, pas, 
extracellular, hh) should be off.

Toggle Specify Strategy off.

Make sure the numeric field next to the
cm(uF/cm2) button says 1.



Single Compartment continued

Before doing anything else, save your work. Click 
on

Neuron Main Menu / File / save session

Popup window--enter simplecell.ses

Click on Save button to write a file called 
simplecell.ses in your Desktop/simplecell 

directory. You can use this file to recreate your 
configured CellBuilder.



Single Compartment continued

Next click on the Continuous Create button. Your 

computer's memory now contains a model cell with 
the properties specified by the CellBuilder.

Let's do some experiments on this model.
You'll need:

a RunControl panel to launch simulations

NMM/Tools/RunControl

a graph of soma membrane potential vs. time

NMM/Graph/Voltage axis



Single Compartment continued

a current clamp ("IClamp") that injects a 1 ms x 1 nA 
current pulse that starts 1 ms into the model cell

NMM/Tools/Point Processes/Managers/ 
Point Manager

Make this be a current clamp

PointProcessManager/SelectPointProcess/ 
IClamp

Show the IClamp's parameters

PPM/Show/Parameters

Set delay(ms), dur(ms), and amp(nA) to 1.



Single Compartment continued

Plot stimulus current vs. time.

NMM/Graph/Current axis

Make it plot the IClamp's i variable.
Click on the Graph's menu button (left upper 
corner of its canvas) and select "Plot what?"

Click in the variable name browser's edit field and 
enter

IClamp[0].i

then click

Accept



Single Compartment continued

Before you do anything else

1. save your work to a session file. You might call 
this cell1rig.ses

2. on a sheet of paper sketch what you think the 
plots of somatic membrane potential and IClamp[0].i 
will look like.

Then launch a simulation by clicking on
RunControl / Init & Run

In the RunControl panel note the simulation 
parameters dt, Tstop, and Points plotted/ms.  
What happens if you change these?



Single Compartment continued

Things to do:

Quit Python (enter quit() at the >>> prompt, or click 

on NMM / File / Quit).

Start Python and load the session file you saved 
earlier.

[ted@blitz simplecell]$ python3
>>> from neuron import h, gui
>>> h.load_file('cell1rig.ses')
>>> 

The model cell and custom user interface you saved 
are ready to be used.



Single Compartment continued

Things to do:

Use "View = plot" to rescale Graph axes.

Maximum soma.v too big? Divide IClamp.amp by 10 
and try again.

What IClamp.amp depolarizes the model by 10 mV?

Insert passive channels and see how this affects the 
model.

In the CellBuilder click on Biophysics, then toggle 
Specify Strategy on. Click on the pas button so it 
shows a check mark.



Single Compartment continued

What does the pas mechanism do to the model cell's 

resting potential?

Is it useful to initialize a model to its resting potential? 
If yes, how can you make this happen?

Change IClamp.amp to 1 A (1e9 nA) and run a 
simulation. Rescale the graphs if necessary. What 
would happen to a real cell?

Change IClamp.amp to 1 nA and dur to 0.01 ms. 

What happens and why?
Change Points plotted/ms to 100 and try again.



Conservation of Charge

C m

dV
m

d t
+ i ion =� i a

i
m

i
m

i
m

i
m

i
a

i
a

i
a

i
a



Models with Significant Electrical Extent

c
j

dv
j

d t
� i

ion
j

=�
k

v
k
� v

j

r j k

v
j

membrane potential in compartment j

i
ion

j
net transmembrane ionic current in compartment j

c
j

membrane capacitance of compartment j

r
jk axial resistance between the centers of

compartment j
and

adjacent compartment k



Separating Anatomy and Biophysics
from Purely Numerical Issues

section

a continuous length of unbranched cable

Anatomical data from A.I. Gulyás



Range Variables

Name Meaning Units

diam diameter [µm]

cm specific membrane [µf/cm2]

capacitance

g_pas (hoc) specific conductance [siemens/cm2]

pas.g (Python) of the pas mechanism

v membrane potential [mV]



range

normalized position along the length of a section

0 � range � 1

0 1

distance
normalized

0

distance
physical

length
physical



Syntax:
secname(range).rangevar

Translation: "in secname

at the location corresponding to range

access the value of rangevar"

Examples:
# v at middle of dend

dend(0.5).v # shortcut: dend.v

# at each point in dend
# where v is calculated

# print range, anat distance, and v
for seg in dend.allseg():

print(seg.x, seg.x*dend.L, dend(seg.x).v)



nseg

the number of points in a section at which

the discretized cable equation is integrated

nseg=1

nseg=2

nseg=3

Example:  axon.nseg = 3

To test spatial resolution
for sec in h.allsec():

sec.nseg *= 3

and repeat the simulation





Category Variable Units
Time t [ms]

Voltage v [mV]

Current

specific i [mA/cm2] (distributed)

absolute [nA] (point process)

Capacitance

specific cm [uF/cm2]

absolute [nF] (point process)

Length diam, L [um]

Conductance

specific g [S/cm2] (distributed)

absolute [uS] (point process)

Cytoplasmic resistivity Ra [ohm cm]

Resistance ri() [106 ohm]

Concentration nai etc. [mM]



Physical System

From http://www.mbl.edu/

Hodgkin-Huxley cable equations

D

4 Ra

�
2

V

� x
2

= Cm

�V

� t
+ �gm

3
h�(V�Ena) + �gk n

4
�(V�Ek) + gl�(V�E l)

dm

dt
=��mm + 	m(1�m) �m =

0.1(V +40)

1�e
�0.1(V +40)

	m = 4e
�(V +65)/18

dh

dt
=��h h + 	h(1�h) �h = 0.07e

�0.05(V+65)
	h =

1

1+e
�0.1(V+35)

dn

dt
=��n n + 	n(1�n) �n =

0.01(V +55)

1�e
�0.1(V +55) 	n = 0.125e

�(V +65)/80

Conceptual Model



Hodgkin-Huxley cable equations

Conceptual Model

axon = h.Section(name = 'axon')
axon.L = 2.0e4
axon.diam = 100.0
axon.nseg = 43
axon.insert('hh')

dm

dt
=��mm + 	m(1�m) �m =

0.1(V +40)

1�e
�0.1(V +40)

	m = 4e
�(V +65)/18

dh

dt
=��hh + 	h(1�h) �h = 0.07e

�0.05(V+65)
	h =

1

1+e
�0.1(V+35)

dn

dt
=��nn + 	n(1�n) �n =

0.01(V +55)

1�e
�0.1(V +55) 	n = 0.125e

�(V +65)/80

+ �gm
3
h�(V�Ena) + �gk n

4
�(V�Ek) + gl�(V�El)

Python for NEURON

Computational implementation

D

4 Ra

�
2
V

� x
2

= Cm

�V

� t



Hodgkin-Huxley cable equations

Conceptual Model

axon = h.Section(name = 'axon')
axon.L = 2.0e4
axon.diam = 100.0
axon.nseg = 43
axon.insert('hh')

dm

dt
=��mm + 	m(1�m) �m =

0.1(V +40)

1�e
�0.1(V +40)

	m = 4e
�(V +65)/18

dh

dt
=��hh + 	h(1�h) �h = 0.07e

�0.05(V+65)
	h =

1

1+e
�0.1(V+35)

dn

dt
=��nn + 	n(1�n) �n =

0.01(V +55)

1�e
�0.1(V +55) 	n = 0.125e

�(V +65)/80

+ �gm
3
h�(V�Ena) + �gk n

4
�(V�Ek) + gl�(V�El)

Python for NEURON

Computational implementation

D

4 Ra

�
2
V

� x
2

= Cm

�V

� t



Hodgkin-Huxley cable equations

Conceptual Model

axon = h.Section(name = 'axon')
axon.L = 2.0e4
axon.diam = 100.0
axon.nseg = 43
axon.insert('hh')

dm

dt
=��mm + 	m(1�m) �m =

0.1(V +40)

1�e
�0.1(V +40)

	m = 4e
�(V +65)/18

dh

dt
=��hh + 	h(1�h) �h = 0.07e

�0.05(V+65)
	h =

1

1+e
�0.1(V+35)

dn

dt
=��nn + 	n(1�n) �n =

0.01(V +55)

1�e
�0.1(V +55) 	n = 0.125e

�(V +65)/80

+ �gm
3
h�(V�Ena) + �gk n

4
�(V�Ek) + gl�(V�El)

Python for NEURON

Computational implementation

D

4 Ra

�
2
V

� x
2

= Cm

�V

� t



Hodgkin-Huxley cable equations

Conceptual Model

axon = h.Section(name = 'axon')
axon.L = 2.0e4
axon.diam = 100.0
axon.nseg = 43
axon.insert('hh')

dm

dt
=��mm + 	m(1�m) �m =

0.1(V +40)

1�e
�0.1(V +40)

	m = 4e
�(V +65)/18

dh

dt
=��hh + 	h(1�h) �h = 0.07e

�0.05(V+65)
	h =

1

1+e
�0.1(V+35)

dn

dt
=��nn + 	n(1�n) �n =

0.01(V +55)

1�e
�0.1(V +55) 	n = 0.125e

�(V +65)/80

+ �gm
3
h�(V�Ena) + �gk n

4
�(V�Ek) + gl�(V�El)

Python for NEURON

Computational implementation

D

4 Ra

�
2
V

� x
2

= Cm

�V

� t



Example: Squid Axon

For this exercise create a new folder called axon.

Use a CellBuilder to create a model with a single section 
called axon that has these properties:

L 2e4 um

diam 100 um

nseg 43

membrane has the hh mechanism

Save configured CellBuilder to a file called hhaxon.ses



Squid Axon continued

Use the GUI to build an interface that includes:

� a RunControl panel to launch simulations

� a PointProcessManager configured as an IClamp 
attached to the 0 end of the axon

� a voltage axis graph that shows membrane 
potential at axon(0.5)

� a space plot that plots v vs. distance along the 
axon

� a Movie Run tool to launch simulations that show 
a smooth evolution of the space plot over time





Squid Axon continued

Use a current pulse of 0.1 ms duration to trigger a 
spike that starts at the 0 end of the axon.

Adjust the pulse amplitude to find the spike threshold 
to two place precision.

Set the pulse amplitude to 2*threshold. Measure  
spike amplitude and half-width at axon(0.5).

Cut sodium channel density in half. What happens to 
spike amplitude and half-width? Repeat until gnabar 
is so low that you don't get a spike. What is the 
smallest gnabar needed to produce a spike?



Squid Axon homework 1

Use a text editor to create a file called axonrig.py

This file should contain the following commands:

from neuron import h, gui
load_file('hhaxon.ses')

Save the file and exit the text editor.

At the system prompt execute the command

python3 -i axonrig.py

Your model axon and its user interface should be 
ready for you to use.



Squid Axon homework 2

At the system prompt execute the command

python3 -i axonrig.py

Attach a second IClamp to the 1 end of the axon.

Set both IClamps to deliver a 2*spike threshold 
stimulus at 1 ms and run a simulation. 
What happens, and why?



Squid Axon homework 3

At the system prompt execute the command

python3 -i axonrig.py

Use the CellBuilder to change nseg to 15 and run a 
simulation. 
What happens and why?

Using the original value of nseg, determine 
conduction velocity over the middle half of the axon.



Squid Axon homework 4

At the system prompt execute the command

python3 -i axonrig.py

Change IClamp.dur to 10 ms and adjust amp to force 
axon(0).v to -80 mV. What happens after the current 
stops? Why?


