Building, Running, and Visualizing

Parallel NEURON Models

Robert A. McDougal
Yale School of Medicine

11 August 2018

Why use parallel computation?

Four reasons:

@ Get the results for a simulation in less real time.

@ Run a larger simulation in the same amount of time.
@ Run more simulations (e.g. parameter sweeps).
(]

Run models needing more memory than is available on one machine.

What are the downsides?

Parallel models introduce:

@ Greater programming complexity.
@ New kinds of bugs.

You have to decide if the time spent parallelizing your model can be recovered.

Other considerations

The 16384 core EPFL IBM BlueGene/P can theoretically do as many calculations
in 1 hour at 850 MHz as a 3 GHz desktop computer can do in 6 months.

Building a parallelizable model typically requires little extra effort from building a
serial model; converting a serial model to a parallel model is often more difficult.

Y

Three main classes of parallel problems

Parameter sweeps

Running the same (typically fast) simulation 1000s of times with different
parameters is an example of an embarrassingly parallel problem. NEURON
supports this natively with bulletin boards; Calin-Jageman and Katz (2006)
developed a screen saver solution.

Distributing networks across processors

| \

Cells can communicate by
@ logical spike events with significant axonal, synaptic delay.

@ postsynaptic conductance depending continuously on presynaptic voltage.

@ gap junctions.

Distributing single cells across processors

The multisplit method distributes portions of the tree cable equation across
different machines. |

| A

A parallel model can fall in 1, 2, or 3 of these classes.

Some parallel philosophy

@ A network of neurons is composed of many individual neurons of potentially
many cell types. As much as possible, design and debug each cell type
separately before building the network.

@ A simulation should give the same results regardless of the number of
processors used to run it.

@ When possible, parameterize your network so you can run a small test first.

vy

For parallel networks: cell classes should have a gi

In addition, it will be convenient to specify morphology in a dedicated method,
and add a __repr__ method to identify the object.

from neuron import h, gui
h.load_file('import3d.hoc')

class Pyramidal:

def __init__(self, gid):
self._gid = gid
self._setup_morphology()

def _setup_morphology(self):
cell = h.Import3d_SWC_read()
cell.input('c91662.swc')
i3d = h.Import3d_GUI(cell, 0)
i3d.instantiate(self)

def __repr__(self):
return 'Pyramidal[%d]' % self._gid

Here, the gid should be a globally unique identifying integer. We do not use class
variables to generate the integer automatically because: (1) the numbers should
not repeat between different processors, and (2) we may wish to recreate a single
specific cell instead of the entire network.

Working with multiple cells

Suppose Pyramidal is defined as before and we create several copies:

mypyrs = [Pyramidal(i) for i in range(10)]

We then view these in a shape plot:

Where are the other 9 cells?

Working with multiple cells

To can create a method to reposition a cell and call it from __init__:

class Pyramidal:
def _shift(self, x, y, 2z):
for sec in self.all:

n = sec.n3d()

xs = [sec.x3d(i) for i in range(n)]

ys = [sec.y3d(i) for i in range(n)]

zs = [sec.z3d(i) for i in range(n)]

ds = [sec.diam3d(i) for i in range(n)]

def __init__(self, gid, x, y, z):
self._gid = gid
self._setup_morphology()
self._shift(x, y, 2z)

def _setup_morphology(self):
cell = h.Import3d_SWC_read()

1=0 . cell.input('c91662.swc')

for a, b, ¢, d in zip(xs, ys, zs, ds): i3d = h.Import3d_GUI(cell, 0)
sec.pt3dchange(i, a + x, b + y, ¢ + z, d) i3d instantiate(;elf) ’
i4=1 :

Now if we create ten, while specifying offsets,
mypyrs = [Pyramidal(i, i * 100, O, 0) for i in range(10)]
The PlotShape will show all the cells separately:

Does position matter?

Sometimes.

Position matters with:
@ Connections based on proximity of axon to dendrite.
@ Connections based on cell-to-cell proximity.
o Extracellular diffusion.
°

Communicating about your model to other humans.

Discretize, declare channels, set parameters

class Pyramidal:
def __init__(self, gid):

self._gid = gid Remember: you

self._setup_morphology() typ|ca||y want to

self._discretize()

self._add_channels() have an odd number
def _setup_morphology(self): of Segments so there

cell = h.Import3d_SWC_read() .

cell.input('c91662.swc') is a node at the

i3d = h.Import3d_GUI(cell, 0) middle.

i3d.instantiate(self)
def __repr__(self):

return 'p[%4d]' % self._gid When refining a
def _discretize(self, max_seg_length=20): .
for sec in self.all: meSh' mU|t|p|y by
sec.nseg = 1 + 2 * int(sec.L / max_seg_length) an odd number to
def _add_channels(self): preserve old nodes.

for sec in self.soma:
sec.insert('hh')
for sec in self.all:
sec.insert('pas')
for seg in sec:
seg.pas.g = 0.001

for sec in self.all:
sec.nseg *= 3

An alternative discretization strategy is to use the d_lambda rule:
def _discretize(self):
h.load_file('stdlib.hoc')
for sec in self.all:
sec.nseg = int((sec.L/(0.1%h.lambda_£(100)) + .9)/2.)%2 + 1

Examine for errors: Tools — ModelView

'\ ModelView[0]

New way to run via h.ParallelContext ()

pc = h.ParallelContext()
pc.set_maxstep(10)
h.v_init = -69
h.stdinit ()

h.load_file('stdrun.hoc') pc.psolve(10)

from neuron import h
from PyNeuronToolbox import morphology
from matplotlib import pyplot

pyplot.plot(t, v)
pyplot.xlabel('t (ms)')
pyplot.ylabel('v (mV)')
pyplot.show()

class Pyramidal defined as before
myPyramidal = Pyramidal(0)

postsyn = h.ExpSyn(myPyramidal.dend[0] (0.5))
postsyn.e = 0 # reversal potential

stim = h.NetStim()

stim.number = 1

stim.start = 3

ncstim = h.NetCon(stim, postsyn)
ncstim.delay = 1
ncstim.weight[0] = 1

v (mv)
|

t = h.Vector()

t.record(h._ref_t)

v = h.Vector()
v.record(myPyramidal.soma[0] (0.5)._ref_v)

t(ms)

Building synapses

PreCell PostCell

Configuring the presynaptic connection site

PreCell

Create cell only where the gid exists: Associate gid with spike source:
if pc.gid_exists(7): nc = h.NetCon(PreSyn, None, sec=presec)
PreCell = Cell() pc.cell(7, nc)

PreSyn here is a pointer, e.g. PreCell.soma(0.5)..ref.v

Configuring the postsynaptic connection site

PostCell

Create NetCon on node where target exists:

nc = pc.gid_connect (7, PostSyn)

PostSyn here is a Point Process, e.g. an ExpSyn.

Spike exchange method

PreCell PostCell

Spike exchange method

PreCell

PostCell

PostSyn

Spike exchange method

PreCell PostCell

PostSyn

n 1 n 1

gid 7 ~|gid 7

t _2.gys|MPLAllGather 51y 5875
gid —— Olgid ——
t t

cpu 3

Spike exchange method

PreCell PostCell

n 1 n 1
gid 7 ~|gid 7
t 2.875 alt 2.875
gid —— Olgid ——
t t
t ol =~
v,z

o-
N
I
)]

Exploit transmission delays: using pc.set maxstep

Run using the idiom:

pc.set_maxstep(10)
h.stdinit ()
pc.psolve(tstop)

NEURON will pick an event exchange interval equal to the smaller of all the
NetCon delays and of the argument to pc.set_maxstep. In general, larger
intervals are better because they reduce communication overhead.

spikes here are delivered here
min delay

exchange exchange

pc.set_maxstep must be called on each node; it uses MPT_Allreduce to
determine the minimum delay.

Adding a presynaptic site

class Pyramidal:

def __init__(self, gid):
self._gid = gid
self._setup_morphology ()
self._discretize()
self._add_channels()
self._register_netcon()

def _register_netcon(self):
self.nc = h.NetCon(self.soma[0](0.5)._ref_v, None, sec=self.somal[0])
pc = h.ParallelContext ()
pc.set_gid2node(self._gid, pc.id())
pc.cell(self._gid, self.nc)

the rest of the class stays unchanged

For most models, the delay due to axon propagation can be incorporated into a
synaptic delay and thus it suffices to only make one connection point at the soma
or axon hillock.

pc.set_gid2node must be called before pc.cell.

Building a two cell network

class Network:
def __init__(self):
self.cells = [Pyramidal(i) for i in range(2)]
setup an exciteable ExpSyn on each cell’s dendrites
self.syns = [h.ExpSyn(cell.dend[0](0.5)) for cell in self.cells]
for syn in self.syns:
syn.e = 0
connect cell O to cell 1
pc = h.ParallelContext ()
pre = 0
post =1
self.nc = pc.gid_connect(pre, self.syns[post])
self.nc.delay = 1
self.nc.weight[0] = 1

n = Network()

Note: we use for loops and list comprehensions even when there is only two cells
to avoid repeating ourselves (the DRY-principle) and to allow future
generalization.

Running the two cell network

drive the Oth cell

stim = h.NetStim()

stim.number = 1

stim.start = 3

ncstim = h.NetCon(stim, n.syns[0])

ncstim.delay = 1 a0
ncstim.weight[0] = 1

20
t = h.Vector()

t.record(h._ref_t)
v = [h.Vector() for cell in n.cells]
for myv, cell in zip(v, n.cells):

s
myv.record(cell.soma[0] (0.5)._ref_v) §7m
pc = h.ParallelContext() 0
pc.set_maxstep(10)
h.v_init = -69 =60
h.stdinit ()
pc.psolve(10) 80

t(ms)
for myv in v:
pyplot.plot(t, myv)
pyplot.xlabel('t (ms)')
pyplot.ylabel('v (mV)')
pyplot.show()

Exercise: Generalizing to n cells in a ring network

How can we generalize to a ring network with n cells?

0—>1—>2—>3—>—n-1

Hint: As i increases, i % ncounts: 0,1,2,...,n—1,0,1,...

Solution: Generalizing to n cells in a ring network (100ms)

class Network:
def __init__(self, num):
self.cells = [Pyramidal(i) for i in range(num)]
setup an exciteable ExpSyn on each cell’s dendrites
self.syns = [h.ExpSyn(cell.dend[0](0.5)) for cell in self.cells]
for syn in self.syns:
syn.e = 0
connect cell i to cell (i + 1) % num
pc = h.ParallelContext ()
self.ncs = []
for i in range(num):
nc = pc.gid_connect(i, self.syns[(i + 1) % num])
nc.delay = 1
nc.weight[0] = 1
self.ncs.append(nc)

n = Network(20)

Storing spike times

With 20 cells, it is hard to distinguish the cells when simultaneously plotting the
membrane potentials. Let's just store the spike times.

We begin by modifying Pyramidal. register netcon:

def _register_netcon(self):
self.nc = h.NetCon(self.soma[0](0.5)._ref_v, None, sec=self.somal[0])
pc = h.ParallelContext ()
pc.set_gid2node(self._gid, pc.id())
pc.cell(self._gid, self.nc)
self.spike_times = h.Vector()
self.nc.record(self.spike_times)

When the simulation is over, we can print out the spike times:

for i, cell in enumerate(n.cells):
print('%d: %r' % (i, list(cell.spike_times)))

Beginning of output:

0: [4.600000000100032, 36.62500000009977, 69.12500000010715]
1: [6.200000000100054, 38.25000000010014, 70.75000000010752]
2: [7.800000000100077, 39.875000000100506, 72.37500000010789]
3: [9.4000000001, 41.500000000100876, 74.00000000010826]

Storing spike times: JSON

To store spike times in JSON, we can use the following code:
import json
with open('output.json', 'w') as f:
f.write(json.dumps({i: list(cell.spike_times) for i, cell in enumerate(n.cells)},
indent=4))

This creates a file output . json which begins:
IIOII B [
4.600000000100032,
36.62500000009977,
69.12500000010715

"1": [
6.200000000100054,
38.25000000010014,
70.75000000010752

ll2ll: [
7.800000000100077,
39.875000000100506,
72.37500000010789

JSON is a standard format for data interchange. Libraries are available for most programming languages.

Raster plots

25

20 - | |

15F \ \ [

10 [[\

0 20 40 60 80 100

for i, cell in enumerate(n.cells):
pyplot.vlines(cell.spike_times, i + 0.5, i + 1.5)
pyplot.show()

Simple load-balancing strategy: round-robin.

Processor 1 Processor 2

Processor 3 Processor 4

Simple load-balancing strategy: round-robin.

CPUO

pc.id 0
pc.nhost 5
ncell 14

gid

0

5

10

CPU 3

pc.id 3
pc.nhost 5
ncell 14

gid

3

8

13

An efficient way to distribute, especially if all cells similar:

for gid in range(pc.id(), ncell, pc.nhost()):

pc.set_gid2node(gid, pc.id())

CPU 4

pc.id 4
pc.nhost 5
ncell 14

gid

4

9

(Note: the body is executed at most [ncell/nhost]| times, not ncell.)

Advanced load-balancing: balance work not number of cells

Strategy:
@ Distribute cells round-robin to all processors, instantiate them.
@ Compute an estimate of the computational complexity:

def complexity(self):
h.load_file('loadbal.hoc')
1b = h.LoadBalance()
return lb.cell_complexity(sec=self.all[0])

Destroy the cells, send the gid-complexity data to node 0.

(On node 0): distribute gids such that the next gid goes to the node with the
least amount of complexity.

Send the gids to the nodes; instantiate the cells.

For a more accurate (but computationally more intensive) estimate of complexity, use Ib.ExperimentalMechComplex and Ib.read_complex.

Parallelizing our ring network with round-robin

Very few changes are necessary.

An extra import at the very beginning:
from mpidpy import MPI

The Network class only instantiates gids on the current processor.

class Network:

def

__init__(self, num):
pc = h.ParallelContext()
mygids = list(range(pc.id(), num, pc.nhost()))
self.cells = [Pyramidal(i) for i in mygids]
setup an exciteable ExpSyn on each cell’s dendrites
self.syns = [h.ExpSyn(cell.dend[0](0.5)) for cell in self.cells]
for syn in self.syns:
syn.e = 0
connect cell (i - 1) % num to cell i
self.ncs = []
for i, syn in zip(mygids, self.syns):
nc = pc.gid_connect((i - 1) % num, syn)
nc.delay = 1
nc.weight[0] = 1
self.ncs.append(nc)

Parallelizing our ring network

We must modify the initial netstim to ensure it only attaches to gid 0 not to the

Oth cell in each process.

drive the Oth cell
if pc.gid_exists(0):

stim = h.NetStim()

stim.number = 1

stim.start = 3

ncstim = h.NetCon(stim, n.syns[0])
ncstim.delay = 1

ncstim.weight[0] = 1

Finally, we modify the write to do it on a per-processor basis:

with open('output¥d.json' % pc.id(), 'w') as f:
f.write(json.dumps({cell._gid: list(cell.spike_times) for cell in n.cells},

indent=4))

Optional: use pc.py_alltoall to send all spikes to node 0

local_data = {cell._gid: list(cell.spike_times) for cell in n.cells}
all_data = pc.py-alltoall([local_data] + [None] * (pc.nhost() - 1))

if pc.id() == 0:

only do output from node 0

import json

combined_data = {}

for node_data in all_data:
combined_data.update(node_data)

with open('output.json', 'w') as f:
f.write(json.dumps(combined data, indent=4))

Performance: MPI scaling

Santhakumar et al. (2005)

coll number

CINECA 1M Linux cluster
EPFL IBM Blue Gene

»

0 5 100 150 200 250
time (ms)

Davison et al., (2003)

500

o Mkl b -
0 100 200 300 400 500

time (ms)

8 16 32 64 128 256 512
number of processors

32 64 128 256 512
number of processors

32 64 128 256 512

8 16
number of processors.

A)

cell number

extended (160,000 cells) Bush et al (1999) model
on the EPFL IBM BlueGene

160¢10°

140¢10°

120¢10°

100x10°

g 8

10000 cells

o

160000 cells s

50 125 250 500 1000 2000 4000 8000

number of processors

Performance: Spike exchange strategies

MPI_ISend - Two Phase, Two Subinterval ArtIfICIal Splklng Net

A

A Allgather

® DCMF_Multicast - Two Phase, Two Subinterval Blue Gene/P

O Record-Replay - One Subinterval .

+ Computation Time (includes queue) Argonne National Lab

Strong Scaling
32 ~

5 2M Cells < 1/4M Cells
@ @
816 - 1k Connfcell 216 = N 10k Conn/cell
@ @ N
£ 8 £ 8 N
€ € N
5 5
€ 4 X 4
2 2
1+ 1=
05 J 0.5 | | NE J
8 16 32 64 138 8 16 32 64 128
K processors K processors
Weak Scaling
30 30 —
o o
CD @
8 A,,__A——A*H g
o @
E2 | E2 |-
5 1k Conn/cell 5 10k Conn/cell
4 4
10 10
2M cells 32M cells 1/4M cells 4M cells
0 1 1 1 1 0 1 1 1 1 1)
8 16 32 64 128 8 16 32 64 128

K processors K processors

Performance Tip

Tip: For network models, use a fixed step solver and not a variable step solver.

Suppose we now realize we want to know the time series of the m variable in the
center of the soma of cell 5. We only stored spike times. Do we have to modify
our code to store that variable and rerun the entire simulation?

Tip: Store synaptic events; recreate single cells as

initial conditions
+ =3 neuron dynamics
synaptic events

v -|e|% Timeseries plot -|e| %
XY XZ Yz soma(0.5).v vs t
25
soma(0.5).v(1=67.625) = 25.82814598083496

0
-25
-50

-1000 -750 -500 -250 0 250 -75

200 400 600 800 1000
-80.632 59.046
t

67.625 >

Using spike data to recreate a variable of interest

We will need vecevent.mod. If you have NEURON, this file should be on your
computer somewhere. Alternatively, you can download it from:

https://github.com /neuronsimulator/nrn /blob/master/
share/examples/nrniv/netcon /vecevent.mod

Using spike data to recreate a variable of interest

import json

from neuron import h

from PyNeuronToolbox import morphology
from matplotlib import pyplot
h.load_file('stdrun.hoc')

num_cells = 20

class Pyramidal as before
read spike times

with open('output.json') as f:
spike_times_by_cell = json.load(f)

(continued)

Using spike data to recreate a variable of interest

def get_m(gid):
p = Pyramidal(gid)
recreate synaptic inputs (here, only one; you may have multiple)
precell = (gid - 1) % num_cells
vs = h.VecStim()
spike_vec = h.Vector(spike_times_by_cell[str(precell)])
vs.play(spike_vec)
syn = h.ExpSyn(p.dend[0] (0.5))
nc = h.NetCon(vs, syn)
nc.delay = 1
nc.weight[0] = 1
setup recording
t, m = h.Vector(), h.Vector() 10
t.record(h._ref_t)
m.record(p.soma[0] (0.5)._ref_m_hh)
do run 08
pc = h.ParallelContext ()
pc.set_maxstep(10)
h.v_init = -69
h.stdinit ()
pc.psolve(100) 04
return t, m

0.6

t, m = get_m(5) 02

pyplot.plot(t, m) -

pyplot.show() 00

Multisplit

Improve load balancing with multisplit

200 —

16 Pieces \ L o
4 CPU ” 4 soomp .
100 |-
000
50 - @®
ole®® 1
0 4 8 12 16
Piece

o~ g g = :

#comp n . -
]
300 —
Time (s) 200 |-
CPU Computation Exchange]
0 13.82 0.56 Runtime(s)
1 13.35 1.03 16 pieces, 1 cpu sso L
e meom el UL
3 13.56 0.82 ' ’ R TR

Multisplit algorithm described in Hines et al 2008. DOI: 10.1007/s10827-008-0087-5

[2]
e
(@)
=
-
[0}
S
=
a
-2
S=
>
=

< o

d

d

d

d

d

d

d

[e}

o O

Using multisplit (threads)

When not using MPI, enabling thread-based multisplit is as easy as clicking a

checkbox:

Close

Hide

Close Hide

ol

4 useful processors

Total model complexity: 426
22 pieces

Load imbalance: 2.3%

threads
hread Parallel
Cache Efficient
Use husy waiting
ultisplit
Refresh

Using multisplit (MPI)

For process-based multisplit (with MPI), use pc.multisplit to declare split
nodes:

pc.multisplit(x, subtreeid, sec=sec)

After all split nodes are declared, every process must execute:

pc.multisplit()

If created, destroy any parts of the cell that do not belong on the processor.

Rules:
@ Each subtree can have at most two split nodes.

@ Does not support variable step, linear mechanisms, extracellular, or
reaction-diffusion.

@ h.distance cannot compute path distances that cross a split node.

Tip: For load balancing, it is sometimes convenient to split cells into more pieces
than processes.

Example: Migliore et al 2014

Migliore et al 2014 used multisplit to improve load balancing on a model of the
olfactory bulb.

http://modeldb.yale.edu/151681

See, in particular, the file multisplit_distrib.py.

Continuous voltage exchange

si(x1l).v

gl.vgap
HalfGap.mod
NEURON { ASSIGNED {
POINT PROCESS HalfGap v (millivolt)
ELECTRODE CURRENT i vgap (millivolt)
RANGE r, i, vgap i (nanoamp)

} }
PARAMETER { r = 1le9 (megohm) } CURRENT { i

(vgap - v) / r }

pc.source_var to declare source sgid

pc.source_var(s1(x1)._ref v, 1)

si(x1).v «> sglid

9 e > $2(x2).v

pc.source_var(s2(x2)._ref_ v, 2)

pc.target var to declare target connection

pc.source_var(s1(x1)._ref v, 1)
sgid

s1(x1).v «—> 1 Nfrget_var(gz._ref_vgap, 1)
g2.vgap

gl.vgap
pc.target_var(gl._ref_vgap, 2) 592“j <> s2(x2).v

pc.source_var(s2(x2)._ref_ v, 2)

Performance: Traub model

Pittsburgh Supercomputing Center
Bigben Cray XT3

2068 2.4 GHz Opteron Processors

1024 —
0 50 100 150 200
Traub et. al. (2005) J. Neurophysiol 93: 2194
256 |- Assingle column thalamocortical network model
exhibiting gamma oscillations, sleep spindles and
epileptogenic bursts.
. =~
® Runtime
64 T~ lIdealruntime
©) = Spike exchange time
S
\l Mean, max, min Computation time -~
16 |— . . . 8516
+ Mean, max, min variable transfer time woss
3560 cells 14 types
41— 3500 gap junctions
5,596,810 equations
73,465 spikes
1,122,520 connections
19,844,187 delivered
1L

L | | | | J
25 50 100 200 400 800

#CPU

Performance: Traub model with multisplit

1024 ~ 80
Traub
60
B #Cells
356 Cells ‘“’
256 \ .
S I 3000 3000 4000 5000
Complexity
64 |-
- e Runtime 4025681pieces
o Computation time :
N 18.7
16 - Whole cell balance N 132
Multisplit, No Gap Junctions ? '
— m Multisplit, With Gap Junctions
4 L 1 | | |

| | J
32 128 512 2048

CPUs

Finally: Subworlds

Use pc.subworlds to combine parallel simulation with parallel bulletin-board
based parameter search.
from neuron import h

pc = h.ParallelContext ()
pc . subworlds(2)

from model import runmodel
pc . runworker ()

for ncell in range(5, 10):
pc.submit (runmodel, ncell, 1, 100)

while (pc.working()):
print(pc.pyret())

pc.done()
h.quit()

Note: Unless memory on a single node is a limiting factor, you will likely want
either 1 subworld (everything) or pc.nhost () subworlds. In the first case, there is
no need to use subworlds since simulations are run one at a time; in the other
extreme, there is also no need since each simulation runs on a single processor.

	Overview
	Getting started
	Multisplit
	Gap Junctions

